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Abstract 
Human cognition is unique in its ability to perform a wide range of tasks and to learn new 

tasks quickly. Both abilities have long been associated with the acquisition of knowledge that 

can generalize across tasks and the flexible use of that knowledge to execute goal-directed 

behavior. We investigate how this emerges in a neural network by describing and testing the 

Episodic Generalization and Optimization (EGO) framework. The framework consists of an 

episodic memory module, which rapidly learns relationships between stimuli; a semantic 

pathway, which more slowly learns how stimuli map to responses; and a recurrent context 

module, which maintains a representation of task-relevant context information, integrates this 

over time, and uses it both to recall context-relevant memories (in episodic memory) and to 

bias processing in favor of context-relevant features and responses (in the semantic pathway). 

We use the framework to address empirical phenomena across reinforcement learning, event 

segmentation, and category learning, showing in simulations that the same set of underlying 

mechanisms accounts for human performance in all three domains. The results demonstrate 

how the components of the EGO framework can efficiently learn knowledge that can be flexibly 

generalized across tasks, furthering our understanding of how humans can quickly learn how 

to perform a wide range of tasks — a capability that is fundamental to human intelligence. 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Introduction 
Among the most striking features of human intelligence are the breadth of tasks we can 

learn to perform, the efficiency with which we can do so, and the flexibility with which we can 

generalize this learning to new tasks and switch among them. Although non-human animals 

and machines can outperform humans in many particular tasks (such as building webs or 

dams, doing arithmetic, or playing a variety of games from Jeopardy to Go), humans can 

achieve a respectable level of performance over a vastly broader range of tasks than any other 

known agent, natural or artificial. Furthermore, although machines are now superior on many 

tasks traditionally used to index intelligence (such as playing chess) and are approaching 

human competence on others (such as language generation), they generally require massive 

amounts of training experience to do so — far in excess of that required by humans — while 

exhibiting considerably more restricted ability to generalize that experience to other similar 

tasks (Lake et al., 2017).


It is generally agreed that the flexibility of human cognition reflects a core competency: the 

ability to efficiently acquire and represent knowledge in such a form that it generalizes 

effectively to tasks or situations that share similar structure. This idea unites cognitive 

psychology, cognitive neuroscience, and machine learning: work in cognitive psychology 

highlights the importance of abstraction and analogical reasoning in general intelligence 

(Holyoak, 2012; Newell & Simon, 1972); work in cognitive neuroscience suggests that 

transmodal and cross-task representations are critical for semantic decision making (Patterson 

et al., 2007) and cognitive control (Musslick et al., 2023); and work in machine learning 

demonstrates that multi-task learning and meta-learning greatly increase data efficiency in 

artificial neural networks (Caruana, 1997; Thrun & Pratt, 1998). However, it remains a mystery 

how people are able to acquire such abstract knowledge so efficiently from their experience 

and a challenge to design artificial systems that can emulate this ability.
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In this article, we suggest an approach to addressing this mystery that builds on two lines 

of research in cognitive science often treated as distinct — the acquisition of knowledge and 

the execution of goal-directed behavior — integrating these in a way that leads to a reframing 

of core constructs in each.


Long-term memory and generalization. Work on the acquisition of knowledge has 

traditionally focused on mechanisms of learning and the organization of long-term memory 

(McClelland et al., 1995; Squire, 1987). This work has been shaped by the longstanding 

formulation of long-term memory as comprised of two components (Ebbinghaus, 1885; 

Tolman, 1948; Tulving, 1972): episodic memory, which refers to memory for individual events or 

experiences (such as what you ate for breakfast yesterday); and semantic memory, which 

refers to knowledge about the structure of the world, often framed in statistical terms (such as 

what kinds of items people typically eat for breakfast). The distinction between episodic and 

semantic memory has been identified as an important computational principle, that can help 

explain brain organization, and has driven tremendous progress in our understanding of human 

cognitive function and the neural mechanisms from which it arises (Kumaran et al., 2016; 

O’Reilly et al., 2014). Complementary Learning Systems (CLS) theory formalizes this distinction 

in terms of a fundamental tradeoff in neural network architectures between the ability to rapidly 

acquire new knowledge, often requiring the formation of novel associations among (seemingly) 

arbitrary pieces of information in episodic memory, while preserving (i.e., not overwriting) 

existing knowledge about structure in the world acquired through the integration of information 

in semantic memory over extended experience (McClelland et al., 1995). 


One general implication of the CLS formulation has been that the episodic memory system 

is not directly involved in generalization, as it is responsible for encoding specific individual 

experiences, rather than general patterns that hold across many experiences which are 
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assumed to be learned by slower, statistical learning mechanisms in semantic memory.  1

However, the ability to rapidly encode episodic memories in a novel circumstance and recall 

these memories later to guide inference or action in new but similar situations may also provide 

a means for generalizing across experiences. The instance-based nature of the memories 

means this process can be extremely data-efficient: making an inference requires, in the limit, 

recalling just a single memory of a related prior experience (e.g., inferring that a person you 

recently met will eat oatmeal for breakfast today because they ate oatmeal for breakfast 

yesterday).


Cognitive control and working memory. While the considerations above suggest that 

episodic memory plays an important role in the rapid adaptation of behavior, such work has 

focused primarily on memory rather than action; most research addressing the flexibility of task 

performance has focused on mechanisms underlying cognitive control and its use of working 

memory. Cognitive control refers to the updating and maintenance in working memory of 

representations of task demands, goals, or contextual factors that are used to guide 

processing to align with the current situation (Cohen, 2017; Salame & Baddeley, 1982). Control 

is important in quickly changing environments, and in particular when a stimulus demands 

different, and especially less habitual responses that are specific to the situation. Under these 

conditions, it has been proposed that the role of control is to limit interference among 

conflicting signals, allowing a single system to operate in a wide range of situations without 

such interference (Botvinick et al., 2001). For example, in the Wisconsin Card Sort Task 

participants must sort cards according to the shape, color, or number of symbols appearing on 

the card, with the sorting rule changing periodically (Berg, 1948). Maintaining a representation 

of the current rule (e.g., sort by color) and using it to influence processing (e.g., by attending to 

color) ensures that only context appropriate responses are made (e.g., it prevents accidentally 

sorting by number, even if that rule was recently active; Miller & Cohen, 2001).


 CLS outlines how episodic memories get consolidated into semantic memory through offline replay that interleaves 1

new and old experiences. This explains how exceptions to general knowledge can be accommodated — e.g., by 
interleaving the newly learned fact that a penguin is a bird that cannot fly with the existing general knowledge that 
most birds fly.
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Despite the centrality of control representations to theories of control, little work has 

focused on the structure of these representations or how they are learned. Recent work has 

begun to address this question, suggesting that the statistical learning mechanisms 

responsible for the formation of representations in semantic memory may be critical not only 

for learning about the structure of the world, but also how to behave within it, shaping the 

representations used for the control of behavior much as it shapes the representations used to 

understand the world itself (Giallanza et al., 2023). To date, however, little work has considered 

whether and how the capabilities afforded by episodic memory may contribute to the formation 

and use of such representations; that is, how episodic memory may interact with cognitive 

control.


Episodic memory and control. In this article we consider these interactions in detail, by 

examining how learning and episodic memory contribute to the flexibility of control, enabling 

rapid generalization and the optimization of behavior for a task. Specifically, we show that 

storing information in episodic memory and retrieving that information in the future enables the 

rapid and efficient transfer of knowledge useful for control from previously experienced 

situations to new ones. Conversely, control can help avert a potential cost in the use of 

episodic memory: retaining old memories runs the risk of creating confusion when old 

knowledge conflicts with new information. In these cases, control can be used to intervene by 

guiding the memory retrieval process, providing context that disambiguates otherwise 

conflicting memories and aids recall of task-appropriate ones. In combination, episodic 

memory and control work to store memories of past experiences and the context in which 

those experiences occurred, accessing memories from similar situations in the past that may 

be useful in the current situation. This idea builds on previous suggestions that the binding 

function of episodic memory (McClelland et al., 1995) and the biasing effect of context 

representations on processing (Cohen et al., 1990) can be viewed as two complementary forms 

of control (Cohen & O’Reilly, 1996). Here we suggest that, working together (as shown in Figure 
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1), these may help explain both the rapid learning of new tasks and the breadth of tasks that 

can be performed.


We formalize these ideas and explore them using computationally explicit mechanisms in 

what we refer to as the Episodic Generalization and Optimization (EGO) framework, which 

implements episodic memory and context-dependent control of processing within a standard 

neural network architecture. This is inspired by previous work exploring the relationship 

between episodic memory (as a form external memory) and recurrent neural networks used for 

control (e.g., Graves et al., 2014; Fortunato et al., 2019; Ritter et al, 2018; Webb et al., 2021; 

2023). Here, we use this framework to address empirical phenomena across three domains of 

function that have largely been treated separately of one another (reinforcement learning, event 

segmentation, and category formation), showing in simulations that the same underlying 

mechanisms can account for characteristically human patterns of behavior in these different 

domains. Specifically, the simulations describe how episodic memory and context-dependent 

control can enable human-like inference in sequential prediction tasks, how the control system 

learns to segment continuous experience to disambiguate conflicting memories, and how 

episodic memory bootstraps the learning of abstract context representations used to control 

inference and behavior in category learning. We use the simulations to illustrate the factors of 

the environment and the system that contribute to generalization, such as the temporal 

structure of experience and the specificity versus generality of memory retrieval, providing an 

integrated account of findings previously addressed separately by models of reinforcement 

learning, episodic memory, and cognitive control.


The EGO Framework 
We begin by providing an overview of the modeling framework. The EGO framework consists 

of two key components that interact to produce context-appropriate responses to stimuli given 

a small amount of training data: an episodic memory mechanism (lower left component of 

Figure 1) and a control mechanism (upper middle component of Figure 1), each of which is 
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implemented using standard components of neural network architectures from prior work. We 

begin by presenting a simplified version of the framework used to construct the model of Study 

1. In Studies 2 and 3, we build upon this foundation, expanding the framework slightly to 

accommodate more complicated tasks.


Episodic Memory Mechanism 

The episodic memory mechanism records a history of encountered data and is 

implemented as a differentiable external memory (Graves et al., 2014; Fortunato et al., 2019; 

Ritter et al., 2018; Webb et al., 2021). It represents memories using three matrices: one for 

stimulus information, one for context information, and one for output information (e.g., the 

reward in reinforcement learning tasks or the response in stimulus-response association tasks). 

Each time-point in the simulation is associated with a row in these three matrices, and writing 

to episodic memory occurs after each stimulus presentation: a new row is appended to 
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Figure 1. The Episodic Generalization and Optimization (EGO) Framework for Studies 1 & 2. The 
EGO framework consists of a control mechanism (context module; upper middle) and an episodic 
memory mechanism (bottom left). Episodic memory records conjunctions of stimuli (blue boxes), 
contexts (pink boxes), and observed responses (green boxes) at each time point (rows). Bidirectional 
arrows connect episodic memory to the stimulus, context, and output, indicating that these values can 
be stored in or used to query episodic memory, or retrieved from it when another field is queried. The 
context module integrates previous context (recurrent connection) along with information about the 
stimulus and the context retrieved from memory.



memory that contains the new stimulus, the new context, and the outcome associated with the 

new stimulus (in other words, new memories are always written to new rows, as in Fortunato et 

al., 2019 and Webb et al., 2021, but contra Graves et al., 2014).


Memory is queried every time a new stimulus is presented. When a new stimulus is 

presented, that stimulus and the current context are compared to stimulus/context pairs in 

memory based on a similarity function (i.e., cosine similarity between the vector 

representations), providing a score indicating how well each memory matches the current 

situation. Taking a weighted average of past memories (weighted by the match score) results in 

a retrieved memory, containing a retrieved stimulus, retrieved context, and retrieved outcome; 

this information guides behavior by providing examples of outcomes that occurred in similar 

situations in the past (similar to exemplar-based models of categorization; Nosofsky, 1986; and 

kernel-based methods in machine learning; Boser et al., 1992; Vapnik & Lerner, 1963).


