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Natural language processing employs computational techniques for the purpose of learning,
understanding, and producing human language content. Early computational approaches to
language research focused on automating the analysis of the linguistic structure of language
anddeveloping basic technologies such asmachine translation, speech recognition, and speech
synthesis.Today’s researchers refine and make use of such tools in real-world applications,
creating spoken dialogue systems and speech-to-speech translation engines, mining social
media for information about health or finance, and identifying sentiment and emotion toward
products and services.We describe successes and challenges in this rapidly advancing area.

O
ver the past 20 years, computational lin-
guistics has grown into both an exciting
area of scientific research and a practical
technology that is increasingly being in-
corporated into consumer products (for

example, in applications such as Apple’s Siri and
Skype Translator). Four key factors enabled these
developments: (i) a vast increase in computing
power, (ii) the availability of very large amounts
of linguistic data, (iii) the development of highly
successful machine learning (ML) methods, and
(iv) amuch richer understanding of the structure
of human language and its deployment in social
contexts. In this Review, we describe some cur-
rent application areas of interest in language
research. These efforts illustrate computational
approaches to big data, based on current cutting-
edge methodologies that combine statistical anal-
ysis and ML with knowledge of language.
Computational linguistics, also known as nat-

ural language processing (NLP), is the subfield
of computer science concerned with using com-
putational techniques to learn, understand, and
produce human language content. Computation-
al linguistic systems can have multiple purposes:
The goal can be aiding human-human commu-
nication, such as in machine translation (MT);
aiding human-machine communication, such as
with conversational agents; or benefiting both
humans and machines by analyzing and learn-
ing from the enormous quantity of human lan-
guage content that is now available online.
During the first several decades of work in

computational linguistics, scientists attempted
to write down for computers the vocabularies
and rules of human languages. This proved a
difficult task, owing to the variability, ambiguity,
and context-dependent interpretation of human
languages. For instance, a star can be either an
astronomical object or a person, and “star” can
be a noun or a verb. In another example, two in-
terpretations are possible for the headline “Teacher

strikes idle kids,”depending on thenoun, verb, and
adjective assignments of thewords in the sentence,
aswell as grammatical structure. Beginning in the
1980s, but more widely in the 1990s, NLP was
transformed by researchers starting to buildmod-
els over large quantities of empirical language
data. Statistical or corpus (“body ofwords”)–based
NLP was one of the first notable successes of
the use of big data, long before the power of
ML was more generally recognized or the term
“big data” even introduced.
A central finding of this statistical approach to

NLP has been that simple methods using words,
part-of-speech (POS) sequences (such as whether
a word is a noun, verb, or preposition), or simple
templates can often achieve notable results when
trained on large quantities of data. Many text
and sentiment classifiers are still based solely on
the different sets of words (“bag of words”) that
documents contain, without regard to sentence
and discourse structure or meaning. Achieving
improvements over these simple baselines can be
quite difficult. Nevertheless, the best-performing
systems now use sophisticated ML approaches
and a rich understanding of linguistic structure.
High-performance tools that identify syntactic
and semantic information as well as information
about discourse context are now available. One
example is Stanford CoreNLP (1), which provides
a standard NLP preprocessing pipeline that in-
cludes POS tagging (with tags such as noun, verb,
and preposition); identification of named entities,
such as people, places, and organizations; parsing
of sentences into their grammatical structures;
and identifying co-references between noun
phrase mentions (Fig. 1).
Historically, two developments enabled the

initial transformation of NLP into a big data field.
The first was the early availability to researchers
of linguistic data in digital form, particularly
through the Linguistic Data Consortium (LDC)
(2), established in 1992. Today, large amounts
of digital text can easily be downloaded from
the Web. Available as linguistically annotated
data are large speech and text corpora anno-
tated with POS tags, syntactic parses, semantic
labels, annotations of named entities (persons,
places, organizations), dialogue acts (statement,

question, request), emotions and positive or neg-
ative sentiment, and discourse structure (topic
or rhetorical structure). Second, performance im-
provements in NLP were spurred on by shared
task competitions. Originally, these competitions
were largely funded and organized by the U.S.
Department of Defense, but they were later or-
ganized by the research community itself, such
as the CoNLL Shared Tasks (3). These tasks were
a precursor of modern ML predictive modeling
and analytics competitions, such as on Kaggle (4),
in which companies and researchers post their
data and statisticians anddataminers fromall over
the world compete to produce the best models.
Amajor limitation of NLP today is the fact that

most NLP resources and systems are available
only for high-resource languages (HRLs), such as
English, French, Spanish, German, and Chinese.
In contrast,many low-resource languages (LRLs)—
such as Bengali, Indonesian, Punjabi, Cebuano,
and Swahili—spoken and written by millions of
people have no such resources or systems avail-
able. A future challenge for the language commu-
nity is how to develop resources and tools for
hundreds or thousands of languages, not just a few.

