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Abstract

Linguistic evaluations of how well LMs gen-
eralize to produce or understand novel text
often implicitly take for granted that natural
languages are generated by symbolic rules.
Grammaticality is thought to be determined
by whether or not sentences obey such rules.
Interpretation is believed to be compositionally
generated by syntactic rules operating on mean-
ingful words. Semantic parsing is intended to
map sentences into formal logic. Failures of
LMs to obey strict rules have been taken to
reveal that LMs do not produce or understand
language like humans. Here we suggest that
LMs’ failures to obey symbolic rules may be a
feature rather than a bug, because natural lan-
guages are not based on rules. New utterances
are produced and understood by a combination
of flexible interrelated and context-dependent
schemata or constructions. We encourage re-
searchers to reimagine appropriate benchmarks
and analyses that acknowledge the rich flexi-
ble generalizations that comprise natural lan-
guages.

1 Introduction

How well do large Language Models (LMs) gen-
eralize beyond their training data? The majority
of work intended to address this question has pre-
sumed that symbolic rules for syntax and semantics
are required to generalize: producing acceptable
new forms and compositional meanings. If you
learn a new color term (‘simony’) and a new count
noun (‘blurk’), you know how to combine them
and have a strong intuition about what ‘a simony
blurk’ must be. Symbolic rules are crucial for gen-
eralizations in math, logic, formal syntax, and pro-
gramming languages.They are valid in general and
contain variables that can be instantiated by any
instance of a general type (e.g., numbers in math;
propositions in logic; grammatical categories in
phrase structure rules).

Because earlier statistical models (e.g., n-gram
or Markov models) seemed unable to generalize
fully or capture non-local dependencies (Chomsky,
1957), rules seemed to many to be the only game
in town for human language, too. After all, if a
standard bigram model hadn’t seen ‘simony blurk’
before, it would be unable to interpret it. Influen-
tial thinkers argued that neural networks, which
did not involve rules, would never be appropriate
models of human cognition for this reason (Fodor
and Pylyshyn, 1988; Pinker and Prince, 1988; Mar-
cus, 1998; Fodor and Lepore, 2002; Marcus, 2001;
Calvo and Symons, 2014).

Yet today’s LMs arose from statistical, distribu-
tional parallel models (Mikolov et al., 2013; Rumel-
hart et al., 1986) rather than rule-based natural lan-
guage technologies. Though they do not rely on
hard-coded rules, LMs ability to produce coher-
ent, naturalistic language and respond appropri-
ately is unparalleled by purely symbolic systems
(Piantadosi, 2024; Goldberg, 2024; Weissweiler
et al., 2023; Hofmann et al., 2024).

Despite the game-changing performance of LMs,
they have inherited some of the skepticism that
was directed at their forbearers (Marcus, 2001;
Dentella et al., 2023; Leivada et al., 2024). And
NLP researchers continue to test whether the new
models learn syntactic, semantic or compositional
rules: e.g., Natural Language Inference (Bowman
et al., 2015), Semantic Parsing (Palmer et al., 2005;
Reddy et al., 2017), tests of binary grammatical
acceptability (Warstadt et al., 2019) and rule-based
compositionality (Kim and Linzen, 2020). To-
gether, such tasks made up more than half of the
GLUE benchmark (Wang et al., 2018), created to
evaluate language models on their skill at being
“general, flexible, and robust.”

Lackluster performance on rule-based tasks, par-
ticularly in the early days of LMs, was taken to
imply that although LMs may appear to be mas-
tering natural language, they are merely imitating
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Constructions: Learned Pairings of Form and Function Rules

(Partially-filled) words, common and rare (partially-filled) schemata Common abstract patterns
Wide range of functions Only abstract functions
Combination of open slots and/or fixed lexical units Include only variables
Context-sensitive (and plentiful) Context-free (and few)
Inter-related within a complex network Unstructured list
Sensitive to similarity and frequency Insensitive to similarity or frequency
Slots constrained in open-ended range of ways Variables constrained by gram. category

Table 1: Differences between constructions and rules

shallow surface patterns (Lake and Baroni, 2018;
Kim and Linzen, 2020; Weißenhorn et al., 2022;
Bolhuis et al., 2023). In a survey of 79 NLP re-
searchers, McCurdy et al. (2024) reported that 87%
believed LMs were not sufficiently compositional
and a sizeable proportion (39%) believed explicit
discrete symbolic rules were required.

