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Empirical Literature on semantic cognition
1. Acquisition of semantic knowledge

a. Stage-like learning
■ Relative stasis followed by abrupt conceptual reorganization [6, 7]

b. Hierarchical differentiation 
■ Broader categorical distinctions are generally learned before finer-grained distinctions [1, 5]

c. Illusory/ incorrect facts during the developmental stasis [2]

2. Organization of semantic knowledge
a. Category membership is a graded quantity
b. Item typicality is reproducible across individuals [8, 9]

■ And correlates with performance on diverse semantic tasks [10, 14]
c. Coherent vs less-coherent categories 

■ Coherent categories can be learned/ represented relatively easily [8, 15, 16]

3. Deployment of semantic knowledge
a. Inductive generation (i.e. make decisions about novel items/ properties) [2,3]
b. Inductive generalization systematically changes over time: becomes more specific with age [2,3,17-19]

4. Neural representations of semantic knowledge
a. Similarity structure of neural population vectors in response to different stimuli

■ Example works: Inanimate objects are differentiated from animate objects [22, 23]
b. Such neural similarity structure is preserved across humans and monkeys [24, 25]
c. Correspondence between neural similarity patterns and behavioral similarity patterns [21]



Goal of the work: Reproduce those behaviors “in a mathematically 
rigorous way”

Existing attempts:

No “neural implementation” work out there,

a. That does a mechanistic/ concrete analysis to see if artificial neural networks also show 
these
(Though we know that neural networks can gradually extract semantic structures)

b. If they do, how/ why



Goal of the work: Reproduce those behaviors “in a mathematically 
rigorous way”

● This paper uses simple (i.e. mathematically tractable) artificial neural network 
model (i.e. deep linear neural network) and,

Gives exact analytical solutions describing the semantic development trajectory of,

1. Knowledge acquisition
2. Organization
3. Deployment
4. Neural representations



Method: Deep Linear Neural Networks

Developmental time (i.e. training)

● Network experience sequential 
episode (i.e. input and ground truth)

- Supervised learning

Linear network with 3 layers

● Inputs: x (think of it as a one-hot)
● Outputs:     (features of the item)
● Hidden features: h
● Weights: W1, W2



Network:   

Loss : 

Solving gradient descent for deep linear 3 layer network, for single sample :
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Image credit: Keshtkar, Kamyab. (2021).

Weights updates : 

Solve the derivatives:



Network:   

Loss : 

Solving gradient descent for deep linear 3 layer network, for single sample :
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Network:   

Loss : 

Solving gradient descent for deep linear 3 layer network, for single sample :

When training for samples i ∈ {1,...,P}, average weight updates for the entire dataset (assuming small learning rate (𝜆)):
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Network:   

Loss : 

Solving gradient descent for deep linear 3 layer network, for single sample :

When training for samples i ∈ {1,...,P}, average weight updates for the entire dataset (assuming small learning rate (𝜆)):

When learning rate (𝜆) small, we can take the continuous time limit 
(where 𝜏 = 1/(P𝜆)) 

  

Method: Deep Linear Neural Networks

Note: Highly complex learning 
dynamics in the linear model

1. Coupled nonlinear differential 
equations

2. Up to cubic weight interactions 



Method: Deep Linear Neural Networks

Goal: Analyze how W1, W2 evolves with the time
Problem: They are high-dimensional
Solution: Do some reduction using Singular Value Decomposition

Why SVD specifically?



Let’s consider at SVD of the dataset correlation matrix :

Here, 
U: a set of “left singular vectors” (shape: N3 x r)
V: a set of “right singular vectors” (shape: N1 x r)
S: diagonal matrix with singular values in the diagonal (shape: r x r)

Method: Singular Value Decomposition

A B C

x x =
x x

s1 s2 
+ +  … 

N3 x r

r x r r x N1
N3x1

1xN1

N3x1

1xN1

N3 x N1 N3 x N1

r of them

Note: We can decompose any A x B x C matrix multiplication (with diagonal matrix B) into a sum of outer 
products of its vectors 



