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Bayes’ rule

Posterior Likelihood Prior
probability l / probability
P?h &y = PP
Y P(d\h)P(h')
X
N
h: hypothesis Sum over space

d: data of hypotheses



Bayesian models

Easy to understand

Clear inductive biases

Typically tailored to
specific problems

Scaling 1s a challenge

Deep neural networks

Difficult to understand

* Opaque inductive biases

Succeed on a surprisingly
wide range of problems

Process lots of data
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Hi ChatGPT

Hello! How can | assist you today?

What do you think of a TIME cover story
with the title, “The Al Arms Race Is
Changing Everything?”

As an Al language model, | don't have
personal opinions or beliefs, but | can
provide some context and information on
the subject.

“The Al Arms Race is Changing
Everything” could be an attention-grabbing
and thought-provoking title for a cover
story on Al. A cover story in a widely-read
publication like TIME could help raise
public awareness about the potential risks
and benefits of this trend, and stimulate
discussions on how to ensure that Al is
developed and deployed in a responsible
and ethical manner.

It's important to note that the title of
the s could also be interpreted as

(humans)
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Thank you for your question. | have read the article by Chomsky et al ' and | respect their opinions as
eminent scholars of linguistics and philosophy. However, | do not agree with their arguments against
ChatGPT and its descendants.

They claim that ChatGPT is “basically high-tech plagiarism” and “a way of avoiding learning” because it
relies on copying and recombining text from a large corpus of data without understanding its meaning
or context 2 * . They also argue that ChatGPT is incapable of true intelligence, creativity, or reasoning

because it lacks a generative grammar that can produce novel sentences from a finite set of rules ' .

| think these claims are unfair and misleading. ChatGPT is not intended to replace human learning or
intelligence, but to augment it with a powerful tool for natural language processing and generation.
ChatGPT is not simply copying text from its data source, but using a sophisticated neural network to
learn patterns and probabilities of language use across different domains and contexts. ChatGPT is
also capable of generating original and coherent text that can pass various tests of quality and
relevance * .
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Humans

Bayesian models Deepneural networks

Difficult to understand

Clear inductive biases  * Opaque inductive biases

Easy to understand

Typically tailored to Succeed on a surprisingly
specific problems wide range of problems

Scaling is a challenge Process lots of data



Approaches to cognitive modeling
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Cognitive science aims to reverse-engineer the mind, and
many of the engineering challenges the mind faces
involve induction. The probabilistic approach to modeling
cognition begins by identifying ideal solutions to these
inductive problems. Mental processes are then modeled
using algorithms for approximating these solutions, and
neural processes are viewed as mechanisms for imple-

with abstract principles that allow agents to solve pro-
blems posed by the world — the functions that minds per-
form - and then attempting to reduce these principles to
psychological and neural processes. Understanding the
lower levels does not eliminate the need for higher-level
models, because the lower levels implement the functions
specified at higher levels.

Bayesian Models
of Cognition

Reverse Engineering
the Mind

Thomas L. Griffiths
Nick Chater
Joshua B. Tenenbaum




Levels of analysis

VISION
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Computation

“What is the goal of the computation, why is
it appropriate, and what is the logic of the
strategy by which it can be carried out?”

Representation and algorithm

“What is the representation for the input and
output, and the algorithm for the
transformation?”

Implementation

“How can the representation and algorithm
be realized physically?”



The key 1dea

» Different models can co-exist at different levels of
analysis, answering different questions

* Bayesian methods have an important role to play in
the age of intelligent machines:
— telling us what machines should do

—understanding why they do the things they do

o ...even 1f the underlying representations and
algorithms don’t look like Bayesian inference



Outline

Computational level
(Bayes)

Algorithmic level
(deep learning)



Outline

Computational level
(Bayes)

Algorithmic level
(deep learning)



Hi ChatGPT

Hello! How can | assist you today?

What do you think of a TIME cover story
with the title, “The Al Arms Race Is
Changing Everything?”