Evaluations of LMs’ ability to follow algebraic
or logical rules did expose certain shortcomings in
their ability to reason abstractly. However, rules are
not sufficient for mastering natural language, and
they are only necessary in limited cases, if at all.
Therefore, we suggest that rule-based evaluations
of LMs’ skill with natural language have been
over-emphasized.

Rules are not sufficient for generalization be-
cause humans depart from rule-based generaliza-
tions in a multitude of cases. For LMs to use lan-
guage like humans, richer interpretations are re-
quired for thousands of collocations, conventional
metaphors, idioms, and context-dependent inter-
pretations. To the extent that apparent failures of
rule-based compositionality in LMs reflect human-
like behavior (Hu et al., 2024b; Lampinen et al.,
2024), we further suggest that algebraic rules are
not necessary for generalization for natural lan-
guage (e.g., Hofmann et al., 2024; McClelland and
Plaut, 1999).

We propose that natural language requires mas-
tering a network of hundreds of thousands of
context-dependent, gradient, flexible schemata or
constructions, which may contain ‘slots’ that con-
strain their fillers and how those fillers are inter-
preted, as LMs do (Tseng et al., 2022). Constrained
slots allow constructions to be combined in new
ways, flexibly adapting to context. For instance,
the construction ’<time period> ago’ can coerce
a temporal interpretation of filler phrases that do
not designate time periods (e.g., ‘three rest stops
ago’). Differences between rules and constructions
are indicated in Table 1. Once languages are recog-
nized to include a vast network of restricted types

of constructions (and slots), which are sensitive to
similarity, frequency and context, it is unproblem-
atic to allow rule-like constructions as a limiting
case. We suggest that researchers should move past
evaluating LMs on how well they obey rigid rules
and focus more on the extent to which and how
LMs manage to produce and comprehend human-
like natural languages in all their context specificity
and complexity.

Many of our points are not new. While early
AI relied on algebraic rules (Minsky and Papert,
1969; Lenat, 1995), many researchers soon realized
that rules were too brittle to scale up beyond highly
restricted domains such as artificial block worlds
(Winograd, 1980). Neural network researchers
have continuously argued against the usefulness
of rules, primarily in the domain of words and in-
flectional morphology (e.g., Rumelhart et al., 1986;
Rogers and McClelland, 2004; Elman, 2009; Chris-
tiansen and Chater, 1999; MacDonald et al., 1994).

Our contribution is to review leading paradigms
used in LM evaluation for syntax (§2), semantics
(§3), and compositionality (§4). We explain how
rules are implicitly assumed in each case, briefly
describing how the assumptions arose, and why
we feel they are problematic. We propose con-
structions as an alternative theoretical basis (§5),
encouraging the field to evaluate LMs on the extent
to which LMs learn and represent the complex net-
work of constructions that comprises each language
and how they generalize.

2 Formal Syntax in LM Evaluation

Syntax as Rules The notion that natural lan-
guages are generated by syntactic rules such as
phrase structure rules, movement rules, or the op-
eration ‘Merge’ has been assumed by most ver-
sions of generative grammar since Chomsky (1957).
Syntactic rules are intended to operate on broad
and clearly defined ‘grammatical categories’ (e.g.,
Nouns, Verbs, Adjectives), which are understood



to combine in rule-like fashion to create larger
units (e.g., Noun Phrases, Verb Phrases, Adjective
Phrases). The Lexicon, or system of words, was
kept separate and distinct, as words, but not rules,
were recognized to be influenced by frequency, sim-
ilarity, meaning, or context (Pinker, 1999).

An alternative to the rule-based approach in lin-
guistics is the constructionist approach. The latter
recognizes that grammatical patterns are sensitive
to frequencies, context, and can convey meaning,
information structure and other functions—an ap-
proach we discuss in detail in Section 5.

Grammaticality Tasks LMs’ syntactic knowl-
edge is regularly evaluated by classification tasks
that require models to distinguish grammatical
from ungrammatical sentences. CoLA (Warstadt
et al., 2019), which includes example sentences
from linguistics textbooks, is commonly used to
evaluate such binary classifications. While it might
be natural to assume that textbook examples rep-
resent extreme ends of a grammaticality spectrum,
this is not the case. Juzek (2024) collected human
acceptability judgments for part of the dataset and
reported that humans assign systematically gradi-
ent judgments.