For example, consider using the episodic memory mechanism to help infer how much you 

will enjoy eating a new dish at a restaurant. First, the context (the restaurant) and the stimulus 

(the new dish) are compared to previous experiences in memory. This results in a score 

indicating how similar each memory is to the current situation. These scores are then used to 

weight past experiences, favoring those that involve similar dishes and/or similar restaurants to 

the current situation; by averaging over how much you enjoyed each previous situation, the 

system makes an inference about how much you will enjoy the current one.


Control Mechanism 

As mentioned in the previous section, memory encoding and retrieval in the EGO 

framework is coordinated by a representation of the current context. For the first study, we 

implemented context as a linear integrator over the stimuli. On every timestep, the controller 

integrates the context from the previous timestep with both the context retrieved from episodic 

memory and the current stimulus to form the new context. In so doing, the context represents 
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the sequence of events leading up to, and the stimuli present in the environment during, 

performance of a particular task.


This use of linear integration as a form of context follows the traditional view of context in 

models of episodic encoding and recall (e.g., Tulving 1972) and, in particular, is closely related 

to the TCM model (Howard & Kahana, 2002; Polyn et al., 2009). Recent work has suggested 

that this form of context can not only account for patterns of human behavior in free recall 

tasks, but also provide a useful form of context for sequential learning problems by providing a 

representation of the transitions between states in the environment (Zhou et al., 2023). In 

Studies 2 and 3, we modify the control mechanism to handle more complicated forms of 

context that require non-linear integration.


Summary 

In summary, the EGO framework describes how episodic memory and cognitive control can 

work together to enable flexible processing and inference in novel environments. The key 

component is the coupling of standard mechanisms of learning with context-dependent re-use 

of previous experiences through memory recall. This provides a data-efficient form of learning, 

explaining humans' remarkable ability to use previous experience to make new inferences and 

to learn new behaviors with far less data than most existing neural network architectures.


In the remainder of this article we apply the framework to simulate key phenomena 

observed in three different lines of empirical inquiry that have previously been explained using 

different formalisms: 1) the effects of reward versus transition revaluation in Momennejad et 

al.’s (2017) multi-step learning task, explained in terms of combination of model-based 

decision making (Daw et al., 2011) and the learning of successor representations (Dayan, 1993; 

Gershman et al., 2012) in prediction and decision-making; 2) the effects of blocked versus 

interleaved training in Beukers et al.’s (2023) state prediction task, explained in terms of latent 

cause inference (Courville et al., 2006) for event segmentation in the context of continual 
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learning; and 3) the effects of blocked versus interleaved training on the structure of and 

selection among semantic representations formed in Flesch et al.’s (2018) categorization task, 

explained in terms of a variant of Hebbian learning. We show that interactions between context 

processing and episodic memory are sufficient to reproduce the phenomena in each of these 

domains, providing a unifying account in terms of a single, integrated set of underlying learning 

and processing mechanisms.


Study 1: Reinforcement Learning and Decision Making 

Rationale 

We first demonstrate the framework's ability to explain the flexibility of human-like inference in 

a changing environment by simulating the multi-step learning task introduced by Momennejad 

et al. (2017). This task is based on the two-step task in Daw et al. (2011) that has been used 

extensively to study the relative contributions of model-based versus model-free reinforcement 

learning to prediction and decision making (Daw et al., 2005). The task tests the extent to 

which an agent can flexibly adapt to two kinds of changes in the environment: reward 

revaluation and transition revaluation (Figure 2). 


Behavioral Task 

In an initial learning phase, participants were shown two different sequences of three stimuli, 

each followed by a different reward value. In a second, revaluation learning phase, participants 

were shown sequences of two stimuli, each beginning with the second stimulus in one of the 

sequences seen in the initial learning phase, followed by one of two changes. In the reward 

revaluation condition, the sequence continued as in the learning phase, but the reward 

associated with the two trajectories was swapped. In the transition revaluation condition, the 

third stimulus was swapped between the two sequences, which was then followed by the 
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same reward that originally followed each of the third stimuli in the learning phase. Finally, in a 

decision phase that followed each revaluation learning phase, participants indicated their 

preference between the starting states of the two trajectories (i.e., the first stimulus seen in the 

initial learning phase), providing a measure of how effectively participants were able to adapt 

their preference following the revaluation.


Both revaluation conditions have traditionally been assumed to index the contribution of 

model-based (MB) learning (Daw & Dayan, 2014; Daw et al., 2005; Sutton & Barto, 2018), as 

they involve a change in distal reward: in the final decision phase, participants choose between 

the starting states of the trajectories, which were not re-experienced in the revaluation phase, 

so the task cannot be learned using standard model-free (MF) reinforcement learning. However, 

MB learning can be used to perform the task by representing the transition from each stimulus 

to the next as well as the reward associated with each stimulus, updating these when it 
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Figure 2. Sequential learning task (Momennejad et al., 2017) used for Study 1. Flow of the reward 
and transition revaluation conditions. The graphs show the trajectories in the two conditions. Both 
conditions start with the same transition structure in the learning phase. In the revaluation phase, either 
the rewards (left) or transitions (right) in each trajectory change. At the end of the learning and 
revaluation phases, participants and the model decide which starting state they prefer (state 1 or state 
2) based on their predictions regarding the trajectories and rewards associated with the final states.



encounters new information. This suggests that once a fully MB agent has experienced all 

possible states, transitions, and rewards, it should perform perfectly following revaluation.


Momennejad et al. (2017) found that participants performed well above chance in both 

revaluation conditions, indicating that they were not relying exclusively on MF processing. 

However, their performance fell substantially short of perfect, suggesting they also did not rely 

entirely on MB processing. One possibility is that performance reflected a mixture of MB and 

MF processing. However, another subtle but significant finding was that performance was 

slightly better for reward revaluation than for transition revaluation. This is not easily explained 

by a simple mixture of MB and MF processing. Instead, the authors proposed that participants 

used a mix of MB processing and successor representation (SR) learning (Dayan, 1993; 

Gershman et al., 2012). SR involves the use of MF learning to build an internal representation 

of the transitions among stimuli and a separate representation of the reward associated with 

each stimulus. An SR agent performs well on reward revaluation because it can easily update 

its reward-to-stimulus mapping; but it fails entirely on transition revaluation because updating 

its transition representation requires directly experiencing every full sequence of transitions 

(e.g., the trajectory 1->3->6 to learn the association between states 1 and 6).


Momennejad et al. (2017) showed that a mixture of MB processing and SR learning can  

reproduce the pattern of behavioral effects they observed. Here, we show that a model based 

on the EGO framework can also reproduce the empirically observed effects, which are 

explained in terms of a single set of interacting mechanisms: a continuously integrated context 

representation and the use of similarity-based retrieval of these context representations and 

previous experiences to make predictions from current stimuli. In the discussion, we consider 

the ways in which this account is both similar to but also differs from the SR/MB account.
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Model 

We modeled this task using the EGO framework as described in Figure 1. We simulated the 

experiment by providing the model with the same data presented to the human participants in 

the Momennejad et al. (2017) study, representing each stimulus (e.g., each state in the 

sequence) with a one-hot encoding (see Supplementary Information for more details). The 

model was used to simulate human performance by executing in two modes: an observation 

mode, used to simulate the learning phases during which participants passively observed the 

state transitions; and a decision mode, used to simulate the decision phases during which 

participants estimated the value of the states.


	 In observation mode (Figure 3, left side), the model first observes the current stimulus. It 

then uses the state and the current context to query episodic memory, retrieving a memory of a 

prior context associated with the state and integrating this context retrieved from episodic 

14



Figure 3. Processing in observation and decision mode for Study 1. In observation mode, the 
model first uses its context representation and the current stimulus to retrieve a memory. It uses the 
retrieved context to update the current context, then encodes the updated context representation, the 
current stimulus, and the observed reward provided by the environment into a new episodic memory. 
Finally, it integrates the current stimulus into its context representation. In decision mode, the model 
first uses one of the two starting states and its prior context to query episodic memory. It adds the 
retrieved reward to an estimate of the value of the initial state and uses the retrieved state and context 
to update its context representation. It then uses its new context representation to query memory 
again, adding the retrieved reward to its value estimate, and repeats this process until a termination 
condition is met.



memory into the current context. Next, the model observes the reward associated with the 

state, storing the state, the updated context, and the reward as a new row in episodic memory. 

Finally, it updates the context once again by integrating the representation of the current state. 

It then repeats this process with the next state/reward pair. This results in the context 

representations encoding the long-run discounted transitions between the states, as the 

context at time  encodes a recency-weighted representation of previously visited states 

(Figure 4; see also Gershman et al., 2012).


	 In decision mode (Figure 3, right side), the model simulates a future trajectory to 

estimate the long-term reward for a given state by iteratively updating its context 

representation and querying episodic memory. Given a starting state, the model first queries 

episodic memory using the state and the current context, resulting in a retrieved state, 

retrieved context, and retrieved reward. It then updates its context using the retrieved state and 

context, using the updated context to once again retrieve a memory. The model then repeats 

this process until a termination condition is met (e.g., it makes a fixed number of queries), 

t
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Figure 4. Context representations for Study 1. Left: Context representations learned during the initial 
phase, averaged over memories for each state. Columns show the context representation for each 
state — for example, the context representations for state 5 reflect that state 3 is the one-step 
predecessor of state 5 (yellow square) and state 1 is the two-step predecessor (pink square). Middle: 
Context representations during the reward revaluation phase. The context representations for states 5 
and 6 still reflect the two-step dependencies (inset). Right: Context representations during the 
transition revaluation phase. The one-step transitions for states 5 and 6 update following transition 
(yellow squares in the center right of the heatmap), but the two-step transitions are no longer 
represented (inset).



resulting in a sequence of recalled memories that, since the context representation integrates 

information about prior states, respect the previously observed transitions between states (see 

also Shohamy & Daw, 2015). The model can then estimate the long-run value of the starting 

state by summing over the simulated rewards. As in the behavioral experiment, the model can 

run the value estimation process for two different states (i.e., State 1 and State 2, the starting 

states) and choose which state it prefers by comparing the values.


Results 

We simulated performance of the task and compared the model's behavior to the human 

behavior reported in Momennejad et al. (2017). We exposed the model to the same number of 

trajectories as participants, running the model 58 times with random initial conditions to 

simulate performance of the 58 human participants in the empirical study. Following 

Momennejad et al. (2017), we quantified performance with a revaluation score, indicating the 

change in preference between the starting states before and after the revaluation phase (Figure 

5). A value of 0 indicates no change in preferences while a value of 1 indicates a complete 

preference reversal.
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Figure 5. Results for Study 1. Revaluation scores measure the change in preference ratings for the 
starting states before versus after revaluation. For both the model and humans, revaluation scores are 
greater for reward revaluation than for transition revaluation.



The main result is that both human participants and the model update preferences 

following revaluation, with revaluation scores significantly greater than 0 (model: 0.52 ± 0.04 

s.e.m. for reward revaluation and 0.34 ± 0.04 for transition revaluation; humans: 0.52 ± 0.02 for 

reward revaluation and 0.45 ± 0.02 for transition revaluation; Figure 5). Additionally, the mean 

revaluation score was modestly but significantly larger in the reward revaluation condition than 

in the transition revaluation condition (by unpaired t-test for the model: t114=4.050, p<.0001; 

and by paired t-test for humans: t57=10.148, p<.0001).


Discussion 

The pattern of the model’s performance arises from the interaction between the control and 

episodic memory mechanisms, which in combination implement key features of both MB and 

SR learning algorithms. Like MB, the model estimates the value of a state by simulating step-

by-step “rollouts” of future trajectories from that state. However, it does so differently than 

traditional model-based algorithms. While MB explicitly represents a stimulus-to-stimulus 

transition matrix and a stimulus-to-reward matrix, updating values in these matrices as they 

change, our model implicitly represents these by maintaining unchanging copies of all 

previously experienced stimuli, contexts, and rewards in memory. It then accesses these 

memories using a representation of the current context: by encoding the context in which a 

state occurred (e.g., that state 3 came after state 1), and by querying with the relevant context 

when running a simulation (e.g., querying memory with a context encoding state 1, and 

retrieving a memory of state 3), the model accesses memories in an order that respects the 

observed transitions in the environment.


