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Mental representations compete to
become active



duck? rabbit?






What did you have for breakfast today?




Reducing Competition Through Learning

- To function properly, we need to be able to quickly and
reliably access relevant knowledge

- | will describe a simple, biologically-grounded learning
principle that optimizes memory retrieval by detecting and
then reducing competition



Reducing Competition Through Learning

Nonmonotonic Plasticity Hypothesis
(NMPH)
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Evidence for Nonmonotonic Plasticity
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 Neural evidence:

- At the synaptic level, moderate excitation of the
postsynaptic neuron leads to synaptic weakening (LTD)
 Higher levels of excitation lead to synaptic strengthening

(LTP; e.g., Artola et al., 1990)



Evidence for Nonmonotonic Plasticity
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- Computational modeling work in my lab suggests that this
synaptic-level principle should “scale up” to the level of
cognitive representations (Norman et al., 2006, Neural
Computation; Norman et al., 2007, Psychological Review)

- Long tradition of neural network modeling work using learning
rules with this form (e.g., Bienenstock, Cooper, & Munro, 1982)
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Outline

Situate NMPH relative to other kinds of learning
Implications of NMPH for memory weakening

+ Key prediction: Moderate activation leads to weakening
of competing memories

Implications of NMPH for the similarity structure of
memories

+ Key prediction: Moderate activation leads to
differentiation of competing memories

Current directions
- Role of NMPH in learning during sleep
 Using neurofeedback to promote discrimination learning



Outline

Situate NMPH relative to other kinds of learning
* Implications of NMPH for memory weakening

- Key prediction: Moderate activation leads to weakening
of competing memories

» Implications of NMPH for the similarity structure of
memories

- Key prediction: Moderate activation leads to
differentiation of competing memories

« Current directions

* Role of NMPH in learning during sleep
- Using neurofeedback to promote discrimination learning



High-Level Overview of Neural Learning Rules

« Key goal of learning: build an internal model of the world
that allows you to make accurate inferences / responses
given a particular input

Deep neural network

squirrel-relevant
predictions (climb
trees, eat nuts, etc)

“this is a squirrel”

https:/towardsdatascience.com/explainable-ai-the-key-to-open-black-boxes-4ad09e04d791



High-Level Overview of Neural Learning Rules

- Researchers have come up with several ideas about how
we learn this internal model

- Supervised: compare your guess to the right answer
- Unsupervised: where you don’t have access to the right
answer



Supervised Learning

- Make a guess; compare to outcome; adjust weights to
minimize discrepancy between guess and outcome

- Workhorse of deep learning (e.g., backpropagation)

- Extremely powerful — the magic of LLMs depends on this,
as do advances in computer vision

- There’s widespread consensus that the brain needs to be
doing some kind of supervised learning

- Lots of recent progress in thinking about how this can be
implemented in the brain (e.g., Richards et al., 2019;
Lillicrap et al., 2020; Whittington & Bogacz, 2109)



Unsupervised Learning

« Supervised learning requires us knowing the correct answer,
which we can compare to our guess

- Importantly, there are many useful kinds of learning that we
can do, even when we don’t know the correct answer

IF two things are known to be the same (in some sense)
THEN push their internal representations together



Unsupervised Learning

« This kind of idea...

 pushing together representations of the “same” things
- pulling apart representations of “different” things

* ... has become very popular in computer vision



Unsupervised Learning

Unsupervised neural network models of the ventral

visual stream

Chengxu Zhuang®'®, Siming Yan®®, Aran Nayebi‘®, Martin Schrimpf!®, Michael C. Frank®®, James J. DiCarlo®®, and
Daniel L. K. Yamins®®f

» Networks imbued with this kind of learning (in addition to
supervised learning):

- Perform better on object recognition benchmarks
« Develop visual representations that map more closely
onto neural data

- While this supports the idea that the brain is doing
something like this, how exactly the brain does this is a
topic of active investigation



Back to the NMPH
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» Definitely a form of unsupervised learning — no need to
specify the “right answer”

- Simpler than the form of unsupervised learning | just
discussed — no need to mark inputs as “same” or “different”

