Professor: Jonathan D. Cohen (jdc@princeton.edu) AI: Alex Ku (alexku@princeton.edu)

Professor: Jonathan D. Cohen (jdc@princeton.edu) AI: Alex Ku (alexku@princeton.edu)

Course Description:

A survey of experimental & theoretical approaches to understanding how cognition arises in the brain. This complements 501, focusing on the mechanisms responsible for perception, attention, decision making, memory, cognitive & motor control, and planning, with emphasis on the representations involved & their transformations in the service of cognitive function. Source material will span neuroscience, cognitive science, and work on artificial systems. Relevance to neurodegenerative and neuropsychiatric disorders will also be discussed.

Computational constructs will explored through "hands-on" modeling exercises carried in parallel in 502B

• Lectures

- Mondays and Thursdays, 2-4:30
- Divided into 9 sections, each that will address a set of: cognitive phenomena/processes and computational/neural mechanisms:
 - 1) Sensation And Perception Inference And Constraint Satisfaction
 - 2) Decision Making Integration
 - 3) Reinforcement Learning Reward And Neuromodulation
 - 4) Semantic Memory Statistical Learning And Distributed Representation
 - 5) Episodic Memory Binding
 - 6) Attention, Working Memory And Cognitive Control State Modulation
 - 7) Motor Function Movement
 - 8) Development And Social Cognition Interaction
 - 9) Disorders Dysfunction

• Lectures

- Mondays and Thursdays, 2-4:30
- Divided into 9 sections, each that will address a set of: cognitive phenomena/processes and computational/neural mechanisms:
 - 1) Sensation And Perception Inference And Constraint Satisfaction
 - 2) Decision Making Integration
 - 3) Reinforcement Learning Reward And Neuromodulation
 - 4) Semantic Memory Statistical Learning And Distributed Representation
 - 5) Episodic Memory Binding
 - 6) Attention, Working Memory And Cognitive Control State Modulation
 - 7) Motor Function Movement
 - 8) Development And Social Cognition Interaction
 - 9) Disorders Dysfunction

– Schema:

- Monday: 1st half: overview lecture; 2nd half: deep dive faculty guest lecture
- Thursday: 1st half: overview lecture; 2nd half: student presentation

Readings

- Lots are listed, all are available as PDFs
- Asterisked readings are required;
- In addition, some good reference texts are:
- Parallel distributed processing: Explorations in the microstructure of cognition Rumelhart, Hinton & McClelland (1986)
- O'Reilly & Munakata (2000)
- Theoretical Neuroscience Dayan and Abbott (2001)

- All are source materials; no official text (though see below) — that means class matters!

others are meant primarily as a resource, to explore material covered in class in greater depth

- Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain

• Readings

- Lots are listed, all are available as PDFs
- Asterisked readings are required;
- In addition, some good reference texts are:
- Parallel distributed processing: Explorations in the microstructure of cognition Rumelhart, Hinton & McClelland (1986)
- O'Reilly & Munakata (2000)
- Theoretical Neuroscience Dayan and Abbott (2001)

Course requirements and grading

- Attend and participate in class (50%)
- Paper presentation (50%)

- All are source materials; no official text (though see below) — that means class matters!

others are meant primarily as a resource, to explore material covered in class in greater depth

- Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain

Artificial Intelligence

Computer Science Artificial Intelligence Machine Learning

Natural Intelligence

Psychology Cognitive Science Psychophysics

Cognitive Neuroscience

Neuroscience

Systems, Cognitive and Computational

1940

Mathematics / Computer Science

Neuroscience / Psychology

Mathematics / Computer Science

Neuroscience / Psychology

Mathematics / Computer Science

Neuroscience / Psychology

Neuroscience / Psychology

1980

Mathematics / Computer Science

Neuroscience / Psychology

Mathematics / Computer Science

Neuroscience / Psychology

Mathematics / Computer Science

- Spiking Neurons and Neural Assemblies
 - McCulloch & Pitts (neuroscience)
 - Hebb (psychology)
 - Norbert Weiner (mathematics)

- Spiking Neurons and Neural Assemblies
 - McCulloch & Pitts (neuroscience)
 - Hebb (psychology)
 - Norbert Weiner (mathematics)

• Early neural network models...

