
Language Processing

Language and the Brain

Interactive Activation Model

• First connectionist model...

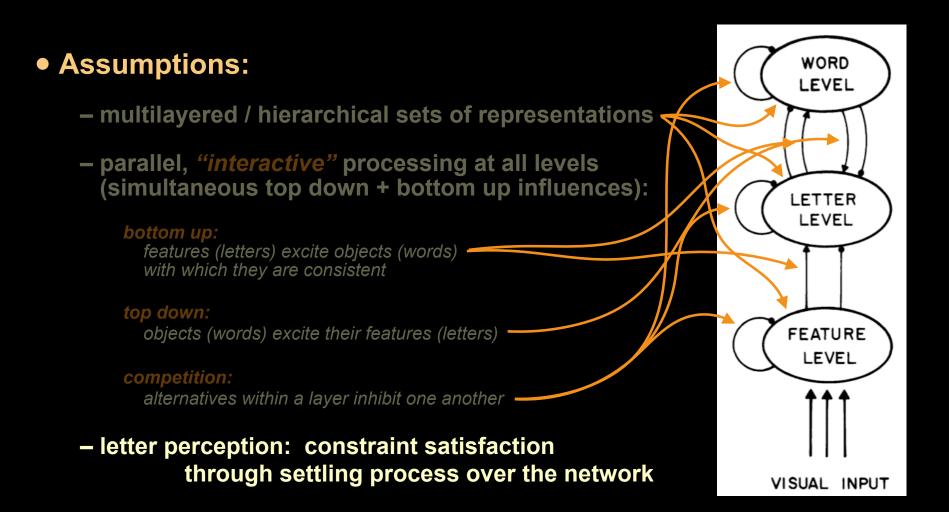
Interactive Activation Model

McClelland & Rumelhart, 1981

- Word superiority effect (Reicher, 1969):
 - Faster to recognize a letter in the context of a word than in a pseudoword or alone (even controlling for frequency and "legality"):
 - WOR<u>K</u> \Rightarrow forced choice: K or R?

faster than

 $SOR\underline{K} \Rightarrow$ forced choice: K or R?

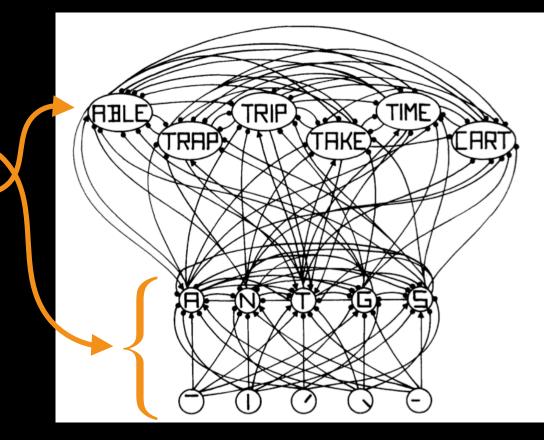

faster than

- <u>K</u> \Rightarrow forced choice: K or R?
- Works for pronounceable pseudowords (e.g., recognizing A in MAVE):
 ⇒ encoding of orthographic "rules"?

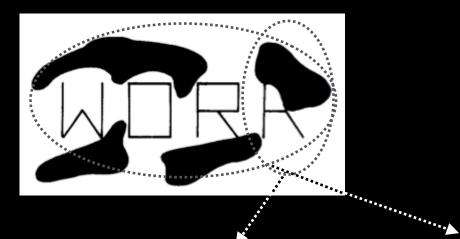
No! Constraint satisfaction through interactive activation

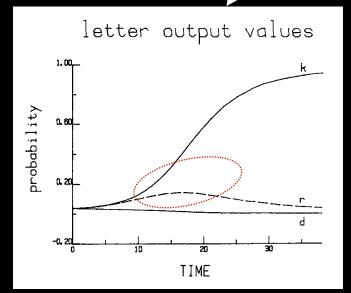
Interactive Activation Model of Letter Perception