Machine translation

Proficiency in languages was traditionally a hall-
mark of a learned person. Although the social
standing of this human skill has declined in the
modern age of science andmachines, translation
between human languages remains crucially im-
portant, and MT is perhaps the most substantial
way inwhich computers could aid human-human
communication. Moreover, the ability of com-
puters to translate between human languages
remains a consummate test of machine intel-
ligence: Correct translation requires not only
the ability to analyze and generate sentences in
human languages but also a humanlike under-
standing of world knowledge and context, de-
spite the ambiguities of languages. For example,
the Frenchword “bordel” straightforwardlymeans
“brothel”; but if someone says “My room is un
bordel,” then a translatingmachine has to know
enough to suspect that this person is probably not
running a brothel in his or her room but rather is
saying “My room is a complete mess.”
Machine translation was one of the first non-

numeric applicationsof computers andwas studied
intensively starting in the late 1950s. However, the
hand-built grammar-based systems of early dec-
ades achieved very limited success. The field was
transformed in the early 1990s when researchers
at IBM acquired a large quantity of English and
French sentences that were translations of each
other (known as parallel text), produced as the
proceedings of the bilingual CanadianParliament.
These data allowed them to collect statistics of
word translations and word sequences and to
build a probabilistic model of MT (5).
Following a quiet period in the late 1990s,

the new millennium brought the potent combina-
tion of ample online text, including considerable
quantities of parallel text, much more abundant
and inexpensive computing, and a new idea
for building statistical phrase-based MT systems
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(6). Rather than translating word by word, the
key advance is to notice that small word groups
often have distinctive translations. The Japa-
nese “mizu iro” is literally the sequence
of two words (“water color”), but this is not the
correct meaning (nor does it mean a type of
painting); rather, it indicates a light, sky-blue color.
Such phrase-based MT was used by Franz Och in
the development of Google Translate.
This technology enabled the services we have

today, which allow free and instant translation
between many language pairs, but it still pro-
duces translations that are only just serviceable
for determining the gist of a passage. However,
very promising work continues to push MT for-
ward. Much subsequent research has aimed to
better exploit the structure of human language
sentences (i.e., their syntax) in translation sys-
tems (7, 8), and researchers are actively building
deeper meaning representations of language (9)
to enable a new level of semantic MT.
Finally, just in the past year, we have seen the

development of an extremely promising approach
to MT through the use of deep-learning–based
sequence models. The central idea of deep learn-
ing is that if we can train a model with several
representational levels to optimize a final objec-
tive, such as translation quality, then the model
can itself learn intermediate representations
that are useful for the task at hand. This idea
has been explored particularly for neural net-
work models in which information is stored in
real-valued vectors, with the mapping between
vectors consisting of a matrix multiplication fol-
lowed by a nonlinearity, such as a sigmoid func-
tion that maps the output values of the matrix
multiplication onto [−1, 1]. Building largemodels

of this form is much more practical with the
massive parallel computation that is now econo-
mically available via graphics processing units. For
translation, research has focused on a particular
versionof recurrentneural networks,with enhanced
“long short-term memory” computational units
that can better maintain contextual information
from early until late in a sentence (10, 11) (Fig. 2).
Thedistributed representationsofneuralnetworks
are often very effective for capturing subtle seman-
tic similarities, and neural MT systems have al-
ready produced some state-of-the-art results (12, 13).
A still-underexplored area in MT is getting ma-

chines to have more of a sense of discourse, so
that a sequence of sentences translates naturally—
although work in the area has begun (14). Finally,
MT is not necessarily a task for machines to do
alone. Rather it can be reconceptualized as an op-
portunity for computer-supported cooperative
work that also exploits human skills (15). In such
a system, machine intelligence is aimed at human-
computer interface capabilities of giving effective
suggestions and reacting productively to human
input, rather than wholly replacing the skills and
knowledge of a human translator.

