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Course Description;

A survey.of experimental & theoretical approaches to
understanding how cognition arises inthe brain.” This complements
501, focusing on the mechanisms responsible for perception,
attention, decision making, memaory, cognitive & motor control, and
planning, with emphasis on the representations involved & their
transformations in the service of cognitive function. Source
material will Span neuroscience, cognitive science, and work on
artificial systems. Relevance to neurodegenerative and
neuropsychiatric disorders will also be discussed.

Computational constructs will explored through “hands-on”
modeling exercises carried in parallel' i1n 5028
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e Lectures
— Mondays and Thursdays, 2-4:30

— Divided into 9 sections, each that will address a set of:
cognitive phenomenalprocesses and computational/neural.mechanisms:

1) Sensation And Perception — Inference And Constraint Satisfaction

2) Decision Making — Integration

3) Reinforcement Learning — Reward And Neuromodulation

4) Semantic Memory — Statistical Learning And Distributed Representation
5) Episodic Memory — Binding

6) Attention, Working Memory And Cognitive Control — State Maodulation

/) Motor Function — Movement

8) Development And Social Cognition — Interaction

9) Disorders — Dysfunctien
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¢ Readings
— All are source materials;=no official text (though see below)— that means class matters!
— Lots are listed, all are available as PDFs

— Asterisked readings are required;
others are meant primarily as a resource, to explore material covered in class in greater depth

— In addition, some good reference texts are:

- Parallel distributed.processing. Explorations in the microstructure of cognition
Rumelhart, Hinton & McClelland (1986)

- Computational explorations in cognitive heuroscience: Understanding the mind by simulating the brain
O'Rellly & Munakata (2000)

- Theoretical Neuroscience
Dayan and Abbott (2001)
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N
e Course requirement@'m
— Attend and participate in class
— Paper presentation (50%)
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Long History of Interaction

Neuroscience / Psychology
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Brief Historical Review

e Spiking Neurons and Neural Assemblies
— McCulloch & Pitts (neuroscience)
— Hebb (psychology)
— Norbert Weiner (mathematics)




Brief Historical Review

e Early neural network models...



The Perceptron

Frank Rosenblatt, 1957



The Perceptron

Frank Rosenblatt, 1957

£YES

VSRR .
s WY SAREI TNOMSNEI.

¥ SREEIPTI T S ENNE
TR B S TN &
RN AN
¢ SRR SRR S

TR SNEI M.
B e e ]
N




The Perceptron

Frank Rosenblatt, 1957

Input:
400 photocells

weights:
potentiometers

weight updates:
electric motors




The Perceptron

Frank Rosenblatt, 1957

Mark 1 Perceptron

Input:
400 photocells

weights:

potentiometers

weight updates:
electric motors

NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be  con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 704" com-
puter—learned to differentiate
between right and left after
fifty aftempts in the Navy's
demonstration for newsmen,,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
signer of the Perceptron, con-
ducted the demonstration, He
said ‘the machine would be the
first device to think as the hu-
man brain. As do human be-

lings, Perceptron will make mis-
takeg at first, but will grow
|wiser as it gains experience, he
)said. ’

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-i
falo, said Perceptrons might be
Iﬁred to the planets as mechani-

cal space explorers.
|  Withont Human Controls |

The Navy said the perceptron,
would be the. first non-living!
mechanism “capable of receiv-|
ing, recognizing and identifying
its surroundings without -any
human training or control.”

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. .

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted.

Mr, Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly
iline and which would be con-
|scious of their existence,

1958 New York
Times...

In today's demonstration, the
“704"” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
ltween them. It then started
|reg1‘ster'mg a “Q"” for the left
|squares and “O"” for the right
squares.

Dr. Rosenblatt said he could
explain why the machine
learned only in highly technical
terms. But he said the computer
had undergone a ‘self-induced
}change in the wiring diagram.”

The first Perceptron will
have about 1,000 electronic
“association cells” recelving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes,
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Frank Rosenblatt, 1957

e Minsky & Papert (7969)

— Perceptrons can’t learn simple
boolean functions (e.g., XOR)

. not computationally general
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e Al, cognitive science and the symbolic approach:
— The physical symbol system hypothesis (Newell & Simon)
— von Neumann Architecture and the computer metaphor
— The golden years of Al...
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1940 1950 1960 1970 1980 1990
1st Wave

Expert Systems
(Symbolic)

Theories of Perceptron

Computation Rosenblatt
von Neumann, Turing
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The Von Neumann Computer
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Metaphor of the Mind
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Symbolic Models of Cognition
Production System Models - ACT-R