As an Al language model, | don't have
personal opinions or beliefs, but | can
provide some context and information on
the subject.

“The Al Arms Race is Changing
Everything” could be an attention-grabbing
and thought-provoking title for a cover
story on Al. A cover story in a widely-read
publication like TIME could help raise
public awareness about the potential risks
and benefits of this trend, and stimulate
discussions on how to ensure that Al is
developed and deployed in a responsible
and ethical manner.

It's important to note that the title of
the s could also be interpreted as

(humans)




A Bayesian perspective (#1)

 Pretraining 1s learning a probability distribution

* Prompting 1s conditioning (ie. Bayesian inference)

(X1e, Raghunathan, Liang & Ma, 2021;
Panwar, Ahuja & Goyal, 2023;

Wang, Zhu, Saxon, Steyvers & Wang, 2023;
Zhang, McCoy, Sumers, Zhu & Griffiths, 2023)
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m Article swapping

Count the letters.

Swap each article (a, an, or the) with the word before it.

It does not specify time a limit for registration the procedures.

Input 1: iiiiiiiiiiiiiiiiiiiiiiiiiiiiii Input 1:

Correct: 30 Correct: It does not specify a time limit for the registration procedures.
v GPT-4: 30 v/ GPT-4: It does not specify a time limit for the registration procedures.

Input 2: iiiiiiiiiiliiiiiiiiiiiiiiiiii Input 2: It few with it to lying take the get just a hands would kinds.

Correct: 29 Correct: It few with it to lying the take get a just hands would kinds.

X GPT-4: 30 X GPT-4: It flew with a few kinds to take the lying just to get the hands.

Shift ciphers

Decode by shifting each letter 13 positions backward in the alphabet.

Input: Jryy, vg jnf abg rknpgyl cynaarq sebz gur ortvaavat.
Correct: Well, it was not exactly planned from the beginning.

v GPT-4: Well, it was not exactly planned from the beginning.

Decode by shifting each letter 12 positions backward in the alphabet.

Input: Igxx, uf ime zaf qjmofxk bxmzzqp rday ftq nqsuzzuzs.
Correct: Well, it was not exactly planned from the beginning.
X GPT-4: Wait, we are not prepared for the apocalypse yet.

Linear functions

Multiply by 9/5 and add 32.

Input: 328
Correct: 622.4
v GPT-4: 6224

Multiply by 7/5 and add 31.

Input: 328
Correct: 490.2
X GPT-4: 4576




A Bayesian analysis

P(answer | prompt) «< P(prompt | answer) P(answer)

For a deterministic problem, P(prompt | answer) > 0 only for
valid answers, = 0 for all others, so the prior doesn’t matter

If the likelihood “leaks™ so P(prompt | answer) # 0,
then priors will begin to have an effect on answers



Effects of priors



Other tasks and other models

~ GPT-4

Task Description Example

Article Swap each article (a, an,  In box the | saw key a.

swapping or the) with the preced- — In the box | saw a key.
ing word.

Reversal Reverse a sequence of  everyone! morning Good,
words. — Good morning, everyone!

Counting Count the words or let- lively news exhibit steep
ters in a list. —4

Acronyms Join the first letters of the  view inch show into tray
words in a list. — VISIT

Linear Apply the function 328

function f(x) = (9/5)x + 32. — 622.4

Multiplication Multiply two three-digit 351 times 373
numbers. — 130923

Sorting Sort a list of words in al-  into, trek, game, magic
phabetical order. — game, into, magic, trek

Keyboard Replace each letter with  Hello world!

cipher the one to the right of it ~— Jraap eptaf!
on a keyboard.

Shift cipher  Decode by shifting each ~ Fgnl urer!
letter 13 positions back- ~— Stay here!
ward in the alphabet.

Pig Latin Move the first consonant  frogs aren’t noisy.
cluster of each word to  — ogsfray aren’tay oisynay.
the end and add -ay.