Spoken dialogue systems and
conversational agents

Dialogue has been a popular topic in NLP re-
search since the 1980s. However, early work on
text-based dialogue has now expanded to include
spoken dialogue on mobile devices (e.g., Apple’s
Siri, Amtrak’s Julie, Google Now, andMicrosoft’s
Cortana) for information access and task-based
apps. Spoken dialogue systems (SDSs) also allow
robots to help people with simple manual tasks
[e.g., Manuela Veloso’s CoBots (16)] or provide

therapy for less-abledpersons [e.g.,MajaMataric’s
socially assistive robots (17)]. They also enable ava-
tars to tutor people in interview or negotiation stra-
tegies or to help with health care decisions (18, 19).
The creation of SDSs, whether between hu-

mans or between humans and artificial agents,
requires tools for automatic speech recognition
(ASR), to identify what a human says; dialogue
management (DM), to determine what that hu-
man wants; actions to obtain the information or
perform the activity requested; and text-to-speech
(TTS) synthesis, to convey that information back
to the human in spoken form. (Fig. 3). In addition,
SDSs need to be ready to interact with users when
an error in speech recognition occurs; to decide
what words might be incorrectly recognized; and
to determine what the user actually said, either
automatically or via dialogue with the user. In
speech-to-speech translation systems, MT com-
ponents are also needed to facilitate dialogue
between speakers of different languages and the
system, to identify potential mistranslations before
they occur, and to clarify these with the speaker.
Practical SDSs have been enabled by break-

throughs in speech recognition accuracy, mainly
coming from replacing traditional acoustic feature–
modeling pipelines with deep-learning models that
map sound signals to sequences of human language
sounds and words (20). Although SDSs now work
fairly well in limited domains, where the topics of
the interaction are known in advance and where
the words people are likely to use can be predeter-
mined, they are not yet very successful in open-
domain interaction, where users may talk about
anything at all. Chatbots following in the tradition
of ELIZA (21) handle open-domain interaction by
cleverly repeating variations of the human input;
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Fig. 1. Many language technology tools start by doing linguistic structure analysis. Here we show output from Stanford CoreNLP. As shown from top to
bottom, this tool determines the parts of speech of eachword, tags variouswords or phrases as semantic named entities of various sorts, determineswhich entity
mentions co-refer to the same person or organization, and then works out the syntactic structure of each sentence, using a dependency grammar analysis.
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this approach is also being attempted in spoken-
chat systems designed to provide a sense of com-
panionship for target audiences such as the elderly
or individuals with dementia (22). In spoken dia-
logue, information about the speaker’s mental
state inferred from multimodal information can
be used to supplement the system’s knowledge of
what the user is saying.
There are many challenges in building SDSs,

in addition to the primary challenge of improv-
ing the accuracy of the basic ASR, DM, and TTS
building blocks and extending their use into less-
restricted domains. These include basic problems
of recognizing and producing normal human
conversational behaviors, such as turn-taking
and coordination. Humans interpret subtle cues
in speakers’ voices and facial and body gestures
(where available) to determine when the speaker
is ready to give up the turn versus simply pausing.
These cues, such as a filled pause (e.g., “um” or
“uh”), are also used to establish when some
feedback from the listener is desirable, to indi-
cate that he or she is listening or working on a
request, as well as to provide “grounding” (i.e.,
information about the current state of the con-
versation). Non–humanlike latency often makes
SDS burdensome, as users must wait seconds to
receive a system response. To address this, re-
searchers are exploring incremental processing
of ASR, MT, and TTS modules, so that systems
can respond more quickly to users by beginning
these recognition, translation, and generation
processes while the user is still speaking. Hu-