In contrast to the MB approach of using a veridical lookup from a transition matrix to 

determine the next simulated state, our memory-based approach uses a stochastic match 

between the current context and remembered contexts, and this stochasticity occasionally 

results in retrieving outdated memories (i.e., memories from the initial phase, such as state 5 
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yielding $1, that contradict with updated memories in the revaluation phase, such as state 5 

yielding $10). This explains why our model, like humans, does not fully update its preferences 

after the revaluation phase (i.e., it has a revaluation score of less than 1; see Figure 5) and 

suggests that the sub-optimality of MB processing observed in humans could be due to errors 

in retrieval rather than, or in addition to, failures of learning and/or encoding of associations.


A further distinction from MB is that the context representations the model uses to retrieve 

memories encode long-term transitions between states. This biases the simulation mechanism 

to favor retrieval of memories consistent with not only the one-step transitions but also the 

multi-step transitions between the starting state and subsequent ones. For example, if the 

model has simulated the trajectory 1->3 following transition revaluation and needs to predict 

the next state, the two-step transitions will bias the model towards retrieving the outdated 

memory that the next state is state 5 rather than the updated memory that the next state is 

state 6. This is because the context associated with state 5 in the initial phase encodes a two-

step association with state 1 (Figure 4, left panel), while the context associated with state 6 in 

the revaluation phase only encodes the one-step association to state 3 (Figure 4, right panel). 

While the influence of the two-step transitions is relatively weak compared to the associations 

encoded between one-step transitions, it is sufficient to provide a small but significant amount 

of interference at retrieval. In contrast, in reward revaluation the context representations 

continue to encode the (unchanged) two-step association between states 1 and 5 throughout 

the revaluation phase (Figure 4, middle panel), resulting in better performance compared to 

transition revaluation.


The two key distinctions between our model and conventional MB algorithms mentioned 

above — that our model retains old memories instead of updating them, leading to occasional 

retrieval errors, and that our model retrieves memories based on multi-step transitions, harming 

its performance following transition revaluation — both reduce the performance of the model 

on this task. In different environments, however, these features can be advantageous, providing 

flexibility not afforded by conventional MB processing in two closely related ways. First, the 
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sensitivity of the model to multi-step dependencies can help performance on tasks that require 

maintaining information over an extended delay. For example, the AX-CPT task from the 

cognitive control literature requires responding to the letter “X” in one way unless it follows the 

letter “A”, in which case the response is different (i.e., it requires treating the sequence ?->X, 

where “?” represents any letter other than “A”, as different from the sequence A->X; Cohen & 

Servan-Schreiber, 1992; Todd, Niv, & Cohen, 2008). This distinction corresponds to the 

different trajectories in the learning and revaluation phases of the Momennejad et al. (2017) 

experiment (e.g., the sequence 1->3 occurs in the initial phase, while the sequence ?->3 

occurs in the transition revaluation phase); however, in the case of the AX-CPT task, sensitivity 

to the multi-step transitions is advantageous rather than a hinderance as it allows the agent to 

learn distinct, context-sensitivity responses to the same stimulus.


Second, retaining memories in episodic memory supports the recovery of previously 

experienced state dynamics. This corresponds to reinstatement (or “renewal”) effects in 

extinction learning paradigms: when humans or non-human animals are trained on an 

association, followed by a period in which the association is absent or violated, they quickly 

adapt to a reinstatement of the initial association (Bouton & Bolles, 1979; Pavlov, 1927; Phelps 

et al., 2004). More generally, humans appear to naturally segment continuous experience into 

chunks of recurring sequences of states and/or actions, often referred to as “events” or 

“schemas” in cognitive psychology (Newtson & Engquist, 1976; Rumelhart, 1975; Schank & 

Abelson, 2013), or “options” when this involves useful sequences of actions in the context of 

hierarchical reinforcement learning (Sutton, 1999). A number of studies of such “event 

segmentation” have revealed characteristic patterns of performance that are distinct from 

those observed for standard neural network learning but that are well characterized by 

probabilistic models of inference. In the section that follows, we consider such paradigms, 

showing again that a model cast within the EGO framework can reproduce these patterns 

using a psychologically and neurally plausible set of processing mechanisms that exhibit many 

of the same features as existing, more abstract models.
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Study 2: Sequence Learning and State Space 
Abstraction 

The previous study brings into focus both advantages and disadvantages of the storage 

and context-guided retrieval of memories in episodic memory: On the one hand, this allows for 

generalization between related memories, such as learning multi-step (non-Markovian) 

dependencies between stimuli and retrieving old memories when they become relevant. On the 

other hand, this creates the potential for interference between conflicting memories, risking 

retrieval of irrelevant memories that interfere with task performance. This tradeoff presents an 

optimization problem, balancing the benefits of retrieving relevant memories in the service of 

cross-memory generalization against the risk of cross-memory interference posed by the 

retrieval of irrelevant memories.


Context is critical in mediating this trade-off by favoring the retrieval of memories that have 

context representations similar to the current one. This suggests that if the system represents 

context similarly for related memories but differently for unrelated memories, it can guide 

retrieval to more strongly favor those that are relevant in the current situation. Here, we 

investigate two factors influencing the development of such context representations: the order 

in which stimuli are experienced in the environment, and its interaction with the use of learning 

to extract useful context information from the environment.


Rationale 

As demonstrated in Study 1, and consistent with TCM, recurrently integrating the previous 

context along with current stimulus information into the context representation influences the 

similarity between memories, such that memories occurring nearby in time have similar context 

representations. This implies that the order in which stimuli are experienced should affect the 

performance of the model: The model should be better able to retrieve relevant memories and 

should thus perform better overall when related stimuli appear clustered together in time (i.e., 
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in a blocked design) than when related stimuli are more separated in time and/or unrelated 

stimuli are closer together in time (i.e., in an interleaved design).


Although the integration of context representations may be useful in general, given that 

information in the environment is often temporally autocorrelated (Zacks & Tversky, 2001), the 

simple form of linear integration used in Study 1 may not always be the most efficient or useful 

way to impose structure on the context representations. Rather, in some circumstances it may 

be helpful to extract context-indicative information from the environment and use this to shape 

the internal representations of context through learning. For example, when watching a movie a 

change in the background can be a strong indicator of a change in the scene, and retrieving 

information from memory associated with the new background may help appropriate interpret 

and/or predict what happens next (Baldassano et al., 2017). Accordingly, learning how to use 

changes in context-indicative information to shape context representations may help the 

system better organize its memories to support future, task-appropriate behavior.  Such 

shaping of context representations may be particularly useful when two situations strongly 

conflict with one another. 


For example, many situations share similar stimuli but have different transition structures 

(e.g., a customer at a restaurant sits at a table and then orders food, whereas a customer at a 

food court orders food and then sits at a table). Simple linear integration will help the system 

learn the transition structure (as in Study 1), but it will only provide a weak cue about the 

difference between them due to the similarity between the situations. This can be overcome by 

further differentiating the context representations associated with each setting (e.g., learning  

distinct context representations for restaurants and food courts and using these contexts to 

guide retrieval of relevant memories). Recent empirical work suggests that people can learn 

how to do this very effectively, but that this depends on the temporal structure of the 

environment: people do better when trained in blocks of each situation than when trained 

interleaved (Beukers et al., 2023).
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One approach to explaining this uses Latent Cause Inference (LCI; Gershman et al., 2014) 

to assign context representations that help distinguish between the different transition 

structures (Beukers et al., 2023). Here, we show how an extension of the model used in Study 

1, in which the context layer is subject to learning, can provide similar functionality and, 

accordingly, a similarly accurate account of the findings. In the Discussion, we compare this 

model with LCI-based accounts and consider closely related issues such as the tension 

between pattern completion and pattern separation addressed by Complementary Learning 

System theory (McClelland et al., 1995).


Behavioral Task 

We simulated the continual learning experiment described in Beukers et al. (2023). This 

experiment used a “next-state prediction task” to test participants’ ability to learn two sets of 

sequences involving an identical set of states presented in different orders. Each set of 

sequences was defined as a graph, with nodes corresponding to stimuli (states) and edges 

determining the transitions from one state to the next (see Figure 6). Participants were shown a 

series of states one at a time, determined by one of the graphs. Without being told about the 

sequential structure of each graph, they were periodically asked to predict the next state. As 

shown in Figure 6, each state (e.g., state 1) lead to one of two different successor states (e.g., 

state 3 or state 4), depending on which graph was currently in effect. Since state transitions 

depended on both the current state and the current graph, accurate performance required both 

inference of the graph structure and determination of which graph was currently in use.


All participants received 800 initial training trials and 200 test trials. Half of the participants 

received blocked training and the other half received interleaved training. In blocked training, a 

fixed number of sequences were randomly sampled from the same graph (with a full pass 

through all states in each sequence), after which the graph switched. This occurred periodically 

with alternating graphs (i.e., 40 sequences from graph 1, followed by 40 sequences from graph 

2, then 40 from graph 1, etc.). In the interleaved version, sequences strictly alternated between 
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the two graphs (i.e., sequence from graph 1, followed by a sequence from graph 2, then a 

sequence from graph 1, etc.). Finally, at the end of the experiment, all participants completed a 

series of sequences sampled randomly from the two graphs. This allowed for a direct 

comparison of performance of participants trained in the different conditions.


Model 

To simulate performance in the next-state prediction task, we augmented the model used in 

Study 1 by replacing linear integration in the context layer with a recurrent neural network layer 

that learns, using the backpropagation algorithm (Rumelhart et al., 1986), how to update its 

context representation . This consists of a “forward pass” associated with processing (Figure 2

7, left side) and a “backward pass” associated with learning (Figure 7, right side). In the forward 

pass, on every timestep the model first calculates its updated representation of context by 

 Following prior work (Braver & Cohen, 2001; O’Reilly & Frank, 2006), we used a gated recurrent network rather 2

than a simple RNN (we specifically used the Minimal Gated Unit; Zhou et al., 2016). We found that the gated network 
performed better than the simple network across training conditions. Additionally, we used a learning rate value 
higher than what is traditionally used to train neural networks. This allowed the model to achieve human-level 
performance despite the small number of training examples. We found that the qualitative effects described in the 
Results section held for a variety of learning rates, however (see Supplementary Information).

23



Figure 6. Next-state prediction task (Beukers et al. 2023) used for Study 2. Left: Stimulus 
sequences for the two graphs, each consisting of two trajectories that were orthogonal across graphs. 
Right: During an initial phase, participants were exposed to sequences based on each graph, 
organized in either blocks of a single graph (top) or interleaved between graphs (bottom); during a test 
phase, all participants then completed a final randomly interleaved set of sequences.



recurrently integrating the previous context and the current state. It then predicts the next state 

by querying episodic memory using the current state and the updated context. In the backward 

pass, the model observes the true next state, calculates a prediction error, and uses the 

backpropagation learning algorithm to update the weights in the recurrent neural network to 

reduce the prediction error. In other words, the model learns how to update the way it 

represents context to best predict subsequent states. Note that, as shown in Figure 7, the 

backpropagation of error stops at the context representation of the previous timestep (i.e., we 

truncate backpropagation instead of backpropagating fully through time) to better align with 

biologically plausble learning algorithms (e.g., Contrastive Hebbian Learning; O’Reilley, 1996; 

see Lillicrap et al., 2020 for a recent review of alternative approaches). 