Human judgments on sentences depend on
frequency, plausibility, complexity, memory de-
mands, potential alternatives, and context (Grod-
ner and Gibson, 2005; Schütze and Sprouse, 2013;
Robenalt and Goldberg, 2015; Gibson and Hickok,
1993; Fang et al., 2023). The amount of expo-
sure to written language and even training in lin-
guistics also influences judgments. For instance,
Dąbrowska (2010) found that laypeople’s judg-
ments on sentences containing long-distance de-
pendencies were more sensitive to lexical content
than linguists’ judgments were.

The recognition that human judgments are gra-
dient can have profound consequences. For in-
stance, Dentella et al. (2023) compared humans and
LMs against predetermined binary acceptability la-
bels, reporting that LMs’ performance correlated
poorly. However, comparing gradient perplexity-
based judgments with the human judgments col-
lected by Dentella et al. (2023) revealed a strong
positive correlation (Hu et al., 2024a).

Dependency Evaluation The task of parsing
text for universal dependencies (UD, de Marneffe
et al., 2021) was a well-established task before
transformer-based LMs (Zeman et al., 2017, 2018).
After Hewitt and Manning (2019) showed BERT

(Devlin et al., 2019) to be somewhat skilled in UD,
UD became the default operationalization of syntax
in the NLP world (Amini et al., 2023; Kryvosheieva
and Levy, 2025; Müller-Eberstein et al., 2022) and
in discussions of inductive biases (Lindemann et al.,
2024; Glavaš and Vulić, 2021). UD annotations
are partially determined by semantics which draws
them closer to the approach advocated here; but UD
analyses presume a universal set of grammatical
relations, which is problematic (e.g., Croft, 2001).
Moreover, annotation is inconsistent for the long
tail of language phenomena, including head-less
constructions (e.g., the Xer, the Yer construction)
or idioms. Therefore, evaluating LM accuracy on
UD annotations can give misleading results.

The Chomsky Hierarchy The assumption that
natural language syntax is based on formal rules is
connected to the claim that it is located somewhere
above regular language on the Chomsky hierarchy
(Chomsky, 1956). But transformers cannot handle
context-free grammars in general (Someya et al.,
2024; Strobl et al., 2024), which would seem to un-
dermine their ability to model human language in
principle. This predicts that LMs’ successes must
only be apparent. But the constructionist approach
recognizes that languages are context-dependent,
rather than being generated by strict rules. There-
fore, under the constructionist approach, the limita-
tions of transformer models as formal models are
not limitations qua models of human language.

3 Formal Semantics in LM Evaluation

Formal Semantics Formal logic was developed
as a branch of mathematics, used to prove math-
ematical and philosophical theorems, and iden-
tify provability gaps (Frege, 1918; Russell, 1905;
Gödel, 1931). It is based on algebraic rules operat-
ing on clearcut and broadly defined categories (e.g.,
propositions). Notably, logicians did not generally
assume nor endorse using this formalism to repre-
sent the meanings of natural language utterances
(Carnap, 1937; Baker and Hacker, 1986). Natural
language differs from formal logic in many ways.
Formal logic fails to capture the different meanings
of and and but; or all, every and each. It does not
capture ambiguity or context effects (Wittgenstein,
1953; Russin et al., 2024). It does not provide a
natural way to capture anything other than proposi-
tions (e.g., commands, questions, wishes, Austin,
1975), nor does it naturally distinguish presupposi-
tions and assertions (Strawson, 1967).



Semantic Parsing Semantic parsing evaluations
arose as an extension of syntactic parsing. They re-
quire models to map sentences into rule-based sym-
bolic representations (Banarescu et al., 2013) to
evaluate semantic understanding in LMs (Li et al.,
2023; Qiu et al., 2022; Shaw et al., 2021, see also
§4). At times, semantic parsing is applied explicitly
to restricted domains designed to obey rules, but
such domains are necessarily limited. For instance,
Piantadosi et al. (2016) trained a model on repre-
sentations of ‘the girl,’ ‘the cat,’ ‘the hedgehog,’
‘the cat loves the girl,’ and ‘the hedgehog sees the
cat,’ and so on to test whether the model predicted
a formal semantic representation for ‘The girl loves
the hedgehog.’ However, note that if ‘mosquitoes’
were substituted for ‘the cat,’ different interpreta-
tions of ‘love’ would be evoked (‘Mosquitoes love
the girl’ vs.‘The girl loves mosquitoes’), not to
mention markedly different degrees of plausibility.