mans can also disambiguate words such as “yeah”
and “okay,” which may have diverse meanings—
including agreement, topic shift, and even
disagreement—when spoken in different ways.
In successful and cooperative conversations, hu-
mans also tend to entrain to their conversational
partners, becomingmore similar to each other in
pronunciation, word choice, acoustic and pro-
sodic features, facial expressions, and gestures.
This tendency has long been used to subtly in-
duce SDS users to employ terms that the system
can more easily recognize. Currently, research-
ers are beginning to believe that systems (parti-
cularly embodied agents) should entrain to their
users in these different modalities, and some ex-
perimental results have shown that users prefer
such systems (23) and even think they are more
intelligent (24). Open issues forDMhave long been
the determination of how to architect the appro-
priate dialogue flow for particular applications,
where existing experimental data may be sparse
and some aspects of the dialogue state may not yet
have been observed or even be observable from the
data. Currently, the most widely used approach is
the POMDP (partially observable Markov decision
process), which attempts to identify an optimal
system policy by maintaining a probability distri-
bution over possible SDS states and updating this
distribution as the system observes additional
dialogue behavior (25). This approach may make
use of the identification of dialogue acts, such as
whether the user input represents a question,
statement, or indication of agreement, for example.

Machine reading
The printed word has great power to enlighten.
Machine reading is the idea that machines could
become intelligent, and could usefully integrate
and summarize information for humans, by read-
ing and understanding the vast quantities of text
that are available.
In the early decades of artificial intelligence,many

researchers focused on the approach of trying to
enable intelligent machines by manually building
large structured knowledge bases in a formal logi-
cal language and developing automated reasoning
methods for deriving further facts from this knowl-
edge. However, with the emergence of the mod-
ern online world, what we mainly have instead is
huge repositories of online information coded in
human languages. One place where this is true is
in the scientific literature, where findings are still
reported almost entirely in human language text
(with accompanying tables and diagrams). How-
ever, it is equally true formore general knowledge,
where we now have huge repositories of infor-
mation such as Wikipedia (26). The quantity of
scientific literature is growing rapidly: For example,
the size of the U.S. National Library of Medicine’s
Medline index has grown exponentially (27). At
such a scale, scientists are unable to keep upwith
the literature, even in their narrow domains of
expertise. Thus, there is an increased need for
machine reading for the purposes of comprehend-
ing and summarizing the literature, as well as ex-
tracting facts and hypotheses from this material.
An initial goal is to extract basic facts, most

commonly a relation between two entities, such
as “child of” (for instance, Bill Clinton, Chelsea
Clinton). This is referred to as relation extrac-
tion. For particular domain-specific relations,
many such systems have been successfully built.
One technique is to use handwritten patterns
that match the linguistic expression of relations
(e.g., <PERSON>’s daughter, <PERSON>). Bet-
ter results can be obtained through the use of
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Fig. 3. A spokendialogue system.The three main
components are represented by rectangles; arrows
denote the flow of information.
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Fig. 2. A deep, recurrent neural MT system (10). Initially trained on parallel sentences that translate each
other, themodel learns a representation of each word as a real-valued vector and internal parametermatrices so
as to optimize translation quality.The trained network can then translate new sentences. Each arrow represents
a computation unit of a matrix multiplication followed by a nonlinear transformation; the small vectors shown in
the illustration might really be 1000-dimensional.The recurrent network first encodes the meaning of the source
sentence (left side, blue). It maintains an internal state representing a partial sentence, which is updated after
each new word is read (horizontal arrows). Having the upper network layers [mapped to by additional (upper
vertical) computation arrows] makes this a deep recurrent network. Adding depth improves the ability of the
model to learn, generalize, and remember. Once the end of the sentence (denoted by <EOS>) is reached
(middle, dark blue), the network additionally starts to produce a word of translated output at each step from its
internal state (using a multiclass logistic regression–style model). During translation generation (right side,
green), the last generated word is fed in as the input at each step. From the stored hidden state and this input,
the model calculates the next word of the translation. This process repeats until <EOS> is generated.

D
ow

nloaded from
 https://w

w
w

.science.org at Princeton U
niversity on February 10, 2025



ML. A structured prediction classifier proposes
instances of such relations based on extracted
features from the sequence of words and gram-
matical structure of a sentence (28, 29). Such sys-
tems are the mainstay of literature fact-extraction
tools in fields such as biomedicine (30, 31).
In many scientific fields, there have been ma-

jor efforts to build databases of structured infor-
mation based on the textual scientific record,
such as the Gene Ontology database (32) in bio-
medicine or the PaleoBiology Database for fossil
records (33). This has generally been done man-
ually, via concerted work by trained profes-
sionals. Using artificial intelligence software to
extract these databases, as well as to perform
subsequent reasoning and hypothesis genera-
tion, has become a major research goal. One
subfield where these questions have been ac-
tively pursued is pharmacogenomics (34). For
example, Percha et al. (35) trained a model of
drug-drug interactions based on drug-gene in-
teractions extracted from the literature and were
able touse it to predictnovel drug-drug interactions.
If a partial knowledgebase—for instance, Freebase