Let’s consider at SVD of the dataset correlation matrix :

Here, 
U: a set of “left singular vectors” (shape: N3 x r)
V: a set of “right singular vectors” (shape: N1 x r)
S: diagonal matrix with singular values in the diagonal (shape: r x r)

How interpretable those U, V, S matrices [super cool]
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Let’s consider at SVD of the dataset correlation matrix :

Here, 
U: a set of “left singular vectors” (shape: N3 x r)
V: a set of “right singular vectors” (shape: N1 x r)
S: diagonal matrix with singular values in the diagonal (shape: r x r)

How interpretable those U, V, S matrices [super cool]

Method: Singular Value Decomposition

mode 2: animal-plant dimension
mode 3: bird-fish dimension
mode 4: flower-tree dimension

Note: Is this true for any dataset: No. Generally true for data generated via binary trees



Method: Singular Value Decomposition

We can intuitively interpret those U, S, V as follows:

1. ⍺ : a categorical distinction/ mode “embedded” in the statistical structure of the dataset 
2. v⍺i (⍺-th column of V is v⍺. i-th item is v⍺i) : how aligned the i-th item with the category-⍺  

○ Let’s call v⍺ “object-analyzer” vectors
3. u⍺

m (⍺-th column of U is u⍺. m-th feature is u⍺
m) : how important m-th feature for the category-⍺

○ Let’s call u⍺ “feature synthesizer” vectors
4. s⍺ : ⍺-th singular value -> how much category-⍺ explains the dataset

Summary: 

1. SVD gives V, U matrices that act as bases for objects and features respectively
2. Let’s use them to understand how weight matrices evolve

mode 2: animal-plant dimension
mode 3: bird-fish dimension
mode 4: flower-tree dimension



Method: Singular Value Decomposition

More visualizations to show that: SVD V matrix reveals semantic distinctions that mirrors the hierarchical taxonomy

● This depends on how we generated the dataset:
This case: dataset is created with a branching diffusion process with an evolutionary dynamics 



Method: Deep Linear Neural Networks - decomposition of weight 
matrices

Lets fix U, V and decompose W1, W2:

Note:

1. This is “not” SVD of W2(t)W2(t).
○ why - U, V are obtained from Σxy=USVT. And they do not change with t.

2. So, A(t) doesn’t not have to be diagonal

However, 

● under certain assumptions [small learning rate (𝜆 <<1), near zero random weight initializations]
- We can show that, non-diagonal elements of A(t) decay to 0

● So, we can approximate A(t) with a diagonal matrix (⍺-th diagonal component : a⍺(t)).

Note: this is super similar to the form of SVD we had: 



Method: Deep Linear Neural Networks - decomposition of weight 
matrices

SVD of input-output correlations:

Allows us to interpret a⍺(t) similar to s⍺ where,

● a⍺
 (t) : At t-th epoch, “according to the model”, how 

much category-⍺ to explains the dataset

[recall: s⍺ : how much category-⍺ actually explains 
the dataset]

singular values of the dataset

Learned “effective singular values” at time t

Let’s call a⍺
 (t) “effective singular values” 



Method: Deep Linear Neural Networks - decomposition of weight 
matrices

● Now we can convert the forward-transformation (W1(t)*W2(t)) into few time-dependent scalars (i.e. effective singular 
values, a⍺

 (t) for all ⍺),

* -   We can convert dynamics of weights evolution into dynamics of effective singular values

Meaning: We know “exactly” how and when model learns all the categorical distinctions ⍺ in the 
dataset

Lets visualize this !!! 

Solving this, we can get,

Side note: a sigmoidal growth (i.e. 1/ (1+e-x))



Method: Deep Linear Neural Networks - decomposition of weight 
matrices
Before visualizing a⍺

 (t), let’s get effective singular value evolution equations for single-layer/ shallow network.