Mark 1 Perceptron

Input: 400 photocells

weights: potentiometers

weight updates: electric motors

Mark 1 Perceptron

Input: 400 photocells

weights: potentiometers

weight updates: electric motors

The Perceptron Frank Rosenblatt, 1957

NEW NAVY DEVICE LEARNS BY DOING

Psychologist Shows Embryo of Computer Designed to Read and Grow Wiser

WASHINGTON, July 7 (UPI) -The Navy revealed the embryo of an electronic computer today that it expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.

The embryo—the Weather Bureau's \$2,000,000 "704" computer-learned to differentiate between right and left after fifty attempts in the Navy's demonstration for newsmen.,

The service said it would use this principle to build the first of its Perceptron thinking machines that will be able to read and write. It is expected to be finished in about a year at a cost of \$100,000.

Dr. Frank Rosenblatt, designer of the Perceptron, conducted the demonstration. He said the machine would be the first device to think as the human brain. As do human be- scious of their existence.

ings, Perceptron will make mis-takes at first, but will grow wiser as it gains experience, he said.

Dr. Rosenblatt, a research psychologist at the Cornell Aeronautical Laboratory, Buffalo, said Perceptrons might be fired to the planets as mechani-cal space explorers.

Without Human Controls

The Navy said the perceptron would be the first non-living mechanism "capable of receiving, recognizing and identifying its surroundings without any human training or control." The "brain" is designed to

remember images and information it has perceived itself. Ordinary computers remember only what is fed into them on punch cards or magnetic tape.

Later Perceptrons will be able to recognize people and call out their names and instantly translate speech in one language to speech or writing in another language, it was predicted.

Mr. Rosenblatt said in principle it would be possible to build brains that could reproduce themselves on an assembly line and which would be con-

1958 New York Times...

In today's demonstration, the "704" was fed two cards, one with squares marked on the left side and the other with squares on the right side.

Learns by Doing

In the first fifty trials, the machine made no distinction between them. It then started registering a "Q" for the left squares and "O" for the right squares.

Dr. Rosenblatt said he could explain why the machine learned only in highly technical terms. But he said the computer had undergone a "self-induced change in the wiring diagram.

The first Perceptron will have about 1,000 electronic "association cells" receiving electrical impulses from an eyelike scanning device with 400 photo-cells. The human brain has 10,000,000,000 responsive cells, including 100,000,000 connections with the eyes.

Mark 1 Perceptron

Input: 400 photocells

weights: potentiometers

weight updates: electric motors

• Minsky & Papert (1969)

- Perceptrons can't learn simple boolean functions (e.g., XOR)
- ... not computationally general

• Minsky & Papert (1969)

- Perceptrons can't learn simple boolean functions (e.g., XOR)
- ... not computationally general

- Spiking Neurons and Neural Assemblies - McCulloch & Pitts (neuroscience)

 - Hebb (psychology)
 - Norbert Weiner (mathematics)
- Early neural network models
 - Rosenblatt's Perceptron
 - Minsky & Papert: demise of the Perceptron
- Al, cognitive science and the symbolic approach: - The physical symbol system hypothesis (Newell & Simon) – von Neumann Architecture and the computer metaphor
 - The golden years of Al...

Neuroscie

Mathematics / Computer Science

nce / Psychology

Neuroscie

Mathematics / Computer Science

nce / Psychology

Classical Al

Expert Systems and Knowledge Engineering

The Von Neumann Computer

Metaphor of the Mind

Symbolic Models of Cognition Production System Models - ACT-R

...the capacity to come up with abstract solutions to problems is one ability that is frequently cited with almost mystical awe. A good example of this is the ability to write recursive programs...

The simulation is capable of solving the same problems as [human] participants. It can actually interact with the same experimental software as the participants, execute the same scanning actions, read the same computer screen, and execute the same motor responses with very similar timing

ACT-R

We have studied extensively how people write recursive programs (e.g., Anderson, Farrell, & Sauers, 1984; Pirolli & Anderson, 1985). To test our understanding of the process, we have developed computer simulations that are themselves capable of writing recursive programs in the same way humans do. Underlying this skill are about 500 knowledge units called *production rules*. For instance, one of these production rules for programming recursion, which might apply in the midst of the problem solving, is

IF the goal is to identify the recursive relationship in a function with a number argument

THEN set as subgoals to

- 1. Find the value of the function for some N
- 2. Find the value of the function for N-1
- 3. Try to identify the relationship between the two answers.