(36), dbpedia (37), Wikidata (38) (related to Wikipe-
dia),or theGeneOntologydatabase (32)—hasalready
been extracted from biomedical research articles,
then there is an opportunity to automatically align
known facts from the knowledge base with puta-
tive expressionsof those facts in text. The type labels
from this mapping can then be used as if they were
supervised data for ML information-extraction sys-
tems (Fig. 4). This is referred to as distantly super-
vised relation extraction. Early systems aligned
entity mentions and then made the naïve assump-
tion that sentences containing a pair of entities
expressed every known relation between the two
entities in the database (39). More recent systems
have used increasingly sophisticated probabilistic
inference to discern which textual clauses map to
which facts in the knowledge base, or to something
else entirely (40, 41). A dramatic recent applica-
tion of this approach has been the DeepDive sys-
tem (42), which aims to automate the construction
of such systems by providing efficient large-scale
learning and inference so a user can simply focus
on good features for their domain. PaleoDeepDive,
its application to the fossil record, has recently been
shown to do a better job at fact extraction from
journal articles than the scientist volunteers who
maintain the PaleoBiology Database (43).
The relation-extraction task is made general,

if less semantically precise, by aiming to ex-
tract all relations from any piece of text, a task
normally referred to as open information ex-
traction (Open IE) (44). Early work emphasized
the development of simple but highly scalable
fact-extraction techniques that do not require
any kind of hand-labeled data (45). With ever-
growing computational power, a second genera-
tion of work increasingly emphasized careful use
of linguistic structure, which can reliably be ex-
tracted with the use of detailed NLP (46).
Currently, a number of avenues are being

explored to further extend the ability of compu-
ters to build and use knowledge bases starting
from textual information. An exciting unification

is the proposal for universal schemas (47), which
allow simultaneous inference and knowledge-
base completion over both the open set of textual
relations (such as “born in”) found in Open IE
and the more exact schema of databases (such
as per:city_of_birth). Even with all of our text-
extraction techniques, any knowledge base will
only be partial and incomplete; some recent
work explores how it can be probabilistically com-
pleted to deliver a form of common-sense rea-
soning (48). Finally, we hope to move beyond
simply extracting relations, events, and facts to
be able to understand the relations between
events (such as causation) and complex multistep
procedures and processes. In (49), Berant et al.
explore how this can be done for understanding
the steps in biological processes, showing that
extracting explicit process structures can improve
the accuracy of question answering. The flip side of
machine reading is to provide question-answering
systems, by which humans can get answers from
constructed knowledge bases. There has recently
been dramatic progress in building such systems
by learning semantic parsers (50).

Mining social media

The development of social media has revolution-
ized the amount and types of information avail-
able today to NLP researchers. Data available
from sources such as Twitter, Facebook, YouTube,
blogs, and discussion forums make it possible
to examine relations between demographic in-
formation, language use, and social interaction
(51). Researchers useWeb-scraping techniques,
often via application program interfaces pro-
vided by websites, to download previously unim-
aginable amounts and categories of data. Using
statistical andML techniques, they learn to iden-
tify demographic information (such as age and
gender) from language, track trending topics and
popular sentiment, identify opinions and beliefs
about products and politicians, predict disease
spreading (for instance, with Google Flu Trends:
www.google.org/flutrends/) from symptoms men-
tioned in tweets or food-related illnesses (52),
recognize deception in fake reviews (53), and
identify social networks of people who interact
together online.
In this era of big data, the availability of social

media has revolutionized the ways advertisers,
journalists, businesses, politicians, and medical
experts acquire their data and the ways in which
those data can be put to practical use. Product
reviews can be mined to predict pricing trends
and assess advertising campaigns. Political forums
can be searched to predict candidate appeal and
performance in elections. Social networks can be
examined to find indicators of power and influ-
ence among different groups. Medical forums can
be studied to discover common questions and
misconceptions about sufferers from particular
medical conditions so that website information
can be improved.
Social media also provide very large and rich