- Clear biological basis



Back to the NMPH
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« Goal of our lab’s work: See how much we can explain with this
very simple form of plasticity

 Important point: Not mutually exclusive with other ideas about
plasticity



Outline

Situate NMPH relative to other kinds of learning
Implications of NMPH for memory weakening

- Key prediction: Moderate activation leads to
weakening of competing memories

Implications of NMPH for the similarity structure of
memories

- Key prediction: Moderate activation leads to
differentiation of competing memories

Current directions
* Role of NMPH in learning during sleep
- Using neurofeedback to promote discrimination learning



How do competitive dynamics drive learning?

- When representations compete, the representation that
wins the competition becomes easier to retrieve later

* e.g., testing effects (Karpicke & Roediger, 2008)

- What happens to memories that compete but lose the
competition?

+ Several lines of research suggest that people can inhibit
these irrelevant memories in a lasting fashion

* “Inhibit” = something happens to these memories that
makes them harder to retrieve in the future



Retrieval-Induced Forgetting (RIF)

(Levy & Anderson, 2002)

STUDY PRACTICE TEST
Fruit — Apple Frut—-A
Fruit — Pear ||‘ it P ||‘ Fruit—P___

Animal — Sheep — Animal-S
Animal - Cow Animal-C__




Retrieval-Induced Forgetting (RIF)

(Levy & Anderson, 2002)

STUDY PRACTICE TEST
Fruit — Apple Frut—-A
Fruit — Pear ||‘ it P ||‘ Fruit—P___

Animal — Sheep — Animal-S
Animal - Cow Animal-C__

 Retrieval practice helps the practiced item (Pear) & hurts
non-practiced items from the practiced category (Apple)

1 (=



Think/No-Think (Anderson & Green, 2001)

- Study phase: Learn word pairs like “elephant-wrench”

- Later, participants are given cue words and told not to think of
the studied associate

- At the end of the experiment, participants are given a cued
recall memory test for studied items

* The no-think procedure leads to impaired recall



Variability

- These “inhibitory” memory effects are highly variable

- While a large number of studies have replicated Anderson’s
think/no-think effect...

- .. there have also been several published failures to replicate
these results (e.g., Bulevich et al., 2006; Bergstrom et al.,
2007)

- Same thing with other inhibitory effects (e.g., retrieval-induced
forgetting)



Explaining Inhibitory Memory Effects
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Wrench
« No think trial: Don’t think of what went with Elephant



Explaining Inhibitory Memory Effects
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Wrench
« No think trial: Don’t think of what went with Elephant



Explaining Inhibitory Memory Effects
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Wrench
« No think trial: Don’t think of what went with Elephant



Explaining Inhibitory Memory Effects

Strengthening

<
d
o
c
o
S
wid
”
o
£
o
S
=
o
o
c
©
<
(&)

Weakening

Low Moderate High

Degree of memory activation

Wrench

- This theory makes it clear how inhibition can arise in this
paradigm, and also why it is very difficult to get this effect...



Explaining Inhibitory Memory Effects
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Wrench
« How do we test this idea?



Measuring Memory Activation using tMRI
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Wrench

- Our approach: use pattern classifiers, applied to fMRI and
EEG data, to measure how strongly memories are coming
to mind on individual trials

 We then relate this covert neural measure of retrieval to
performance on the final memory test



fMRI Study of Think / No-Think (Detre et al.,
2013)

Greg Detre \EIETRNEIETETE Sam Gershman



Detre et al. (2013)

« As in Anderson & Green (2001), participants studied novel
paired associates

- Instead of word-word pairs (like elephant-wrench), we used
word-picture pairs

- Pictures were drawn from 4 categories: Face, Scene, Car, Shoe

nickel




Detre et al. (2013)

- Standard 3-phase design

- study word-picture pairs
« Think / no-think phase
- memory test for studied pairs

nickel




Detre et al. (2013)

- Pattern classification approach:

- We trained fMRI pattern classifiers to track activation relating
to the four categories (Face, Scene, Car, Shoe)