Thus, in the case above, this might lead to finding that factorial(5) = 120 (Step 1), factorial(4) = 24 (Step 2), and that factorial (N) = factorial $(N-1) \times N$ (Step 3).

We (e.g., Anderson, Boyle, Corbett, & Lewis, 1990; Anderson, Corbett, Koedinger, & Pelletier, 1995; Anderson & Reiser, 1985) have created computer-based instructional systems, called *intelligent tutors*, for teaching cognitive skills based on this kind of production-rule analysis. By basing instruction on such rules, we have been able to increase students' rate of learning by a factor of 3.

...the capacity to come up with abstract solutions to problems is one ability that is frequently cited with almost mystical awe. A good example of this is the ability to write recursive programs...

All that there is to intelligence is the simple accrual and tuning of many small units of knowledge that in total produce complex cognition. The whole is no more than the sum of its parts, but it has lots of parts

We have studied extensively how people write recursive programs (e.g., Anderson, Farrell, & Sauers, 1984; Pirolli & Anderson, 1985). To test our understanding of the process, we have developed computer simulations that are themselves capable of writing recursive programs in the same way humans do. Underlying this skill are about 500 knowledge units called production rules. For instance, one of these production rules for programming recursion, which might apply in the midst of the problem solving, is

IF the goal is to identify the recursive relationship in a function with a number argument

THEN set as subgoals to

- 1. Find the value of the function for some N
- 2. Find the value of the function for N-1
- 3. Try to identify the relationship between the two answers.

Thus, in the case above, this might lead to finding that factorial(5) = 120 (Step 1), factorial(4) = 24 (Step 2), and that factorial (N) = factorial $(N-1) \times N$ (Step 3).

We (e.g., Anderson, Boyle, Corbett, & Lewis, 1990; Anderson, Corbett, Koedinger, & Pelletier, 1995; Anderson & Reiser, 1985) have created computer-based instructional systems, called *intelligent tutors*, for teaching cognitive skills based on this kind of production-rule analysis. By basing instruction on such rules, we have been able to increase students' rate of learning by a factor of 3.

ACT-R \akt-ahr\ , noun; 1. cognitive architecture 7+5=12 2. a theory for simulating and understanding human cognition

Publications & Models

Publications are the staple of any good research group. The publications listed here are organized in a categorized outline which explore the far-reaching world of ACT-R. Each topic has several papers associated with it, and the full text of many of the papers are available.

Search

Category: All Categories Author: All Authors \$

Year: All Years 🗘

Only show publications with model files attached

Search Publications

Browse by Category

ACT-R Theory Architecture Language Processing Analogy and Metaphor Language Learning Lexical and General Language Processing Parsing Sentence Memory **Perception and Attention** Attention Driving and Flying Behavior Eye Movements Graphical User Interfaces Multi-Tasking Psychophysical Judgements Situational Awareness and Embedded Cognition Stroop Subitizing Task Switching Time Perception Visual Search Problem Solving and Decision Making Choice and Strategy Selection Dynamic Systems Errors Game Playing Insight and Scientific Discovery Mathematical Problem Solving Programming Reasoning Spatial Reasoning and Navigation Tower of Hanoi Use and Design of Artifacts

Learning and Memory Category Learning Causal Learning Cognitive Arithmetic Declarative Memory Implicit Learning Interference Learning by Exploration and Demonstration List Memory Practice and Retention Reinforcement Learning Representation Skill Acquisition Updating Memory and Prospective Memory Working Memory Other Cognitive Development Cognitive Workload Communication, Negotiation, and Group Decision Making Comparative (Architectures) Comparative (Inter-species) Computer Generated Forces, Video Games, and Agents fMRI Individual Differences Information Search Instructional Materials Intelligent Tutoring Systems Motivation, Emotion, Cognitive Moderators, & Performance Neuropsychology Tools Unrelated to ACT-R User Modeling Uncategorized

The whole is no more than the sum of its parts

ACT-R

The whole is no more than the sum of its parts, but it has lots of parts

The whole is no more than the sum of its parts, but it has lots of parts

Really... *lots* of parts

ACT-R

The whole is no more than the sum of its parts, but it has lots of parts

What about the brain?

