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The “Hub and Spokes” Framework
Rogers & McClelland (2004)




The “Hub and Spokes” Framework
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The “Hub and Spokes” Framework
the Rumelhart Model
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The “Hub and Spokes” Framework
the Rumelhart Model
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The “Hub and Spokes” Framework
the Rumelhart Model
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(A)Rumelhart model
(Rogers & McClelland, 2004)

|~ context 5
dependent rl
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The “Hub and Spokes” Framework
the Rumelhart Model
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Models of Semantics and

Context

Activation Stimulus Type of internal
pattern feature type representation

assigned/ type 1 (e.8. name) task / context
discrete

type 2 (e.g. shape) item (context independent)

learned/ .
distributed item (context dependent)

Semantic models that incorporate control

(A)Rumelhart model

(B)Synonyms (Hoffman et al., 2018)
(Rogers & McClelland, 2004)

hub context

context
dependent

hub

word1l target word?2
stimulus word

Control models that operate on semantics

response

. stimulus task
color written

word

D. Stroop (Cohen et al. 1990) E. Multitasking (Musslick et al., 2022)

(C) Controlled hub-and-spokes
(Jackson et al., 2022)

hub task

response

tas

(L/R) tas
(feature)

F. Flexible control (Rougier et al. 2005)

e right

(Control)



Integrate Semantics and Control (ISC) Model

Giallanza, Campbell, Cohen & Rogers (2024)

(A)Rumelhart model
(Rogers & McClelland, 2004)

context

dependent

hub

stimulus - task




Integrate Semantics and Control (ISC) Model

Giallanza, Campbell, Cohen & Rogers (2024)

(A)Rumelhart model
(Rogers & McClelland, 2004)

context

dependent

hub . context
stimulus task




Integrate Semantics and Control (ISC) Model

Giallanza, Campbell, Cohen & Rogers (2024)
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Integrate Semantics and Control (ISC) Model

Giallanza, Campbell, Cohen & Rogers (2024)

“bird” Etc...

I O s
| features

context
independent

context

B s

item task

“Categorize ltem”



Integrate Semantics and Control (ISC) Model

Giallanza, Campbell, Cohen & Rogers (2024)

“bird” Etc...

I O s
| features

context
independent

context

B s

item task

“Judge Its Size”



Contextual (Attentional) Control as the
Warping of Semantic Structure

Categorize Item:
Animal or Instrument?



Contextual (Attentional) Control as the
Warping of Semantic Structure

Judge its size
Bigger than a trash can?



Contextual (Attentional) Control as the
Warping of Semantic Structure

Output similarity e Feature output units (2,896) CD similarity

Item input units Task input
(350) units (36)

Cl similarity Task similarity




Category
Biased:
Coherent
covariation
over all features

Contextual (Attentional) Control as the
Warping of Semantic Structure

Output similarity Feature output units (2,896) CD similarity
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what
size?

Task rep.
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eavy?

what
kind?

Item input units Task input %Vahr%%?

(350) units (36)
Cl similarity Task similarity



Contextual (Attentional) Control as the
Warping of Semantic Structure

Output similarity Feature output units (2,896) CD similarity

Context
Warping:
Covariation
based on size

size?

Task rep.

ow
eavy?

what
kind?

Item input units Task input %Vahr%%?

(350) units (36)
Cl similarity Task similarity




Contextual (Attentional) Control as the
Warping of Semantic Structure

Output similarity Feature output units (2,896) CD similarity

“Sharpening”
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Contextual (Attentional) Control as the
Warping of Semantic Structure

(A) Word-picture interference task

Category and size incongruent Only size incongruent

» HORSE

L

animals

HORSE

: animals
I
I
I
I
I
I
: instruments

interference

: instruments
I

(B) Domain-general size representation (C)Animal-specific size representation




Semantic Attention Task

Findings
Task Semantic distraction interacts with context
Verbally report size of object denoted by the word Interleaved (no control) Blocked (control)
“Size” “Animal Size” vs. “Instrument Size”