+ We used these classifiers to covertly track recall on no-think
trials

nickel




Sample No-Think Trial

- If nickel was paired with a scene at study, we would use the
scene classifier on this trial to measure the extent to which the

scene associate was coming to mind

 Prediction for this trial: Moderate levels of scene activity should
be associated with forgetting, higher levels of scene activity
should be associated with improved memory



Analysis of fMRI Data

Analysis goal: Estimate the shape of the function relating:
how strongly a memory activated during the no-think
phase (as measured by the classifier), and

how well that memory was recalled on the final test

To map out the shape of this function, we used an algorithm
developed in my lab: P-CIT
Probabilistic Curve Induction and Testing (Detre et al., 2013)
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How P-CIT Works

- Step 1: Randomly generate a large number of curves

- Step 2: For each randomly generated curve, evaluate how
well it explains our data

- Step 3: Compute a weighted average of the curves, where
each curve is weighted by how well it explains the data
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Parameterized Curve

* Problem: The space of all possible curves is too big
- Solution: Use parameterized curves

th-a=0.0000, th—-p=0.5000, th—d=0.5000
gn=-0.6000, rmp=0.1000, y2=0.4000
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Change in Memory Strength

Examples of Curves

th-a=0.0000, th-p=0.5000, th—d=0.5000
gn=-0.6000, rmp=0.1000, y2=0.4000
T T T T
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th—-a=-0.3639, th—p=0.5407, th-d=0.8699

gn=0.0450, rmp=0.2558, y2=0.7223
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Curve Examples

th-a=-0.6191, th-p=0.6665, th—-d=0.1781
gn=-0.0360, rmp=0.6488, y2=0.1887
T T T
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Curve Examples

th—-a=-0.1007, th-p=0.6787, th—-d=0.7577
gn=-0.2569, rmp=-0.2155, y2=0.6555
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Curve Examples

th-a=0.9238, th-p=0.4505, th-d=0.0838
gn=0.8213, rmp=0.2441, y2=-0.9007
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Curve Examples

th-a=0.1366, th—p=0.6948, th—-d=0.3171
gn=-0.0499, rmp=-0.9311, y2=0.4388
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Curve Examples

th—a=-0.2200, th-p=0.4317, th—-d=0.9976
gn=0.6663, rmp=-0.2787, y2=-0.9362
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Estimated curve

Scene No-Think Trials
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* Results were consistent with the nonmonotonic plasticity
hypothesis




Summary Thus Far...

U-shaped result in think-no think
... and in several other studies, not shown here

Think-no think involves use of executive control
Michael Anderson has argued that use of executive control is
necessary to get these effects (e.g., Anderson & Huddleston,

2012)

To the contrary, our model posits that executive control is not
necessary for memory inhibition



Role of Executive Function in Causing Forgetting
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 According to our theory, the level of activation of a
representation determines the learning that takes place

- Top-down control processes can indirectly affect learning by
affecting the level of activation of the memories



Role of Executive Function in Causing Forgetting
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« For example, in the think-no think paradigm, top-down control
processes can boost forgetting by taking an item that would
normally fall in the green zone and pushing it down into the
red zone



Role of Executive Function in Causing Forgetting
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+ Key implication of our model: While top-down control can
promote memory inhibition, top-down control is not (strictly
speaking) necessary in order to get memory inhibition

- If a memory activates moderately in the absence of top-down
control, forgetting should occur



Statistical Learning
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Later: surprise recognition test for
faces and scenes



Design in encoding phase

Initial triplet Repeated triplet

Scene Scene Scene Scene

Control




Design in encoding phase

Initial triplet

Question: How does prediction of the scene affect subsequent
memory for the scene?



Design in encoding phase

Initial triplet




Design in encoding phase

Initial triplet

Question: How does perception
of the scene during the initial
triplet affect subsequent
memory?




