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Abstract: In this précis of our recent book, Semantic Cognition: A Parallel Distributed Processing Approach (Rogers & McClelland
2004), we present a parallel distributed processing theory of the acquisition, representation, and use of human semantic knowledge.
The theory proposes that semantic abilities arise from the flow of activation among simple, neuron-like processing units, as
governed by the strengths of interconnecting weights; and that acquisition of new semantic information involves the gradual
adjustment of weights in the system in response to experience. These simple ideas explain a wide range of empirical phenomena
from studies of categorization, lexical acquisition, and disordered semantic cognition. In this précis we focus on phenomena central
to the reaction against similarity-based theories that arose in the 1980s and that subsequently motivated the “theory-theory”
approach to semantic knowledge. Specifically, we consider (1) how concepts differentiate in early development, (2) why some
groupings of items seem to form “good” or coherent categories while others do not, (3) why different properties seem central or
important to different concepts, (4) why children and adults sometimes attest to beliefs that seem to contradict their direct
experience, (5) how concepts reorganize between the ages of 4 and 10, and (6) the relationship between causal knowledge and
semantic knowledge. The explanations our theory offers for these phenomena are illustrated with reference to a snnple feed-
forward connectionist model. The relationships between this simple model, the broader theory, and more general issues in
cognitive science are discussed.
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theory-theory.

When we open our eyes and look around us, we observe a
host of objects — people, animals, plants, cars, buildings,
and other artifacts of many different kinds — most of
which are quite familiar. We have tacit expectations
about the unseen properties of these objects (e.g., what
we would find underneath the skin of an orange or
banana) and how the objects would react or what effects
they would have if we interacted with them in various
ways. Would a furry animal bite if we tried to stroke it?
Would a particular artifact hold a hot liquid? We can
usually name these objects, describe their visible and invis-
ible properties to others, and make inferences about them,
such as whether they would likely die if deprived of
oxygen, or whether they would break if dropped onto
a concrete floor. Understanding the basis of these
abilities — to recognize, comprehend, and make infer-
ences about objects and events in the world, and to
comprehend and produce statements about them — is
the goal of research in semantic cognition. Since antiquity,
philosophers have considered how we make semantic
judgments, and the investigation of semantic processing
was a focal point for both experimental and computational
investigations in the early phases of the cognitive
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revolution. Yet the mechanistic basis of semantic cognition
remains very much open to question.

In the 1960s and early “70s, the predominating view held
that semantic knowledge was encoded in a vast set of
stored propositions, and theories of the day offered explicit
proposals about the organization of such propositions in
memory, and about the nature of the processes employed
to retrieve particular propositions from memory (e.g.,
Collins & Loftus 1975; Collins & Quillian 1969). The
mid-70s, however, saw the introduction of findings on
the gradedness of category membership and on the privi-
leged status of some categories that such “spreading acti-
vation” theories did not encompass (Rips et al. 1973;
Rosch & Mervis 1975; Rosch et al. 1976). These findings
subsequently gave rise to a family of “similarity-based”
approaches proposing that semantic information is
encoded in feature-based representations — category pro-
totypes or representations of individual instances — and
that retrieval of semantic information depends in some
way upon the similarity between a probe item and these
stored representations (Smith & Medin 1981). Like
spreading-activation theories, similarity-based approaches
advanced specific hypotheses about the nature of the
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stored representations and of the mechanisms by which
semantic information is retrieved (e.g., Hampton 1993;
Kruschke 1992; Nosofsky 1984; 1986); but these in turn
have been subject to serious and challenging criticism
arising from a theoretical framework often called the
“theory-theory” (Carey 1985; Gopnik & Meltzoff 1997;
Keil 1989; Murphy & Medin 1985).

The theory-theory proposes that semantic knowledge is
rooted in a system of implicit beliefs about the causal
forces that give rise to the observable properties of
objects and events. On this view, implicit and informal
causal theories determine which sets of items should be
treated as similar for purposes of induction and generaliz-
ation, which properties are important for determining cat-
egory membership, which properties will be easy to learn
and which difficult, and so on. Conceptual development is
viewed as arising (at least in part) from change to the
implicit causal theories that structure concepts. This fra-
mework has been very useful as a springboard for powerful
experimental demonstrations of the subtlety and sophisti-
cation of the semantic judgments adults and even children
can make, and for highlighting the serious challenges
faced by similarity-based and spreading-activation the-
ories. In contrast to those frameworks, however, the
theory-theory has not provided an explicit mechanistic
account of the representation and use of semantic knowl-
edge. The fundamental tenets of the theory-theory are
general principles whose main use has been to guide the
design of ingenious experiments rather than the formu-
lation of explicit proposals about the nature and structure
of semantic representations or the mechanisms that
process semantic information.