ACT-R Cognitive Architecture by John Ancderson
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The simulation is capable of solving
the same problems as [human]
participants. It can actually interact
with the same experimental
software as the participants,
execute the same scanning actions,
read the same computer screen, and
execute the same motor responses
with very similar timing

We have studied extensively how people write re-
cursive programs (e.g., Anderson, Farrell, & Sauers, 1984:
Pirolli & Anderson, 1985). To test our understanding of
the process, we have developed computer simulations that
are themselves capable of writing recursive programs in
the same way humans do. Underlying this skill are about
500 knowledge units called production rules. For instance,
one of these production rules for programming recursion,
which might apply in the midst of the problem solving,
is

IF the goal is to identify the recursive relationship in a
function with a number argument
THEN set as subgoals to
1. Find the value of the function for some N
2. Find the value of the function for N—1
3. Try to identify the relationship between the two
answers.

Thus, in the case above, this might lead to finding that
factorial(5) = 120 (Step 1), factorial(4) = 24 (Step 2), and
that factorial (V) = factorial (N—1) X N (Step 3).

We (e.g., Anderson, Boyle, Corbett, & Lewis, 1990;
Anderson, Corbett, Koedinger, & Pelletier, 1995; Ander-
son & Reiser, 1985) have created computer-based in-
structional systems, called intelligent tutors, for teaching
cognitive skills based on this kind of production-rule
analysis. By basing instruction on such rules, we have

been able to increase students’ rate of learning by a factor
of 3.




All that there is to intelligence is the
simple accrual and tuning of many
small units of knowledge that in
total produce complex cognition.
The whole is no more than the sum
of its parts, but it has lots of parts
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ACT-R

The whole is no more than the sum of its parts

ACT-R Cognitive Architecture by John Ancderson
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Brief Historical Review

e Roots

— McCulloch & Pitts (neuroscience)
— Hebb (psychology)

e Early neural network models
— Rosenblatt’s Perceptron
— Minsky & Papert: demise of the Perceptron

e Al and cognitive science
— The physical symbol system hypothesis (Newell & Simon)
— von Neumann Architecture and the computer metaphor
— Knowledge engineering and the golden years of Al
— Production system models of cognitive function

e Limits of the symbolic approach

— Knowledge engineering (expert systems): programming vs. learning

— Combinatorial explosion in highly contextual domains
face recognition, natural language processing...
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Brief Historical Review

e Roots
— McCulloch & Pitts (neuroscience)
— Hebb (psychology)

e Early neural network models
— Rosenblatt’s Perceptron
— Minsky & Papert: demise of the Perceptron

e Al and cognitive science
— The physical symbol system hypothesis (Newell & Simon)
— von Neumann Architecture and the computer metaphor
— Knowledge engineering and the golden years of Al
— Production system models of cognitive function

e Limits of the symbolic approach

— Knowledge engineering: programming vs. learning

— Combinatorial explosion in highly contextual domains
face recognition, natural language processing...

— 100 step challenge: the brain is instructive here, but...
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Scale of the Problem

100 billion neurons
100 thousand connections/neuron

= 100 trillion connections

More potential circuits than molecules in the universe
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Go for entire wiring diagram...




“Bottom-Up” Approach

Go for entire wiring diagram...

“Connectomics”
(map every connection)
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“Bottom-Up” Approach

Go for entire wiring diagram...

but...




“Bottom-Up” Approach

Go for entire wiring diagram...

The mouse brain alone
will take...



“Bottom-Up” Approach

Go for entire wiring diagram...

2727



“Bottom-Up” Approach

Go for entire wiring diagram...

And we’d only know structure, not function
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The Connectionist (PDP) Approach

e Brain-like computational architecture
— biologically-inspired/plausible processing mechanisms

e Distributed representation
— statistical structure / graded processing

e Parallel processing
— can meet 100 step challenge

e Self-organization through experience
— general purpose statistical learning algorithms




Basic Elements

® Units / Modules (= neuron or population of neurons)
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e Representation (units)
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Psychological Constructs
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Psychological Constructs

e | earning (weight modification)




Psychological Constructs

e Memory (active maintenance

)




Psychological Constructs

e Memory pattern completion
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e Units (= neurons or population of neurons)




Representation

e Units (= neurons or population of neurons)

— Activity level
(= firing frequency or probability of firing) ~ cwaior




Representation

® Units (= neurons or population of neurons

— Activation (transfer) function
- Integrate & fire
- Thresholded (piecewise) linear
- Continuous valued (sigmoid function, e.g. logistic)

Activation
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Representation

® Units (= neurons or population of neurons

o
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Representation

® Units (= neurons or population of neurons

e Patterns of activity (= population code)
— Distributed representation




Representation

® Units (= neurons or population of neurons

e Patterns of activity (= population code)
— Distributed representation
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Representation

® Units (= neurons or population of neurons

e Patterns of activity (= population code)
— Distributed representation

— Relationships:
— associations between units/patterns
- overlap of patterns




Specialization

e Modules (= brain areas)

sets of units responsible for:

Association




Specialization

e Modules (= brain areas)

sets of units responsible for:

representing a particular type of information
stimulus (input), semantic (hidden), motor (output) etc.