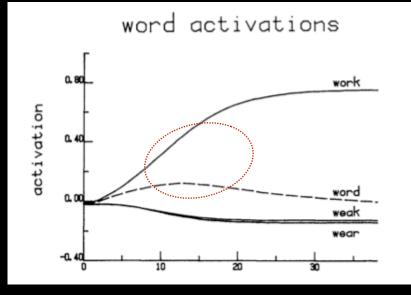
McClelland & Rumelhart, 1981

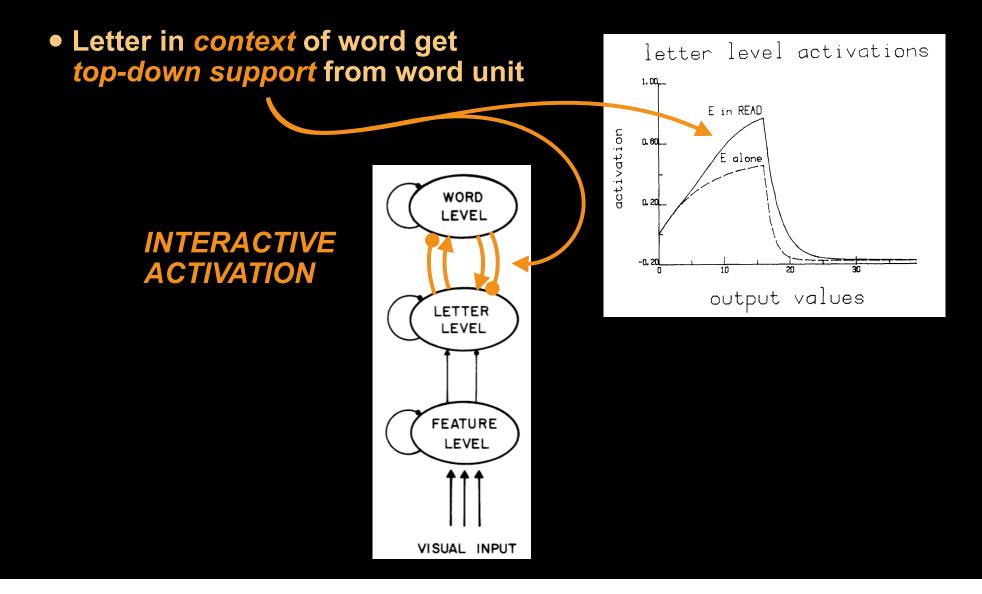


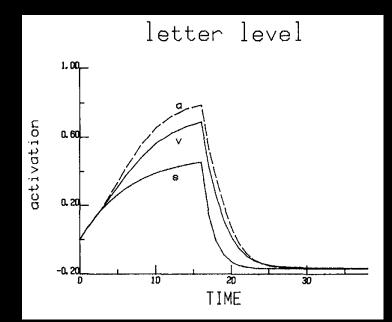
Interactive Activation Model of Letter


McClelland & Rumelhart, 1981


• Model:


- 4 sets of position-specific feature and letter units
- Units for all 4 letter words
 (above freq of 4 in Kucera &Francis, 1967; cf Brysbaert & New, 2009)
- Base activities (biases) monotonically related to frequency of occurrence


Dynamics


Word Superiority Effect

Pseudoword Superiority Effect

 Letters in MAVE benefit by top down effect of *partial matches* to real words (SAVE, HAVE, HATE, etc.):

NEIGHBORHOOD EFFECT (words that have 3 letters in common)

Critical Dynamic Effects

• Rich get richer ("early bird gets the worm"):

 Words that have higher *initial bias* (frequency) get *more active* by *suppressing competitors* early on

HYSTERESIS

• Gang effect:

- Freq (initial bias):
 - move = male > save
- But move has fewer neighbors, so save ≈ male > move

QUASI-REGULARITIES

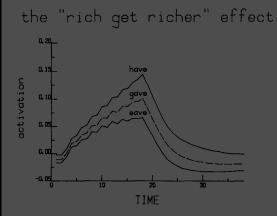
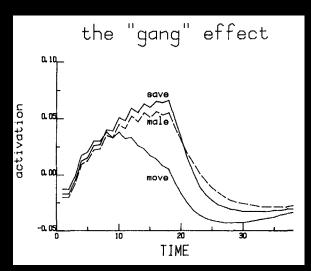



Figure 11. The rich-get-richer effect. (Activation functions for the nodes for have, gave, and save under presentation of MAVE.)