In what follows, we provide a précis of our recent book,
Semantic Cognition: A Parallel Distributed Processing
Approach (Rogers & McClelland 2004, henceforth simply
Semantic Cognition in this précis), which puts forward a
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theory about the cognitive mechanisms that support seman-
tic abilities based on the domain-general principles of the
connectionist or parallel distributed processing framework.
Our approach captures many of the appealing aspects of
spreading-activation and similarity-based theories while
resolving some of the apparent paradoxes they face; and it
addresses many of the phenomena that have motivated
theory-theory and related approaches within an alternative,
more mechanistic, framework. The book illustrates how a
simple model instantiating the theory addresses, among
other things, classic findings from studies of semantic cogni-
tion in infancy and childhood; the influence of frequency,
typicality, and expertise on semantic cognition in adulthood;
basic-level effects in children and adults; and the progressive
disintegration of conceptual knowledge observed in some
forms of dementia. In this précis, however, we focus on
phenomena that were central to the critical reaction against
similarity-based theories and that subsequently motivated
the appeal to theory-based approaches. These phenomena
are briefly summarized in Table 1, and are explained in
further detail in what follows. We emphasize these particular
phenomena because they are often thought to challenge the
notion that semantic abilities might arise from general-
purpose learning mechanisms, and to support the view that
such abilities must arise from initial domain-specific knowl-
edge, via domain-specific learning systems.

These issues are central to questions about what makes
us uniquely human. Do we possess, at birth, and by virtue
of evolution, a set of highly specialized cognitive modules
tailored to support knowledge about particular domains?
Or do our advanced semantic abilities reflect the operation
of a powerful learning mechanism capable of acquiring,
through experience, knowledge about all semantic
domains alike? A key point of our book is that the learning
mechanisms adopted within the connectionist approach to
cognition are quite different from classical associationist
learning; that the capabilities of connectionist models
have been under-appreciated in this respect; and that
such models can provide an intuitive explanation of how
domain-general learning supports the emergence of
semantic and conceptual knowledge over the course of
development. The models we describe employ domain-
general learning mechanisms, without initial knowledge
or domain-specific constraints. Thus, if they adequately
capture the phenomena listed in Table 1, this calls into
question the necessity of invoking initial domain-specific
knowledge to explain semantic cognition.

The particular models we will use throughout our dis-
cussion are variants of a model described by Rumelhart
(Rumelhart 1990; Rumelhart & Todd 1993), which in
turn built on previous proposals by Hinton (1981; 1986).
We will therefore begin, in section 1, with a description
of Rumelhart’s model and how it works, followed by a
brief explanation of the more general theory the model
is intended to exemplify. In section 2, “Accounting for
the phenomena,” we will consider how the theory explains
the phenomena listed in Table 1, using simulations with
variants of the Rumelhart model to illustrate the substan-
tive points. With a more complete understanding of the
implications of the theory before us (sect. 3), we then con-
sider, in section 4, “Contrasting the PDP and theory-based
approaches,” how our theory relates to the theory-theory.
In section 5, “Principles of the PDP approach to semantic
cognition,” we summarize more general aspects of the
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Table 1. Six key phenomena in the study of semantic abilities

Phenomenon

Example

Progressive differentiation of
concepts

Category coherence

Domain-specific attribute
weighting

Hlusory correlations

Conceptual reorganization

Children acquire broader semantic distinctions earlier than more fine-grained distinctions.
For example, when perceptual similarity among items is controlled, infants differentiate
animals from furniture around 7-9 months of age, but do not make finer-grained
distinctions (e.g., between fish and birds or chairs and tables) until somewhat later (Pauen
2002a; Mandler et al. 1991); and a similar pattern of coarse-to-fine conceptual
differentiation can be observed between the ages of 4 and 10 in verbal assessments of
knowledge about which predicates can appropriately apply to which nouns (Keil 1989).

Some groupings of objects (e.g., “the set of all things that are dogs”) seem to provide a useful
basis for naming and inductive generalization, whereas other groupings (e.g., “the set of all
things that are blue”) do not. How does the semantic system “know” which groupings of
objects should be used for purposes of naming and inductive generalization, and which
should not?