Association

Encodlng

"Input”



Specialization

e Modules (= brain areas)

sets of units responsible for:

carrying out a particular function
sensory encoding (input), associative (hidden), motor control (output), etc.

Association

oJe)
:

Encodlng

"Input”



Processing

e Flow of activity among units / between modules
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Processing

e Flow of activity among units / between modules

- Input output mappings (pathways)

OUTPUT Articulation

Writing (mouth)
(hand) 5
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(visual)



Processing

e Flow of activity among units / between modules

- Interference
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Processing

e Flow of activity among units / between modules

- Control = modulation

OUTPUT Articulation
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e Weight modification (= synaptic plasticity)



Learning

e Weight modification (= synaptic plasticity)

- Unsupervised (self-organizing)
> Simple associative (Hebbian)
> Competitive (K-winner take all)



Learning

e Weight modification (= synaptic plasticity)

- Supervised (trained)
> Reinforcement (temporal differences)
> Structured (backpropagation)



Memory

e Short Term
— sustained pattern of activity

CQ O



e Long Term
— connections among associated features




e Long Term
— retrieval:




e Long Term
— retrieval: reactivation of a whole pattern from its parts




Control

e Attention
— selection of some features to activate

escape
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e Attention
— selection of some features to activate

escape




Control

escape

listen

e Execution

— selection of pathways for
flow of activity




Control

escape

listen

e Execution

— selection of pathways for
flow of activity




Early Connectionist Models

e Good at doing what the brain does easily
(and what traditional computers do poorly):
— visual pattern recognition
— language processing
— generalization / pattern completion

e Bad at doing what the brain does poorly
(and what traditional computer programs do easily)
— complex sequential operations (e.g., arithmetic)
— rapid repetitive computations



Early Connectionist Models

e Good at doing what the brain does easily
(and what traditional computers do poorly):
— visual pattern recognition
— language processing
— generalization / pattern completion

e Bad at doing what the brain does poorly
(and what traditional computer programs do easily)

— complex sequential operations (e.g., arithmetic)
— rapid repetitive computations

e However, things have changed...
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2nd Wave

2010 2020...

Visual Game Maze
Object Playing Navigation
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AlexNet Deep Mind




“Deep Learning”

Dave Rumelhart Jann LeCun Geoff Hinton Bruno Olshausen Fei Fei Li
(UCSD / Stanford) (NYU) (Toronto / Google)  (Redwood Institute) (Princeton/Stanford)
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“Deep Learning”
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“Deep Learning”

Google GEMINI

1.5 TRILLION Parameters

/
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Extremes of a Continuum

Symbolic Connectionist
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Artificial Intelligence

EXPERT SYSTEM

USER INTERFACE

L2 L 2% »
TRACE
PACRITIES PACILITIES > | USER

KNOWLEDGE BASE
Symbolic Connectionist

Knowledge: explicitly represented implicitly represented

expressions and procedures connection weights

J explanation v efficient

X domain specific X domain specific
Configuration: — programming learning

J flexible J learns from experience,

X hand-coded X but only when trained
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Complementary Approaches

e Symbolic approach
— compositional, context-free:

2 + 2
47 + 2
n + m <« the interpretation of m is not affected by n

e PDP / connectionist approach

— context-sensitive:

river + bank
savings + bank
n + m <« the interpretation of m depends on n
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Artificial Intelligence

EXPERT SYSTEM

USER INTERFACE

L2 L 2% »
TRACE
PACRITIES PACILITIES > | USER

KNOWLEDGE BASE
Symbolic Connectionist

Knowledge: explicitly represented implicitly represented

expressions and procedures connection weights

J explanation v efficient

X domain specific X domain specific
Configuration: — programming learning

J flexible J learns from experience,

X hand-coded X but only when trained



Natural Intelligence

3rd Wave
Symbolic Connectionist
Knowledge: explicitly represented implicitly represented efficient
expressions and procedures connection weights generalization
J explanation v efficient
X domain specific X domain specific
Configuration:  programming learning autonomous
y flexible J learns from experience, adaptation