Natural Language Inference Natural Language
Inference tasks label the second of two sentences
an entailment, contradiction, or neutral. While
entailment and contradiction are key concepts in
mathematical proofs, their importance in language
understanding has been overstated as in the quote
from Bowman et al. (2015) (emphasis added, see
also Katz, 1972; van Benthem, 2008):

The semantic concepts of entailment and con-
tradiction are central to all aspects of natural
language meaning.

NLI tasks were originally used to train models
(Wang et al., 2019; Dagan et al., 2006; Nie et al.,
2020). In the age of LMs, they are used as a zero-
shot evaluation metric to assess natural language
understanding (Zhou et al., 2024; McCoy et al.,
2019). But this may lead us to underestimate LMs.
The recognition of necessary and plausible infer-
ences is an important aspect of natural language
understanding, but the NLI task is oversimplified:
it fails to account for the communicative goal or
context-dependent interpretations.

Humans’ goal is to make sense of others’ mes-
sages, so we assume others are trying to be rele-
vant and helpful and do our best to assign coherent
meanings to all utterances (Grice, 1975). For exam-
ple, outside of logic classes or heated arguments,
people rarely conclude that two statements made
by the same person are contradictory. If someone
utters: ‘The boy is depressed; The boy is not de-
pressed,’ listeners do not throw up their hands and

shout "contradiction." Instead, they may infer that
clinicians disagree about whether the boy is de-
pressed, or understand that the boy is sad at the
moment but not truly depressed. Humans also as-
sign distinct context-dependent interpretations to
apparent tautologies such as ‘Either it’s alive or it’s
not’ and ‘If it snows, it snows." Therefore, NLI
tasks that rely on judging contradictions or entail-
ments may over- or under-estimate how well LMs
understand natural language the way people do.

4 Compositionality in LM Evaluation

Compositionality in Linguistics As computer
coding languages became more and more
widespread, rule-based semantics and syntax took
root in linguistics. A Principle of Compositionality
combined the two traditions. It states that the mean-
ing of a sentence is determined by the meanings of
the words and the syntactic rules used to combine
them (Montague, 1970; Partee, 1984; Dowty, 1979;
Jackendoff, 1992; Fodor and Lepore, 2002). This
is a bottom-up process: syntactic rules combine
words, which have determinant meanings. Context
was not supposed to influence the interpretation of
words in a top-down manner. Instead, downstream
inferences were invoked to address the obvious
fact that interpretation does depend on context. As
Fodor and Pylyshyn (1988) state, “a lexical item
must make approximately the same semantic contri-
bution to each expression in which it occurs”. Yet
they, like Carnap and Frege, acknowledge: “It’s
uncertain exactly how compositional natural lan-
guages actually are” (Fodor and Pylyshyn, 1988).

The standard argument in favor of composition-
ality is outlined in White et al. (2024):

1. People tend to agree on the interpretation of
new sentences. ⇒ There must be some set
of rules that determine the meaning of new
sentences.

2. Sentences are generated by a relatively small
set of syntactic rules that combine words
(Chomsky, 1957). ⇒ Meaning is determined
by meaningful words and the syntactic rules
used to combine them.

While people more or less agree on the meanings of
new sentences in context, this does not entail that
meaning is determined by rule-based algorithms op-
erating on familiar words (contra [1]). People also
generally agree on the interpretations of pointing
gestures and novel words, and yet in each of these



cases, the shared interpretations must be gleaned
from non-linguistic context (in the case of pointing
gestures), or from a combination of linguistic and
non-linguistic context.

Similarly, the meanings of familiar collocations,
compounds and idioms are not determined by gen-
eral rules. For instance, a compositional rule involv-
ing set-intersection may be appealing for ‘<color
term> noun’ combinations in the domain of artifi-
cial block worlds (e.g., a green cube is something
that is both a cube and green). However, viola-
tions of such rules abound e.g., green tea is more
yellow than green and Cambridge blue is actually
green. Even more common are instances that evoke
richer meanings than predicted by any algebraic
rule: e.g., a green light implies that forward motion
or progress is permitted, and a green card provides
a path toward citizenship in the US.