%.} %‘I

Size Size

Mismatch

Mismatch
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Match Mismatch Match Mismatch Match Mismatch
Category Category Category




Semantic Attention Task

Effect:
Task Stable context (blocked) warps semantic space
Verbally report size of object denoted by the word Interleaved (no control) Blocked (control)
“Size” “Animal Size” vs. “Instrument Size”

Mismatch

Match Mismatch

Category




Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)




Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

¢ |ISC model

- semantic knowledge reflects the effects of statistical learning: coherent covariation




Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

¢ |ISC model

- shaped in use by the influence of context representations that reflect
explicit instructions, implicit behavior demands, and the other stimuli present or
recently present in the environment




Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

¢ |ISC model

- context representations are themselves subject to the same mechanisms
statistical learning, spanning multiple levels of abstraction, and driven by
the statistics of behavioral affordances together with those of perception




Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

¢ Still, many effects remain to be explained...
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Human Semantic Anomalies / Idiosyncrasies

e Similarity Judgments:

- Order effects: asymetric similarity judgements

How similar is a horse to a donkey?



Human Semantic Anomalies / Idiosyncrasies

e Similarity Judgments:

- Order effects: asymetric similarity judgements

How similar is a horse to a donkey? Less so
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e Similarity Judgments:

- Multialternative effects: reversal of simiarlity judgments
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Human Semantic Anomalies / Idiosyncrasies

e Similarity Judgments:

- Multialternative effects: reversal of simiarlity judgments

Which is Jamaica most similar to: England, Russia or Cuba
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e Similarity Judgments:

- Multialternative effects: reversal of simiarlity judgments

Which is Jamaica most similar to: England, Russia or Cuba



Human Semantic Anomalies / Idiosyncrasies

e Similarity Judgments:

- Triangle inequality effects: violations of transitive inference
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e Similarity Judgments:

- Triangle inequality effects: violations of transitive inference
[Nurse : Patient] :: [Mother : Child]
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e Similarity Judgments:

- Triangle inequality effects: violations of transitive inference

[Mother : Child] :: [Frog : Tadpole]
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e Similarity Judgments:

- Triangle inequality effects: violations of transitive inference

[Nurse : Patient] :: [Frog : Tadpole]
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- Conclusion typicality:
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Human Semantic Anomalies / Idiosyncrasies

e Category Judgements (/nductive Inference):

Given each of the following sets, which is more likely to be a member of the category:

- Premise diversity:
{crows, robins} — sparrows or {crows, ravens} — sparrows
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e Category Judgements (/nductive Inference):

Given each of the following sets, which is more likely to be a member of the category:

- Premise diversity:
{crows, robins} — sparrows or {crows, ravens} — sparrows
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e Category Judgements (/nductive Inference):

Given each of the following sets, which is more likely to be a member of the category:

- In-category monotonicity
{crows, robins} — sparrows or {crows} — sparrows



Human Semantic Anomalies / Idiosyncrasies

e Category Judgements (/nductive Inference):

Given each of the following sets, which is more likely to be a member of the category:

- In-category monotonicity (support spans query)
{crows, robins} — sparrows or {crows} — sparrows



Human Semantic Anomalies / Idiosyncrasies

e Category Judgements (/nductive Inference):

Given each of the following sets, which is more likely to be a member of the category:

- In-category non-monotonicity
{brown bears, grizzly bears} — buffalo or {brown bears} — buffalo



Human Semantic Anomalies / Idiosyncrasies

e Category Judgements (/nductive Inference):

Given each of the following sets, which is more likely to be a member of the category:

- In-category non-monotonicity (support is narrower than query)
{brown bears, grizzly bears} — buffalo or {brown bears} — buffalo



Human Semantic Anomalies / Idiosyncrasies

e Category Judgements (/nductive Inference):