Brief Historical Review

Roots

- McCulloch & Pitts (neuroscience)
- Hebb (psychology)
- Early neural network models
 - Rosenblatt's Perceptron
 - Minsky & Papert: demise of the Perceptron
- Al and cognitive science

 - Knowledge engineering and the golden years of Al
 - Production system models of cognitive function

Limits of the symbolic approach

- face recognition, natural language processing...

– The physical symbol system hypothesis (Newell & Simon) – von Neumann Architecture and the computer metaphor

– Knowledge engineering (expert systems): programming vs. learning - Combinatorial explosion in highly contextual domains

Brief Historical Review

- Roots
 - McCulloch & Pitts (neuroscience)
 - Hebb (psychology)
- Early neural network models
 - Rosenblatt's Perceptron
 - Minsky & Papert: demise of the Perceptron
- Al and cognitive science
 - The physical symbol system hypothesis (Newell & Simon) – von Neumann Architecture and the computer metaphor – Knowledge engineering and the golden years of Al Production system models of cognitive function
- Limits of the symbolic approach
 - Knowledge engineering: programming vs. learning - Combinatorial explosion in highly contextual domains face recognition, natural language processing...

 - 100 step challenge:

Brief Historical Review

- Roots
 - McCulloch & Pitts (neuroscience)
 - Hebb (psychology)
- Early neural network models
 - Rosenblatt's Perceptron
 - Minsky & Papert: demise of the Perceptron
- Al and cognitive science
 - The physical symbol system hypothesis (Newell & Simon)
 - von Neumann Architecture and the computer metaphor
 - Knowledge engineering and the golden years of Al
 - Production system models of cognitive function
- Limits of the symbolic approach
 - Knowledge engineering: programming vs. learning - Combinatorial explosion in highly contextual domains face recognition, natural language processing...

 - 100 step challenge: the *brain* is instructive here, but...

100 billion neurons

Scale of the Problem

DAN

100 billion neurons 100 thousand connections/neuron

100 billion neurons 100 thousand connections/neuron

= 100 trillion connections

- **100 billion neurons** 100 thousand connections/neuron
 - = 100 trillion connections
- More potential circuits than molecules in the universe

- **100 billion neurons** 100 thousand connections/neuron
 - = 100 trillion connections
- More potential circuits than molecules in the universe

"Connectomics" (map every connection)

The mouse brain alone will take...

And we'd only know structure, not function

Brain-like computational architecture
biologically-inspired/plausible processing mechanisms

- Brain-*like* computational *architecture*
- **Distributed representation** statistical structure / graded processing

- Brain-*like* computational *architecture*
- **Distributed representation** statistical structure / graded processing
- Parallel processing – can meet 100 step challenge

- Brain-like computational architecture
- **Distributed representation** - statistical structure / graded processing
- Parallel processing – can meet 100 step challenge
- Self-organization through experience - general purpose statistical *learning* algorithms

- Brain-*like* computational *architecture*
- **Distributed representation** statistical structure / graded processing
- Parallel processing – can meet 100 step challenge
- Self-organization through experience – general purpose statistical *learning* algorithms

Units / Modules (≈ neuron or population of neurons)

Learning Rules (≈ synaptic plasticity)

Basic Elements

Connections / Pathways (≈ synapses / projections / circuits)

Units / Modules (≈ neuron or population of neurons)

Learning Rules (≈ synaptic plasticity)

Basic Elements

Connections / Pathways (~ synapses / projections / circuits)

Psychological Constructs

Representation (units)

Functions (modules)

Processing (flow of activity)

• Functions (modules)

Processing (flow of activity)

Learning (weight modification)

Functions (modules)

Processing (flow of activity)

Learning (weight modification)

• Memory (active maintenance

Representation (units)

Functions (modules)

Processing (flow of activity)

Learning (weight modification)

• Memory (active maintenance,

Psychological Constructs

pattern completion

Representation (units)

Functions (modules)