Critically, people tend to mostly agree on the
interpretations of utterances in context-dependent
ways. Consider ‘the Persian cat is on the rug.’ If
the goal of the speaker is only to find the furball,
there need be no commitment to the cat being a
thoroughbred Persian breed. Likewise, the speaker
need not be committed to the cat being wholly on,
rather than adjacent to, the rug. Or, comprehenders
may appreciate the statement as ironic, if the cat is
hairless. And the rug need not have been created or
used as a rug for people to share the same intended
interpretation of the sentence.

The second premise in the standard argument is
also problematic. Rules massively over-generalize,
which is why they were never used for production.
That is, rules predict all manner of odd locutions
(Pawley and Syder, 1983; Sag et al., 2002): e.g.,
‘Meeting you is pleasing to me’; ‘The tall winds
hit the afraid boy’; ‘Explain him the problem.’ Hu-
mans are sensitive to the frequencies of various
types of word combinations and judge formula-
tions unnatural whenever there exists a more con-
ventional way to express the intended message in
context (e.g., Goldberg, 2019).

Evaluating LMs for Compositionality Compo-
sitionality benchmarks combine elements from one
or another evaluation paradigm already described.
Kim and Linzen (2020)’s compositional general-
ization challenge (COGS) tested whether models
could formalize into formal semantics, any sen-
tence generated by a small set of syntactic rules.
They anticipated generalizations from sentences
like ‘Jane gave the cake to John’ to ‘Jane gave

John the cake.’ The models were found to perform
poorly. Speakers’ choice between these two con-
structions is highly sensitive to information struc-
ture, dialect (Bresnan and Ford, 2010), and the
relative frequencies and similarities of verbs wit-
nessing in each version (Goldberg, 2019; Leong
and Linzen, 2024; Ambridge et al., 2014). Inso-
far as natural language is not amenable to logical
representations, failures of LMs to map to such
representations may be consistent with human in-
terpretation.

Other compositionality benchmarks adopt NLI
tasks, which commonly presume interpretation is
determined by rules. For example, in the context of
robotic agents interpreting instructions, Lake and
Baroni (2018, p.1) state:

Humans can understand and produce new utter-
ances effortlessly, thanks to their compositional
skills. Once a person learns the meaning of a
new verb ‘dax’, he or she can immediately un-
derstand the meaning of ‘dax twice’...

The robotic agents struggled to interpret the rule-
based command, though it was appropriate in the
narrow domain tested. Notably, the rule does not
extend to a broader swath of language. For instance,
unbounded actions are not countable, so if ‘twice’
appears at all, it is likely followed by a comparative
phrase (e.g., ‘work twice as hard’) and a very differ-
ent meaning than performing an action two times.
Other cases require knowledge of specific combi-
nations: ‘to think twice,’ which means ’to hesitate’
and ‘going twice’ tends to evoke the context of an
auction. Familiar phrases with meanings not fully
captured by compositional rules are common: By
one estimate, we learn tens of thousands of them
(Jackendoff, 2002). Importantly, we largely agree
on their interpretations, even though each means
something more or different than predicted simply
by the words and their syntactic combination. In
this way, phrasal combinations regularly involve
subregularities or item-specific interpretations not
predicted by a general algebraic rule.

Another example comes from the seemingly in-
nocuous algebraic rule stated below:

If X is more Y than Z, then Z is less Y than Z,
irrespective of the specific meanings of X, Y,
and Z. (Dasgupta et al., 2020, p.5)

The rule is intended to capture that ‘Anne is more
cheerful than Bob’ should both contradict ‘Anne



is less cheerful than Bob’, and entail ‘Bob is less
cheerful than Anne.’ NLI models that failed to
draw these inferences were considered lacking. Yet
natural language rarely relies on free variables. The
content of X, Y, and Z matter. No one would infer
that because Annex is more cheerfuly than carefulz ,
that ‘Carefulz is less cheerfuly than Annex.’ Per-
haps more importantly, if a speaker uttered ‘Anne
is higher than Bob and Bob is higher than Anne,’
listeners would likely infer either that Bob climbed
above Anne in the time it took to utter the first
clause or that Bob has been smoking.