Design in encoding phase

Initial triplet Repeated triplet

Analysis strategy:

Use pattern classifiers to measure activity relating to
perception and prediction

Relate these activity measurements to subsequent memory




Change in Memory Strength

Relationship between prediction strength

and subsequent memory

P(theory consistent) = 0.2398
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Change in Memory Strength

Relationship between perceptual activity
and subsequent memory

P(theory consistent) = 0.7894
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Change in Memory Strength

P(theory consistent) = 0.9908
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Summary: Statistical Learning

« We used a pattern classifier to relate activity during
perception and prediction to subsequent memory

- We found a consistent relationship where, for both
perception and prediction, moderate levels of activation
were associated with worse memory

- These results fit with the nonmonotonic plasticity
hypothesis
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Summary: Statistical Learning

- Importantly, participants reported being completely
unaware that the contexts were repeating

- It appears that forgetting was occurring as a result of
Implicit predictions triggered by context; there was no
explicit intent to retrieve and no awareness of retrieval

 This suggests that memory inhibition effects do not
require an intent to retrieve or an intent to suppress



Outline

- Situate NMPH relative to other kinds of learning
* Implications of NMPH for memory weakening

+ Key prediction: Moderate activation leads to weakening
of competing memories

- Implications of NMPH for the similarity structure
of memories

- Key prediction: Moderate activation leads to
differentiation of competing memories

» Current directions
* Role of NMPH in learning during sleep
 Using neurofeedback to promote discrimination learning



Representational Change

- Up to this point, | have been discussing coarse-grained
predictions about strengthening and weakening of entire
memories

- Now | will discuss finer-grained predictions, dealing with
how neural representations grow more or less similar as
a function of training

 Our initial investigations looked at this in the context of
interleaved learning

- What happens if you have two competing stimuli, and
you alternate back and forth between studying them
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NRP’ed CA , BP’ed CA

FRUITS POSTDOCS

38%

JUSTIN JEREMY
Rp- Rp+

Levy & Anderson (2002, TiCS)



The Retrieval
Practice Paradigm

Hypothetical Data

@
<]
X

Final Recall Accuracy

RP only

B Rp- [ Nrp [] Rp+

Initial Study

FRUITS-LEMON
POSTDOCS-JEREMY
FRUITS-LIME
POSTDOCS-JUSTIN

Retrieval Practice (RP)

POSTDOCS-JE

Final Test

FRUITS-LE____
POSTDOCS-JU____
FRUITS-LI____

POSTDOCS-JE____




Key

« Nrp, Restudied
= Rp-, Restudied

RIF
@ Reverse RIF (revRIF)
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Effects of Interleaved Rp and Restudy

Storm, Bjork, & Bjork (2008, JEP:LMC)



JEREMY (Ro+)
JUSTIN (Rp-)

Weights After Restudy

Representational Differentiation
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Hulbert & Norman (2015, Cerebral Cortex)



Rp’ed

00000000 00000000 UOUUO0VWO
Abner Amin

Angus  Arlen Edbert Egan Emmet Eton
Alden  Amos Anton Asher Efren Elden Ennis

names:

Garret Gino  Godwin Griswold
Gifford Glenworth Gordie Gunther
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names: Landin Lester Linton  Luka Oakley

Olaf Orrin  Osgood Parrish Paxton Percy Prescott
Leroy Levar Lonnie Luther Odin Omar Orson  Oxley Patrice Pearson Perry Pryor

Ewan

categories:

Nrp’ed

exemplars:

The Cast of Characters

Hulbert & Norman (2015, Cerebral Cortex)



Rp+
(competitive)

a‘:

Abner the Ape

2) Interleaved
Retrieval Practice
& Restudy

3) Post-Manipulation
Acquisition

4) Final
Behavioral Test

Rp- & Nrp
(non-competitive)

Hulbert & Norman (2015, Cerebral Cortex)



The Design

Scanning

RP2 RP3

(h)
20
€0
< ®
Zo

Neural Learning Score: (Nrp’edz - Nrp’edy) - (Rp’ed2 - Rp’edy)



N=24

Final Test Performance
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0.25 T T

Rp- Nrp RP+
Condition

Behavioral Results

Hulbert & Norman (2015, Cerebral Cortex)



Key prediction:

IF revRIF occurs because of neural differentiation,
THEN

Across participants, the amount of neural
differentiation should predict the amount of
behavioral revRIF

