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Course Description: 
A survey of experimental & theoretical approaches to 
understanding how cognition arises in the brain. This complements 
501, focusing on the mechanisms responsible for perception, 
attention, decision making, memory, cognitive & motor control, and 
planning, with emphasis on the representations involved & their 
transformations in the service of cognitive function. Source 
material will span neuroscience, cognitive science, and work on 
artificial systems. Relevance to neurodegenerative and 
neuropsychiatric disorders will also be discussed. 

Computational constructs will explored through “hands-on” 
modeling exercises carried in parallel in 502B

Systems and Cognitive Neuroscience
NEU/PSY/MOL 502A

Professor:  Jonathan D. Cohen (jdc@princeton.edu) 

AI: Alex Ku (alexku@princeton.edu)

mailto:jdc@princeton.edu
mailto:alexku@princeton.edu


Systems and Cognitive Neuroscience
NEU/PSY/MOL 502A



•Lectures
– Mondays and Thursdays, 2-4:30
– Divided into 9 sections, each that will address a set of:  

cognitive phenomena/processes and computational/neural mechanisms:
1) Sensation And Perception — Inference And Constraint Satisfaction
2) Decision Making — Integration
3) Reinforcement Learning — Reward And Neuromodulation
4) Semantic Memory — Statistical Learning And Distributed Representation
5) Episodic Memory — Binding
6) Attention, Working Memory And Cognitive Control — State Modulation
7) Motor Function — Movement
8) Development And Social Cognition — Interaction
9) Disorders — Dysfunction
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•Lectures
– Mondays and Thursdays, 2-4:30
– Divided into 9 sections, each that will address a set of:  

cognitive phenomena/processes and computational/neural mechanisms:
1) Sensation And Perception — Inference And Constraint Satisfaction
2) Decision Making — Integration
3) Reinforcement Learning — Reward And Neuromodulation
4) Semantic Memory — Statistical Learning And Distributed Representation
5) Episodic Memory — Binding
6) Attention, Working Memory And Cognitive Control — State Modulation
7) Motor Function — Movement
8) Development And Social Cognition — Interaction
9) Disorders — Dysfunction

– Schema:
– Monday:  1st half: overview lecture; 2nd half: deep dive — faculty guest lecture
– Thursday: 1st half: overview lecture; 2nd half: student presentation
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•Readings 
– All are source materials;  no official text (though see below) — that means class matters! 
– Lots are listed, all are available as PDFs 
– Asterisked readings are required;   

others are meant primarily as a resource, to explore material covered in class in greater depth 
– In addition,  some good reference texts are: 
- Parallel distributed processing: Explorations in the microstructure of cognition  

    Rumelhart, Hinton & McClelland (1986)       
- Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain  

     O'Reilly & Munakata (2000) 
- Theoretical Neuroscience  

     Dayan and Abbott (2001)
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•Readings 
– All are source materials;  no official text (though see below) — that means class matters! 
– Lots are listed, all are available as PDFs 
– Asterisked readings are required;   

others are meant primarily as a resource, to explore material covered in class in greater depth 
– In addition,  some good reference texts are: 
- Parallel distributed processing: Explorations in the microstructure of cognition  

    Rumelhart, Hinton & McClelland (1986)       
- Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain  

     O'Reilly & Munakata (2000) 
- Theoretical Neuroscience  

     Dayan and Abbott (2001)

• Course requirements and grading 
– Attend and participate in class (50%) 
– Paper presentation (50%)
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– McCulloch & Pitts (neuroscience)
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• Early neural network models…
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Mark 1 Perceptron 

Input: 
    400 photocells 

weights: 
    potentiometers 

weight updates: 
    electric motors
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• Minsky & Papert (1969)
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∴ not computationally general
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Brief Historical Review

• Spiking Neurons and Neural Assemblies 
- McCulloch & Pitts (neuroscience)
- Hebb (psychology)
- Norbert Weiner (mathematics)

• Early neural network models 
- Rosenblatt’s Perceptron 
- Minsky & Papert:  demise of the Perceptron

• AI, cognitive science and the symbolic approach: 
– The physical symbol system hypothesis (Newell & Simon) 
– von Neumann Architecture and the computer metaphor 
– The golden years of AI…
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The simulation is capable of solving 
the same problems as [human] 
participants.  It can actually interact 
with the same experimental 
software as the participants, 
execute the same scanning actions, 
read the same computer screen, and 
execute the same motor responses 
with very similar timing

...the capacity to come up with 
abstract solutions  to problems is 
one ability that is frequently cited 
with almost mystical awe.  A good 
example of this is the ability to write 
recursive programs... 
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The whole is no more than the sum of its parts

ACT-R

Really… lots of parts
, but it has lots of parts

What about the brain?