After processing and learning on the current timestep, the model stores the state, context, 

and observed next state into episodic memory. We simulated learning and performance in the 

next-state prediction task by providing the model with the same sequences of stimuli 

presented to human participants (see Supplementary Information for details).
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Figure 7. Processing and learning for Study 2. The model first passes the stimulus through its 
recurrent context layer. It then uses the stimulus and the updated context representation to retrieve a 
memory. It uses the retrieved memory to form a prediction of the next state. It then observes the next 
stimulus, calculates the prediction error, and backpropagates this error through to the weights in the 
recurrent layer. Finally, it encodes the updated the context representation, the current stimulus, and the 
successor stimulus as a new episodic memory.



Results 

We measured the accuracy of the model’s predictions over time separately in the blocked 

and interleaved conditions (see Supplementary Information for details) and compared this to 

the performance of human participants and the performance of a standard recurrent neural 

network (an LSTM, without episodic memory) in the corresponding conditions reported by 

Beukers et al. (2023). Figure 8 shows that, like human participants, the model exhibited near-

ceiling performance in the blocked condition but near-chance performance in the interleaved 

condition. Interestingly, this obtained even in the final portion of the experiment, which involved 

a series of interleaved trials. That is, performance on interleaved trials was nearly perfect when 

this followed training in the blocked condition, but remained close to chance despite prior 
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Figure 8. Results for Study 2. Accuracy for the next-state prediction task over time. In the blocked 
condition, the model and humans both maintain near-ceiling performance throughout the experiment, 
including during the final set of interleaved trials (yellow shading). In the interleaved condition, however, 
performance remains near-chance. In contrast, an LSTM network (without episodic memory) shows the 
opposite effect: in the blocked condition, the LSTM is at chance performance during the start of the 
interleaved trials, while in the interleaved condition, it reaches near-ceiling performance halfway 
through training.



training on interleaved trials in the final interleaved condition. In contrast, a standard recurrent 

neural network fails to capture this pattern of behavior, exhibiting catastrophic forgetting under 

blocked training (demonstrated by the accuracy dropping to 0% on every block transition and 

50% at the start of interleaved training; see Beukers et al., 2023 for a more detailed analysis) 

and high performance under interleaved training.


To examine why the model exhibits this pattern of performance, we plotted the cosine 

similarity between the model's context representations for every state against every other 

state. Figure 9 shows the results for training in the blocked condition. Whereas there was little 

structure during exposure to the first block, clear structure emerged quickly during the second 

block that mirrored the structure of the experiment: within each block, context representations 
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Figure 9. Cosine similarity of context representations in the blocked condition of Study 2. 
Shading indicates the cosine similarity between the context representation for each stimulus 
presentation with every other over the course of the experiment, on a scale of 1 (perfectly correlated, 
white) to -1 (perfectly negatively correlated, black). During the initial blocked sequences, representation 
similarity quickly comes to reflect the blocked structure of the experiment. During the final interleaved 
trials, representation similarity alternates, suggesting that context representations encode the currently 
active graph. This structure is not seen in the interleaved condition (see Supplementary Information).



were similar (cosine similarity close to 1; white squares in Figure 9), whereas across blocks they 

differed (cosine similarity less than 0; black squares squares in Figure 9). The same pattern was 

evident, but at a finer grain, during the final set of interleaved sequences. This pattern of results 

was not observed for training in the interleaved condition (see Supplementary Information). 


These observations suggest that, in the blocked condition, the model learned distinct 

(approximately orthogonal or anti-correlated) context representations for each graph that were 

activated and persisted over the period during which each was relevant. To test this more 

directly, we used a logistic regression classifier to determine how well the pattern of activity 

over the context layer predicted the current graph when trained on the blocked sequences and 

tested on interleaved sequences at the end of the experiment. This classified the active graph 

in the test sequences with 88.5% accuracy (± .005 s.e.m. across the 58 model instances; 

significantly above chance performance, p<.0001 by t-test), supporting the hypothesis that the 

context representations encoded the currently active graph. For models trained in the 

interleaved context, however, logistic regression classified the active graph for the test 

sequences with only 59.5% accuracy (± .0065 s.e.m.) — significantly below the performance of 

the blocked model (p<.0001 by unpaired t-test) — suggesting that the model failed to learn the 

underlying structure of the task as effectively when trained in an interleaved manner.


Discussion 

The results suggest that a neural network architecture augmented with episodic memory 

can, like people, exploit blocked structure during learning to rapidly distinguish between 

different contexts and use representations of these contexts to control behavior accordingly. 

Conversely, standard neural networks without episodic memory are unable to explain these 

results (Beukers et al., 2023; see Supplementary Information for a reproduction of these 

results): they suffer from catastrophic interference (McCloskey & Cohen, 1989) on block 

transitions, with learning in the new block overwriting conflicting information that was learned 
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in the previous one. This can be avoided through interleaved training (McClelland et al., 1995), 

though that is the opposite of what was observed for human performance. The EGO model 

resolves this by rapidly learning distinct context representations for each block and storing 

these context representations with memories of the states in each block, allowing the model to 

quickly retrieve those memories and reinstate their associated context when they become 

relevant again. Early in training, prediction error drives the change in context, but after 

sufficient experience the model learns to use information from the environment (e.g., retaining 

the identity of the previously visited state, which disambiguates the currently active graph) 

rather than relying on prediction error for the shifts, allowing the model to perform well on the 

interleaved trials at the end of the experiment.


The behavior of the model aligns closely with CLS theory, providing an example of how the 

use of episodic memory allows a neural network to avoid catastrophic interference. However, 

the focus of CLS theory is on the rapid learning of new information that conflicts with existing 

knowledge stored in semantic memory (e.g., a penguin is a bird that cannot fly). This is 

accomplished by storing new information in episodic memory, keeping it separate from 

semantic memory, and then gradually consolidating it in semantic memory through interleaved 

training of information retrieved from episodic memory with existing knowledge retrieved from 

semantic memory (often referred to as “replay”). In the next-state prediction task, however, the 

challenge is to rapidly encode semantic information (i.e., the sequences corresponding to each 

graph) while keeping them distinct from one another. This is achieved through the rapid 

learning of context representations that are specific to each set of sequences, and storing 

these in episodic memory. From this perspective, the EGO framework can be thought of as an 

extension of the CLS theory, that incorporates a mechanism for learning representations that 

can be used for context-dependent control of behavior. This also addresses an important 

tension highlighted by CLS theory: whether to treat unfamiliar input as distinct from or related 

to existing knowledge (i.e., “pattern separation” versus “pattern completion,” respectively). The 

EGO framework suggests that the learning of context representations may play a critical role in 
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mediating such decisions, by organizing memories to balance between-context differences 

(pattern separation) and within-context similarity (pattern completion).


Learning to group memories by context is also related to state space abstraction in 

reinforcement learning: The context representations learned by the model can be thought of as 

part of two distributed abstract state representations, corresponding to each of the two graphs 

latent in the structure of the environment. That is, the combination of information about the 

graph, which is not directly observable from the stimulus but is encoded in the currently active 

context representations, together with information about the current stimulus, that is encoded 

in the embedding layer and used to query episodic memory, allows the system to make 

context-appropriate inferences about the state transitions. Notably, by internally maintaining 

information about the environment that is not directly available, but is necessary for decision 

making, the context representations come to encode multi-step (non-Markovian) dependencies 

that convert a partially observable Markov decision process (POMDP, which is not tractable to 

learn) into a standard MDP (which is tractable to learn; Peshkin et al., 1999). Prior work has 

shown that, for short sequences, maintaining each prior state or a simple integral of those prior 

states in working memory may be sufficient to convert a POMDP into an MDP (e.g. Todd, Niv & 

Cohen, 2008), as we demonstrated in Study 1. However, for longer or more complex 

sequences, using a neural network to learn compressed and/or factorized representations of 

prior state information can be useful (e.g., Hochreiter & Schmidhuber, 1997; Kriete, 2013; 

Rougier et al., 2005), as demonstrated in Study 2. The EGO framework integrates these 

approaches, providing an example of a neurally and psychologically plausible process model 

for state space abstraction,  and the use of that information to convert POMDPs into MDPs, to 3

solve prediction tasks using error-driven learning.


The solution to the next-state prediction task learned by the EGO model is similar to ones 

proposed by Beukers et al. (2023) and Lu et al. (2023). The latter uses a neural network to learn 

 As noted above, the state space abstraction in the model used for Study 2 is distributed over the context layer, 3

which serves to identify the graph, and the representations stored in episodic memory over which similarity-based 
retrieval is used to determine the response.

29



the transitions from each state to the next, coupled with an LCI mechanism to infer and assign 

new task representations when prediction error signals a change in graph. The LCI-based 

assignment and retrieval of the representations for each graph is similar in many respects to 

the similarity-based retrieval of context representations from episodic memory in our model, 

and can be seen as implementing a similar form of state space abstraction. Critically, however, 

the LCI process assigns an arbitrary context representation when it infers a new graph, that is 

biased to be independent from previously assigned context representations. In contrast, the 

context representations in our model were learned de novo, and evolved to be dissimilar under 

the sequential structure of the task and the similarity-based retrieval mechanism used to 

retrieve them from episodic memory. From this perspective, the EGO model can be seen as 

offering a neurally as well as psychologically plausible implementation of the more abstract LCI 

model.


Finally, the context representations learned by the model can be viewed as implementing a 

form of cognitive control by representing and maintaining task-relevant information (in this 

case, a representation of the currently active graph) and using that information to guide 

processing (both by coordinating the retrieval of context-relevant memories and by using those 

memories to govern performance). In this respect, the EGO framework suggests how a 

recurrent neural network that represents context, coupled with the storage and similarity-based 

retrieval of such representations in episodic memory, can explain how control representations 

emerge through interactions with the environment and learning. This connects the use of 

context for episodic memory retrieval (e.g., Howard & Kahana, 2002;  Polyn et al.,2008) with 

the use of context for biasing processing in semantic memory (e.g., Giallanza et al., 2023), as in 

other models of cognitive control. We explore these interactions further in the next study.
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Study 3: Category Learning and the Shaping of 
Representations Used for Control 

The previous experiments demonstrated a mechanism for rapidly learning context 

representations that can control behavior by retrieving context-appropriate episodic memories. 

Here, we examine how these mechanisms can interact with the learning of categories in 

semantic memory, shaping the formation of control representations that can flexibly select 

task-appropriate mappings between inputs and outputs. Specifically, we show that the model 

can explain results reported in a study by Flesch et al. (2018) in which, consistent with the 

results of Study 2 above, blocked training led to improved performance in a category learning 

task.


Rationale 

Prior work has suggested two important ways in which context representations can bias 

processing in semantic memory in support of their role in control. First, they can directly 

facilitate responding to task-relevant stimulus features (e.g., naming the color of a Stroop 

stimulus; Stroop, 1935) when such responses face competition from otherwise stronger ones 

(e.g., reading the word in a Stroop stimulus), by selectively biasing the activation of those 

features (Desimone & Duncan, 1995; Cohen et al., 1990; Cohen, 2017). Second, they can help 

shape the structure of semantic representations as these are being learned, emphasizing task-

relevant distinctions between features to make these easier to selectively activate in the future 

(Giallanza et al., 2023; Rogers & McClelland, 2004; 2008). While previous work has addressed 

the use of context representations for control in these ways, little work has addressed how 

such context representations are themselves learned. Study 2 suggests that episodic memory 

may facilitate the rapid development of such representations, which may in turn help shape the 

development of semantic representations as they are formed for newly learned tasks. From this 

perspective, the same environmental factors that influence the learning of context 
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representations useful for distinguishing sequential structure (as in Study 2) may have similar 

effects when learning to distinguish feature-based category structure.