Given each of the following sets, which is more likely to be a member of the category:

- Cross-category non-monotonicity
{flies, orangutans} — bees or {flies} — bees



Human Semantic Anomalies / Idiosyncrasies

e Category Judgements (/nductive Inference):

Given each of the following sets, which is more likely to be a member of the category:

- Cross-category non-monotonicity (supportis broader than query)
{flies, orangutans} — bees or {flies} — bees
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Human Semantic Anomalies / Idiosyncrasies

® Theories:

- Metric Theories: parametric distances of representations in a high dimension vector space
(Smith, Shobin, Rips, 1974, Miklov, 2013 - e.qg. ,Word2Vec, ~ISC)



Human Semantic Anomalies / Idiosyncrasies

® Theories:

- Feature Contrast / Coverage Theories: discrete (set theoretic) intersection [ overlap
(Tversky, 1977; Osherson et al., 1990)



Human Semantic Anomalies / Idiosyncrasies

® Theories:

- Bayesian Inference Theories: likelihood relative to prior
(Xu & Tenenbaum, 2007; Griffiths et al., 2010)



Human Semantic Anomalies / Idiosyncrasies




Human Semantic Anomalies / Idiosyncrasies

e Context

- Warping of semantic space to change distances among items as a function of context



Human Semantic Anomalies / Idiosyncrasies

e Context

- But:

- To what extent can context effects arise as emergent property of
statistical learning of continuous representations?



Human Semantic Anomalies / Idiosyncrasies

e Context

- But:

- How do people infer this “on the fly?”



Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

A. ISC Model

Feature Label

O @ @

is-black is-animal is-bird

Context
Dependent

Context
Independent

O @ @ O O

color  Kkind crow robinpanther
Context Label Item Label




Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

Context

A. ISC Model

Feature Label

O @ @

is-black is-animal is-bird

Context
Dependent

Context
Independent

O @ @ O O
color  Kkind crow robinpanther

Context Label Iitem Label




Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

B. ISC-CI Model

Context Label Response

O O

Black  Animal Bird yes no

i
Dependent

e e
Independent Independent Independent

@ O O O @ O O O @
crow robinpanther| *** |crow robinpanther| |crow robinpanther

Support ltem 1 Support ltem N Query Item 1




Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

Context
Inference

B. ISC-CI Model

Context Label Response

O O O O

Black  Animal Bird yes no

o
Dependent

Independent Independent Independent
@ O O O @ O O O @
crow robinpanther| *** |crow robinpanther| |crow robinpanther

Support Item 1 Support Item N Query ltem 1
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Giallanza, Campbell, Rogers & Cohen (under review)




Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

- this implicit knowledge provides a basis for inferring, from a few examples of objects
encountered in a new context, both which features are relevant in that context
and what other objects are likely to occur in that context



Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

B. ISC-CI Model

Context Label Response

Black  Animal Bird yes no
Context Context
Dependent

Context Context Context
Independent Independent Independent

@ O O O @ O O O @
crow robinpanther) *** |crow robin panther| |crow robinpanther

Support Item 1 Support Item N Query ltem 1




Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

¢ Training

- Items from Leuven Concepts Database (feature ratings)