Summary

- Accounts for empirical findings regarding letter perception:
 - word superiority effects
 - orthographically legal pseudoword superiority effect (MAVE)
 - frequency effects
 - masking and stimulus quality effects
 - timing of context
 - Made new predictions

 (e.g., superiority effect should extend to orthographically illegal strings that are neighbors of orthographically legal words (such as SPCT given SPAT, SPIT and SPOT)

Exhibits principles of constraint satisfaction:

- Effects of quasi-regularities (neighborhood effects): rule-like behavior without explicit representation of rules
- Dynamics (e.g., hysteresis)

Actual and Simulated Results (Probability Correct) From Johnston (1978) Experiments

Result class	Constraint	
	High	Low
Actual data		
Forced choice	.77	.79
Free report	.54	.54
Simulation		
Forced choice	.77	.76
Free report	.56	.54

Actual and Simulated Results of the McClelland & Johnston (1977) Experiments (Proportion of Correct Forced Choice)

Result class	Target type			
	Word	Pseudoword	Single letter	
Actual data				
High BF	.81	.79	.67	
Low BF	.78	.77	.64	
Average	.80	.78	.66	
Simulation				
High BF	.81	.79	.67	
Low BF	.79	.77	.67	
Average	.80	.78	.67	

Note. BF = bigram frequency.

Levels of Analysis

• Classical:

- Phonology / Orthography sounds/letters
- Morphology meaningful subcomponents of words
- Lexical
 - meanings of words
- Syntax
 - word order

But also:

Prosody tone of voice, stress, cadence

Affect emotional meaning

Discourse

topics

Rules and Exceptions

• Traditional view of language

– knowledge of:

rules

exceptions

– spelling (orthography):

"i" before "e" (achieve, die, relieve, alien...) except after "c" (receive, conceive, ceiling...) except except "re-", "eign" (reinforce, reify, reign, deign...)

- pronunciation (phonology):

"k" is spoken (kite, kick, klutz...), except before "n" (knife, knee, knave...) except except knish, knuddel...

- conjugation:

past = present + ed (train-trained, love-loved, jump-jumped)
except for ___ee___ (sleep-slept, creep-crept); or ___ow (grow-grew, blow-blew)
except except steep-steeped, or row-rowed... or speak-spoke, swim-swam, see-saw, go-went...

Rules and Exceptions

• OK, so there are lots of exceptions

• But, without rules, how could we explain: (Fodor & Pylyshyn, 1988)

- generativity:

we can say meaningful things we've never said before, that someone else can understand who has never heard them before

- compositionality:

we seem to be able to recombine parts (words and sentences) in new ways that are nevertheless meaningful / understandable

 but how could we do these things if there was not some systematicity to how we do the combining and recombining...

- that is, if there were no rules

Classical Linguistics

• Generativity of language must be rule-based:

- "Colorless green ideas sleep furiously" vs.

- the same rule can be used to add 2+2, 3079+63 or any other pair of numbers

- But following the rules doesn't seem to be necessary or sufficient

- you know what this means even though it violates the rules:
 - "Me cookies like!"

- you don't really know what this means, even though you know it obeys the rules:
 - "Colorless green ideas sleep furiously"

• Competence vs. performance...

Competence vs. Performance

• Competence:

- knowledge of the rules of language
- focus of traditional *linguistics*
- must be studied by "grammaticality judgements"

- can't be studied directly, since it involves implicit knowledge the rules are "latent variables"
- can't be studied by examining performance directly, since performance is not perfect

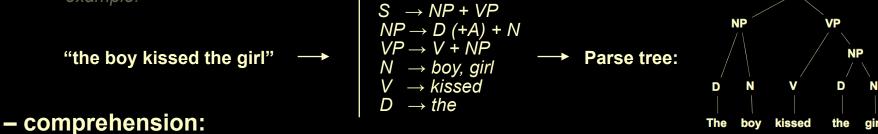
• Performance:

- use of language (Wittgenstein: "meaning is use")
- traditional linguistics view (Chomsky: poor measure of <u>competence</u>):
 - noisy execution of competence, and therefore really just a reflection of incompetence
- the focus of psycholinguistics and statistical / computational linguistics:
 - ⁻ dysfluencies / deviations from rules \Rightarrow statistical features and processing constraints

 \Rightarrow impaired competence

- we'll come back to that later; for the moment, more about the traditional view...