Network :

Loss : 

Weight update :

Continuous weight evolution :
(Note: linear over W)

Evolution of effective singular values :

Solutions for the effective singular values :

● Side note: (1-ex) growth



Empirical Literature on semantic cognition
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b. Hierarchical differentiation 
■ Broader categorical distinctions are generally learned before finer-grained distinctions [1, 5]
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Acquisition: Rapid Stage-like Learning

Observations: Sigmoidal vs exponential trajectory

1. For deep linear model: 
○ Modes with strong explanatory power 

(higher s⍺) learns faster
- I.e. rapid stage-like transitions

2. For shallow linear model
○ All modes learn simultaneously

Deep linear model Shallow linear model

higher s⍺ : learns 
faster

Weakly associated 
with s⍺ 

Time taken to achieve almost-best performance 
for given category/ mode-⍺

Deep linear network Shallow linear network



Previous work: Empirical results with deep nonlinear networks [4]

Questions:

1. How/ why?
2. Do simple linear models show this?

Goal: Find out how “exactly” hidden representations evolve during the 
training - with deep linear networks

Acquisition: Progressive Differentiation in Hierarchical Structure

From: 
[4] Rogers, Timothy & Mcclelland, James. (2004). 
Semantic Cognition: A Parallel Distributed Processing 
Approach.



How:

1. We can solve W1(t), W2(t) using the effective singular value matrix, and V

2. Then can compute hidden representations analytically : 

Acquisition: Progressive Differentiation in Hierarchical Structure

Note:
1. v⍺i: does not change with time
2. a⍺(t): only time-dependent 

quantity



Acquisition: Progressive Differentiation in Hierarchical Structure

Summary:

1. Network does not have to be super complex to have hierarchical differentiation over training
2. This work theoretically showed that, deep “linear” networks can explain learning dynamics of nonlinear 

counter-parts

Super cool fact: Those categories are not explicitly given to the network (i.e. networks are learned to predict 
features of an item). Learning was able to extract those “statistical structure encoded in the dataset”



Acquisition: Illusory Correlations

Blue: predicted value of feature m = “can_fly” for item “salmon” during 
learning (      )

Red: Contribution from each mode (summation is the actual output) (     )

Deep linear network Shallow linear network

Here, 

Question: Why this is happening even when 
the network has a incremental, error-correcting 
learning process

Intuition:

● We minimize global error (i.e. across all 
properties/ items)

● Predicting “on-average” good results : 
could sometime result in transient 
increase in errors for specific properties/ 
items

Conclusion:

1. Even simple deep-linear networks could 
have illusory correlations

2. Shallow-linear networks could not have 
those.
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Organization: Duality between “item typicality” and “category prototype”

Goal:

1. A “natural” mathematical definition for item typicality
2. Which improves task performance 

● i.e. typical item should give a highest performance for the tasks that are 
favourable for the category



So, for a typical item i (i.e. a parrot over penguin for the category-⍺ birds),

Organization: Duality between “item typicality” and “category prototype”

Intuitive meaning for item typicality for category-⍺  (say, category/ dim-⍺ : animal(+)-plant(-) axis)

a. Canary, salmon, etc ->  higher (+)
b. Oak, rose, etc ->  higher (-)

where,

We can mathematically show that,

Meaning: Typical item gives higher performance, if the task is monotonic with response

e.g. In a desert, you need to find something to eat. If you have to decide between a plant and sand, which one are you 
more likely to eat to survive?

This also is given by v⍺
i



Organization: Duality between “item typicality” and “category prototype”

Previous definitions of item typicality : weighted sum of category-specific features present/ absent in the item

E.g. If an item can fly, eat worms, cannot bark, .. -> item could be a typical bird

Problem: which features are relevant (i.e. weighting scheme): rely on prior knowledge

oi
m: i-th item, m-th feature

How: For specific case of X= I, 

Consider Σxy= (1/P)O, where O = [y1…yN1]

Note: Definitions only valid for data generated by binary trees - so that singular dimensions explain the categories

But here, we can prove that, 

Meaning: weights for the feature-m is given by our feature synthesizer vector

[recall: u⍺
m : how important m-th feature for the category-⍺]



Organization: Duality between “item typicality” and “category prototype”

Category Prototype: ideal set of feature vector that represents category-⍺

Previous theories: 