sources of conversational data in Web forums
that can provide “found” data for the study of lan-
guagephenomena such as code-switching (mixed
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was born on <DATE>
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Fig. 4. Distantly supervised learning. In this ap-
proach, facts in a structured knowledge repre-
sentation are projected onto pieces of text that
mention the people, places, dates, etc., that appear
in knowledge-base entries.This projection is noisy,
but when done over large quantities of text, it pro-
vides enough signal to successfully learn good clas-
sifiers for extracting relations from text. [Photo
source: National Libraryof Australia, http://nla.gov.
au/nla.pic-an12267621]
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language in bilingual speech), hedging behavior
(words and phrases indicating lack of commitment
to a proposition such as “sort of ”), and hate speech
or bullying behavior. Social media exist in a wide
variety of languages, including both HRLs and
LRLs. These data can be invaluable for enriching
ASR language models and developing TTS synthe-
sizers without the need to create costly special-
purpose corpora. In turn, these technologies can
be useful in producing SDSs in LRL areas. Such
systems can provide millions of people with the
ability to obtain information over their cell phones
(which are ubiquitous, even among populations
with low literacy rates or whose languages or
dialects have no standardwritten form), similar to
the residents of HRL countries. The development
of tools for LRLs from found LRL data, by adapt-
ing HRL tools, is another important way to use
found text data. A particular application of data
mining in LRLs is the mining of data collected
from Twitter or blogs to provide valuable infor-
mation for disaster relief organizations, identify-
ing the most serious problems, where they occur,
and who is experiencing them.
There are also some drawbacks to socialmedia

data mining. There is an increasing concern for
privacy issues, particularly for an individual’s con-
trol over their own data versus researchers’ desire
to mine it. Sites such as Twitter severely limit a
researcher’s ability to download data, which im-
pedes speedy corpus collection. There is also a
major issue with discovering “ground truth” in
online postings, because there is no clear way of
validatingan individual’sdemographic information;
the validity of posts concerning events; and most
reviews of hotels, restaurants, and products. Aggre-
gating information frommultiple sources at similar
times can address some validity issues, and sites do
attempt to identify spurious reviews, but this issue
remains perhaps the most difficult one for those
working with social media data.

Analysis and generation of speaker state

Speaker states (54), also termed “private states”
(55), include opinions, speculations, beliefs, emo-
tions, and any other evaluative views that are
personally held by the speaker or writer of a
language. Much of the work in NLP has focused
on sentiment analysis (identification of positive
or negative orientation of textual language) and
identification of belief states (committed belief,

uncommitted belief, or neutrality of a sentence)
on the basis of lexical and syntactic information.
Both sentiment and belief constitute attitudes to-
ward events and propositions, although sentiment
can also concern attitudes toward objects such as
people, organizations, and abstract concepts. De-
tection of sentiment and emotion in text requires
lexical and sentence-level information. Sentiment
can be signaled by words conveying positive or
negative orientation: For example, “sad,” “worried,”
“difficult,” and “weak” are all words with negative
orientation, whereas “comfortable,” “important,”
“successful,” and “interesting” convey a positive
sentiment. Online sentiment dictionaries, such as
Whissel’s Dictionary of Affect (56), and systems
created from subject-ranked terms, such as Tausczik
and Pennebaker’s LIWC (Linguistic Inquiry and
Word Count) (57), can be used to assess positive
and negative sentiment in a text. More sophis-
ticated approaches to sentiment analysis also seek
to identify the holder (source) as well as the object
of the sentiment: for instance, who is positive about
what person, country, activity, or concept (55).
The speech community has also studied pos-

itive and negative attitudes by focusing more
generally on the identification of positive and neg-
ative emotions, primarily using acoustic and pro-
sodic information.However,morework is currently
being done to identify particular emotions, such
as Ekman’s classic six basic emotions (anger, dis-
gust, fear, happiness, sadness, surprise), which
maybe reactions to events, propositions, or objects.
There has also been considerable research using
features that have proven important in recog-
nizing classic emotions to identify other speak-
er states (such as deception), medical conditions
(such as autism andParkinson’s disease), speaker
characteristics (such as age, gender, likeability,
pathology, andpersonality), and speaker conditions
(such as cognitive load, drunkenness, sleepiness,
interest, and trust). Corpora collected for such
studies have been used in the Interspeech Para-
linguistic Challenges, which have been conducted
since 2009. Emotion generation has proven a
moredifficult challenge forTTS synthesis. Although
there are some systems (e.g., MARY) that at-
tempt to generate emotions such as depression,
aggression, or cheerfulness (58), the best synthe-
sized emotion still comes from corpora recorded for
particular emotions by voice talent imitating those
emotions.

