A Fourier representation for the plasma boundary is read from file

[called by: xfocus.]

General representation (stellarator)

1.1 overview

The general representation for plasma boundary is in **generic**. The basic fomulation is

$$R = \sum R_{mn}^{c} \cos(m\theta - n\zeta) + R_{mn}^{s} \sin(m\theta - n\zeta)$$

$$Z = \sum Z_{mn}^{c} \cos(m\theta - n\zeta) + Z_{mn}^{s} \sin(m\theta - n\zeta)$$

Usually, if we imply stellar ator symmetry, then ${\cal R}^s_{mn}$ and ${\cal Z}^c_{mn}$ would be zero.

The positive driection for poloidal angle θ is counterclockwise and for toroidal angle is also counterclockwise from the top view. The positive surface normal should be pointed outwards.

1.2 Variables

The Fourier harmonics of the plasma boundary are reqired in plasma boundary, and the format of this file is as follows:

Note that immediately after reading (and broadcasting) bin, the field periodicity factor is included, i.e. bin = bin * Nfp.

1.3 Sample file

Example of the plasma.boundary file:

```
#Nfou Nfp NBnf
4 2 1

#plasma boundary

# n m Rbc Rbs Zbc Zbs
0 0 3.00 0.0 0.0 0.00
0 1 0.30 0.0 0.0 -0.30
1 0 0.00 0.0 0.0 -0.06
1 1 -0.06 0.0 0.0 -0.06

#Bn harmonics

# n m bnc bns
0 0 0.0 0.0
```

Knotran

The input surface file for knotrans is descriped in knotxx.

Tokamak

This part is reserved for later development of the interface for tokamaks.

rdsurf.f90 last modified on 020-01-17 11:09:51.;

Focus subroutines;