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Findings 
Semantic distraction interacts with context 

Semantic Attention Task

Task 
 Verbally report size of object denoted by the word Interleaved (no control) 

“Size”
Blocked (control) 

“Animal Size” vs. “Instrument Size”

Effect: 
Stable context (blocked) warps semantic space 
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Giallanza, Campbell, Rogers & Cohen (under review)

• ISC model
- semantic knowledge reflects the effects of statistical learning:  coherent covariation

- shaped in use by the influence of context representations that reflect 
explicit instructions, implicit behavior demands,  and the other stimuli present or 
recently present in the environment

- context representations are themselves subject to the same mechanisms 
statistical learning, spanning multiple levels of abstraction, and driven by 
the statistics of behavioral affordances together with those of perception

•Still, many effects remain to be explained…
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- Metric Theories:  parametric distances of representations in a high dimension vector space 
    (Smith, Shobin, Rips, 1974; Miklov, 2013 - e.g. ,Word2Vec, ~ISC)

- Feature Contrast / Coverage Theories:  discrete (set theoretic) intersection / overlap 
    (Tversky, 1977; Osherson et al., 1990)

- Bayesian Inference Theories:  likelihood relative to prior 
    (Xu & Tenenbaum, 2007; Griffiths et al., 2010)
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•Similarity Judgments
•Category Judgements (Inductive Inference)
•Theories

•Context
- Warping of semantic space to change distances among items as a function of context

- But:

- To what extent can context effects arise as emergent property of  
statistical learning of continuous representations?

- How do people infer this “on the fly?”
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• ISC-CI:
- objects occurring together in a given context tend to share properties 

relevant to that context: temporal autocorrelation

- these co-occurrence  statistics are learned over the course of development

- this implicit knowledge provides a basis for inferring, from a few examples of objects 
encountered in a new context, both which features are relevant in that context 
and what other objects are likely to occur in that context

• ISC model 
- semantic knowledge reflects the effects of statistical learning:  coherent covariation 

- shaped in use by the influence of context representations that reflect 
explicit instructions, implicit behavior demands,  and the other stimuli present or recently present in the 
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Integrated Semantics and Control —  
Context Inference (ISC-CI)

Comparison of model and human choices in multi-alternative similarity 
judgments Tversky & Gati (1978) 
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Connectionist networks are an appropriate “tool box” for studying such effects:

• statistical learning mechanisms that
- capture relevant semantic structure through experience
- that reflects relationships present in the environment
- under pressure of their usefulness for prediction and/or action

•mechanisms for context processing and control that
- help exploit and shape representational structure 

(e.g., via biasing effects and non-linearities)

- accommodate special processing requirements for different purposes 
(e.g., episodic memory mechanisms for rapid association formation 
         and gated attractors [LSTMs] for active maintenance, sequencing and search
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