
Documentation of the spline representation in FOCUS

Nicola Lonigro, Caoxiang Zhu

April 2022

The paper has been published and you can find it at https://doi.org/10.1088/1741-4326/ac2ff3

1 Spline representation

This file contains all the functions required to operate the spline representation. The function

• eval_spline_basis computes the third order basis functions Bi(x), that are then used to define the spline
as

S(x) =
∑

i

CiBi(x) (1)

with Ci the control points of the spline, that are the geometric degree of freedom optimized by the code.
They are computed iteratively from the Cox-De Boor algorithm

Bi,0(x) =

1, ti < x < ti+1

0, otherwise
(2)

Bi,k(x) = x − ti

ti+k − ti

Bi,k−1(x) + ti+k+1 − x

ti+k+1 − ti+1
Bi+1,k−1(x) (3)

where the ti are the elements of the knot vector characterizing the spline.

• eval_spline_basis1 computes the first derivative of the third order basis function with respect to the
parameter x. The computed values are stored as a property of the Splines structure, to be used in the
derivatives of the cost functions.

∂Bi,3(x)
∂x

=



1
ti+3−ti

{
Bi,2(x) + x−ti

ti+2−ti

[
Bi,1(x) + x−ti

ti+1−ti

]}
ti < x < ti+1

1
ti+3−ti

{
Bi,2(x) + x−ti

ti+2−ti

[
Bi,1(x) − x−ti

ti+2−ti+1

]
− 1

ti+3−ti+1

[
Bi+1,1(x) − ti+3−x

ti+2−ti+1

]}
− 1

ti+4−ti+1

{
Bi+1,2(x) − ti+4−x

ti+3−ti+1

[
Bi+1,1(x) + x−ti+1

ti+2−ti+1

]}
ti+1 < x < ti+2

1
ti+3−ti

{
Bi,2(x) − x−ti

ti+3−ti+1

[
Bi+1,1(x) + ti+3−x

ti+3−ti+2

]}
− 1

ti+4−ti+1

{
Bi+1,2(x) − ti+4−x

ti+3−ti+1

[
Bi+1,1(x) − x−ti+1

ti+3−ti+2

]
+ 1

ti+4−ti+2

[
Bi+2,1(x) − ti+4−x

ti+3−ti+2

]}
ti+2 < x < ti+3

1
ti+4−ti+1

{
−Bi+1,2(x) − ti+4−x

ti+4−ti+2

[
Bi+2,1(x) + ti+4−x

ti+4−ti+3

]}
ti+3 < x < ti+4

1



• eval_spline_basis2 computes the second derivative of the third order basis function with respect to the
parameter x. The computed values are stored as a property of the Splines structure, to be used in the
derivatives of the cost functions.

∂2Bi,3(x)
∂x2 =



2
ti+3−ti

1
ti+2−ti

[
Bi,1(x) + 2 x−ti

ti+1−ti

]
ti < x < ti+1

2
ti+3−ti

{
1

ti+2−ti

[
Bi,1(x) − x−ti

ti+2−ti+1

]
− 1

ti+3−ti+1

[
Bi+1,1(x) − ti+3−x

ti+2−ti+1

]
− x−ti

ti+2−ti+1

[
1

ti+2−ti
+ 1

ti+3−ti+1

]
− 1

ti+4−ti+1

[
Bi+1,1(x) + x−ti+1

ti+2−ti+1
− ti+4−x

ti+2−ti+1

]}
ti+1 < x < ti+2

2
ti+3−ti+1

{
− 1

ti+3−ti

[
Bi+1,1(x) + ti+3−x

ti+3−ti+2
− x−ti

ti+3−ti+2

]
− 1

ti+4−ti+1

[
Bi+1,1(x) − x−ti+1

ti+3−ti+2

]}
+ 2

ti+4−ti+1

{
1

ti+4−ti+2

[
Bi+2,1(x) − ti+4−x

ti+3−ti+2

]
− ti+4−x

ti+3−ti+2

[
1

ti+3−ti+1
+ 1

ti+4−ti+2

]}
ti+2 < x < ti+3

2
ti+4−ti+1

1
ti+4−ti+2

[
Bi+2,1(x) + 2 ti+4−x

ti+4−ti+3

]
ti+3 < x < ti+4

• enforce_spline_periodicity is a function that ensures the spline is periodic, by making sure the first and
last control points are the same.

2 Cost function for straight outer coils

This cost function constraints the curvature on the outer side of the coil to obtain straighter coils. It uses a
similar expression to the curvature cost function, but it is only applied to the outer part of the coil and uses
an independent set of parameters to constrain the curvature on the outer part of the coil more strongly than
on the inner part.
The expression of the cost function is

fS = 1
Nc

Nc∑
i=1

1
Li

∫ tmax

tmin

W (t)(p1,2(κi, κ0,s) + σsκ
γs
i )dt , (4)

where W (t) is a weight function that equals 1 on the outer part of the coil and 0 on the inner part. The
representation of the coils is a function of t in [tmin, tmax]. This is equal to [0, 2π] for the Fourier representation
and [0,1] for the Spline representation. For a description of the remaining part of the expression, representing
the constraint on the curvature of each point affected by the penality, see the documentation on the curvature
function.
The weight function is given by

W (t) =

1, Pxy(t) > Pm + βPd

0, otherwise
(5)

where Pm is the mean squared distance of the coil projection in the x-y plane from a user-defined point
(x0, y0), usually corresponding to the center of the stellarator, and Pd is a measure for half the maximum
radius of the coil. Considering the distance of the projection of a point along the coil in the x-y plane from
the user-defined point (x0, y0)

Pxy(t) = (xi(t) − x0)2 + (yi(t) − y0)2 , (6)

they are defined as

Pm = Pxy , Pd = max(Pxy) − Pm

2
. (7)

β is a user-defined parameter that can be used to tweak the section of the coil affected by the optimization.

2



With a value β = 0 the section of the coil with a projected distance greater than the mean value for that
coil will all be affected while for a value β = 2 the new cost function will not be applied to any point. The
value of β is read from the input parameter straight_coeff while x0 and y0 are read from origin_surface_x
and origin_surface_y respectively.

The derivatives are computed as in the case of the curvature function, but only applied on the outer part
of the coil.

The implementation of the cost function is completely independent from the curvature function, so a different
expression for this penalty could be implemented in the future without affecting the curvature cost function.

How To Use

The cost function is controlled trough some parameters that are specific to this cost function:

• weight_str : Sets the "weight" (i.e. strength) of the constraint

• straight_coeff : Sets β, determining which part of the coil to consider as the outer part.

• origin_surface_x,origin_surface_y : set x0 and y0.

and some that are analogous of the ones used in the curvature cost function, but can be set independently

• penfun_str

• str_alpha

• str_beta

• str_gamma

• str_sigma

3