5 Constructions

We have argued against the idea that natural lan-
guage is generated or interpreted by symbolic
rules, but we agree that speakers are generally able
to agree on the meanings of new sentences well
enough for communication to be successful. This
section briefly explains how constructions offer an
alternative with respect to each of the differences
cited in Table 1. Language is generated by flexibly
combining constructions, which comprise a rich
and complex ConstructionNet for each language.
These include words, but are far broader than the
traditional lexicon, encompassing schemata larger
than individual words as well (Table 2).

(Partially-filled) Words, Common and Rare
Schemata We use the term ‘construction’ to re-
fer to a learned association between a formal pat-
tern and a range of related functions. This simple
definition treats words, idioms, rare and common
grammatical patterns as constructions, and recog-
nizes that each case may include open ‘slots’ (Table
2). Formal attributes may include phonology, lex-
ical content, grammatical categories, word order,
discontinuous elements, and/or intonation.

Wide Range of Functions Constructions’ func-
tions vary widely: Constructions may convey rich,
specific contentful meaning in the case of words,
collocations, idioms. A plethora of other construc-
tions are productive but constrained in a wide va-
riety of semi-specific ways; argument structure
constructions convey ‘who did what to whom’;
discourse structuring constructions indicate which
subparts of a sentence are at-issue or backgrounded.
Constructions exist to ask questions, express sur-
prise or disapproval, for example. Any level of
construction can be associated with specific regis-
ters, genres, and/or dialects.

Types of Construction and Examples

Words: pregame; running; nevertheless; ago
Partially filled words (morphemes): pre-Nevent; V-ing
Collocations, fixed idioms: high winds; jump the shark
Partially-filled productive constructions: X is the
new Y; It’s Adj of <agent> VPto

Partially-filled argument structure constructions:
give <recipient> a call
Argument structure constructions: Intransitive;
Caused-motion; Double Object; Resultative
Discourse-structuring constructions: get-passive;
information questions; it-clefts; relative clauses

Table 2: Example constructions at varying levels of
complexity and abstraction

Sensitive to Similarity and Frequency Lan-
guage users are sensitive to the frequencies of
constructions. For instance, the passive construc-
tion is far more frequent in Turkish than English
and young Turkish speakers learn the construction
far earlier than English-speaking children (Slobin,
1986). Constructions are also influenced by simi-
larity: Instances of a construction prime instances
of the same or closely related construction (e.g.,
Du Bois, 2014; Pickering and Ferreira, 2008).

Productive Constructions May Include Fixed
Lexical Units As shown in Table 2, syntax, se-
mantics and morphology are interrelated rather
than assigned to distinct levels. This is useful be-
cause even productive hierarchical constructions
often include particular words and semantic con-
straints. For example, an English construction that
implies real or metaphorical motion allows a wide
range of verbs but requires the particular noun
‘way’ ( ’He charmed his way into the meeting’.)

Plentiful and Context-Sensitive The broad def-
inition of constructions as pairings of form and
function, including words and grammatical pat-
terns, is another difference between constructions
and rules. Constructions are far richer and more
plentiful than the class of rules is commonly en-
visioned to be. Constructions also do far more
work than rules since they capture frequency infor-
mation and contextual constraints, while rules are
presumed to be context-free and uninfluenced by
frequency.

Interrelated System, Not Unstructured List
Unlike rules, which are commonly presented as
unstructured lists, constructions comprise a net-
work of interrelated statistical patterns. This allows



for the fact that languages have families of related
constructions. It also allows for the simple fact that
productive constructions simultaneously co-exist
with specific conventional instances. For instance,
the English ‘double object’ construction is produc-
tive, and speakers are also familiar with dozens of
conventional instances (e.g., ‘give <someone> the
time of day’, ‘throw <someone> a bone’).

Construction Slots Are Constrained The open
‘slots’ of constructions are constrained in a wide
variety of ways. For instance, the English double-
object construction can appear with a wide range
of verbs, but prefers simple verbs to those that
sound Latinate (e.g., ’She told them something’ vs.
’She proclaimed them something’). The English
comparative suffix ‘-er’ (e.g., ‘calmer’, ‘quicker’)
is available for most single-syllable adjectives that
allow a gradient interpretation, but it is not used
with past participles adjectives (? ‘benter’).