Some properties seem of central importance to a given concept, whereas others do not. For
instance, “being cold inside” seems important to the concept refrigerator, whereas “being
white” does not. Furthermore, properties that are central to some concepts may be
unimportant for others — although having a white color may seem unimportant for
refrigerator, it seems more critical to the concept polar bear. What are the mechanisms that
support domain-specific attribute weighting?

Children and adults sometimes attest to beliefs that directly contradict their own experience.
For example, when shown a photograph of a kiwi bird — a furry-looking animal with eyes but
no discernible feet — children may assert that the animal can move “because it has feet,”
even while explicitly stating that they can see no feet in the photograph. Such illusory
correlations appear to indicate some organizing force behind children’s inferences that goes
beyond “mere” associative learning. What mechanisms promote illusory correlations?

Children’s inductive projection of biological facts to various different plants and animals
changes dramatically between the ages of 4 and 10. For some researchers, these changing
patterns of induction indicate changes to the implicit theories that children bring to bear on
explaining biological facts. What mechanism gives rise to changing induction profiles over

development?

The importance of causal
knowledge

A variety of evidence now indicates that, in various kinds of semantic induction tasks, children
and adults strongly weight causally central properties over other salient but non-causal

properties. Why are people sensitive to causal properties?

current work that we believe to be particularly critical to
understanding semantic abilities. In “Broader issues,”
section 6, we discuss implications of the present work for
cognitive science more generally.

The material here is largely excerpted from Semantic
Cognition, with some restructuring, condensation, and
minor corrections. In the interest of providing a relatively
succinct overview of the theory, we have omitted substan-
tial detail, both in the range of phenomena to which the
model has been applied and in the descriptions of the
simulations themselves. Where we feel these details may
prove especially useful, we refer the reader to the corre-
sponding section of the book. We have avoided adding
new material addressing work completed since Semantic
Cognition appeared; where relevant, such material will
arise in our response to open peer commentary.

1. The PDP framework

As previously mentioned, the models we will use to illus-
trate the theory are variants of an architecture first

proposed by Rumelhart (Rumelhart 1990; Rumelhart &
Todd 1993) as illustrated in Figure 1. Rumelhart was inter-
ested in understanding how the propositional information
stored in a hierarchical propositional model such as that
shown in Figure 2 could be acquired and processed by a
connectionist network employing distributed internal rep-
resentations. Thus, the individual nodes in the Rumelhart
network’s input and output layers correspond to the con-
stituents of propositions — the items that occupy the first
(subject) slot in each proposition, relation terms that
occupy the second slot, and the attribute values that
occupy the third slot. Each item is represented by an indi-
vidual input unit in the layer labeled Item, each relation is
represented by the individual units in the layer labeled
Relation, and the various possible completions of three-
element propositions are represented by individual units
in the layer labeled Attribute. When presented with a par-
ticular Item and Relation pair in the input, the network’s
job is to turn on the attribute units in the output that
correspond to valid completions of the proposition. For
example, when the units corresponding to canary and
can are activated in the input, the network must learn
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to activate the output units move, grow, fly, and sing. The
particular items, relations, and attributes used by Rumel-
hart and Todd (1993) were taken directly from the hier-
archical propositional model described by Collins and
Quillian (1969; see Fig. 2), so that, when the network
has learned to correctly complete all of the propositions,
it has encoded the same information stored in that prop-
ositional hierarchy.

The network consists of a series of nonlinear processing
units, organized into layers, and connected in a feed-
forward manner, as shown in Figure 1. Patterns are

pine
oak
rose
daisy
robin
canary
sunfish

salmon
Item

Relation

Figure 1. A connectionist model of semantic memory adapted
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presented by activating one unit in each of the Item and
Relation layers, and allowing activation to spread forward
through the network, modulated by the connection
weights. To update a unit’s activation, its net input is
first calculated by summing the activation of each unit
from which it receives a connection multiplied by the
value of the connection weight; this is then transformed
to an activation according to the logistic transfer function.

