
 WordUp
Product Guide
 Henry Stolz – Jacky Kong – Luis Legro

1 —

2 —

Table of Contents

0 – Overview
0.0 – Team
0.1 – Description

1 – User Guide
1.0 – Installation
1.1 – Registration
1.2 – Interface and Operation

2 – Developer Guide
2.0 – Technologies
2.1 – Dependency Management
2.2 – Backend
2.3 – Middleware
2.4 – Frontend

3 —

0 – Overview

0.0 – Team

Henry Stolz* – hstolz
Jacky Kong – jacky
Luis Legro – llegro

0.1 – Description

WordUp is an iOS app providing a platform by which to connect with
others, schedule a personal meetup, and practice oral skills in any
foreign language supported by Princeton University’s foreign language
programs. The first portion of the following guide will show you how to
set up the app and take you through its basic usage. The second section
will provide an intermediate-detailed view of the internal design of the
app for those with a more developer-oriented background.

4 —

1 – User Guide

1.0 – Installation

To obtain the code needed to run the app, email Henry Stolz (hstolz@
princeton.edu) to receive access to the private Github repository.
After downloading a copy of the app source code (Clone or download
> Download Zip), unzip the downloaded archive. The full source code
will be available to be opened from Xcode, an IDE provided by Apple. If
not yet installed, Xcode can be found and installed from the App Store.
Open the WordUp.xcworkspace file In Xcode. Follow the instructions
on for CocoaPods installation provided in section 2.1.1 of this guide.

Once complete, click the Build and Run the Current Scheme button on
the top left hand corner to open the app in the Xcode simulator. Ensure
that a simulator (iPhone 7 preferred) is selected; if the only option
shown is “Generic iOS Device,” change the deployment target (WordUp
> General > Deployment Info > Deployment Target) to 10.0. Once this
step is complete, you should be able to simulate the app on various iOS
devices.

0.1 – Quick Start

Navigate to the app’s location on your iOS device and touch or click on
the app to open it. When you first open the app, you can Register a new
account and Login to access your existing account.

If you are using WordUp for the very first time, tap Register and provide
all the information required on the registration page and an optional
bio. By describing yourself, your language goals, and so forth within
your bio, users can get a better idea of who you are and what you two
might chat about should they choose to match with you.

If you already have an account, you can log in using the username and
password you selected when you first registered.

0.2 – Interface and Operation

When you first login to your account, you will be taken directly to the
My Profile page, which shows all information specific to you. When
you are done using the app, you can choose to logout from this page
as well. Throughout the app, you can always navigate to the My Profile,
Matches, and Search pages with the navigation bar found at the bottom
of the screen.

In the Search page, you can see a list of the people you have yet to match
with and whose language preferences match your own (i.e., know the
language you are learning and are learning the language you know). You
can tap to view their profile, especially their bio, and choose whether
to match with that specific user. If you have a hard time deciding, you
can always tap the ‘Random Match’ button at the top right edge of the

Registration Page

5 —

screen. Once matched, you will then find the user in the Matches page.

In the Matches page, you can see a list of the people you have already
matched with, tap their entry to view their profile, and see at what point
in the meet-up process you are in with this particular user. You can
‘schedule’ a meetup, after which your offer will be ‘pending’ as you wait
for your partner to accept. As the receiver of an offer, you can choose
to ‘accept’ the proposed meetup or give a ‘counteroffer’ if the proposed
time or place does not work for you. Once the offer is accepted, the
two parties are ‘scheduled’ and can access the meetup information at
any time. Once the meeting time is passed, the meetup resets and one
party can suggest a new time to meet.

By thusly limiting the actions a user can take to interact with their
language partners, we to encourage users to meet up and get to know
each other in person! Other apps give functions such as text chat and
in-app translation, but we feel those features only hurt users in the
long run. With that said, all of us on the WordUp team hope you enjoy
using our app!

Matches PagePossible Meetup Stages

2 – Developer Guide

2.0 – Technologies

Latest Revision – Version 1.1, 2017-05-13
Build Requrements – Xcode 8.0.0+
Runtime Requirements – macOS 10.11+, iOS 10.0+

Technology Stack – Swift 3.0, Django 1.9, Django REST framework 3.6,
MySQL 1.2.5, Google Cloud Platform

2.1 – Dependency Management

WordUp uses CocoaPods, a dependency manager for Swift and
Objective-C Cocoa projects, to manage the third-party libraries in use
in the app, such as Alamofire.