Processing (flow of activity)

Learning (weight modification)

pattern completion, or weight modification) Memory (active maintenance,

Psychological Constructs

– Activity level

(\approx firing frequency or probability of firing)

– Activity level (\approx firing frequency or probability of firing)

Activation (transfer) function

- Integrate & fire
- Thresholded (piecewise) linear
- Continuous valued (sigmoid function, e.g. logistic)

– Activity level (\approx firing frequency or probability of firing)

- Activation (transfer) function

- Integrate & fire
- Thresholded (piecewise) linear
- Continuous valued (sigmoid function, e.g. logistic)

- Noise

– Modulation

- Activity level (\approx firing frequency or probability of firing)

- Activation (transfer) function
 - Integrate & fire
 - Thresholded (piecewise) linear
 - Continuous valued (sigmoid function, e.g. logistic)
- Noise
- Modulation

 Patterns of activity (≈ population code) **Distributed representation**

- Activity level (\approx firing frequency or probability of firing)

- Activation (transfer) function
 - Integrate & fire
 - Thresholded (piecewise) linear
 - Continuous valued (sigmoid function, e.g. logistic)
- Noise
- Modulation
- Patterns of activity (≈ population code)
 - Distributed representation
 - Relationships:
 - associations between units/patterns

- Activity level (\approx firing frequency or probability of firing)

- Activation (transfer) function
 - Integrate & fire
 - Thresholded (piecewise) linear
 - Continuous valued (sigmoid function, e.g. logistic)
- Noise
- Modulation
- Patterns of activity (≈ population code)
 - Distributed representation
 - Relationships:
 - associations between units/patterns
 - overlap of patterns

Modules (≈ brain areas) sets of units responsible for:

Specialization

Modules (≈ brain areas)

sets of units responsible for:

representing a particular type of information stimulus (input), semantic (hidden), motor (output) etc.

Specialization

Modules (≈ brain areas) sets of units responsible for:

carrying out a particular function

Specialization

sensory encoding (input), associative (hidden), motor control (output), etc.

Flow of activity among units / between modules

• Flow of activity among units / between modules

Input output mappings (pathways)

Flow of activity among units / between modules

- Interference

Flow of activity among units / between modules

- Control = modulation

Weight modification (≈ synaptic plasticity)

Weight modification (≈ synaptic plasticity)

- Unsupervised (self-organizing)

- Simple associative (Hebbian)
- Competitive (K-winner take all)

Weight modification (≈ synaptic plasticity)

- Unsupervised (self-organizing)
 - Simple associative (Hebbian)
 - Competitive (K-winner take all)

Supervised (trained)

- Reinforcement (temporal differences)
- Structured (backpropagation)

Long Term – connections among associated features

Long Term – retrieval:

Long Term – retrieval: reactivation of a whole pattern from its parts

Attention selection of some features to activate

Attention selection of some features to activate

Attention selection of features to activate

• Execution selection of pathways for flow of activity

Attention selection of features to activate

• Execution

Early Connectionist Models

- Good at doing what the brain does easily (and what traditional computers do poorly): visual pattern recognition

 - language processing
 - generalization / pattern completion
- Bad at doing what the brain does poorly (and what traditional computer programs do easily) - complex sequential operations (e.g., arithmetic) rapid repetitive computations

Early Connectionist Models

- Good at doing what the brain does easily (and what traditional computers do poorly): - visual pattern recognition
- - language processing
 - generalization / pattern completion
- Bad at doing what the brain does poorly (and what traditional computer programs do easily) - complex sequential operations (e.g., arithmetic) rapid repetitive computations

• However, things have changed...