Neural Learning & revRIF

Hulbert & Norman (2015, Cerebral Cortex)



Both Hippocampi

Neural Learning & revRIF , it Hepocampue

Neural Learning Score: (Nrp’edz - Nrp’edy) - (Rp’ed2 - Rp’edy)
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© Left Hippocampus




» As predicted by a neural network model of memory:

@ \We observed a trend towards revRIF

@ Differentiation in the left hippocampus predicted revRIF
» Without differentiation, memory is a zero-sum game
» Differentiation provides a way out of this zero-sum trap

@ Pulling representations apart reduces competition while still
preserving access to all of the memories

Conclusions

Hulbert & Norman (2015, Cerebral Cortex)



Further Tests of Differentiation Prediction

« Hulbert & Norman (2015) showed that differentiation
can occur after competition & restudy

 Crucially, the NMPH predicts that differentiation will
depend on the level of activation of the competing

memory



Differentiation after moderate activation
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No competitor activation = no learning

Competition
trial



Strong competitor activation =
integration
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Further Tests of Differentiation Prediction

- To test the prediction that differentiation is activation-
dependent, Kim, Norman, & Turk-Browne (2017, J.
Neurosci.) used a statistical learning paradigm



Further Tests of Differentiation Prediction
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Pattern similarity (r)

Results

Pre-post pattern similarity
between A and B in hippocampus
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Correlation between
prediction & differentiation (r)

Results

Relationship of B item prediction
during violation to pre-post AB
pattern similarity
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Further Tests of Differentiation Prediction

« Kim, Norman, &

Turk-Browne 5
(2017, J. g
Neurosci.) E

showed activity
dependence of
differentiation, but
they did not show
the “full U”
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* |In our next study,
we set out to do
this

classifier evidence



Change in Pattern Similarity

differentiation

LO HI

Competitor Activation

How do we sample the full activity
continuum from low to high?

Key idea: Parametrically manipulate
the visual similarity of the competing
items

Higher levels of visual similarity
=> more representational overlap
=> more competitor activation

Kim et al. (2017) used unrelated scene
images

By increasing visual similarity, we can
access higher levels of competitor
activation and trace out the full U

Slightly different logic from previous studies: Instead of measuring
competitor activation, manipulate it in a graded fashion (8 levels of
visual similarity)



Wammes et al. (2022, eLife)



Wammes et al. (2022, eLife)
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Solving Puzzles Relating to
Representational Change

Victoria Alex Nick
Ritvo Nguyen Turk-
Browne



Solving Puzzles Relating to
Representational Change

« Supervised learning models that | mentioned earlier adjust
internal representations to minimize prediction error

- According to these models:

- Stimuli with similar predictive consequences end up
with more similar internal representations

- Stimuli with different predictive consequences end up
with more distinct (differentiated) internal representations

- Lots of fMRI data consistent with this (e.g., Schapiro et al.,
2013, 2016; Tompary & Davachi, 2017)



Solving Puzzles Relating to
Representational Change

- At the same time, some recent fMRI findings have
challenged the supervised-learning account (Favila et al.,
2016; Schlichting et al., 2015; Molitor et al., 2021)

- All of these findings have the property that linking two stimuli
to the same associate makes their representations less
similar, not more similar

- for related findings, see Chanales et al. (2017);
Dimsdale-Zucker et al. (2018); Ballard et al. (2019);
Wanijia et al. (2021); Zeithamova et al. (2018); Jiang et
al. (2020); Fernandez et al. (2023)



Favila et al., 2016

Scene—face learning
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Solving Puzzles Relating to
Representational Change
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Relating the NMPH and Supervised Learning

« Supervised learning can’t explain some fMRI data on
representational change (e.g., Favila et al., 2016)

« NMPH can fill in this gap

 Importantly, the NMPH is not meant to replace supervised
learning

 The ability to learn to predict specific outcomes from
iInputs is too valuable to replace

- Rather, we think of NMPH learning as supplementing
supervised learning



Relating the NMPH and Supervised Learning

From a functional perspective, why do we need both
NMPH and supervised learning?