To find an appropriate set of weights, the network is
trained with backpropagation (Rumelhart et al. 1986a).
First, an item and relation are presented to the network,

living thing
plant
animal
tree
flower
bird
flower
pine
oak
rose
daisy
robin
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canary

sunfish

<

salmon

pretty
tall
living
green
red
yellow

grow
move
swim
fly
sing

bark
petals
wings
feathers
scales
gills
roots

skin

Attribute

from Rumelhart and Todd (1993), used to learn all the propositions

true of the specific concepts (pine, oak, etc.) in the Collins and Quillian model (Fig. 2). Input units are shown on the left, and
activation propagates from the left to the right. Where connections are indicated, every unit in the pool on the left is connected to
every unit in the pool to the right. Each unit in the Item layer corresponds to an individual item in the environment. Each unit in
the Relation layer represents contextual constraints on the kind of information to be retrieved. Thus, the input pair canary can
corresponds to a situation in which the network is shown a picture of a canary and asked what it can do. The network is trained to

turn on all those units that represent correct completions of the

input query. In the example shown, the correct units to activate are

grow, move, fly, and sing. All simulations discussed were conducted with variants of this model.

692 BEHAVIORAL AND BRAIN SCIENCES (2008) 31:6



Rogers & McClelland: Précis of Semantic Cognition

living thing
can
- grow
IS
ISA living
ISA
has roots can move
plant animal
has .
feath skin
ISA eathers
ISA
bark petals leaves ISA scales
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big _is has fly can an
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is has is is is can 5 s is
green leaves red yellow red sing vyellow yellow red

Figure 2. A taxonomic hierarchy of the type used by Collins and Quillian (1969) in their model of the organization of knowledge
in memory. The schematic indicates that living things can grow; that a plant is a living thing; that a tree is a plant; and that an oak
is a tree. It therefore follows that an oak can grow. The training corpus for the Rumelhart model incorporates all propositions
pertaining to the eight subordinate items (pine, oak, rose, etc.) that can be derived from this tree.

and activation is propagated forward to the output units.
The observed output states are then compared to the
desired or target values, and the difference is converted
to a measure of error. The partial derivative of the error
with respect to each weight in the network is computed
in a backward pass, and the weights are adjusted by a
small amount to reduce the dlscrepdncy Because the
model’s inputs are localist, all items in its environment
are equally distinct from one another in the input — the
model’s input representation of the robin and canary, for
instance, are no more similar to one another than either
is to the input representation of the rose. Each individual
Item unit projects, however, to all of the units in the layer
labeled Representation. The activation of a single item in
the model’s input, then, generates a distributed pattern
of activity across these units. The weights connecting
Item and Representation units evolve during learning, so
the pattern of activity generated across the Representation
units for a given item is a learned internal representation
of the item.

Though the model’s inputs and outputs are constrained
to locally represent particular items, attributes, and
relations, the learning process allows it to derive distribu-
ted internal representations that do not have this localist
character. In contrast to some other connectionist the-
ories, the units that encode learned internal represen-
tations in the model have no explicit content in
themselves — they do not correspond to semantic features,
propositions, images, or other explicit representations.
Thus, it is impossible to determine what the network
“knows” solely by inspecting the activation of these
internal units. Instead, the network’s knowledge must be

probed by querying it with an appropriate input, then
inspecting the response it generates in the output.
Although the learned internal representations have no
directly interpretable content, they do subserve a critical
function: for reasons elaborated further on, they turn out
to capture the semantic similarity relations that exist
among the items in the network’s training environment,
and so provide a basis for semantic generalization.
Obviously, the model’s behavior in this respect depends
on the particular values of the connection weights when
tested. Since the values of these connection weights
change with experience, the model’s generalization beha-
vior strongly depends on the extent and nature of its
prior experience with the items in its environment.
Although Rumelhart conceived of this network as
encoding and processing propositional content, we view
the model as a very simple implementation of a more
general theoretical approach to semantic cognition (also
exemplified in other related work; see Rumelhart et al.
1986¢; McClelland & Rumelhart 1986; McClelland et al.
1989; 1995). Under this approach, the main function of
the semantic system is to support performance on tasks
that require one to generate, from perceptual or linguistic
input, properties of objects and events that are not directly
apparent in the environment. The representations that
support semantic task performance consist of patterns of
activity across a set of units in a connectionist network,
with semantically related objects represented by similar
patterns of activity. In a given semantic task, these rep-
resentations may be constrained both by incoming infor-
mation about the item of interest (in the form of a verbal
description, a visual image, or other sensory information)
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and by the context in which the item is encountered. Thus,
we envision that the two parts of the input in the
model — the Item and Context units — represent a percei-
ved object (perhaps foregrounded for some reason to be in
the focus of attention) and a context provided by other
information available together with the perceived object.
Different item/context input pairs provoke different pat-
terns of activation across internal representation units;
and the instantiation of any particular pattern of activation
propagates forward to allow the system to generate an
output specifying the relevant object properties, which
are encoded in the model’s outputs.