2.1.1 – Installing CocoaPods

We provide the pod files as part of our product package, but to allow
Xcode to simulate the app, you must first install CocoaPods as follows.
In Terminal, enter:

$ sudo gem install cocoapods

Enter your system password as requested and allow the installation to
complete. If simulation still does not proceed properly, please click on
the top directory of the project in Xcode and change the Deployment
Target under Deployment Info to 10.1. Under normal circumstances,
you would need to go to your project directory and enter the following
command:

$ sudo pod init

This initializes what is known as a “Podfile”. This is as Ruby file where
you would configure the dependencies you would like CocoaPods to
install and manage for you.

In our case, we have already provided a Podfile for our application.
Thus, in the project directory you must enter the following command to
properly install the dependencies from a podfile:

$ sudo pod install

Next, click on the schemes menu next to the Stop Running Application
button in the top left corner of Xcode and click manage schemes. Make
sure everything is checked and Alamofire is present. The simulation
should now work.

6 —

7 —

2.2 – Backend

WordUp uses Django and Django REST framework for all its data
management functionalities with Google App Engine as the host
site for all schemas. Django was chosen for its relative simplicity in
manipulating relational data, for its provided security features, namely
the token-based HTTP Authentication scheme appropriate for mobile
clients and its integration with the extendable user model, its relatively
abundant documentation, as well as for its compatibility with the
Google App Engine (up to version 1.9 as of May 2017).

Recommended reference + reading:

docs.djangoproject.com/en/1.11/
docs.djangoproject.com/en/1.11/topics/db/queries/
django-rest-framework.org/tutorial/quickstart/

2.2.0 – Database Structure

Our database stores two models as defined in models.py. An example
entry of both is shown below, in JSON for readability:

Profile:

{
 “id”:“1”
 “username”:“hstolz”
 “password”:“password” # salted + hashed
 “first_name”:“Henry”
 “last_name”:“Stolz”
 “known_lang”:“en”
 “learn_lang”:“zh”
 “bio”:“Hi everyone! I am...”
}

Match:

{
 “match_id”:“1”
 “user_id1”:“1” # foreign keys
 “user_id2”:“8”
 “time_1”:“2017-05-20 18:30:00 +0000”
 # datetime object
 “location”:“Small World Coffee”
 “status_code”:“1”
}

2.2.1 – Model Implementation Details

The definition of models is relatively straightforward, with much of
the logic behind the implementation readily apparent by viewing the
model field definitions in models.py and reading through the Django
documentation.

https://docs.djangoproject.com/en/1.11/
https://docs.djangoproject.com/en/1.11/topics/db/queries/
http://www.django-rest-framework.org/tutorial/quickstart/

8 —

The Profile model extends Django’s AbstractUser class. This gives
access to functions like authenticate, login, and handles
password salting+hashing, facilitates token creation, and enables the
login requirement for access of certain views.

One area of note is the use of status_code. Value 0 indicates the match
is created but currently no meetup is scheduled. Value 1 indicates that
the Profile user_id1 proposed a meetup but the Profile user_id2 has
yet to accept (and vice-versa for 2). Value 3 indicates that the meetup
has been succesfully scheduled.

2.2.2 – View Implementation Details

To the right, you can see the endpoints provided by our API and their
allowed HTTP methods. Most are self explanatory, with the exception of
/token/, which is explained below, and /times/.

The latter gives the existence/status of a match by providing a Profile
id as opposed to Match match_id as is the case with the /matches/
endpoint. It is primary used in showing your match status with another
user in the profile view of that user.

All methods with PUT and POST require the parameters to be passed
as JSON. /matches/ will create a match with a specific user if
a_username is specified, otherwise it will randomly match you with
an eligible user. /matches/#/ is the main endpoint used in making
offers, counteroffers, and confirming meetups.

Querying of the database is done not with raw SQL commands
but through Django’s query abstractions. For instance, Match.
objects.filter(time_1__lte=t).update(status_code=0,
time_1=None) will select matches satisfying the given time command
and update the specified fields, all in one statement.

2.2.3 – Security

Every HTTP request to the Google App Engine server requires that the
client authenticate by including an Authorization HTTP header that is
created in this format by the Django Rest framework TokenAuthentication
scheme, example value below:

Token: 9944b09199e62bcf2918ad846dd0d4bbdfc6ee4b

Whenever a user is registered, their information is stored, password
is salted and hashed, and django generates a semi-permanent token
for that user. From then on, whenever the user logs into the app,
they provide their credentials to /login/, which authenticates their
credentials against those stored in the database and marks them
as logged in. The token endpoint also authenticates the credentials
and provides the user with their token. Every request the user makes
includes this token in the header; failure to do so will result in HTTP
401 Unauthorized response. Attempts by logged-in users to access,
generate, or alter matches that they are not members of will result in
an HTTP 403 Forbidden response. Once a user logs out, the user
information and token are cleared from the app.