Neurosci

Mathematics / Computer Science

nce / Psychology

2nd Wave

Deep Learning (Connectionist)

Neuroscience / Psychology

Mathematics / Computer Science

Dave Rumelhart (UCSD / Stanford)

Jann LeCun (NYU)

"Deep Learning"

Geoff Hinton (Toronto / Google)

Bruno Olshausen (Redwood Institute)

Fei Fei Li (Princeton/Stanford)

"Deep Learning"

Google GEMINI

"Deep Learning"

Google GEMINI
Symbolic

Connectionist

Symbolic

logical

Connectionist

statistical

Symbolic

serial

Connectionist

parallel

Symbolic

discrete

Connectionist

continuous

Symbolic

localized

Connectionist

distributed

Symbolic

episodic

Connectionist

semantic

Symbolic

variance

Connectionist

bias

Symbolic

symbol manipulation

Connectionist

function approximation

Symbolic

flexible

Connectionist

efficient

Artificial Intelligence

<u>Symbolic</u>

Knowledge:

Configuration:

explicitly represented

programming

flexible
hand-coded

Connectionist

implicitly represented

connection weights
√ efficient
X domain specific

learning

✓ learns from experience,
★ but <u>only</u> when trained

Clash of the Titans

• Symbolic approach – compositional, context-free:

• Symbolic approach – compositional, context-free: 2 + 2 47 + 2

n

+ $m \leftarrow$ the interpretation of m is not affected by n

• Symbolic approach – compositional, context-free: 2 + 2 47 + 2

n

PDP / connectionist approach

+ $m \leftarrow$ the interpretation of m is not affected by n

• Symbolic approach – compositional, context-free: 2 + 2 47 + 2

n

PDP / connectionist approach

– context-sensitive:

river + bank

+ $m \leftarrow$ the interpretation of m is not affected by n

• Symbolic approach – compositional, context-free: 2 + 2 47 + 2

PDP / connectionist approach

– context-sensitive:

river + bank savings + bank $n + m \leftarrow the interpretation of m depends on n$

 $n + m \leftarrow$ the interpretation of m is not affected by n

Artificial Intelligence

<u>Symbolic</u>

Knowledge:

Configuration:

explicitly represented

programming

flexible
hand-coded

Connectionist

implicitly represented

connection weights
√ efficient
X domain specific

learning

✓ learns from experience,
★ but <u>only</u> when trained

Natural Intelligence

Knowledge:

Configuration:

<u>Symbolic</u>

explicitly represented

programming

flexible
hand-coded

Connectionist

implicitly represented

connection weights
√ efficient
X domain specific

learning

Iearns from experience,
but <u>only</u> when trained

Cog Neuro / System Level Brain Modeling

3rd Wave

efficient generalization

autonomous adaptation

"Sweet spot" between flexibility and efficiency

- Near limitless range of tasks at adequate performance - flexibility

"Sweet spot" between flexibility and efficiency

- With reasonable amounts, and often little or no training - sample efficiency

"Sweet spot" between flexibility and efficiency

- ~20 watts, often with parallel performance - processing efficiency

How does it accomplish this?

• Challenge:

- with <u>efficiency</u> of function approximation in neural networks

Integrate <u>flexibility</u> of symbolic processing in traditional architectures

• Current efforts:

– Neuro-symbolic approaches:

- start with pre-specified symbolic primitives ("core knowledge")
- use <u>deep learning</u> to <u>combine these</u> (e.g., "program induction")

Shangri-La?

• Current efforts:

– "Neo-connectionist" approaches: use <u>deep learning</u> for "<u>end-to-end</u>" training of neural networks

Shangri-La?

• Current efforts:

– "Neo-connectionist" approaches:

- inductive biases that favor abstraction
 - training: curricular learning, meta learning
 - architecture & processing: attention, external memory

tion a learning ion, external memory

• Current efforts:

– "Neo-connectionist" approaches:

- inductive biases that favor abstraction
 - training: curricular learning, meta learning
 - architecture & processing: attention, external memory

• Still not there...

tion a learning ion, external memory

• Still not there...

• How does symbolic computing and the capacity for intelligence arise in the brain?

Psychology

Building Bridges 2025 →

Neurobiology

Psychology

Computer Science

Levels of Analysis (Marr)

• Computational (cognitive science) - What is the overall goal?

Levels of Analysis (Marr)

• **Computational** (cognitive science) - What is the overall goal?

 Algorithmic (cognitive psychology / cognitive neuroscience) – What strategy is used?

Levels of Analysis (Marr)

• **Computational** (cognitive science) – What is the overall goal?

 Algorithmic (cognitive psychology / cognitive neuroscience) - What strategy is used?

• Implementational (neuroscience) – How is it physically realized?

Levels of Analysis (Marr)

Behavior of a coin:

Behavior of a coin:

- Trajectory?