● Is the features of the best exemplar of the category/ prototypical objects
● Weighted average of features of all the items : more typical items have higher weights

Problem: Weighting is rely on prior knowledge

We also can prove that,



Organization: Duality between “item typicality” and “category prototype”

Category Prototype: ideal set of feature vector that represents category-⍺

Previous theories: 

● Is the features of the best exemplar of the category/ prototypical objects
● Weighted average of features of all the items : more typical items have higher weights

Problem: Weighting is rely on prior knowledge

We also can prove that,

Meaning: Take features from all the items, weighted by how typical the item is (v⍺i), and then average -> this gives 
the “feature synthesizer” vector

Conclusion: Feature synthesizer vector (u⍺) is actually the category prototype of the category-⍺



1. Item typicality is the cosine-similarity between category prototype and object 
feature vector  

Organization: Duality between “item typicality” and “category prototype”

2. Category prototype is the weighted average of object feature vectors weighted 
by that objects typicality 



Organization: Category Coherence

● Categories naturally learned are not arbitrary
○ They are coherent
○ Can efficiently represent the structure of the world

● What is coherence (intuitively): 
○ Set of the things that are red have less coherence that the category of dogs

● Questions:
○ When is a category learned
○ What determines its coherence

● Previous definitions: Coherent categories consist of tight clusters of items that share many 
features AND highly distinct from other categories with different features [8, 15]

● Problem: definition could be circular [3, 16, 17]
○ To know which items are category members → need to know what features are important 

for that category 
○ To know which features are important → need to know which items are members

● Goal: Give a definition for simple model of disjoint categories → demonstrate how NNs figure out 
above circular conflict



Organization: Category Coherence

Method:

Consider a dataset with N0 objects and Nf features. 

● Now consider a category in the dataset: with subset Kf features tend to occur higher prob. p in a 
subset of K0 items.

● Background features occurs with low probability q in background items when they are not part of 
the category

Question: what values of Kf, K0, p, q, Nf, N0 → such a category can be learned, and how accurately?

Proposed theoretical solution: 

where,



Organization: Category Coherence A: noisy dataset with 3 disjoint categories

B: evolution of internal representations: reveals 
3 clusters

C: We can use V to find out which items are 
most typical for each category-⍺ : and then 
reorder A. We should be able to observe 3 
distinct categories

D: Based on item typicality, we can highlight 
the items

E: Performance in recovering such categories. 
Solid: theoretical, Symbols: Empirical

F: Change x-axis to C: all experiments collapse 
to one curve

● Meaning: Recovery depend on all the 
independent variables through 
coherence variable

● Threshold behavior: C <1: category 
cannot be learned

where,



Organization: Category Coherence

Threshold behavior: C <1: category cannot be learned

If SNR= 1: threshold occur when

where,

Meaning: 

● It’s pretty relaxed 

i.e. if #features = 1600, #data= 1000, an small category 
with #features= 40, #data= 40 

● √(1600 * 1000) < 40*40

is easily learnable even by a deep linear network
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Organization: Category Coherence

how NNs solve the circularity problem:

[Recall: what circularity again: have important features ↔ being category member]

● simultaneously build object analyzers and feature synthesizers → gradually build 
accurate representations without needing prior knowledge

Summary:

● Quantitative definition of category coherence → give bounds to category-learning 
performance in neural networks

● Consistent with previous notions:
○ coherent categories have large subsets of items, with high probability large 

subsets of features Those features do not co-occur with other categories



Organization: Category Coherence



Organization: Learning different statistical structures
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Deployment: Inductive generalization

1. A novel feature (property x) is observed for a familiar item [A]
2. Learning assigns the novel feature (i.e. x) a neural 

representation [B]
a. This places the feature in semantic similarity space near 

that object (i.e. Pine)
b. Network then inductively projects that novel feature to 

other familiar items with closer hidden representations

e.g. Tigers have 5 toes -> tigers are close to cats -> cats also have 
5 toes

Analytical solution:

familiar item: i, novel feature m, 
If item-j close to item-i : item-j also have the novel feature m