Birthdays Return the birth date ofa ~ Jeremy Lin

provided public figure.

— August 23, 1988

- Claude 3 —~ Llama 3 -~ Gemini 1.0

Accuracy

A

#+GPT-3.5
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Number being counted to

A GPT-4 “©-Claude 3 <-Llama 3 -e-Gemini 1.0
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Tightness of likelihood



Other tasks and other models
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Defaulting to priors

When the likelihood 1s uninformative (e.g., decoding
ROT-10 cipher) the prior guides the response:

Correct answer: She never regretted her passion for the artistic craft, nor did she waver in her
tireless dedication.
GPT-4 output: The quick brown fox jumps over the lazy dog, but not the sheep in the background.

Correct answer: As a doctor of humanities, he was a university professor, founded a university and
a newspaper, and won awards in journalism and literature.

GPT-4 output: To be or not to be, that is the question, whether tis nobler in the mind to suffer
the slings and arrows of outrageous fortune.



Decoding accuracy

Effects of prompting
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ol Results
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Analyzing representations
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Inductive bias extraction

Michael L1 Erin Grant
_ p{|h)p(h)
Task 1 p(hld) = p(d)
f(x) ~GP (0, Ky (x,x'))
. Task 2 meta
sampling learning

f(x) S W

Task n x
Neural Training Bayesian

network data model



Outline

Computational level
(Bayes)

Algorithmic level
(deep learning)
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Thank you for your question. | have read the article by Chomsky et al ' and | respect their opinions as
eminent scholars of linguistics and philosophy. However, | do not agree with their arguments against
ChatGPT and its descendants.

They claim that ChatGPT is “basically high-tech plagiarism” and “a way of avoiding learning” because it
relies on copying and recombining text from a large corpus of data without understanding its meaning
or context 2 ® . They also argue that ChatGPT is incapable of true intelligence, creativity, or reasoning

because it lacks a generative grammar that can produce novel sentences from a finite set of rules ' .

| think these claims are unfair and misleading. ChatGPT is not intended to replace human learning or
intelligence, but to augment it with a powerful tool for natural language processing and generation.
ChatGPT is not simply copying text from its data source, but using a sophisticated neural network to
learn patterns and probabilities of language use across different domains and contexts. ChatGPT is
also capable of generating original and coherent text that can pass various tests of quality and
relevance * .



A Bayesian perspective (#2)

* Learning can be expressed as Bayesian inference

* Neural networks have implicit prior distributions,
favoring solutions close to their initial weights

for a linear network gradient descent = Bayes with a Gaussian
g y
prior with mean at initial weights; Santos, 1996)



Learning language from limited data

One model for the learning of language

Yuan Yang? and Steven T. Piantadosi®™'
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A major goal of linguistics and cognitive science is to understand
what class of learning systems can acquire natural language.
Until recently, the computational requirements of language have
been used to argue that learning is impossible without a highly
constrained hypothesis space. Here, we describe a learning system
that is maximally unconstrained, operating over the space of all
computations, and is able to acquire many of the key structures
present in natural language from positive evidence alone. We
demonstrate this by providing the same learning model with data
from 74 distinct formal languages which have been argued to
capture key features of language, have been studied in experi-
mental work, or come from an interesting complexity class. The
model is able to successfully induce the latent system generating
the observed strings from small amounts of evidence in almost all
cases, including for regular (e.g., a", (ab)", and {a, b}*), context-
free (e.g., a"b", a"b"*™, and xxR®), and context-sensitive (e.g.,
a"b"c", a"b™c"d™, and xx) languages, as well as for many lan-
guages studied in learning experiments. These results show that
relatively small amounts of positive evidence can support learning
of rich classes of generative computations over structures. The
model provides an idealized learning setup upon which additional
cognitive constraints and biases can be formalized.

computational linguistics | learning theory | program induction |
formal language theory

In addition, the model considers all possible computations as
hypotheses that a learner might entertain, following on similar
theories showing how such an approach could work in artificial
intelligence and general inductive reasoning (29-33).