A recent study by Flesch et al. (2018) provided support for this, using a simple feature-

based category learning task. In the Flesch et al. (2018) study, participants were tasked with 

learning how to categorize the same set of stimuli according to one of two different features, 

depending on the context. Consistent with the Beukers et al. (2023) study, participants 

exhibited superior performance when training was blocked by context than when it was 

interleaved. Subsequent work has provided evidence, from a neuroimaging experiment (Flesch 

et al., 2022) and a computational model (Flesch et al., 2023), that this difference in performance 

can be attributed to the influence the training regime had on the structure of the semantic 

representations that were learned: under blocked training, the semantic representations better 

reflected the feature relevant to the current context, whereas under interleaved training, the 

semantic representations reflected both features in both contexts. Flesch et al. (2023) 

proposed a model of these results that used a Hebbian mechanism for learning and activating 

context representations that decayed exponentially with time. Here, we show that the same 

mechanisms used in Study 2 to account for the learning of sequential structure can reproduce 

the results of Flesch et al. (2018) for learning feature-based category structure.


Behavioral Task 

We simulated the category learning experiment described in Flesch et al. (2018), which 

tested the ability to learn which feature of a stimulus lead to reward in different contexts (Figure 

10). Participants were shown a series of displays, each of which contained a target stimulus 

that varied along two feature dimensions overlaid on one of two background images. The latter 

reliably indicated which of the two feature dimensions determined whether the stimulus was 

categorized as good (positive reward) or bad (negative reward). Participants had to decide 

whether or not to accept or reject each stimulus (by predicting whether it would be positively or 

32



negatively rewarded), after which they were provided feedback indicating the outcome for that 

stimulus. Participants were not informed about the relevance of the stimulus features nor the 

meaning of the background images, which they had to learn through experience with the task.


Successful performance on the task required identifying which feature was relevant in each 

context. The design is similar to ones often used in studies of category learning (Gluck & 

Bower, 1988; Smith et al., 1974), Bayesian inference (Gershman et al., 2010), and reinforcement 

learning (Leong et al., 2017; Niv et al., 2015). Here, the focus was on how blocked versus 

interleaved training influenced the ability to learn the relevant feature dimension for each 

context and appropriately categorize the stimuli. Half of the participants completed a blocked 

version (in which the context switched every 200 trials) while the other half completed an 

interleaved version (in which the context switched randomly from trial to trial), with all 

participants completing an interleaved test phase at the end of the experiment.


Model 

To simulate the task, we augmented the model used in Study 2 with a semantic memory 

pathway that adds a context-dependent layer directly connecting the stimulus and context to 
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Figure 10. Category learning task (Flesch et al., 2018) used for Study 3. Left: Stimuli used in each 
of the two contexts. Stimuli varied along two abstract features, which are represented here with color 
and size, in two different contexts, which are represented with shape (the abstract features used in our 
simulation correspond to visual features shown to participants in the original study; see Supplementary 
Information for details). Right: During an initial phase, participants were exposed to sequences based 
on each context, organized in either blocks of a single graph (top) or interleaved between contexts 
(bottom); during a test phase, all participants then completed a final randomly interleaved set of 
sequences.



the output. This follows the architecture used in previous neural network models of control 

(e.g., Cohen et al., 1990) and semantic memory (e.g., Rogers & McClelland, 2004), as well as 

recent work exploring the relationship between semantics and control (Giallanza et al., 2023). 

Thus, the model had access to both an episodic pathway (as in Studies 1 and 2) and a 

semantic pathway that it could use jointly to predict the category for a given stimulus. This fully 

implemented the EGO architecture is shown in Figure 11. Backpropagation learning was used 

to update weights in all pathways (i.e., the weights connecting the stimulus, context, context-

dependent, and output layers together, as well as the recurrent weights within the context 

module), allowing the model to learn how to extract context from the environment (episodic 

pathway) and how to use this context to bias processing (semantic pathway).
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Figure 11. The EGO Framework for Study 3. The framework from Figure 1 is augmented with a 
context-dependent layer in the Semantic Memory module. The context-dependent layer is a neural 
network layer that receives input from both the stimulus and the context and projects to the output 
layer. This allows the context-dependent layer to represent context-relevant features of the stimulus 
and use those features to predict a context-appropriate output associated with the stimulus (following 
Rogers & McClelland, 2004). The output can thus be predicted from one of two pathways: either 
through episodic memory, by querying memory using the current context and stimulus, or through 
semantic memory, by mapping the context and the stimulus to the output layer directly using the 
context-dependent layer.



Results 

We trained the model to perform the task using the same protocols (blocked and 

interleaved) used to train participants in the Flesch et al. (2018) study (see Supplementary 

Information for more details). We then measured the change in accuracy over time in predicting 

whether the reward was positive or negative and compared performance with that of 

participants in the blocked and interleaved conditions of the empirical study (Figure 12). As in 

Study 2, both humans and the model learned to perform the task faster and better in the 

blocked training condition, and both performed better on interleaved test trials following 

blocked training, though performance was well above chance for both conditions (model: 

82.2% ± 0.4 s.e.m. for blocked training and 79.3% ± 1.0 for interleaved training; humans: 

91.8% ± 4.0 s.e.m. for blocked training and 87.6% ± 4.8 for interleaved training).


To examine the structure of the representations learned by the network, and how this 

affected performance, we used multidimensional scaling (MDS; Shepherd, 1962) to visualize 
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Figure 12. Results for Study 3. Accuracy in predicting positive versus negative reward during the 
training and test trials. During training (left panels), both humans (top) and the model (bottom) learned 
faster when training was blocked by context (teal) than when it was interleaved (pink). This advantage 
persisted during the interleaved test trials at the end of the experiment (right panels).



the representations that developed in the context-dependent layer (Figure 13). Each point 

corresponds to one stimulus, with size and color indicating the two stimulus dimensions and 

the shape of each point (circles versus diamonds) indicating which context was paired with the 

stimulus (i.e., indicating which feature dimension predicted the outcome). In both conditions, 

the representations clearly encode the two dimensions in an ordered way. However, in the 

blocked condition the variance along the irrelevant dimension is collapsed, with the circle task 

showing high variance for one dimension but low variance for the other, and conversely for the 

diamond task. In other words, following blocked training, the context-dependent layer strongly 

represented the task-relevant feature and only weakly represented the task-irrelevant feature, 
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Figure 13. Semantic representations learned under blocked and interleaved training in Study 3. 
MDS of representations learned in the context-dependent layer of the model. Each point indicates a 
stimulus, with size showing the feature value along dimension 1 (x-axis in left panels), color the value 
along dimension 2 (y-axis in all panels), and shape designating whether it was shown with a context 
cue indicating whether dimension 1 (circle) or dimension 2 (diamond) predicted the outcome (x-axis in 
right panels). Training in both conditions lead to representation of the values along both stimulus 
dimensions. However, the blocked condition (top panels) lead to representations that were nearly 
orthogonal for the two categories, with low variance along the contextually-cued, task-relevant 
dimension (e.g., dimension 2 for the circle task, and dimension 1 for the diamonds task), and high 
variance along the other, task-irrelevant dimension. This was not so for the interleaved condition 
(bottom panels), in which representations of stimuli appear to be correlated across dimensions.



which facilitated making task-relevant responses, consistent with prior models of cognitive 

control (Desimone & Duncan, 1995; Cohen et al., 1990;  Cohen, 2017). In contrast, in the 

interleaved condition the representations appear to reflect both task-relevant and task-

irrelevant features equally strongly, resulting in decreased performance when these features 

conflicted (i.e., when the same stimulus was associated with different responses in the two 

contexts).


We used representational similarity analysis (RSA; Kriegeskorte et al., 2008) to quantify 

whether the semantic representations learned in the blocked condition more strongly reflected 

the task-relevant feature. Specifically, we compared the semantic representations learned in 

the two conditions to two idealized templates: a task-specific template, which represented only 

the task-relevant feature, and a task-general template, which represented both features equally 

strongly (Figure 14). As predicted, blocked training was more strongly associated with learning 

task-specific representations than was interleaved training (blocked: r=0.58; interleaved: 

r=0.39; blocked is significantly greater than interleaved by Mann-Whitney U test: U=305, 
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Figure 14. Task-general versus task-specific representations in blocked versus interleaved 
training of Study 3. Idealized representational templates (left panels) for task-general representations 
(top) and task-specific representations (bottom) were compared to model representations in the 
context-dependent layer learned under blocked and interleaved training. RSA correlations (right panel) 
indicate that interleaved learning (pink) favored the development of task-general representations, 
whereas blocked learning (teal) favored task-specific representations.



p=.005), whereas interleaved training was more associated with learning similar representations 

across tasks than was blocked (blocked: r=0.51; interleaved: r=0.60; blocked is significantly 

less than interleaved by Mann-Whitney U test: U=97, p=.006).


Discussion 

The results of this study show that the interactions between episodic memory and control 

lead to the formation of distinct context representations for different tasks when learning to 

categorize based on task-specific feature dimensions of the stimuli, extending the results of 

Study 2, which focused on the learning of task-specific sequences. In both cases, this was 

promoted by blocking trials according to task, which enhanced the similarity of context 

representations stored in episodic memory for a given task and their differences across tasks. 

When the block switched, retrieving recent memories from episodic memory associated with 

the previous (now incorrect) context produced prediction errors that pressured the learning of 

distinct context representations dedicated to each task (as in Study 2).


The current results also show that the structure of these context representations impacted 

the structure of the semantic representations in the context-dependent layer of the model 

during blocked training by providing distinct biasing signals to that layer. This helped the 

semantic representations to selectively emphasize the task-relevant feature while minimizing 

the task-irrelevant feature (upper panels of Figure 12), ultimately improving performance on the 

task. This finding is consistent with prior work studying the influence of context representations 

used for control (e.g., Cohen et al., 1990) on the learning of semantic representations (Giallanza 

et al., 2023), extending those results by providing an explanation both for how context 

representations emerge through learning and how those can in turn shape the learning of 

semantic representations.


In contrast, during interleaved training the model formed context representations that were 

less strongly category-specific (as it did not benefit from temporal autocorrelation in the 
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environment; see Study 2). As a consequence, the semantic representations were not as 

strongly biased towards selectively emphasizing task-relevant features. Instead, without a clear 

context signal, the model tended to learn representations that reflected both features, 

modulating these based on the task just enough to generate the correct response. This 

resulted in decreased performance, due to the potential for interference on trials in which the 

task irrelevant feature was associated with a different response than the task relevant one.


Finally, it is worth noting that performance of the model improved more quickly in the 

blocked than interleaved training condition, as is observed for human participants (see Figure 

11, left panels). That is, it was faster to learn two tasks, each one-at-a-time (i.e., blocked), than 

it was to learn both tasks at the same time (i.e. interleaved). This might seem to run counter to 

the finding in the traditional literature on learning and memory that “spacing” rather than 

“massing” of study improves performance (Austin, 1921; Bahrick & Phelphs, 1987), if spacing 

is likened to interleaved and massing is likened to blocked training. However, this may be a 

false alignment as the effects may pertain to different timeframes of learning. One account for 

why spacing is better than massing is the time it affords for consolidation, because the periodic 

replay of information in episodic memory improves its transfer to semantic memory. The 

studies we have considered take place in a single session, with little if any time for such 

consolidation. Accordingly, the mechanisms in our model are meant to address learning on a 

much faster time scale, one ordinarily linked with the formation of associations in episodic 

memory, but that here we extend to include semantic memory.


Another factor that may differ between the studies of massing versus spacing and blocked 

versus interleaved training is the nature of the associations being formed. Traditionally, 

materials used in studies of massed versus spaced learning have not generally involved stimuli 

that are similar but associated with conflicting responses (i.e., incongruence of stimulus-

response mappings), and thus are less likely to produce interference. Accordingly, even if 

spacing is akin to interleaving, performance should not be impaired due to the absence of 

interference effects, compared with the materials used in the studies considered here, in which 
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the response mappings across tasks were strong potential sources of interference in the 

interleaved conditions.


In combination, the consideration of spacing effects suggests that future work should 

investigate applying the EGO framework to situations involving longer timescales of learning 

and tasks that do not directly conflict with one another. For example, it should be possible to 

train a model to learn tasks from all three studies used in this article. We would expect that the 

model can learn to perform all three tasks, but that spacing would become more advantageous 

because, on the one hand, the lack of cross-task interference limits the drawbacks of 

interleaved training, and, on the other hand, increasing the total amount of information that 

needs to be learned necessitates consolidation into semantic memory (because increasing the 

length of episodic memory makes it more difficult for the model to recall old memories; e.g., 

Beukers et al., in press).