For instance, the situation may be analogous to one in
which a young child is looking at a robin on a branch of
a tree, and sees that, as a cat approaches, the robin sud-
denly flies away. The object and the situation together
provide a context in which it would be possible for an
experienced observer to anticipate that the robin will fly
away; and the observation that it does would provide
input allowing a less experienced observer to develop
such an anticipation. Conceptually speaking, this is how
we see learning occurring in preverbal conceptual devel-
opment: An object encountered in a particular situation
gives rise to implicit predictions which are subsequently
met or violated. (Initially the predictions may be very
general or even null, and are inherently graded). The dis-
crepancy between expected and observed outcomes then
serves as the basis for adjusting the connection weights
that support prediction — thus allowing experience to
drive change in both the internal representations of
objects and events and the predictions about observable
outcomes. In the Rumelhart model, the presentation of
the “object” corresponds to the activation of one of the
Item input units; the situation in which the item is encoun-
tered corresponds to the activation of one of the Context
units; the child’s expectations about the outcome of the
event may be equated with the model’s outputs; and the
presentation of the actual observed outcome is analogous
to the presentation of the target for the output units in
the network. On this view, the environment provides
both the input that characterizes a situation as well as
the information about the outcome that then drives the
process of learning. This outcome information will
consist sometimes of verbal, sometimes of nonverbal infor-
mation, and in general is construed as information filtered
through perceptual systems, no different in any essential
way from the information that drives the Item and
Context units in the network.

We can also see that there is a natural analog in the
model for the distinction drawn between the perceptual
information available from an item in a given situation,
and the conceptual representations that are derived from
this information. Specifically, the model’s input, context,
and targets code the “perceptual” information that is avail-
able from the environment in a given episode; and the
intermediating units in the Representation and Hidden
layers correspond to the “conceptual” representations
that allow the semantic system to accurately perform
semantic tasks.

In what follows, we will show how these simple ideas
account for a surprisingly broad variety of phenomena in
the study of semantic cognition, paying particular atten-
tion to the six phenomena listed in Table 1. Accounting
for the phenomena will allow us to illustrate certain
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interesting properties of the model, which in turn will
allow us to articulate the general theory more completely.

2. Accounting for the phenomena

2.1. Progressive differentiation of concept
representations

Although infants from a very young age are sensitive to
perceptual similarities among objects in their world (e.g.,
Eimas & Quinn 1994; Mareschal 2000), there is now
considerable evidence that knowledge about semantic
similarity relations is acquired somewhat later and
follows a predictable developmental trajectory (e.g.,
Mandler & McDonough 1993; 1996; Mandler et al.
1991). Specifically, children appear to acquire broader
semantic distinctions earlier than more fine-grained dis-
tinctions. For example, when perceptual similarity
among items is controlled, infants differentiate animals
from furniture around 7-9 months of age, but do not
make finer-grained distinctions (e.g., between fish and
birds or chairs and tables) until somewhat later (Mandler
et al. 1991; Pauen 2002a). A similar pattern of coarse-to-
fine conceptual differentiation can be observed over the
elementary school years in assessments of knowledge
about which predicates can appropriately apply to which
nouns (Keil 1979).

The contention that children acquire broad semantic
distinctions before narrower ones seemingly contradicts
an alternative long-standing view that children acquire
“basic-level” concepts like dog or car prior to more
general (e.g., animal, vehicle) or specific (labrador, limou-
sine) concepts (e.g., Mervis 1987). The main support for
this view stems from two sources. First, preferential-
looking studies have shown that infants as young as 3
months of age are capable of “categorizing” at the basic-
level. For instance, habituation to photographs of cats
will generalize to novel pictures of cats, but not to photo-
graphs of horses, suggesting that the infants treat the
different cats as similar to one another and as different
from the horses (Eimas & Quinn 1994). Such results are
only observed, however, when perceptual similarity is
high within category and low between categories (e.g.,
Quinn & Johnson 2000). Hence, they may not reflect the
infant’s pre-existing semantic knowledge about cats and
horses, but may instead indicate an ability to rapidly
extract information about perceptual similarity over the
course of the experiment (as indeed very young infants
have been shown to do in random-dot category learning
studies; see Bomba & Siqueland 1983). In contrast,
recent studies by Pauen (2002a; 2002b) suggest that,
when perceptual similarity is closely controlled, preverbal
infants in object-manipulation tasks differentiate more
general semantic categories prior to basic-level categories.