An Example Consider ‘X is the new Y’. It is pro-
ductive and can be used to create new utterances
e.g., ‘Semiconductor chips are the new oil.’ As is
typical of productive constructions, the generaliza-
tion co-exists with several familiar instances (e.g.,
‘50 is the new 40’; ‘Orange is the new black’). The
construction is not an algebraic rule. Its slots, indi-
cated by X and Y, are not variables that range freely
over fixed syntactic categories. Instead, ‘X’ must
be construed (playfully) as currently functioning in
the culture as ‘Y’ used to. Therefore not all combi-
nations of slot fillers make sense: (e.g., ? ‘Orange
is the new oil’). Adding a parallelism constraint
between X and Y is insufficient since ‘103 is the
new 101’ also makes little sense. Finally, instances
of the construction are not amenable to translations
into formal logic, which would presumably treat
‘Orange is the new black’ as equivalent to ‘Black
is the old orange,’ which does not conventionally
evoke the same meaning.

6 Implications Beyond Natural Language

The current observations help make sense of LM
behavior outside the domain of pure language.
Even in domains that are rule-like by design, cer-
tain types of non-compositional behavior exist,
likely due to their interface with natural language.
For instance, LMs have been found unreliable at
drawing the following inference, which the authors
dubbed the reversal curse: “if ‘A is B’ [...] is true,
then ‘B is A’ follows by the symmetry property of

the identity relation" (Berglund et al., 2023, p. 2).
Why are LMs prone to the reversal curse? Al-

though the quote above is stated in natural lan-
guage, it does not apply to natural language sen-
tences, which are actually rarely reversible. For
example, ‘A mental illness is the same as a physi-
cal illness’ means something very different than ‘A
physical illness is the same as a mental illness’ (see
also Tversky, 1977; Talmy, 1975). Even simple
conjunctions are not generally reversible in natural
language. For instance, ‘night & day’ and ‘day &
night’ are both acceptable, but their interpretations
differ: the former conveys a stark contrast (e.g., ‘as
different as night and day’), the latter suggests a
relentless activity or process (e.g., ‘he worried day
and night’). In summary, it is perhaps reasonable to
expect truly symmetric knowledge to be reversible.
But LMs are trained on natural language and natu-
ral language utterances are not symmetric.

Human reasoning depends on the context in
which performance is tested (Klauer et al., 2000;
Wason, 1968; Tversky and Kahneman, 1974) and
how instructions are formulated (Evans et al.,
1994). Lampinen et al. (2024) find that LMs and hu-
mans are influenced by semantic context in similar
ways (see also McCoy et al., 2023). Even math is
not fully rule-compositional when equations are in-
tended for communication: for instance, 2 + 2 = 4
means something different than 4 = 2 + 2 (Mirin
and Dawkins, 2022), a preference picked up on by
LMs (Boguraev et al., 2024).

7 New Directions

Natural languages involve complex and context-
sensitive systems of constructions, which vary from
being wholly fixed to highly abstract and produc-
tive. Constructions are combined when a unit, po-
tentially itself composed of constructions, fills a
slot in another construction. Viewing language as a
system of constructions rather than words and rules
may fundamentally change how the successes and
failures of models are construed, and new goals
and questions come into focus.

Balancing Constructions and Rules Coding lan-
guages are compositional by design. They are un-
ambiguous with variables filled by any instance of
a clearly defined and general type. Accordingly,
increasing the proportion of code in pretraining
improves performance on tasks that rely on rule-
based compositionality such as logic and math (e.g.,
Kim et al., 2024; Madaan et al., 2022). Yet Petty



et al. (2024) report that adding code to pretrain-
ing data hurts performance on naturalistic language
processing including tasks involving the English
passive (Mueller et al., 2022) and BigBench’s Im-
plicatures and CommonMorpheme tasks (Srivas-
tava et al., 2023). Sprague et al. (2024) report that
while Chain-of-Thought prompting had been be-
lieved helpful across-the-board, performance only
improves on problems that require algorithmic rea-
soning. Thus, adding code to pre-training or using
CoT prompts benefit tasks that are designed to be
rule-compositional but may be detrimental to to
natural language tasks.

Better Datasets Rather than using abstract rules
to generate stimuli for natural language bench-
marks, ecologically valid stimuli may be more use-
fully collected or adapted from natural corpora and
then normed for naturalness and plausibility. Since
human judgments are highly context-dependent,
benchmark tasks should ideally also vary contexts
systematically (see, e.g., Ross et al., 2024).