B. ISC-CI Model

Context Label Response

Black  Animal Bird yes no
Context Context
Dependent

Context Context Context
Independent Independent Independent

@ O O O @ O O O @
crow robinpanther) *** |crow robin panther| |crow robinpanther

Support Item 1 Support Item N Query ltem 1




Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

¢ Training

- “Episodes” of 2 items sharing a single feature

B. ISC-CI Model

Context Label Response

O @

Black  Animal Bird yes no

i
Dependent

Context Context Context
Independent Independent Independent

@ O O O @ O O O @
crow robinpanther) *** |crow robin panther| |crow robinpanther

Support Item 1 Support Item N Query ltem 1




Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

¢ Training

- Predict context label for the one feature shared by all objects /\

{crow, robin, sparrow...} — Bird (context) B. ISC-CI Model

Context Label Response

Black  Animal Bird yes no
Context Context
Dependent

Context Context Context
Independent Independent Independent

@ O O O @ O O O @
crow robinpanther) *** |crow robin panther| |crow robinpanther

Support Item 1 Support Item N Query ltem 1




Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

¢ Training

B. ISC-CI Model

- Predict which additional objects 5o e o
also likely to occur in that context

{crow, robin, sparrow...} — raven, ~jaguar S
onte

Independent Independent Independent
@ O O O @ O O O @
crow robinpanther) *** |crow robin panther| |crow robinpanther

Support Item 1 Support Item N Query ltem 1




Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

B. ISC-CI Model

Context Label Response

Black  Animal Bird yes no

i
Dependent

¢ Testing
- Tasks:

T Context Context Context
Similarity Judgements Independent Independent Independent
Category Inference

. o Bt
crow robinpanther) *** |crow robin panther| |crow robinpanther

Support Item 1 Support Item N Query ltem 1




Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

B. ISC-CI Model

Context Label Response

Black  Animal Bird yes no
a Dependent
¢ Testing

Context Context Context
Independent Independent Independent

@ O O O @ O O O @
crow robinpanther) *** |crow robin panther| |crow robinpanther

- Format: Support Item 1 Support Iltem N Query Item 1
Argument (context): Conclusion (stimulus)
{support set} — {query set}
example members: member of the category?

{crow, robin} —> sparrow?



Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

B. ISC-CI Model

Context Label Response

Black  Animal Bird yes no

i
Dependent

Context Context Context
Independent Independent Independent
@ O O O @ O O O @
crow robinpanther) *** |crow robin panther| |crow robinpanther

Support Item 1 Support Item N Query ltem 1




Integrated Semantics and Control — Context Inference (ISC-CI)

Giallanza, Campbell, Rogers & Cohen (under review)

B. ISC-CI Model

Context Label Response

' $
Black  Animal Bird yes no
Attention / ‘ i
Control

Independent Independent Independent
@ O O O @ O O O @
crow robinpanther) *** |crow robin panther| |crow robinpanther

Support Item 1 Support Item N Query ltem 1




Integrated Semantics and Control —

Context Inference (ISC-CI)
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Integrated Semantics and Control —
Context Inference (ISC-CI)
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Transformer Architecture

Output

Add & Norm

Attention

Positional Positional

Encoding Encoding

Embedding




Large Langauge / Vision Models (LLMs)

Embedding




Large Langauge / Vision Models (LLMs)

Embedding

Input 5,000 years worth of data!



Large Langauge / Vision Models (LLMs)

Higher
order
correlations

Embedding

Input 5,000 years worth of data!



Large Langauge / Vision Models (LLMs)

Statistics
on Steroids!

Embedding
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Transformer Architecture
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Transformer Architecture
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Transformer Architecture
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Transformer Architecture
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Transformer Architecture
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Transformer Architecture
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® Same mechanisms of learning and representation of statistical structure



Semantics and Context

® That structure ranges from simple (e.g., color vs. words)
to complex (faces, scenes)
and from specific (red, green... big, small...)
to abstract (colors, size, living, self...)
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Semantics and Context

Connectionist networks are an appropriate “tool box” for studying such effects:

o statistical learning mechanisms that
- capture relevant semantic structure through experience
- that reflects relationships present in the environment

- under pressure of their usefulness for prediction and/or action



Semantics and Context

Connectionist networks are an appropriate “tool box” for studying such effects:

® mechanisms for context processing and control that

- help exploit and shape representational structure

(e.q., via biasing effects and non-linearities)

- accommodate special processing requirements for different purposes

(e.q., episodic memory mechanisms for rapid association formation
and gated attractors [LSTMs] for active maintenance, sequencing and search