API Outline –

/profiles/
/matches/
GET, POST

/profiles/#/
/matches/#/
GET, PUT, DELETE

/times/#/
GET, PUT, DELETE

/login/
POST

/logout/
POST

/token/
POST

/register/
POST

9 —

2.3 – Middleware

WordUp uses Alamofire, a Swift-based HTTP networking library
for iOS and Mac OS X, to create RESTful web services that link the
backend and frontend within the Xcode development environment.
We chose Alamofire because of its easy integration with Swift and
with the aforementioned security features provided by the Django
REST framework, since it can easily be made to require a token-based
authentication header with the “header” parameter of all Alamofire
request functions.

2.4 – Frontend

2.4.0 – Assets

We use generic images for our menu items, which include search, profile,
list and default profile image. These can be found under the WordUp file
hierarchy in Assets.xcassets, along with all other aspects of the UI.

2.4.1 – Storyboard

The app’s workflow is outlined in main.storyboard, which allows
relatively easy implementation of a Tab Bar Controller that permits
navigation using an easy-to-use tab bar found at the bottom of all three
UIViews in the app. This way, no matter what feature the user is in the
middle of using, all other features can be immediately accessed.

In both of the two UITableViews, item can be touched or clicked; doing
so provides a UIView that shows a more detailed view of that item. All
transitions between the different views are implemented using “segues.”
Some segues, such as the ones between the two TableViewControllers
and the UserProfilesViewController that provides the profile detail, are
manually activated; this allows for the easy transfer of user information
and quick generation of user data. This also prevents lag between
the two views. All other segues exhibit default behavior without any
programmatic intervention in the source code.

We also use Navigation Controllers to enable the display of a Back
button on the Top Bar in certain situations. For instance, a separate one
is provided for each view in the Tab Bar so that the user can navigate
back to the relevant TableView after entering a User Profile View.

2.4.2 – Tabs

The My Profile tab provides all relevant account information for the user
including their username, their chosen language to learn, their chosen
known language, and a bio, a free-form text description of the user and
their language goals. These are UILabels whose text is dynamically set
using Alamofire requests. This view also provides a Logout button, which
is a simple UIButton with an attached function, providing the erasure
of user data upon the end of a session. Finally, the view provides an
ImageView that defaults to the image included in our assets folder.

10 —

The Matches tab provides a UITableView of all the matches relevant
to the user. Tapping each matched profile reveals a UIView that shows
the details of that user profile. The matched user information is also
provided with simple UILabels.

The Search tab provides a UITableView of all the potential matches
for that user. A potential match is defined as a user who knows the
language you are trying to learn and who is learning the language you
know. The main purpose of this tab is for the user to be able to search
specific other users they have in mind, such as friends or language
teachers on campus that need a platform to schedule their oral
interviews. Additionally, the Random Match button provided at the top
of the search UITableView randomly generates a match amongst the
potential matches for that user. This is a core feature of our app since,
apart from allowing users to practice their language, we also aim to
facilitate new connections amongst app users with similar interests.
Once this button is touched, a request will be sent to the appropriate
endpoint and Django generates a random match as described in View
Implementation Details.

 A

 B

 C

 a

 b

 c

 D

Xcode Storyboard View

App View Outline –

A – Login View

B – Registration View

C – Tab Bar Controller
a – My Profile View

b – My Matches Table View

c – Search Table View

D – User Profiles View

11 —

2.4.3 – User Profile

Both the Search and Matches tabs are connected to a User Profile
UIView, the main area of interaction between users.

If accessed from the Search tab, a Match Us UIButton is provided
within the Make Match UIView. When tapped, it sends a request for
the two users to be added to the matches schema. Once this request
is processed, a user can interact with this now-matched user in the
Matches tab.

If accessed from the Matches tab, a number of variations on the view
may be scene. To implement the scheduling functionality described
in sections 0.2 and 2.2.1, we have a group of 4 nested UIViews. The
highest in the hierarchy shows the Make Match view as described in
the above paragraph. Nested below this are the Schedule View, Accept
Reschedule View, and Scheduled Pending View. Depending on the
status of the match between us and the displayed user, one of these
views will be pulled to the top of the hierarchy to be displayed.

In case there is no current meetup, the Schedule View is shown; users
can input a time in a customized PickerView, the value of which gets
formatted by two dateFormatters, one for display and one to be sent to
the backend. They also provide a location within a TextField.

In case we initiated the meeting and are waiting on a response, or if the
meeting has been scheduled, we display the proposed or agreed-upon
time, respectively.

In case a meeting has been proposed to us, the Accept Reschedule
View is shown. Accordingly, the proposal can either be accepted, which
finalizes the meetup, or another offer can be made. In the latter case,
the Schedule View is displayed.