Sentiment classification is widely used in opin-
ion identification (positive or negative views of
people, institutions, or ideas) in many languages
and genres. Particular applications abound, such
as identifying positive and negative movie or pro-
duct reviews (59, 60) and predicting votes from con-
gressional records (61) or Supreme Court decisions
from court proceedings. Figure 5 illustrates a typical
restaurant review, annotated for positive, negative,
and neutral sentiment, as well as basic emotions.
Mining socialmedia for sentiment or classic emo-

tions has been a particularly popular topic for the
purposes of assessing the “public mood” from Twit-
ter, predicting stock market trends, or simply eval-
uatinga community’smental state (62). Socialmedia
such as Twitter, blog posts, and forums also provide
researcherswith very large amounts of data to use in
assessing the role of sentiment and emotion in
identifying other linguistic or social phenomena
[e.g., sarcasm (63), power relationships, and so-
cial influence (64)], as well as mental health is-
sues [e.g., depression (65)].

Conclusion and outlook

Many times during the past 50 years, enthusi-
astic researchers have had high hopes that the
language-understanding ability of robots in sci-
ence fiction movies was just around the corner.
However, in reality, speech and language under-
standing did not work well enough at that time
to power mainstream applications. The situation
has been changing dramatically over the past five
years. Huge improvements in speech recognition
have made talking to your phone a commonplace
activity, especially for young people. Web search
enginesare increasingly successful inunderstanding
complex queries, and MT can at least yield the gist
of material in another language, even if it cannot
yet produce human-quality translations. Com-
puter systems trade stocks and futures auto-
matically, based on the sentiment of reports about
companies. As a result, there is now great com-
mercial interest in the deployment of human
language technology, especially because natural
language represents such a natural interface
when interacting with mobile phones. In the
short term, we feel confident that more data
and computation, in addition to recent advances
in ML and deep learning, will lead to further
substantial progress in NLP. However, the truly
difficult problems of semantics, context, and
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Breakfast on Broadway is a new place focusing on, you guessed 
it, breakfast/brunch. Went there last Sunday around 1. The food 
was not bad but the service was pretty terrible. We had to wait 15 
minutes just to get menus and another 30 to get something to 
eat. And there were only a few tables occupied! If you don’t mind 
the wait though, the price is right. I’ll probably give it another try. 
Maybe they need time to get their act together.

Breakfast on Broadway is a new place focusing on, you guessed it, 
breakfast/brunch. Went there last Sunday around 1. The food was 
not bad but [Anger: the service was pretty terrible]. [Disgust: We 
had to wait 15 minutes just to get menus and another 30 to get 
something to eat. And there were only a few tables occupied!] If 
you don’t mind the wait though, the price is right. I’ll probably give 
it another try. [Uncertainty: Maybe they need time to get their act 
together.]

Fig. 5. Manually annotated text analysis on a sample restaurant review. Sentiment analysis is shown on the left (blue, positive sentiments; red, negative; gray,
neutral). In the emotion analysis on the right, emotions are shown in bold type and delineated by square brackets. Note in particular the importance of going beyond
simple keyword analysis; for example, “not” has scope over “bad,”whichmight mislead simple systems. Also, the presence of “hedge”words and phrases, which muddle
the intendedmeaning (e.g., “pretty,”which has a positive connotation, modifying the negative word “terrible”), somewhat decreases the negative score of the next clause.
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knowledge will probably require new discov-
eries in linguistics and inference. From this per-
spective, it is worth noting that the development
of probabilistic approaches to language is not
simply about solving engineering problems: Prob-
abilisticmodels of language have also been reflected
back into linguistic science, where researchers are
finding important new applications in describing
phonology (66), understanding human language
processing (67), and modeling linguistic seman-
tics and pragmatics (68). Many areas of linguistics
are themselves becoming more empirical and
more quantitative in their approaches.
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