General Discussion 

Summary 

One of the great remaining challenges facing the study of intelligence in natural systems, 

and its design in artificial ones, is understanding how the human brain achieves its (still) unique 

combination of efficiency of learning and flexibility of processing. These are arguably core 

features of its capacity for intelligence, that have been the focus of work both on semantic 

cognition and cognitive control, and that have yet to be replicated in artificial computational 

systems. Here, we argue that these capabilities reflect a close interaction among four 

fundamental components of cognitive function: i) statistical learning, usually attributed to 

semantic memory; ii) rapid storage and similarity-based retrieval of novel information, usually 

attributed to episodic memory; iii) activation, online integration and maintenance of recently 

presented information, usually attributed to working memory; and iv) use of the latter for 

biasing task-relevant processing, usually attributed to cognitive control.  


40



We implement these functions in an interacting set of neural network mechanisms and 

describe models using these that simulate human performance in three different tasks domains 

that have been treated as probing largely distinct processes and explained using three different 

formalisms: i) revaluation in reinforcement learning, previously explained in terms of successor 

representations; ii) event segmentation in sequence learning, previously explained in terms of 

latent cause inference; and iii) the formation of context representations used for control over 

semantic representations in category learning, previously explained in terms of auto-

associative learning mechanisms.


Here, we show how a set of integrated mechanisms can provide a single, unifying account 

of performance in these three domains, controlling behavior by maintaining and updating a 

representation of the current context (in working memory), and using this context both to recall 

context-relevant memories (in episodic memory) and to bias processing in favor of context-

relevant features and responses (in semantic memory). We demonstrated how the interaction 

of episodic memory with standard mechanisms for learning and control in neural network 

architectures enables the system to rapidly learn new tasks without forgetting how to perform 

previously learned ones, reproducing effects observed for humans in revaluation, 

segmentation, and categorization tasks. More broadly, we demonstrated how these 

components, which we refer to as the EGO framework, can promote the efficient learning of 

abstract context representations that support flexible generalization and the optimization of 

control. In the remainder of this General Discussion, we consider central features of this 

framework, and principles it illustrates, that we organize under two broad categories: the 

dynamics of context processing and the structure of the representations involved.
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The Dynamics of Context Processing 

Temporal autocorrelation and context representations. 

A critical factor that influenced the results is the temporal structure of the environment. We 

showed that models performed better following blocked training than interleaved training, in 

alignment with human behavior and in contrast with standard neural networks without episodic 

memory, which show the opposite pattern. The temporal autocorrelation present in the blocked 

condition benefits the models due to recurrence in the context layer. As demonstrated in Study 

1, recurrent integration of stimuli induces useful structure in the context representations, such 

that the closer stimuli are in time to one another, the more likely it is that the context 

representations for those memories will be similar to one another. When related memories 

occur in sequence, as in blocked training, this integration, and its interaction with similarity-

based retrieval from episodic memory, helps the model develop a coherent, stable 

representation for each context and retrieve its memories in a task-appropriate manner. This 

builds upon prior models of episodic memory, such as the Temporal Context Model (Howard & 

Kahana, 2002); but here the effect is amplified by learning, which extends its effects to longer 

sequences (as shown in Study 2) and to the shaping of context and semantic representations 

(as shown in Study 3). In contrast, during interleaved training the rapidly shifting context makes 

it more difficult for the models to distinctly represent the different contexts, making them 

susceptible to the effects of cross-task interference.


Task switching and the stability versus flexibility of cognitive control. 

In addition to effects on learning, blocked versus interleaved designs may also impact the 

dynamics of switching between tasks, which has been a longstanding focus of the literature on 

cognitive control. For example, an ubiquitous finding is that rapidly switching between different 

control-demanding tasks harms performance, which is commonly referred to as the switch 

cost (Allport et al., 1972; Monsell & Mizon, 2006). This parallels the deleterious effects of 

interleaved designs observed in Studies 2 and 3. However, because task switching 
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experiments generally involve highly familiar tasks (e.g., responding to the magnitude versus 

parity of a digit), they have not generally been thought to reflect learning (c.f. Brown & Braver, 

2005; Verguts & Notebaert, 2008). Rather, they are thought to arise from difficulties in rapidly 

changing the allocation of cognitive control required to perform each task, reflecting a 

fundamental tradeoff between the requirements for stability and flexibility of control (Goschke & 

Bolte, 2014; Musslick & Cohen, 2021): On the one hand, focusing intently on the current task 

advantages performance by enhancing the processing of task-relevant information and limiting 

disruptions from distracting information (e.g., Cohen et al., 1990); that is, it promotes the 

stability of control. On the other hand, it also limits the ability to quickly and reliability switch 

between tasks; that is, it diminishes the flexibility of control. 


The stability-flexibility tradeoff, and its optimization, has been explained in terms of the 

dynamics of control allocation, using models in which the representations responsible for 

control are implemented as attractors in the recurrent layer of a neural network that represents 

task contexts (e.g., Braver & Cohen, 2000; Frank et al., 2001; Gilbert & Shallice, 2002; 

Kalanthroff et al., 2018; Musslick et al., 2019; Zipser et al., 1993). The efficacy of such context 

representations can be increased by deepening the attractors, which stabilizes the 

representations against disruption and further facilitates the processing of task-relevant 

information, but makes it more difficult to switch context representations when the task 

changes. Conversely, if context representations are made weaker (i.e., shallower attractors), 

switching between contexts becomes easier, but performance of each task suffers. Normative 

accounts of control allocation (e.g., Shenhav et al., 2013), supported by empirical evidence 

(Musslick et al., 2019), suggest that humans optimize this tradeoff by estimating switch 

frequency and representing contexts accordingly. This explains poorer performance in 

interleaved designs in terms of the dynamics of processing (and corresponding adjustments in 

control) rather than learning, suggesting that these may also contribute to differences in 

performance in the block versus interleaved conditions of Studies 2 and 3.
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Representational learning and the dynamics of context processing.   

The models presented here did not address the dynamics of processing, nor do other 

models that address the phenomena discussed, all of which assume that representations are 

consistently engaged across trials. At the same time, representational learning — a factor that 

has not generally been considered in studies of task switching and control — is likely to impact 

the dynamics of switching between context representations. For example, in models using 

attractors dynamics to model task switching, dissimilar contexts are likely to be represented by 

more distant attractors, which will impact both the efficiency and effectiveness of moving 

between them. Similarly, to the extent that the distinctiveness of task representations impacts 

the distinctiveness of task-specific semantic representations, as shown in Study 3, then this 

too should impact the dynamics of task switching (e.g., Musslick et al., 2023). How 

representational learning and the dynamics of task switching may interact is an interesting and 

potentially important direction for future research.


The rapid learning in the models used in Studies 2 and 3 may also be related to questions 

about the dynamics of context processing and learning more broadly. Specifically, in addition 

to the rapid learning afforded by episodic memory storage and retrieval, in the context and 

context-dependent layers of the model we used a learning rate that was substantially higher 

than is typically used to model semantic memory (e.g., Rogers & McClelland, 2004) or in most 

deep learning models. Although the models still showed the same qualitative effects when 

using lower learning rates (see Supplementary Information), without a high learning rate the 

models were unable to achieve human levels of performance given the small amount of training 

data.


The use of a high learning rate (for adaptation on short time scales) may be viewed as an 

unusual application of backpropagation, which is generally used with a low learning rate over 

many training examples to implement long-term, statistical learning. We adopted 

backpropagation out of computational convenience and familiarity rather than theoretical 

commitment; it remains an open question whether this should be interpreted as reflecting 
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additional mechanisms for learning or online adaptation that complement those traditionally 

assumed for semantic memory, or should be considered as a proxy for other activity-based 

optimization mechanisms (e.g., Giallanza et al., 2023), including ones that have been modeled 

using dynamical systems and linear quadratic regulation (Ritz et al., 2022, 2023; Tang & 

Bassett, 2018).


Episodic memory versus working memory.  

Finally, whereas neural network models of task switching have focused on the dynamics of 

context representations actively represented in working memory, the models presented here 

suggest that context representations can also be retrieved from episodic memory. This 

distinction aligns closely with the distinction between reactive and proactive strategies for 

control (Braver, 2012), in which reactive control refers to “just in time” engagement of task 

representations, presumably retrieved from episodic memory, while proactive control is 

assumed to rely on the activation and maintenance of task representations in working memory. 

The model presented in Study 1 presents and example of such retrieval of representations from 

episodic memory but did not address the dynamics of doing so. This complements recent 

work exploring interactions between episodic and working memory in the context of other 

tasks used to study cognitive control, such as the n-back task (Beukers et al., 2023; Juvina & 

Taatgren, 2007) and prospective memory (Lewis-Peacock et al., 2016; Momennejad et al., 

2021; Ritter et al., 2018). The EGO framework may be useful in providing further theoretical 

unification of these phenomena with those addressed in this article.


In summary, the modeling framework we have described provides a mechanistically explicit 

modeling environment in which to explore the interplay between episodic memory and working 

memory, how their interactions impact both representational learning and the dynamics of task 

switching, and how those interactions are impacted by the structure of the task environment 

(e.g., blocked versus interleaved designs).  Exploring such interactions is becoming an 

increasingly important direction for future research on the capacity for neural architectures to 
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achieve flexibility as well as efficiency of processing, both in cognitive science and in machine 

learning, to which we will return further below.


The Structure of Context Representations 

The framework we have described also helps align several lines of work that bear on the 

learning of context representations, from studies spanning state space abstraction in 

reinforcement learning and event segmentation in sequential prediction tasks, to the learning of 

context representations used for control of semantic structure in categorization tasks. In 

previous work, these have been explained using different formalisms (e.g., successor 

representations, latent cause inference, and Hebbian learning, respectively). All of these 

provide ways for exploiting temporal autocorrelation to identify recurring features of the 

environment — whether these involve sequential order and/or different feature dimensions — 

that are specific to a given task and assigning context representations that are sensitive to 

these. Here, we have shown how this can be served, in all of these settings, by interactions 

among a common set of psychologically and neural plausible mechanisms that are responsible 

for the storage and similarity-based retrieval of representations in episodic memory and the 

integration and active maintenance of context representations in working memory.


Context representations and semantics.   

Importantly, in previous efforts context representations (whether assigned or learned) have 

been treated as distinct from one another (e.g., using localist or otherwise orthogonal 

representations). The same has been true for models of cognitive control, in which 

representations of task context are generally low dimensional and orthogonal to one another 

(e.g., Cohen et al., 1990; Gilbert & Shallice, 2002; Kalanthroff et al., 2018; Musslick et al., 2023).  

In contrast, the framework we describe here permits the learning of distributed context 

representations, which can have graded similarity across tasks. Study 3 illustrated this and 

showed how it can be impacted by the temporal structure of the environment (e.g., blocked 
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versus interleaved training). Recent work has shown how other statistical features of the 

environment (e.g., coherent covariation shared among subsets of features) can impact the 

learning of higher level (i.e., more abstract) representations that can be used as context for 

control (Giallanza et al., 2023). That is, just like semantic representations are assumed to reflect 

the similarity structure among stimuli, so too may higher level representations used for control 

(learned in the context layer) reflect the similarity structure among tasks. This suggests that, in 

richer environments — for example, that have hierarchical structure, such as rooms within a 

building or subroutines of a task — the context representations learned by the model and used 

for control may capture such structure. This has been demonstrated for recurrent neural 

networks in other settings (e.g., Botvinick & Plaut, 2000). The framework we have described 

here suggests that episodic memory may play an important role in contributing to this 

capability.  Interactions with episodic memory may also play an important role in promoting the 

learning of abstract, relational structure that can be used for generalization and transfer, a 

possibility to which we will return shortly.


Implicit vs. explicit representations of context.   