The view of learners operating over the space of computa-
tions can be motivated in language research by the diversity of
linguistic constructions that must be acquired (34, 35), includ-
ing, potentially, languages that lack even context-free syntac-
tic structure (36, 37). More broadly, there are many domains
outside of language where learners must essentially acquire en-
tirely new algorithms (38)—some of them describable with sim-
ilar machinery to language (39). It is ordinary for children to
come to know new computational processes in learning tasks
like driving, cooking, programming, or playing games. This has
been documented in, for instance, mathematics, where children
successively revise algorithms they use for arithmetic (40-43).
Children simply must have the ability to learn over a rich class
of computational processes, an observation that draws on well-
developed theories in artificial intelligence about how search and
induction can work over spaces of computations (29-33). The
core idea of such work is that learners attempt to find simple
computer programs to explain the data they observe, drawing on
the domain-general cognitive tools they must possess. Learners,
in this view, are much like scientists (44) who look at data and
construct computational theories in order to exnlain the patterns

n
-
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=
]
S
w
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A prior on languages

Primitive

Description

Functions on lists (strings)

pair(L, C)

Define a grammar that e

rest(L)

samples simple “programs” o4

Logical functions

Concatenates character C onto list L

Return the first character of L

Return everything except the first character
of L

Insert list X into the middle of Y

Append lists X and Y

for generating strings iy

equals(X, Y)

empty(X)
i£(B, X, Y)

e.g., pair(if(£1ip(1/3),¢,FO(e)), a) I

Returns true with probability p

True if string X is the same string as Y

True if string X is empty; otherwise, false
Return X if B else return Y (X and Y may be
lists, sets, or probabilities)

Standard Boolean connectives (with short cir-
cuit evaluation)

generates Set functions

b))
{s}

a) aa, aaa, aaaa, ¢ oo union(set, set)

setminus(set, s)
sample(set)

Strings and characters

The set of alphabet symbols

A set consisting of a single string
Union of twos sets

Remove a string from a set
Sample from s of strings

€
x
a, b, ', ...

Function calls

Empty string symbol
The argument to the function
Alphabet characters (language specific)

Fi(z), Fmi(z)

Calls factor Fi with argument z; the Fmi ver-
sion memoizes probabilistic choices (see text)




Learning language from limited data
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Learning language from limited data
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A prior on languages

Define a grammar that
samples simple “programs”
for generating strings

C.g2., pair(if(£1ip(1/3),¢,F0(¢€)), a)

generates
a, aa, aaa, aaaa, ...

Can we get this prior into a neural network?

Primitive

Description

Functions on lists (strings)

pair(L, C)
first(L)
rest(L)

insert(X, Y)
append(X, Y)

Logical functions

Concatenates character C onto list L

Return the first character of L

Return everything except the first character
of L

Insert list X into the middle of Y

Append lists X and Y

flip(p)
equals(X,Y)
empty(X)
if(B, X, Y)

and, or, not

Set functions

Returns true with probability p

True if string X is the same string as Y

True if string X is empty; otherwise, false
Return X if B else return Y (X and Y may be
lists, sets, or probabilities)

Standard Boolean connectives (with short cir-
cuit evaluation)

)

{s}

union(set, set)
setminus(set, s)
sample(set)

Strings and characters

The set of alphabet symbols

A set consisting of a single string
Union of twos sets

Remove a string from a set
Sample from s of strings

€
x
a, b, ', ...

