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• Memory = any persistent effect of experience 
(not just memorization of facts, events, names, etc.)

• State-based memory (active maint., “short term” memory)
                                  vs.
• Weight-based memory (long-term memory):

- associative learning: 
     gradual, integrative cortical learning, and priming effects

- but what about one-shot learning / rapid memorization?

            there’s a fundamental problem…

Memory

☞ 
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• AB-AC paired-associates learning paradigm:
– first learn set of paired associates (AB):

– then learn new associate for 1st member of each old pair (AC)…

– then test on both sets of associations:

Paired Associates (AB-AC) Learning

• Human performance:
– “retroactive” interference: 

 get some loss of memory for AB association

– however, loss is modest and gradual (“graceful” degradation)…

window-reason 
bicycle-garbage

window-telephone 
bicycle-desk

(AB) (AC) (A)
window- 
bicycle-

_______ 
_______ 

(B)
reason
garbage
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_______ 

(C)
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• Simple pattern associator 
– input: 

• “A” stimuli 
• Context units (list label) 

– output: 
• “B” or “C” associate 

(depending upon context) 

– trained with backprop 

• Model finding…

Model of AB-AC List Learning
McCloskey & NJ Cohen (1989)
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A-B List

A-C List

♦

Model of AB-AC List Learning
• Learned first set of paired associates (AB) without any trouble
• Took a bit longer to learn the second set (AC), but do could so pretty well;  but…
• Network loses AB association even before it even begins to learn AC: 

                                                                                                          Catastrophic interference!
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•Distinction between:
– memory for actual details of an item or event (“episodes”)

♦ acquired quickly; 

– its meaning, significance, and/or what it is related to (“semantics”)
♦ acquired slowly;

•Sometimes we remember actual details quite well
– “flashbulb memories”:  where were you on Nov. 5, 2024?
– even when they are not very important
       (anyone remember the word I asked you to spell last class?)

•But usually not for very long (maybe days, but not months…)

highly specific, good for identification

more abstract, good for generalization
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Episodic vs. Semantic Distinction

• Episodic:
• memory for events and/or details:  “episodes”

• “one trial learning”

• examples:
• where did you park your car today?
• a face you have seen only one…

• vs. Semantic:
– general knowledge, relationships:  “meaning”
– experience, repeated learning
– examples:

– where is the most popular place to park?
– meanings of words…



Observe these words…





Respond yes if you saw exactly 
the following words…



rats
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• Task (Hintzman et al., 1992):
– Study:  house… rat… Nose… bee… friend… Door
– Test:    rats…   bat…  Bee…

•Semantic memory:
–  distinguished:

√ rats vs. rat →  different meaning: semantic
X bee vs. Bee →  same meaning: episodic

– “rats” seemed familiar, but “bat” did not

•Episodic memory:
– “rats” could be rejected even though it was familiar

– familiarity → semantic
– rejection → episodic
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– it takes many exposures for the learning mechanisms we’ve 

considered so far to develop meaningful, reliable representations

– they are statistical:
– where do you usually park your car?
– what do birds have in common?

• On the other hand:
– we can learn from / remember single items quickly, even “one-shot”:

– where did you park your car or bike today
– which bird was it that I just saw?

– we can even quickly learn exceptions to statistical regularities:
– a penguin is a bird that can’t fly…
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A Problem

• Solution?

– turn up the learning rate to get single trial learning: episodic memory

– but that would defeat the purpose of extracting consistent  
(statistical) relationships from experience: semantic memory

– and it is subject to catastrophic interference (remember AB-AC problem)

• Another potential solution:

– interleaved training…
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Interference in Semantic Networks
• Train network on new piece of inconsistent knowledge:

- penguin: bird that swims but doesn’t fly

• Interleaved Training:
– new information can be learned without losing old  

information (avoids catastrophic interference)
“carves out space” for penguin without disturbing other birds

– however, still can’t explain rapid (one-shot) learning

(McClelland, McNaughton & O’Reilly 1995)
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Interference in Semantic Networks

•Fundamental tradeoff:
– learn slow (semantic)

acquire “statistical” knowledge (consistent relationships)
then can’t learn single events (no episodic memory)

– learn fast (episodic)
store individual events
but then lose old stuff (catastrophic interference)

• Another possible solution to the tradeoff:
– separate patterns (distinct episodic memories)

– however, then would lose benefit of shared structure (semantic knowledge)
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Division of Labor
Remember Specifics

e.g., Where did I park today?