Brief Historical Review
• Roots 

– McCulloch & Pitts (neuroscience)
– Hebb (psychology)

• Early neural network models 
– Rosenblatt’s Perceptron 
– Minsky & Papert:  demise of the Perceptron 

• AI and cognitive science 
– The physical symbol system hypothesis (Newell & Simon) 
– von Neumann Architecture and the computer metaphor 
– Knowledge engineering and the golden years of AI 
– Production system models of cognitive function 

• Limits of the symbolic approach 
– Knowledge engineering (expert systems):  programming vs. learning 
– Combinatorial explosion in highly contextual domains 

 face recognition, natural language processing...
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Brief Historical Review
• Roots 

– McCulloch & Pitts (neuroscience)
– Hebb (psychology)

• Early neural network models 
– Rosenblatt’s Perceptron 
– Minsky & Papert:  demise of the Perceptron 

• AI and cognitive science 
– The physical symbol system hypothesis (Newell & Simon) 
– von Neumann Architecture and the computer metaphor 
– Knowledge engineering and the golden years of AI 
– Production system models of cognitive function 

• Limits of the symbolic approach 
– Knowledge engineering:  programming vs. learning 
– Combinatorial explosion in highly contextual domains 

 face recognition, natural language processing... 
– 100 step challenge: the brain is instructive here, but…
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“Bottom-Up” Approach

Go for entire wiring diagram…

“Connectomics” 
(map every connection)

The mouse brain alone  
will take… ???

but...

And we’d only know structure, not function
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The Connectionist (PDP) Approach

• Brain-like computational architecture 
– biologically-inspired/plausible processing mechanisms

• Distributed representation 
– statistical structure / graded processing

• Parallel processing 
– can meet 100 step challenge

• Self-organization through experience 
– general purpose statistical learning algorithms

Skip PDP intro



• Units / Modules  (≈ neuron or population of neurons) 

• Connections / Pathways (≈ synapses / projections / circuits) 
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• Representation (units)

• Functions (modules)

• Processing (flow of activity)

• Learning (weight modification)

• Memory (active maintenance , or weight modification)

Psychological Constructs

, pattern completion
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Representation

• Units (≈ neurons or population of neurons)
– Activity level 

 (≈ firing frequency or probability of firing)

– Activation (transfer) function
– Integrate & fire
– Thresholded (piecewise) linear
– Continuous valued (sigmoid function, e.g. logistic)

– Noise

– Modulation

• Patterns of activity (≈ population code)
– Distributed representation
– Relationships:

– associations between units/patterns
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Representation

• Units (≈ neurons or population of neurons)
– Activity level 

 (≈ firing frequency or probability of firing)

– Activation (transfer) function
– Integrate & fire
– Thresholded (piecewise) linear
– Continuous valued (sigmoid function, e.g. logistic)

– Noise

– Modulation

• Patterns of activity (≈ population code)
– Distributed representation
– Relationships:

– associations between units/patterns
– overlap of patterns
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Specialization

• Modules (≈ brain areas)
sets of units responsible for:

"Input" "Output"

Encoding Execution

Association

representing a particular type of information 
 stimulus (input), semantic (hidden), motor (output) etc.

carrying out a particular function 
 sensory encoding (input), associative (hidden), motor control (output), etc.
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Processing

• Flow of activity among units / between modules

Orthography 
(visual)

Phonology 
(auditory)

Articulation 
(mouth)Writing 

(hand)

Reading

Dictation

INPUT

OUTPUT

ASSOCIATIVE

- Input output mappings (pathways)

- Interference

- Control = modulation
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Learning

• Weight modification (≈ synaptic plasticity)

- Unsupervised (self-organizing) 
‣Simple associative (Hebbian) 
‣Competitive (K-winner take all)