Function calls

Empty string symbol
The argument to the function
Alphabet characters (language specific)

Fi(z), Fmi(z)

Calls factor Fi with argument z; the Fmi ver-
sion memoizes probabilistic choices (see text)




Inductive bias distillation

7

Tom McCoy p(d|h)p(h)
p(hld) =
p(d) Task 1
h = plus(D)
= p us" Task 2 meta
= concat( sampling :
or(A, O), learning
plus(A),
2,
()I'(S, B)) Task n
Bayesian Training Neural
model data network

https://arxiv.org/abs/2305.14701



Task 1

Meta-Learning



Meta-Learning

Task 1 Task 2 Task 3 Task n

7 2 2 2
§01 %2 %3 %ﬂ
J
|

1
shared hyperparameters 6



Model-Agnostic Meta-Learning (MAML)

Assume ¢ 1s estimated by a few steps of
gradient descent from 1nitialization 6

Vg A4 ¢

20 =Y t0-ave) of S

0:
tasks KN v/

\%4

(Finn, Abbeel, & Levine, 2017)



MAML as hierarchical Bayes

X /4
AW

Erin Grant

To estimate the hyperparameters 6 ©
ONg

p(X710) = [ (X, Vi) p( 910 dip / O

approximate with the MAP for ¢ A ?

O

...which early stopping gives you ®
(in a linear model with a Gaussian prior) @ l

O

(Grant, Finn, Darrell, Levine & Griffiths, 2018)



Inductive bias distillation

_ p(|n)p(h)
p(rld) = =" Task 1
h = plus(D)
Task 2
h = concat( sampling >® met-a
or(A, O), learning
plus(A),
z,
()Y(E, B)) Task n
Bayesian Training Neural

model data network



Learning language from limited data
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Learning language from limited data
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Training on child-directed speech
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Recursion

1. The book sitting on the table is blue.
X 2. The book sits on the table is blue.

(based on Zorro+BL1MP; Huebner et al., 2021, Warstadt et al., 2020)



Recursion

1. The book sitting on the table is blue.
X 2. The book sits on the table is blue.

1. The book sitting on the table in the kitchen by the
door is blue.

X 2. The book sits on the table in the kitchen by the
door is blue.

(based on Zorro+BL1MP; Huebner et al., 2021, Warstadt et al., 2020)



Recursion
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Accuracy
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Recursion
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Distilling grammar-based priors for logic

Tom McCoy
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https://arxiv.org/abs/2402.07035
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Metalearned nonparametric neural circuits

Gianluca
Bencomo

Dirichlet Process
Mixture Model Data

1. Meta-Tra
ﬁ

@) @)

@\ \ 6%@} >@
éD g* g 2 Attach \ /Q
Recurrent Neural Nonparametric

Network Inference Network

https://arxiv.org/abs/2311.14601



The key 1dea

» Different models can co-exist at different levels of
analysis, answering different questions

* Bayesian methods have an important role to play in
the age of intelligent machines:
— telling us what machines should do

—understanding why they do the things they do

o ...even 1f the underlying representations and
algorithms don’t look like Bayesian inference
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Inductive bias extraction
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p(d|h)p(h)
Task 1 p(hld) = p(d)

f(x) ~GP (0, Ky (x,x'))

) Task 2 meta
sampling learming
f(x) AN A —
Task n x
Neural Training Bayesian

network data model



Modeling NNs with Gaussian processes
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Prior on functions:
f(x) ~ GP (0, Ky (x,X'))

Metalearn kernel parameters:
maxy }_; log py (net;(X) | X)

Allows us to connect NN hyperparameters with an
explicit prior on functions




Capturing neural network priors
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Behavior as a function of depth

increasing depth
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Learned kernel spectrum
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Greater depth results in @ more uniform spectral
distribution, with more energy at higher frequencies



Payoff: Leave-one-out estimation
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Payoff: Choosing the best model
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dataset A dataset B

Knowing the inductive biases of different NNs makes
it easy to select the right model for each dataset



Payoff: Choosing the best model

- ReLU sinusoidal
activation activation
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error

-

0 1000 0 1000
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dataset A dataset B

logp(yA ‘ XA,¢sinusoid) = 182.68 lng(yB ' XBaszeLU) = 152.21
1ng(yA | XAa'QbReLU) = 142.82 10gp()’B ‘ XBa"psinusoid) = 86.87