Behavior of a coin: – Trajectory?

Or

Maxwell

Newton

Behavior of a coin: - Trajectory?

or

Newton

v = u + at $v^2 = u^2 + 2as$ $s = ut + \frac{1}{2}at^2$

Maxwell

Behavior of a coin:

- Trajectory?
- Melting point?

Or

Maxwell

Newton

Behavior of a coin:

or

- Trajectory?
- Melting point?

Newton

Maxwell

$$\Gamma_{ij} = \left(\delta_{ij} + x_i \frac{\partial \ln \gamma_i}{\partial x_j}\right)$$

• "More is different" (Anderson, 1972)

"More is different" (Anderson, 1972)

Emergent properties

- "More is different" (Anderson, 1972)
- Emergent properties
- Instrumentalism:
 - what is the observational variance you wish to capture?
 - what is the best way to capture that?

Physical

- Organism – Animal
- Organ
 - Brain
- Components
 - Lobes
- Maps & Zones
 - Areas, layers & columns
- Cells
 - Neurons
- Organelles
 - Membranes & Synapses
- Molecules
 - Transmitters & Receptors

Levels of Organization

Functional

Behavior

Computation

Functions

Processes / Representations

Processing units

Topography of Fields

Computational Neuroscience

Cognitive Neuroscience

Cognitive Science /

Cognitive Psychology

Psychology

Mathematical Formulas Solutions Simple Precise

Forms of Formalism

Computational Programs Simulations Realistic Accurate

speed vs. accuracy

parallel vs. serial

compiled vs. interpreted

• exploit vs. explore

durability vs. accessibility

deterministic vs. statistical

hierarchical vs. heterarchical

programming vs. learning

engineering vs. evolution

hardware vs. software

Contrasts and Tradeoffs

centralization vs. autonomy

• flexibility vs. efficiency...

Contrasts and Tradeoffs

	riexibility										
		Struc	tural		Compositional						
	Within Domains		Across Domains		Within Domains		Across Domains				
	Acquisition	Processing	Acquisition	Processing	Acquisition	Processing	Acquisition	Processing			
Traditional Computers	Instruction	Deductive Inference / Symbols									
Neural Networks	Learning	Function Approximation	None	None	Learning	Function Approximation	None	None			
Non- humans	Learning	Function Approximation	None	None	Learning	Function Approximation	None	None			
Humans	Learning Instruction	Deductive Inference / Function Approximation									

Elovibility

	Efficiency							
	Ti	me	Energy					
	Acquisition	Processing	Acquisition	Processing				
Symbol Processing	Instruction	Moore's Law Deductive Inference Independent Parallelism	Instruction	Moore's Law				
Neural Networks	Reinforcement Learning Curruicular Learning Metalearning	Moore's Law Independent Parallelism Interactive Parallelism	Learning	Moore's Law				
Non-humans	Unsupervised Learning Reinforcement Learning	Independent Parallelism Interactive Parallelism	Learning	Biological Computation				
Humans	Unsupervised Learning Reinforcement Learning Curricular Learning Metalearning Active Learning Instruction	Deductive Inference Independent Parallelism Interactive Parallelism	Learning Instruction	Biological Computation				

"The second general point to be learned from the bitter lesson is that the actual contents of minds are tremendously, irredeemably complex; we should stop trying to find simple ways to think about the contents of minds, such as simple ways to think about space, objects, multiple agents, or symmetries. All these are part of the arbitrary, intrinsically-complex, outside world. They are not what should be built in, as their complexity is endless; instead we should build in only the meta-methods that can find and capture this arbitrary complexity. Essential to these methods is that they can find good approximations, but *the search for them* should be by our methods, not by us. We want Al agents that can discover like we can, not which contain what we have *discovered.* Building in our discoveries only makes it harder to see how the discovering process can be done."

(http://www.incompleteideas.net/IncIdeas/BitterLesson.html)

The Bitter Lesson Rich Sutton, ~2020

"We also wish to allow the possibility than an engineer or team of engineers may construct a machine which works, but whose manner of operation cannot be satisfactorily described by its constructors because they have applied a method which is largely experimental. "

"Unexplainable Al" Turing, 1950