Goal: Avoid interference

Solution:

separate representations
(keep days separate)

System:

Extract Generalities

e.g., Where do I usually park?

Goal: Accumulate experience

Solution:

overlapping representations
(integrate across days)

System: Neocortex 

D1 D2 D1 D2
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Hippocampus and Episodic Memory

• Anterograde amnesia (Scoville & Milner, 1957)

– HM  hippocampus removed to treat intractable epilepsy
impaired explicit / episodic memory

paired associates
one trial learning:  recognition of a new face

spared  implicit / semantic memory
category learning
priming
skill learning
familiarity judgements

• Retrograde amnesia (Squire, 1986)

– recent memories lost
– old ones spared

⇒ episodic memories initially stored in hippocampus
⇒ ends up somewhere else
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• Brain solves the problem of the fast/slow tradeoff in learning 
by having two learning systems:

– One learns quickly, separates, and stores episodic information

– The other learns slowly, aggregates, and stores semantic information

Complementary Learning Systems Hypothesis

neocortex

hippocampus
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•Encoding of arbitrary new associations: short (intermediate) term memory
– orthogonalization:  separation of representations to ensure specificity of association

– isolate items from their semantic (statistical) associations:  
where did I park my car today, irrespective of where I usually park it

– binding:  rapid formation of associations
– one- (or “k”)-shot learning  

– Neural mechanisms
– orthonalization:  projection of cortical representations into high dimensionality of dentate gyrus
– binding:  long term potentiation (LTP) — rapid synaptic plasticity

– Computational mechanisms
– rapid Hebbian (associational) learning
– “neural dictionary:”  key-value pairing

•Consolidation into neocortex: long term memory
– slowly “sift flour” of new information into “dough” of old knowledge:

– reinstatement through hippocampus replay (reheasrsal)
– interleaved training of cortex

– why must it be slow?
– ensure it is relevant
– minimize disruption of existing knowledge

Functions of Hippocampus
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Want associations
from here to here

Episodic 
Memory

Binding

and here to here

Associations can 
now be retrieved…

and with time,  
consolidated
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Functions of Hippocampal Reinstatement

•Recall 
–Retrieve “snapshots” of recent events

•Training 
–Replay to expose neocortex in interleaved fashion
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•Abstract model of hippocampus:
- Algorithm for reinstatement of learned items in a cortical network 

(cortical network comparable to McCloskey & Cohen  — 3 layer backprop)

- Reinstatement with probability:
⬆ with salience/importance of original item
⬇ with time
⬆ for task-relevant vs. task-irrelevant contexts

- This captured the hypothesized dynamics of learning within the hippocampus,  
without actually simulating these in network form
(Norman et al. 2006: similar results using actual neural network for hcmp)

•Simulated effects of consolidation in animal studies
  For example…
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Training:

15 pairings of tone & footshock

Bilateral hippocampus lesion or sham
1, 7, 14 or 28 days after training

Tested 7 days after lesion
Tone presented
Fear response assessed

Memory Consolidation in Rodents
(Kim & Fanselow, 1992)

Lesioned 
immediately
after training

Lesioned  
later

after training

♦
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•Simulation: 3 layer network (16 units at each layer)
- Pre-training:

20 input-output pairs (random patterns): network’s “background knowledge”
Each of these patterns was reinstated once per simulated “day” of training

- Experimental training (simulation of tone ➠ footshock):
One additional pair (input ≈ tone; output ≈ fear response)
Reinstated interleaved with other 20 patterns on each “day”  
(to simulate storage in the hippocampus until it was “lesioned”

- Testing:
Error on test pair (tone ➠ foot shock)

- Parameterization:
Learning rate adjusted to fit empirical data
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Simulation Results
(McClelland, McNaughton & O’Reilly, 1995)

The later the lesion…

the better  
the retention
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•Functions:
– deliberation: “vicarious trial and error”   — fatigue 

    (Tolman, 1939; Reddish, 2016; Agrawal, under review)  
– planning and prospective memory:  “pre-play”  

   (Cohen & O’Reilly, 1996;  Einstein & McDaniel, 2005; Momennejad et al., 2020)  
– working memory “assist” 

   (Hoskin et al., 2019;  Beukers et al., in prep)

– sleep…

Consolidation as “Replay”
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Sleep and Dreaming

Why?