Second, studies of lexical acquisition have shown that,
for fairly familiar items, children learn basic-level labels
(e.g., “dog”) prior to more general (“animal”) and more
specific (“labrador”) labels (Brown 1958; Mervis 1987).
On our reading of the literature, these findings are
robust, but they reflect constraints on word learning that
arise sometime after children have begun to differentiate
concepts at both general and basic levels. That is, the
general-before-basic pattern documented in the work of
Mandler et al. (1991) and Pauen (2002a) occurs between



7 and 9 months of age, before children have begun to
name things; and the basic-before-general pattern
observed during word learning arises because, by the
time children are learning to name, they are already repre-
senting items from different basic-level categories as quite
distinct from one another, even if they are from the same
general semantic domain.

In Chapter 5 of Semantic Cognition, we show that the
basic-before-general trend in naming can coexist in
the model with general-before-basic differentiation of
the underlying conceptual representations. We also
provide a detailed treatment of basic-level effects in
lexical acquisition and in adulthood and consider how
and why such effects change with expertise and in some
forms of dementia. In this précis, we focus on understand-
ing the coarse-to-fine differentiation of concepts that
occurs in preverbal infants when perceptual similarity is
controlled, because a full understanding of the mechan-
isms that produce the phenomenon in the model will
provide the basis for our explanation of all of the remaining
phenomena.

We trained the network shown in Figure 1 with the
same corpus of propositions used by Rumelhart and
Todd (1993). The corpus contains all of the propositions
true of each of the eight specific concepts (pine, oak,
etc.) shown in the propositional hierarchy displayed at
the top of the figure. To see how the network’s internal
representations change over time, we stopped training at
different points during learning and then stepped
through the eight items, recording the states of the rep-
resentation units for each. The top part of Figure 3
shows these activations at three points during learning.
Initially, and even after 50 epochs of training as shown,
the patterns representing the items are all very similar,
with activations hovering around 0.5. At Epoch 100, the
patterns corresponding to various animal instances are
similar to one another, but are distinct from the plants.
At Epoch 150, items from the same intermediate cluster,
such as rose and daisy, have similar but distinguishable
patterns, and are now easily differentiated from their
nearest neighbors (e.g., pine and oak). Thus, each item
has a unique representation, but semantic relations are pre-
served in the similarity structure across representations.

The arrangement and grouping of the representations
shown in the bottom of Figure 3 reflects the similarity
structure among the internal representations, as deter-
mined by a hierarchical clustering analysis. At 50 epochs
the tree is very flat, and any similarity structure revealed
in the plot is weak and arises from the random initial
values of the connection weights. By Epoch 100 the clus-
tering analysis reveals that the network has differentiated
plants from animals: all the plants are grouped under
one node, while all the animals are grouped under
another. At this point, more fine-grained structure is not
yet clear. For example, oak is grouped with rose, indicating
that these representations are more similar to one another
than is oak to pine. By Epoch 150, it is apparent that the
hierarchical relations among the concepts is fully captured
in the similarities among the learned distributed
representations.

To better visualize the process of conceptual differen-
tiation that takes place in this model, we performed a mul-
tidimensional scaling of the internal representations for all
items at 10 different points during training. The solution is
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plotted in Figure 4. The lines trace the trajectory of each
item’s representation throughout learning in the two-
dimensional compression of the representation state
space. The labeled end points of the lines indicate the
final learned internal representations after 1,500 epochs
of training. The figure shows that the items, which initially
are bunched together in the middle of the space, first
divide into two global clusters based on animacy (plant/
animal). Next, the global categories split into smaller inter-
mediate clusters, and finally the individual items are
pulled apart. In short, the network’s representations
appear to differentiate in relatively discrete stages, com-
pleting differentiation of the most general level before pro-
gressing to successively more fine-grained levels. Like
children, the model seems to distinguish fairly broad
semantic distinctions prior to more specific ones. What
accounts for this stagelike progressive differentiation?

To understand this, first consider how the network
learns about the following four objects: the oak, the
pine, the daisy, and the salmon. Early in learning, when
the weights are small and random, all of these inputs
produce a similar pattern of activity throughout the
network. Since oaks and pines share many output proper-
ties, their similar patterns produce similar error signals for
the two items, causing the weights leaving the oak and pine
units to move in similar directions. Because the salmon
shares few properties with the oak and pine, the same
initial pattern of output activations produces a different
error signal, and the weights leaving the salmon input
unit move in a different direction. What about the daisy?
It shares more properties with the oak and the pine than
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