X hand-coded X but only when trained
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Human Brain = Existence Proof

| v

Smell Jeopardy Chess Go Navigate

Dog B Watson B Deep Blue B Alpha Go B Tesla Autopilot

“Sweet spot’ between flexibility and efficiency

- ~20 watts, often with parallel performance - processing efficiency




Human Brain = Existence Proof

| v

Smell Jeopardy Chess Go Navigate

Dog B Watson B Deep Blue B Alpha Go B Tesla Autopilot

How does it accomplish this?
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Shangri-La?

e Challenge:
— Integrate flexibility of symbolic processing in traditional architectures

— with efficiency of function approximation in neural networks



Shangri-La?

e Current efforts:

— Neuro-symbolic approaches:
¢ start with pre-specified symbolic primitives (“core knowledge”)
¢ use deep learning to combine these (e.g., “program induction™)
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— “Neo-connectionist” approaches:

¢ inductive biases that favor abstraction
* training: curricular learning, meta learning
 architecture & processing: attention, external memory




Shangri-La?

e Current efforts:

— “Neo-connectionist” approaches:

¢ inductive biases that favor abstraction
* training: curricular learning, meta learning
 architecture & processing: attention, external memory

e Still not there...
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2025 and beyond...

Cognitive Control

Episodic prevy 190 Episodic
Memory Memory

Semantic Memory
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e Computational (cognitive science)
— What is the overall goal?




Levels of Analysis (Marr)

e Algorithmic (cognitive psychology / cognitive neuroscience)
— What strategy is used?



Levels of Analysis (Marr)

— What is the overall goal?

— What strategy is used?

_ Cerebeal corex

' /:_--_-’ State/action coding

¢ Implementational (neuroscience) a3 / “Aeward predesor
— How is it physically realized?
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of Analysis (in reality)

e Behavior of a coin:

— Trajectory?

or

Maxwell

vV = U + dt

v: = u* + 2as
s = ut + Y%at?
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e Behavior of a coin:

— Melting point?
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Newton Maxwell




of Analysis (in reality)

e Behavior of a coin:

— Melting point?

or

Newton
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Levels of Analysis (in reality)

® “More is different” (Anderson, 1972)



Levels of Analysis (in reality)

e Emergent properties



Levels of Analysis (in reality)

¢ Instrumentalism:

— what is the observational variance you wish to capture?
— what is the best way to capture that?



Levels of Organization

Physical

Organism
— Animal

Organ

— Brain

Components
— Lobes

Maps & Zones

— Areas, layers & columns

Cells

— Neurons

Organelles
— Membranes & Synapses

Molecules
— Transmitters & Receptors

Functional

Behavior

Computation

Functions

Processes / Representations

Processing units
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Topography of Fields

Neuroscience Computer Science

Computational
Neuroscience

Neurology

Cognitive Science

Cognitive Psychology

Psychology



Forms of Formalism

Mathematical Computational
Formulas Programs
Solutions Simulations
Simple Realistic

Precise Accurate
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Contrasts and Tradeoffs

* Speed Vvs. accuracy

* parallel vs. serial

* compiled vs. interpreted

* exploit vs. explore

* durability vs. accessibility

* deterministic vs. statistical
* hierarchical vs. heterarchical
* programming vs. learning

* engineering vs. evolution

* hardware vs. software

* centralization vs. autonomy
* flexibility vs. efficiency...
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Independent Parallelism
Interactive Parallelism

Independent Parallelism
Interactive Parallelism

Deductive Inference
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Energy

Processing

Moore’s Law

Moore’s Law

Biological Computation
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The Bitter Lesson

Rich Sutton, ~2020

“The second general point to be learned from the bitter lesson is
that the actual contents of minds are tremendously, irredeemably
complex; we should stop trying to find simple ways to think about
the contents of minds, such as simple ways to think about space,
objects, multiple agents, or symmetries. All these are part of the
arbitrary, intrinsically-complex, outside world. They are not what
should be built in, as their complexity is endless; instead we
should build in only the meta-methods that can find and
capture this arbitrary complexity. Essential to these methods is
that they can find good approximations, but the search for them
should be by our methods, not by us. We want Al agents that
can discover like we can, not which contain what we have
discovered. Building in our discoveries only makes it harder to see
how the discovering process can be done.”

(http.//www. incompleteideas.net/Incldeas/BitterLesson.html)



“Unexplainable Al”

Turing, 1950

“We also wish to allow the possibility than an
engineer or team of engineers may construct a
machine which works, but whose manner of
operation cannot be satisfactorily described by
Its constructors because they have applied a
method which is largely experimental.