- Supervised (trained) 
‣Reinforcement (temporal differences) 
‣Structured (backpropagation)
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Memory

• Short Term 
– sustained pattern of activity 

• Long Term 
– retrieval:  reactivation of a whole pattern from its parts
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– selection of features to activate 

• Execution 
– selection of pathways for  

flow of activity
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look

listen escape

pet run
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Early Connectionist Models

• Good at doing what the brain does easily 
(and what traditional computers do poorly): 
– visual pattern recognition 
– language processing 
– generalization / pattern completion 

• Bad at doing what the brain does poorly 
(and what traditional computer programs do easily) 
– complex sequential operations (e.g., arithmetic) 
– rapid repetitive computations

• However, things have changed…
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Fei Fei Li 
(Princeton/Stanford)

Geoff Hinton 
(Toronto / Google)

Jann LeCun  
(NYU)

Dave Rumelhart 
(UCSD / Stanford)

Bruno Olshausen  
(Redwood Institute)

“Deep Learning”
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Symbolic Connectionist

  logical                                        statistical
  serial                                          parallel

   discrete                                     continuous
   localized                                    distributed
    episodic                                       semantic

variance                                          bias
    symbol manipulation               function approximation

  flexible                                        efficient

Extremes of a Continuum
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Knowledge:

Configuration:

Symbolic

explicitly represented 
expressions and procedures 
    explanation  
    domain specific

programming  
    flexible
    hand-coded✘

   Connectionist

implicitly represented  
connection weights 
    efficient 
    domain specific

learning  
    learns from experience, 
    but only when trained
✓
✘

✓ ✓
✘ ✘

✓



Symbolic  
Computing

Neural 
Networks

Clash of the Titans
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• Symbolic approach
– compositional, context-free:

2     +  2
47   +  2
n     +  m    ←  the interpretation of m is not affected by n

• PDP / connectionist approach
– context-sensitive:

river       +  bank
savings  +  bank 
   n         +    m     ←  the interpretation of m depends on n

Complementary Approaches



Shangri-La

Symbolic  
Computing

Neural 
Networks
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Knowledge:

Configuration:

Symbolic

explicitly represented 
expressions and procedures 
    explanation  
    domain specific

programming  
    flexible
    hand-coded✘

   Connectionist

implicitly represented  
connection weights 
    efficient 
    domain specific

learning  
    learns from experience, 
    but only when trained
✓
✘

✓ ✓
✘ ✘

✓
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3rd Wave

efficient
generalization

autonomous  
adaptation

Cog Neuro /
System Level 
Brain Modeling

Natural Intelligence
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Knowledge:

Configuration:

Symbolic

explicitly represented 
expressions and procedures 
    explanation  
    domain specific

programming  
    flexible
    hand-coded✘

   Connectionist

implicitly represented  
connection weights 
    efficient 
    domain specific

learning  
    learns from experience, 
    but only when trained
✓
✘

✓ ✓
✘ ✘

✓
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“Sweet spot” between flexibility and efficiency

Web Dam Nest Smell Jeopardy Chess Go Navigate

Spider Robin Beaver Dog Watson Deep Blue Alpha Go Tesla Autopilot Human

Human Brain = Existence Proof

How does it accomplish this?
- ~20 watts, often with parallel performance - processing efficiency

- Near limitless range of tasks at adequate performance - flexibility
- With reasonable amounts, and often little or no training - sample efficiency
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• Current efforts:

Shangri-La?
• Challenge: 

– Integrate flexibility of symbolic processing in traditional architectures 

– with efficiency of function approximation in neural networks

– Neuro-symbolic approaches: 
♦ start with pre-specified symbolic primitives (“core knowledge”) 
♦ use deep learning to combine these (e.g., “program induction”)

– “Neo-connectionist" approaches:
♦ use deep learning for “end-to-end” training of neural networks

♦ inductive biases that favor abstraction 
• training: curricular learning, meta learning 
• architecture & processing: attention, external memory

• Still not there…
♦ How does symbolic computing and the capacity for intelligence arise in the brain?



PsychologyNeurobiology

1980-2000
Building Bridges



Psychology

Neurobiology

Computer  
Science

2025 →
Building Bridges



2025 and beyond…
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Levels of Analysis (Marr)

• Computational (cognitive science) 
– What is the overall goal?