Phrase Structure Grammar

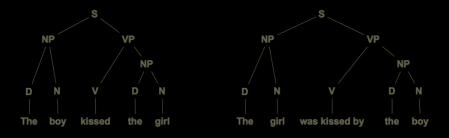

• Grammar vs. syntax:

- grammar = rules
- syntax = rules for word order

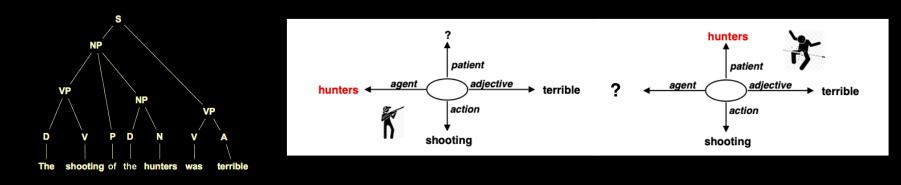
• Simple sequential model (left-right grammar):

– production:

construction of utterances based on rules for combining elements (constituents) — "rewrite rules" example:


- comprehension.

- parsing (decomposing) utterances using knowledge of the rules of composition


Limitations to Phrase Grammar

• This can't be the basis for semantic (or "propositional") knowledge:

- two sentences that have different parses may have the same meaning: *(i.e., represent the same proposition)*

- a sentence with only a single parse may be ambiguous: (i.e., represent two different propositions)

Transformational Grammar

• This was Chomsky's big insight:

- phrase grammar governs the deep structure of language:

the *meaning* of an utterance

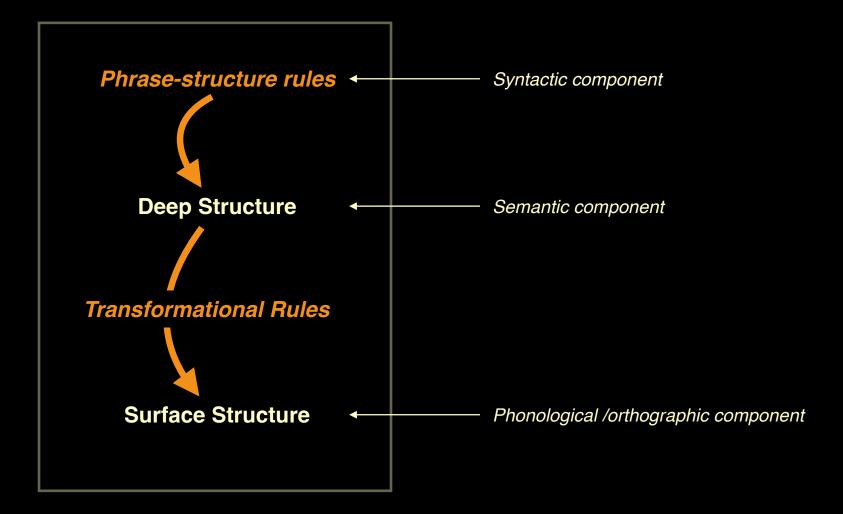
- *transformational* grammar governs the *surface structure* of language:

the *form* of an utterance

- *Transformation rules* translate deep structure \rightarrow surface structure and back

• Examples...

Example 1: Phrase Deletion


Subface structure (atteraimce):

the shooting of the hunters [by the lunatic] was terrible

the shooting of the hunters [at the deer] was terrible

Transformation rule: "elision" (deletion)

Schematic of Chomsky's Theory

Claims and Problems with Transformational Grammar

- Knowledge of transformational grammar rules is innate and universal
 - we are born with full knowledge of language and just have to discover it
 - Para – verv Platonic Phrase-structure Syntactic component
- Language acquisition
 - stributed discovery of which rules are in use process of hypothesis generation

rocessing

Semantic component

- do kids really do this.
- Deep Structure
 Syntax is central and pre-ordinate
 - first y- Language is like everything elselwe have studied hat to say
 - seems h⁻⁻ -Languagerisational Ruther set of input-output mappings
- Transform (e.g., orthography to phonology, orthography to semantics) ce
 - but many of the defining characteristics of human psychological (neurobiological) function These mapping result from the same simple learning algorithms
 wo that extract (complex) statistical regularities
- Virtually all of the early work in computational linguistics
- was spent building parsers based on transformation grammar
 - should be easy if it is based on universal rules, right?