It is also important to avoid inadvertently train-
ing human coders to give the type of responses only
suitable in logic or coding classes. If people are
instructed to interpret ‘red X’ as ’X that is red for
any X,’ they can do so. Yet in natural contexts,
people understand that red grapefruits are closer
to pink, red hair is more orange, a red book may
be about communism, and crossing a red line may
have consequences. Finally, a variety of items, par-
ticipants, and contexts ought to be valued as much
as a variety of models.

Probing for Constructions Recognizing that
LMs are already extremely skilled at producing
and responding to several natural languages allows
for a shift in research agendas. The interesting
question may now be not if, but how LMs achieve
such remarkable skills. We can now also ask how
well LMs capture appropriately nuanced interpreta-
tions and relationships among constructions. New
ways of probing LMs make this possible and this
toolkit will only grow.

As is familiar from the lexicon, constructions
are related to one another because human mem-
ory is highly associative. Misra and Mahowald
(2024) have demonstrated that even when all in-
stances of a rare non-compositional construction
are ablated from training data, non-trivial learn-
ing of the construction remains, enabled by the
presence of related constructions in training. An-
other type of relationship among constructions are

the relationships between conventional instances
and productive generalizations. Nearly every pro-
ductive construction co-exists with at least a few
formulaic instances, and LMs offer ways of testing
relationships among instances that give rise to pro-
ductive generalizations. Other recent work includes
Weissweiler et al. (2022), who found LMs reliably
discriminate instances of the English Comparative
Correlative from superficially similar expressions.
Tayyar Madabushi et al. (2020) tested a dataset of
automatically induced constructions and reported
that BERT (Devlin et al., 2019) could determine
whether two sentences contained instances of the
same construction. However, Zhou et al. (2024)
found LMs failed to distinguish entailment differ-
ences between the causal excess construction (e.g.,
‘so heavy that it fell’) and two structurally similar
constructions (‘so happy that she won’; ‘so certain
that it rained’). Similarly addressing challenging
construction semantics, Weissweiler et al. (2024)
showed LMs to struggle with the meaning of the
caused-motion construction.

Tseng et al. (2022) showed that LMs gradiently
predict appropriate slot fillers. Li et al. (2022)
probed RoBERTa’s implicit semantic representa-
tions of four argument structure constructions and
found similarities in behavior in the model and a
sorting task done by humans. Potts (2023) found
that despite its rarity, LMs acquire the Preposing in
PP construction (Huddleston and Pullum, 2002).

8 Conclusion

Generalization is a key component of human
language—and a big part of why LMs are success-
ful at processing language. But we have argued that
evaluations of the linguistic abilities of LMs are too
often based on an assumption that generalization re-
quires algebraic rules operating on words. But natu-
ral languages are not Lego sets. We suggest instead
that language involves flexible combinations of rich
and varied constructions of varying sizes, complex-
ity, and degrees of abstraction, which differ from
algebraic rules in many ways. By designing new
evaluations that accurately reflect the complexities
of language, we can avoid under- or overestimating
language models. The extent to which LMs pro-
duce and interpret combinations of constructions
has been limited to date. LMs offer fertile ground
for new types of evaluations and new analyses that
offer deeper understanding of the remarkable skills
required for natural language.



Limitations

The claims here are based on existing evaluations
of LMs. LMs are rapidly improving in a variety of
ways. While we have aimed to discuss benchmarks
and evaluations in ways that reflect the historical
trajectory as well as the present-day landscape, it
is always possible that newer models could behave
differently than our characterizations.

Another potential limitation is that evaluating
LMs is a moving target. While we give a number
of suggestions for evaluation, we also recognize
that the kinds of linguistic evaluations needed may
move away from tests of grammaticality (which
seems largely mastered) and towards more general
kinds of language understanding. The rapid pace of
LM technology makes future-proofing such designs
potentially difficult.

Finally, while we focus mostly on construction-
ist approaches, there are related usage-based ap-
proaches from the functionalist tradition that would
likely make similar predictions. Future work can
further flesh out these directions.
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Daniel Zeman, Jan Hajič, Martin Popel, Martin Potthast,
Milan Straka, Filip Ginter, Joakim Nivre, and Slav
Petrov. 2018. CoNLL 2018 shared task: Multilingual
parsing from raw text to Universal Dependencies. In
Proceedings of the CoNLL 2018 Shared Task: Multi-
lingual Parsing from Raw Text to Universal Depen-
dencies, pages 1–21, Brussels, Belgium. Association
for Computational Linguistics.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
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