• Algorithmic  (cognitive psychology / cognitive neuroscience) 
– What strategy is used?

• Implementational  (neuroscience) 
– How is it physically realized?
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Levels of Analysis (in reality)

•“More is different” (Anderson, 1972)

•Emergent properties

• Instrumentalism:
– what is the observational variance you wish to capture?
– what is the best way to capture that?



Levels of Organization

• Organism
– Animal

• Organ
– Brain

• Components
– Lobes

• Maps & Zones
– Areas, layers & columns

• Cells
– Neurons

• Organelles
– Membranes & Synapses

• Molecules
– Transmitters & Receptors

Behavior

Computation

Functions

Processes / Representations

Processing units

Physical                                Functional



Levels of Observation

fMRI



Philosophy

Topography of Fields

Neuroscience

Cognitive Psychology

Computer Science

Psychology

Cognitive Science

Computational
Neuroscience

NeuropsychologyPsychiatry

Neurology

Cognitive
Neuroscience



Forms of Formalism

Mathematical Computational
Formulas 
Solutions 
Simple 
Precise

Programs 
Simulations 
Realistic 
Accurate 
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Contrasts and Tradeoffs

• speed vs. accuracy
• parallel vs. serial
• compiled vs. interpreted
• exploit vs. explore
• durability vs. accessibility
• deterministic vs. statistical
• hierarchical vs. heterarchical
• programming vs. learning
• engineering vs. evolution
• hardware vs. software
• centralization vs. autonomy
• flexibility vs. efficiency…



Flexibility

Structural Compositional
Within Domains Across Domains Within Domains Across Domains

Acquisition Processing Acquisition Processing Acquisition Processing Acquisition Processing

Traditional 
Computers Instruction

Deductive

Inference /

Symbols

Instruction
Deductive

Inference /

Symbols

Instruction
Deductive

Inference /

Symbols

Instruction
Deductive

Inference /

Symbols

Neural 
Networks Learning Function 

Approximation None None Learning Function 
Approximation None None

Non-
humans Learning Function 

Approximation None None Learning Function 
Approximation None None

Humans Learning

Instruction

Deductive 
Inference /

Function 

Approximation

Learning

Instruction

Deductive 
Inference /

Function 

Approximation

Learning

Instruction

Deductive 
Inference /

Function 

Approximation

Learning

Instruction

Deductive 
Inference /

Function 

Approximation



Efficiency

Time Energy

Acquisition	 	Processing Acquisition 	Processing

Symbol 
Processing Instruction

Moore’s Law

Deductive Inference


Independent Parallelism
Instruction Moore’s Law

Neural 
Networks

Reinforcement Learning

Curruicular Learning


Metalearning

Moore’s Law

Independent Parallelism

Interactive Parallelism

Learning Moore’s Law

Non-humans Unsupervised Learning

Reinforcement Learning

Independent Parallelism

Interactive Parallelism Learning Biological Computation

Humans

Unsupervised Learning

Reinforcement Learning


Curricular Learning

Metalearning


Active Learning

Instruction

Deductive Inference

Independent Parallelism

Interactive Parallelism

Learning

Instruction Biological Computation



The Bitter Lesson
Rich Sutton, ~2020

“The second general point to be learned from the bitter lesson is 
that the actual contents of minds are tremendously, irredeemably 
complex; we should stop trying to find simple ways to think about 
the contents of minds, such as simple ways to think about space, 
objects, multiple agents, or symmetries. All these are part of the 
arbitrary, intrinsically-complex, outside world. They are not what 
should be built in, as their complexity is endless; instead we 
should build in only the meta-methods that can find and 
capture this arbitrary complexity. Essential to these methods is 
that they can find good approximations, but the search for them 
should be by our methods, not by us. We want AI agents that 
can discover like we can, not which contain what we have 
discovered. Building in our discoveries only makes it harder to see 
how the discovering process can be done.“

(http://www. incompleteideas.net/IncIdeas/BitterLesson.html)



“Unexplainable AI”
Turing, 1950

“We also wish to allow the possibility than an 
engineer or team of engineers may construct a 
machine which works, but whose manner of 
operation cannot be satisfactorily described by 
its constructors because they have applied a 
method which is largely experimental. “


