The toroidal magnetic flux of any cross-sections on the magnetic surface is constant. This can be used to constrain coil currents to avoid trival solutions.
[called by: solvers]]

General

To avoid trivial solutions, like when $I_{i} \rightarrow 0 \forall i, f_{B} \rightarrow 0$, it is sufficient to constrain the enclosed toroidal flux. If $\mathbf{B} \cdot \mathbf{n}=0$ on the boundary, then the toroidal flux through any poloidal cross-sectional surfaces is constant. We include an objective function defined as

$$
\begin{equation*}
f_{\Psi}(\mathbf{X}) \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{2}\left(\frac{\Psi_{\zeta}-\Psi_{o}}{\Psi_{o}}\right)^{2} d \zeta \tag{1}
\end{equation*}
$$

where the flux through a poloidal surface, \mathcal{T}, produced by cutting the boundary with plane $\zeta=$ const. is computed using Stokes' theorem,

$$
\begin{equation*}
\Psi_{\zeta}(\mathbf{X}) \equiv \int_{\mathcal{T}} \mathbf{B} \cdot d \mathbf{S}=\oint_{\partial \mathcal{T}} \mathbf{A} \cdot d \mathbf{l} . \tag{2}
\end{equation*}
$$

Here $d \mathbf{l}$ is on the boundary curve of the poloidal surface and the total magnetic vector potential \mathbf{A} is

$$
\begin{equation*}
\mathbf{A}(\mathbf{X})=\frac{\mu_{0}}{4 \pi} \sum_{i=1}^{N_{C}} I_{i} \int_{C_{i}} \frac{d \mathbf{l}_{i}}{r} . \tag{3}
\end{equation*}
$$

The variation of f_{Ψ} resulting from $\delta \mathbf{x}_{\mathbf{i}}$ is

$$
\begin{equation*}
\delta f_{\Psi}(\mathbf{X})=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{\Psi_{\zeta}-\Psi_{o}}{\Psi_{o}}\right) \frac{\delta \Psi_{\zeta}}{\Psi_{o}} d \zeta, \tag{4}
\end{equation*}
$$

where $\delta \Psi_{\zeta}=\int_{\partial \mathcal{T}} \delta \mathbf{A} \cdot d \mathbf{l}$ and
$\delta \mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} I_{i} \int_{0}^{2 \pi}\left[-\frac{\mathbf{r} \cdot \mathbf{x}_{i}^{\prime}}{r^{3}} \delta \mathbf{x}_{i}+\frac{\mathbf{r} \cdot \delta \mathbf{x}_{i}}{r^{3}} \mathbf{x}_{i}^{\prime}\right] d t$.

First derivatives

We can write Eq.(5) into x, y, z components, (subscript i is omitting here)

$$
\begin{align*}
& \delta A_{x}=\frac{\mu_{0}}{4 \pi} I_{i} \int_{0}^{2 \pi}\left[\frac{\Delta x d x+\Delta y d y+\Delta z d z}{r^{3}} x^{\prime}-\frac{\Delta x x^{\prime}+\Delta y y^{\prime}+\Delta z z^{\prime}}{r^{3}} d x\right] d t ; \tag{6}\\
& \delta A_{y}=\frac{\mu_{0}}{4 \pi} I_{i} \int_{0}^{2 \pi}\left[\frac{\Delta x d x+\Delta y d y+\Delta z d z}{r^{3}} y^{\prime}-\frac{\Delta x x^{\prime}+\Delta y y^{\prime}+\Delta z z^{\prime}}{r^{3}} d y\right] d t ; \tag{7}\\
& \delta A_{z}=\frac{\mu_{0}}{4 \pi} I_{i} \int_{0}^{2 \pi}\left[\frac{\Delta x d x+\Delta y d y+\Delta z d z}{r^{3}} z^{\prime}-\frac{\Delta x x^{\prime}+\Delta y y^{\prime}+\Delta z z^{\prime}}{r^{3}} d z\right] d t . \tag{8}
\end{align*}
$$

Here, we are applying $\mathbf{r}=\Delta x \mathbf{e}_{\mathbf{x}}$ and $\mathbf{x}^{\prime}=x^{\prime} \mathbf{e}_{\mathbf{x}}$. More specifically, $\Delta x=x_{\text {surf }}-x_{\text {coil }}$ and $x^{\prime}=d x / d t$.
The first derivatives can be calculated as

$$
\begin{align*}
\frac{\partial A_{x}}{\partial x} & =\frac{\mu_{0}}{4 \pi} I_{i} \int_{0}^{2 \pi}\left[-\frac{\Delta y y^{\prime}+\Delta z z^{\prime}}{r^{3}}\right] d t ; \tag{9}\\
\frac{\partial A_{x}}{\partial y} & =\frac{\mu_{0}}{4 \pi} I_{i} \int_{0}^{2 \pi}\left[\frac{\Delta y x^{\prime}}{r^{3}}\right] d t ; \tag{10}\\
\frac{\partial A_{x}}{\partial z} & =\frac{\mu_{0}}{4 \pi} I_{i} \int_{0}^{2 \pi}\left[\frac{\Delta z x^{\prime}}{r^{3}}\right] d t . \tag{11}\\
\frac{\partial A_{y}}{\partial x} & =\frac{\mu_{0}}{4 \pi} I_{i} \int_{0}^{2 \pi}\left[\frac{\Delta x y^{\prime}}{r^{3}}\right] d t ; \tag{12}\\
\frac{\partial A_{y}}{\partial y} & =\frac{\mu_{0}}{4 \pi} I_{i} \int_{0}^{2 \pi}\left[-\frac{\Delta x x^{\prime}+\Delta z z^{\prime}}{r^{3}}\right] d t ; \tag{13}\\
\frac{\partial A_{y}}{\partial z} & =\frac{\mu_{0}}{4 \pi} I_{i} \int_{0}^{2 \pi}\left[\frac{\Delta z y^{\prime}}{r^{3}}\right] d t . \tag{14}
\end{align*}
$$

$$
\begin{align*}
\frac{\partial A_{z}}{\partial x} & =\frac{\mu_{0}}{4 \pi} I_{i} \int_{0}^{2 \pi}\left[\frac{\Delta x z^{\prime}}{r^{3}}\right] d t ; \tag{15}\\
\frac{\partial A_{z}}{\partial y} & =\frac{\mu_{0}}{4 \pi} I_{i} \int_{0}^{2 \pi}\left[\frac{\Delta y z^{\prime}}{r^{3}}\right] d t ; \tag{16}\\
\frac{\partial A_{z}}{\partial z} & =\frac{\mu_{0}}{4 \pi} I_{i} \int_{0}^{2 \pi}\left[\frac{\Delta x x^{\prime}+\Delta y y^{\prime}}{r^{3}}\right] d t . \tag{17}
\end{align*}
$$