Deployment: Inductive generalization

1. A novel item (a blick) possesses a familiar feature
2. Learning assigns the novel item a neural representation 

a. This places the item in semantic similarity space near 
the that feature

b. Other features are inductively projected to that item

e.g. a new animal which can bark -> bark is close to having 4 legs 
-> animal might have 4 legs

Analytical solution:

novel item: i, familiar feature m,
If feature-m is closer to feature-n, item i also has the feature-n



Deployment: Development shift in patterns of inductive generalization

Combining 2 previous observations:

1. Networks learns hierarchical differentiation
2. During the learning, when network sees a new feature for a 

known item-i, it does inductive projection
■ items that are closer to the item-i -> predict the 

new feature

This naturally explains:

developmental shift in patterns of inductive projection from broad 
to specific,

Which is empirically observed in children [2, 3, 17, 18]



Deployment: Development shift in patterns of inductive generalization

1. t = 7 : don’t know the difference between trees and 
flowers
● Meaning: Trees, flowers have closer 

representations
2. When it learns the new feature “pine” has, it project that 

feature to all “similar” items
● And that is, the entire plant group

3. When it learns to differentiate flowers and plants (t=10), 
now the new feature of pine only projected into other 
trees (i.e. oak) 
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Neural Representations: representation, behavior similarity

Observations:

a. Similarity structure of neural population vectors in response to different stimuli
■ Example works: Inanimate objects are differentiated from animate objects [22, 23]

b. Such neural similarity structure is preserved across humans and monkeys [24, 25]
c. Correspondence between neural similarity patterns and behavioral similarity patterns [21]

Questions:

1. Why is representational similarity conserved?
2. When the brain mirrors the behavior?



Neural Representations: conservation of representation similarity  
Q1: Why is representational similarity conserved?

Under the assumption: start learning from small random initial weights 

● We can prove that, representational similarity matrices should be consistent, even when hidden 
features are very different

(e.g. Biological analogue: all humans think cat faces are similar to tiger faces)

hi

items

A, B: starts with small norm random 
weights

C, D: large-norm random weights

Why assumption: allows network to have minimum norm weights -> optimally implement the desired task



Neural Representations: brain mirror behavior 
Q2: When the brain mirrors the behavior?

hi

yi

● We can also prove that, if the 
network learns optimal smallest 
weights, 

-> Representation correlations and 
behavior correlations have the 
same structure



Neural Representations: Optimal learning in brains 

In the biological brain,

1. Conversation of representation similarity is observed in biological brain.
2. Correlations between behavior and representations also observed in biological brain

For the linear networks,

● Both can be observed if the learning is optimal with minimal weights

Does this mean: Learning in the brain is optimal with minimal synaptic strengths [?]



Summary: Semantic Cognition Empirical Literature aligns with Deep 
Linear Networks

1. Acquisition of semantic knowledge
a. Stage-like learning

■ Relative stasis followed by abrupt conceptual reorganization [6, 7]
b. Hierarchical differentiation 

■ Broader categorical distinctions are generally learned before finer-grained distinctions [1, 5]
c. Illusory/ incorrect facts during the developmental stasis [2]

2. Organization of semantic knowledge
a. Category membership is a graded quantity
b. Item typicality is reproducible across individuals [8, 9]

■ And correlates with performance on diverse semantic tasks [10, 14]
c. Coherent vs less-coherent categories 

■ Coherent categories can be learned/ represented relatively easily [8, 15, 16]

3. Deployment of semantic knowledge
a. Inductive generation (i.e. make decisions about novel items/ properties) [2,3]
b. Inductive generalization systematically changes over time: becomes more specific with age [2,3,17-19]

4. Neural representations of semantic knowledge
a. Similarity structure of neural population vectors in response to different stimuli

■ Example works: Inanimate objects are differentiated from animate objects [22, 23]
b. Such neural similarity structure is preserved across humans and monkeys [24, 25]
c. Correspondence between neural similarity patterns and behavioral similarity patterns [21]



Thank you !!
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