It is also worth noting that the models we described learned to extract relevant context 

information without any explicit indications of how or when to do so. In Study 2, the model 

learned to activate and retain in working memory distinct representations of context associated 

with the transition structure indicative of two different graphs, which allowed it to disambiguate 

subsequent stimuli and produce the corresponding task-appropriate response; and in Study 3, 

the model learned that the background image for each display indicated the task-relevant 

feature dimension, allowing it to allocate attentional control to that dimension. In both cases, 

the models did this without any explicit indication of which stimuli or stimulus features were the 

relevant ones for use as context and control. This complements other work investigating how 

context representations used for control emerge through learning (e.g., Flesch et al., 2023; 

Giallanza et al., 2023; Rougier et al., 2005), in which it is assumed the system has access to 

discrete, explicitly specified task cues that are provided at every time step and initially encoded 
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separately from other stimuli. The framework we have presented offers an opportunity to 

explore how these two forms of learning may interact: for example, how context 

representations extracted initially from cues latent in the environment (as in Studies 2 and 3) 

may provide the basis, with experience, for learning more explicit representations of tasks and 

linking these to salient cues such as task instructions, as suggested by recent work at the 

interface of cognitive neuroscience and machine learning, that we turn to next.


Episodic memory and abstraction.   

The framework described in this article sits within an emerging, broader research agenda 

aimed at understanding how neural network architectures, having established their ability to 

learn highly complex tasks, can lean to do so with the efficiency and flexibility of processing 

exhibited by the human brain. One direction of such research has explored the augmentation of 

standard deep learning architectures with “external memory.” This refers to a form of high 

capacity “offline” storage, the contents of which do not impact current processing unless they 

are explicitly retrieved, akin to the tape of a Turing Machine. Episodic memory can be thought 

of as a content-addressable form of external memory, in which items are retrieved based on 

their similarity to a cue (or “query”) used for retrieval.  Recent work in machine learning has 4

shown that integrating such forms of external memory with traditional neural network 

architectures, and allowing them to learn their own read and write operations, can implement a 

form of “Neural Turing Machine” (Graves et al., 2014) and perform tasks that are easily 

implemented on traditional symbolic architectures but had previously been a challenge for 

neural network architectures. The transformer architecture can be seen as a close variant of 

this approach, in which the large space of input representations serve as a (restricted) form of 

external store, from which information is selectively retrieved for processing using a similarity-

based (“attentional”) operation (Vaswani et al., 2017).


 This contrasts with “index-addressable” memory, in which items are retrieved based on the physical location at 4

which they are stored. However, insofar as locations are accessed by their “address,” and storage is systematic 
(e.g., sequentially written to sequential addresses), then temporal context can be thought of as implementing a form 
of indexing within the broader scope of content-addressable memory. This corresponds closely to the use of 
positional encoding in transformers (Vaswani et al., 2017).
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While networks augmented with external memory, as well as transformers (and recently 

their combination; e.g., Packer et al., 2023), have proven to be remarkably powerful 

architectures, they still fall short of meeting the challenge articulated at the outset of this article: 

understanding the unique combination of sample efficiency and processing flexibility of human 

cognitive function. Current neural network architectures require exposure to orders of 

magnitude more data than humans to achieve comparable levels of performance in any given 

task domain, and no single model has yet achieved anything close to the breadth of 

competencies across task domains that a human can achieve.


The models described in this article suggest ways in which it may be possible to meet 

these challenges. They show how, under at least some task settings, the integration of episodic 

memory with a recurrent network can allow the system to rapidly induce task relevant context 

information and use it to control performance, exhibiting a rapid form of abstraction and 

generalization. In addition to the use of episodic memory, an important feature of the model 

was the use of a relatively high learning rate. This allowed it to integrate more rapidly over time 

which, coupled with the similarly rapid storage and retrieval of representations from episodic 

memory, allowed it to discover useful context representations relatively quickly. This set of 

interactions can be thought of as an inductive bias toward the rapid formation of abstract 

representations. From this perspective, the models presented here can be seen as a simple 

form of “relational bottleneck,” a form of architectural inductive bias that predisposes toward 

the discovery of abstract relational structure (Webb et al., 2023). Models that implement this 

type of bias have been shown to exhibit remarkable improvements in sample efficiency and 

generalization (Webb et al., 2021;  Kerg et al., 2022;  Altabaa et al., 2023;  Mondal et al., 2023;  

Webb et al., 2024). These models have generally introduced stronger forms of a relational 

inductive bias than those presented here (e.g., by using episodic memory to isolate abstract 

from domain-specific components of processing, and serve as a variable binding mechanism 

that bridges between them; Webb et al., 2021). Integrating such approaches within the 
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framework described here may be a promising approach toward building models that can 

address more complex tasks and abstract forms of structure discussed above. 

Hierarchical structure, actions, and planning. 

 Finally, our approach provides a neurally and psychologically plausible account of human 

behavior previously associated with model-based processing. Here, we propose that such 

behavior reflects the use of recurrent context representations, both actively maintained in 

working memory and stored in episodic memory, that are used to guide performance directly 

(through semantic memory) as well as through similarity-based retrieval from episodic memory. 

In Study 2, we showed that such context representations could be learned, and that 

representations learned in this way were sensitive to the latent factors mediating transitions 

between states, representing entire sequences of states with a single abstract representation. 

Furthermore, through internal replay, these representations could be used to make predictions 

about the distal outcome of such sequences (as in Study 1). However, none of the tasks 

modeled here involved any sequential dependencies on decision making or action; that is, 

sequences in which experienced future states were impacted by current decisions or actions. 

Such dependencies are a critical factor of more complex and realistic environments (such as 

maze navigation, game playing, etc.). The extent to which models constructed within the EGO 

framework can learn abstract representations of action-dependent sequences remains an 

important direction for future research. If successful, it would provide a set of psychologically 

and neurally plausible mechanisms for learning coherent sequences of actions (e.g., 

subroutines ) that may be useful for generalization and planning over longer time horizons.
5

Conclusions 

In this article, we presented a modeling framework for addressing the role that interactions 

between episodic memory, working memory, and semantic memory may play in accounting for 

 In the context of reinforcement learning, this has been referred to as “option discovery” (Sutton, 1999), and may be 5

an important mechanism for learning hierarchical forms of behavior and planning.
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the ability to rapidly induce abstract representations of context that can be used for the flexible 

allocation of control. The models we presented show how this framework can be used to 

provide a unified account for characteristic features of human cognitive function that have 

previously been addressed in different task settings (reinforcement learning, event 

segmentation, and category learning) and explained using different formalisms (successor 

representations, latent cause inference, and Hebbian learning). 


The framework extends a rich tradition of using neural network models to understand 

human cognitive functions, including the Temporal Context Model of episodic memory function 

(Howard & Kahana, 2002); Complementary Learning Systems theory (McClelland et al., 1995) 

concerning the interactions between episodic and semantic memory; as well as the modeling 

of cognitive control (Cohen et al., 1990) and its interaction with semantic cognition (Giallanza et 

al., 2023). It also provides insights into the interaction between two forms of control that have 

previously been proposed (Cohen & O’Reilly, 1996): rapid formation of novel associations (e.g., 

as provided by task instructions) through the rapid binding of novel information in episodic 

memory and the effects of context representations actively maintained in working memory in 

biasing processing in task-specific pathways (Cohen et al., 1990;  Miller & Cohen, 2001).


It also builds on previous work identifying these formalisms with the function of underlying 

neural mechanisms: episodic memory, thought to reflect rapid associative learning in medial 

temporal structures (including the hippocampus; McClelland et al., 1995)) and perhaps others, 

such as the cerebellum (Webb et al., 2023); the active maintenance of context representations 

used for control in working memory, thought to reflect the function of prefrontal cortex (Miller & 

Cohen, 2001) in concert with basal ganglia (Frank et al., 2001); and semantic memory, 

reflecting slower forms of statistical learning and distributed representations, thought to be 

subserved by mechanisms distributed throughout the rest of neocortex.


Finally, although the models we described were relatively simple, we have pointed out how 

the EGO framework in which they were developed makes contact with recent work both in 
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cognitive science and machine learning that integrates external memory with traditional neural 

network architectures, and uses this as an inductive bias for abstraction, generalization, and 

the flexible control of behavior. These suggest potentially promising directions for extensions of 

the models we have described to address more complex tasks going forward.


In sum, we hope that this work provides a useful framework and examples of its application 

in addressing the challenge with which we began: understanding the human capacity for 

efficient acquisition of abstract representations that can be used for generalization and the 

flexible control of behavior, capabilities that are cornerstones of the human capacity for general 

intelligence. 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Supplementary Information 

Study 1: Reinforcement Learning and Decision Making 

Procedure 

The simulation for Study 1 consisted of an initial learning phase, an initial evaluation phase, 

a revaluation phase, and a second evaluation phase. We exposed the model to a sequence of 

states drawn from the trajectories in Figure 2. The model was given no knowledge about the 

trajectories prior to the experiment and there was no special indication that the states were 

segmented into trajectories (e.g., it was provided the states 1->3->5->2->4->6->2->4->6... etc. 

as a continuous stream, with no indication that states 5 and 6 were terminal states). In the 

learning phase we selected 20 trajectories randomly sampled from the two choices (1->3->5, 

with a $1 reward for state 5; and 2->4->6, with a $10 reward for state 6). Overall this phase had 

a sequence of 60 states and 60 corresponding rewards.


In the revaluation phase we selected 20 revalued trajectories either from the reward 

revaluation (3->5, with a $10 reward for state 5; and 4->6, with a $1 reward for state 6) or the 

transition revaluation condition (3->6, with a $10 reward for state 6; and 4->5, with a $1 reward 

for state 5), resulting in 40 total states with 40 corresponding rewards. Each model experienced 

either reward revaluation or transition revaluation, but not both.


Model Processing 

During the initial and revaluation learning phases the model operated in observation mode. 

On every time step the model: 1) observes the current state and represents it as a one-hot 

encoding ; 2) uses the state and context to query episodic memory (following the procedure 

outlined in the Memory Structure and Retrieval section below), retrieving a memory 

; 3) integrates the retrieved context into the current context 

xt

(xretrieved, rretrieved, cretrieved)
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representation, ; 4) observes the true reward ; 5) 

stores the state, reward, and context  into episodic memory; and 6) noisily integrates 

the state into its context representation: . We added 

noise in the integration process to prioritize the retrieval of recent memories, following Beukers 

et al. (2023). At the start of the experiment we initialize the context  to a neutral value and 

assume there are no pre-experimental memories stored in episodic memory.


During the decision phases the model operates in decision mode. It estimates the value of 

the two starting states,  and , through simulating future states. For a given state , 

the model: 1) queries its memory using the current context  and the provided state , 

yielding a memory ; 2) updates its context using a weighted 

combination of the previous context, the retrieved context, and the retrieved state: 

; 3) queries its memory again 

using the updated context, yielding a memory ; 4), 

repeats steps 2 and 3 until a termination condition is met; and 5) sums the rewards obtained 

over the trajectory: . The model repeatedly runs simulations for 6

each option, averaging the value estimates over each simulation. We measure the model's 

preference between the two states by taking the scaled difference of the value estimates for 

each option: , where b is a scaling factor. We recorded 

the change in preference scores taken before and after revaluation to measure how strongly 

the model updates its preferences following revaluation.


ct = wself * ct−1 + wretrieved * cretrieved rt

(xt, rt, ct)

ct = wself * ct + wstate * xt + 𝒩(0,σd)

c0

V(x1) V(x2) x

ct−1 x

(xretrieved,t, rretrieved,t, cretrieved,t)

ct = wself * ct−1 + wretrieved * cretrieved + wstate * xretrieved

(xretrieved,t+1, rretrieved,t+1, cretrieved,t+1)

V(x) = Σtermination
τ=t rretrieved,τ

preference = b * (V(x1) − V(x2))

 To maintain consistency with Momennejad et al. (2017), this formulation calculates undiscounted future reward 6

(i.e., it implicitly uses a discount rate of 1).
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Memory Structure and Retrieval 

Memory consists of the three matrices , , and , containing the 

state, reward, and context associated with each previously experienced time step, with each 

row in the matrices corresponding to a particular timestep (see Figure S1 for an example of 9 

timesteps stored in memory). We measure the similarity between a cue and a memory by 

computing the normalized dot product (cosine similarity) between the items in memory and the 

cue. For example, if there are  items stored in episodic memory, the length-  vector  

contains the cosine similarity between the cue state and each state in memory:





Both a state and a context are used as cues for memory retrieval. Memory retrieval is 

determined by taking a softmax over the weighted combination of the state and context 

similarity scores:


Mstate Mreward Mcontext

m m pstate

pstate =
xcue ⋅ Mstate,0

| |xcue | | | |Mstate,0 | |
,

xcue ⋅ Mstate,1

| |xcue | | | |Mstate,1 | |
, . . . ,

xcue ⋅ Mstate,m

| |xcue | | | |Mstate,m | |
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Figure S1. Sample memory matrices during Study 1. Each row in memory corresponds to one 
timestep. 






Where  is a temperature parameter controlling the strength of the softmax. A memory gets 

retrieved by sampling from the  distribution.


Model Parameter Sensitivity 

Parameter values for the simulation are listed in Table S1. We examined the memory 

retrieval process in greater detail (Figure S2) by running simulations under different values of 

 (which controls the trade-off between the weight on the state and context memories 

during retrieval) and   (which controls the amount of noise integrated into the context, and 

thus the bias towards retrieving recent memories; see Beukers et al., 2023). The results are 

fairly stable across a variety of parameter values: when  takes a value between 0.6 and 

0.8, and when  takes a value between 0 and 0.3, the results qualitatively match the effects 

observed in humans (i.e., revaluation scores for both reward and transition revaluation are 

significantly greater than 0 and the revaluation score for reward revaluation is significantly 

greater than for transition revaluation). 

pretrieve = sof tma x((ωstate * pstate + (1 − ωstate) * pcontext)/T )

T

pretrieve

ωstate

σd

ωstate

σd
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Table S1. Parameter values used for Study 1.






Study 2: Sequence Learning and State Space Abstraction 

Procedure 

The simulation for Study 2 consisted of an initial phase and a test phase (note that these 

phases were not presented differently to the participants or to the model; we use the terms for 

convenience only). In the initial phase, we exposed the model to sequences of states drawn 

form the trajectories in Figure 6. As in Study 1, the model was given no knowledge about the 

trajectories prior to the experiment and there was no special indication of the beginning or end 

of each trajectory. In the initial phase we selected 160 trajectories (800 total states) from the 

graphs. In the blocked condition, the trajectories were sampled from the graphs in a blocked 

alternating fashion: 40 trajectories from graph 1; 40 trajectories from graph 2; 40 more 
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Figure S2. Sensitivity Analysis for Study 1. Performance in both reward and transition revaluation is 
significantly greater than 0, and performance in reward revaluation is greater than performance in 
transition revaluation, for values of  between 0.6 and 0.8 and values of  between 0 and 0.3.ωstate σd



trajectories from graph 1; and 40 more trajectories from graph 2. In the interleaved condition, 

the trajectories were sampled in a strictly alternating fashion: 1 trajectory from graph 1; 1 

trajectory from graph 2; 1 trajectory from graph 1; etc.


In the final testing phase trajectories were randomly sampled from either graph with a 

uniform probability for 40 trajectories (200 states). Across both the initial and test phases, 

trajectories within a graph were randomly sampled. For example, when graph 1 was active 

there was a 50% probability of seeing the trajectory 0->1->3->5->7 and a 50% probability of 

seeing the trajectory 0->2->4->6->8. Note that the model weights were trained with 

backpropagation on all trials, including the final testing phase trials. This corresponds to the 

behavioral experiment, where humans still received feedback during the testing phase that 

could be used to continue improving performance on the task.


Model Processing 

The model predicts the next state on every time step and uses its prediction error to update 

the weights in the recurrent neural network. On every time step, the model: 1) observes the 

current state and represents it as a one-hot encoding,  ; 2) updates the context 

representation by passing  through the recurrent neural network, yielding ; 3) uses the state 

and the context to query episodic memory, retrieving a memory 

 (where  indicates the state that follows ); 4) observes the 

next state and calculates prediction error between  and ; 5) backpropagates the 

error to update weights in the context recurrent neural network; and 6) encodes the state, 

context, and next state  into episodic memory.


Following Beukers et al., we measured the model's next-state prediction accuracy on the 

final two transitions in each trajectory (e.g., the 3->5 and 5->7 transitions). Because the 

model's next-state prediction was probabilistic, we used the probability value associated with 

the correct state as a proxy for the model's accuracy.


xt

xt ct

(xretrieved, x′￼retrieved, cretrieved) x′￼ x

x′￼retrieved xt+1

(xt, xt+1, ct)
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Recurrent Context Layer 

To maintain context we implemented a modified variant of the Minimal Gated Unit (Zhou et 

al., 2016). The input  was passed through the network, yielding the context representation :














To increase stability during learning only  was updated by backpropagation; the other 

parameters were frozen at their initial values.


To test the importance of the gating mechanism, we compared a model using the gated 

RNN to a model using a simple RNN, training 10 of each type of model following the procedure 

outlined in the main text and comparing the performance of each on the test trials at the end of 

xt ct

zt = σ (Whz ⋅ ht−1 + Wxz ⋅ xt + bz)

h̃t = tanh(Whh ⋅ ht−1 + Wxh ⋅ xt)

ht = zt ⊙ ht−1 + (1 − zt) ⊙ h̃t

ct = Whc ⋅ ht

Whc
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Figure S3. Comparison of gated and simple RNN architectures. Performance measures the 
probability of the model making a correct response on the test trials at the end of the experiment, 
following either blocked or interleaved training. In both cases, the gated RNN outperforms the simple 
RNN, though the difference is not statistically significant in the interleaved case.



the experiment, following either blocked or interleaved training (Figure S3). We found that the 

gated network performed significantly better than the simple network in the blocked condition 

(p<.0001) and numerically, but not significantly, better in the interleaved condition (p=0.189).


Memory Retrieval 

Unlike in Study 1, memories were not retrieved by sampling from the  distribution. 

Instead, retrieved memories are a probability-weighted combination of old memories, e.g. 

. This was done to preserve differentiability in the neural network 

so that weights could be updated with backpropagation.


Model Parameter Sensitivity 

Parameter values for the simulation are listed in Table S2. Because the learning rate is 

significantly higher than what is typically used in neural networks, we tested the sensitivity of 

the results to changes in the learning rate. We found that the qualitative results described in the 

main text — with near-ceiling performance at test time following blocked training, but near-

chance performance following interleaved training — held across a variety of learning rate 

values, with higher learning rates leading to higher performance in both training conditions 

(Figure S4).


pretrieve

xretrieved = pretrieve ⋅ Mstate
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Table S2. Parameter values used for Study 2. The recurrent bias  controls the context layer’s bias 
towards retaining its prior state, with high values of  favoring retention.

bz
bz






Similarity Structure of Context Representations during Interleaved Training 

As discussed in the main text, we recorded the context representations stored in episodic 

memory during training and calculated the pairwise similarity over these representations for 

interleaved training (Figure S5). Unlike in blocked training, under interleaved training the 

context representations do not show a clear representation of the currently active graph. 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Figure S6. Sensitivity analysis for Study 2. We measured the performance of the model at test time 
for different learning rate values. We found that the primary qualitative effects of interest, where 
blocked training results in superior performance than interleaved training, holds across different 
learning rate values. As the learning rate increases, performance following both blocked and 
interleaved training increases.



Study 3: Category Learning and the Shaping of Semantic 
Control Representations 

Procedure 

The simulation for Study 3 involved learning rewards associated with different features of a 

stimulus, depending on the context. Human participants in the behavioral study in Flesch et al. 

(2018) judged procedurally generated tree stimuli superimposed on image backgrounds. The 

tree stimuli varied along two visually unrelated dimensions, leafiness and branchiness, with 5 
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Figure S5. Cosine similarity of context representations in the interleaved condition. Shading 
indicates the cosine similarity between the context representation for each stimulus presentation with 
every other over the course of the experiment, on a scale of 1 (perfectly correlated) to -1 (perfectly 
negatively correlated). Throughout training, the similarity of the context representations oscillates due 
to the rapid shifting between the active graphs.



levels each, and the backgrounds consisted of two distinct images (snowy and sunny), one for 

each context. We mirrored this abstract structure using three abstract feature dimensions, one 

corresponding to leafiness, one branchiness, and one context (sunny vs snowy). We 

specifically implemented this using a 12-dimensional vector that was provided as input to the 

network. The vector used 5 units to represent each feature dimension, activating progressively 

more units as the value along that dimension increased, along with 2 units representing a one-

hot encoding of the context. For example, we represented a stimulus with a leafiness of 3, a 

branchiness of 4, and a sunny background with the pattern [1,1,1,0,0,1,1,1,1,0,1,0]. As another 

example, we represented a tree with a leafiness of 4, a branchiness of 5, and a snowy 

background with the pattern [1,1,1,1,0,1,1,1,1,1,0,1]. This form of representation was chosen 

as it preserves the similarity structure of the stimuli when using normalized metrics such as 

cosine similarity (as used by the episodic memory mechanism). The model was given no 

knowledge as to what each dimension of the 12-dimensional vector represented, and it instead 

needed to discover through learning how to extract the features and the context.


We uniformly sampled tree stimuli across the 25 leafiness/branchiness combinations in the 

simulation. Rewards were determined by the properties of the tree and the task context. In the 

sunny condition, leafiness was rewarded such that leafier trees were associated with 

progressively larger rewards, where a leafiness value of 1 yielded a reward of 1, a leafiness 

value of 2 yielded a reward of 2, etc.; in the snowy condition, branchiness was rewarded.


The simulation consisted of a train phase and a test phase. In the train phase the model 

experienced 400 trials either blocked by context (200 trials in the first context followed by 200 

trials in the second context) or interleaved across contexts (400 trials randomly sampled from 

the two contexts). In the test phase, the model experienced 200 interleaved trials. As in Study 

2, model weights were trained throughout both the training and the testing phases.
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Model Processing 

The model was trained to predict the reward associated with each stimulus. On every time 

step, the model: 1) observes the current stimulus, represented as described above by ; 2) 

updates the context representation by passing  through the recurrent neural network, 

yielding ; 3) uses the state and context to query episodic memory, retrieving a memory 

; 4) passes the state and context to the context-dependent 

layer and passes the result to the output layer, yielding a prediction ; 5) forms a 

combined prediction ; 6) backpropagates 

the error to update weights in the context recurrent neural network and the semantic pathway; 

and 7) encodes the state, context, and reward  into episodic memory.


Model Parameter Sensitivity 

Parameter values for the simulation are listed in Table S3. For all parameters except for the 

episodic prediction weight (which is unique to Study 3), we used the same parameter values 

across Studies 2 and 3.


As in Study 2, we used a learning rate much higher than what is typically used in neural 

networks, so we tested the sensitivity of the results to a variety of learning rates. The training 

curves (Figure S6) indicate that the qualitative effects in the main text hold across learning 

rates: blocked training quickly results in improved performance over interleaved training in all 

conditions, with the difference between blocked and interleaved training widening for larger 

learning rates.


xt

xt

ct

(xretrieved, rretrieved, cretrieved)

̂rt,semantic

̂r = wepisodic * rretrieved + (1 − wepisodic) * ̂rt,semantic

(xt, rt, ct)
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Table S3. Parameter values used for Study 3.



Figure S6. Sensitivity analysis for Study 3. We measured the performance of the model for different 
learning rate values. We found that the primary qualitative effects of interest, where blocked training 
results in superior performance than interleaved training, holds across different learning rate values. 
The magnitude of the effect increases for higher learning rates: higher learning rates reveal larger 
differences in blocked and interleaved training.
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