Supervised learning can train complex neural nets to make
useful predictions...

... but these networks can suffer from major problems
relating to competition

If the network vacillates between nearby states without fully
settling into one, this can prevent the network from acting
decisively in response to the current stimulus



Relating the NMPH and Supervised Learning

- Key claim: NMPH does housekeeping in the brain
« When memories compete, NMPH restructures memories:

- if the competing memory activates moderately, NMPH
pushes it away, so it competes less

- if the competing memory activates strongly, NMPH
Integrates the memories together, so they compete less



Differentiation and the Hippocampus

- Common thread: Differentiation effects are most reliably
observed in the hippocampus (although they are sometimes
observed elsewhere)

« What explains this?

« One factor: hippocampal representations are sparse (not
many neurons can be active at once)...

* ... SO it’s hard to activate competitors strongly

- Put another way: Activity might be “confined” to the
moderate activation range that gives rise to differentiation

« Another factor: Hippocampus has a large learning rate



Differentiation after moderate activation
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What happens with a smaller learning
rate

Competition Restudy trial
trial




What is the purpose of hippocampal
differentiation?

- Standard story about hippocampal functioning: It is wired to
try to assign orthogonal representations to similar stimuli
(“pattern separation”; Yassa & Stark, 2011; Marr, 1971)

« Key point: The hippocampus’ pattern separation abilities are
limited — when inputs to the hippo are very similar, there
might end up being enough overlap to cause competition
and degrade performance

- In this case, it is useful to have an extra “emergency”
mechanism that completely removes overlap between the
hippocampal representations

« ... and that is what we think the NMPH does



What is the purpose of hippocampal
differentiation?

* You wouldn’t want to use this “emergency differentiation”
mechanism routinely

- |f the hippocampus used completely non-overlapping codes
routinely it would rapidly run out of space

- But we think this is a useful mechanism to deploy on an “as
needed” basis to mitigate competition



What is the purpose of hippocampal
differentiation?

- Rapidly-formed, differentiated hippocampal codes can act as
a kind of “pry bar” to help pull apart representations
elsewhere in the brain (e.g., cortex)

- When studies report differentiation effects in cortex, we think
this may reflect the influence of projections from
differentiated representations in the hippocampus

- By replaying memories over time, hippocampus can teach
cortex to distinguish these representations on its own



Outline

Situate NMPH relative to other kinds of learning
Implications of NMPH for memory weakening

+ Key prediction: Moderate activation leads to weakening
of competing memories

Implications of NMPH for the similarity structure of
memories

+ Key prediction: Moderate activation leads to
differentiation of competing memories

Current directions
* Role of NMPH in learning during sleep
- Using neurofeedback to promote discrimination learning



NMPH Learning During Sleep

 During sleep, the brain is cut off from the world and sensory
input can not provide a “target” for supervised learning

* ... S0 the brain needs to rely on unsupervised learning rules
like the NMPH

- Sleep consists of multiple, neurophysiologically distinct stages



Stages of Sleep

e 3 stages of non-REM (NREM) sleep
o Stage 1
o Stage 2
o Stages 3 and 4: together known as slow wave sleep
(SWS)

e Rapid eye movement (REM) sleep

90 minute sleep cycle




A Good Night’s Sleep

Sleep onset

/  ReMsleep

l[rl

Stage 2 NREM

Early sleep : Late sleep

T T T T f T T T T
23:00 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:0C

Hours

e SWS is more prevalent toward the beginning of the
night

e REM is more prevalent toward the end of the night

Diekelmann & Born (2010, Nature Reviews Neuroscience)



Slow wave sleep (SWS)

- Strong coupling between hippocampus and cortex

 Strong evidence for neural replay of recently experienced
events

- Thought to be involved in systems consolidation

Cell ensembles contributing to...

L
pe ® Recently encoded neocortical part of a representation P ® Associated pre-existing representation

./‘ Recently encoded hippocampal part of a representation Unrelated pre-existing representation

Klinzing et al. (2019), Nature Neuroscience



REM sleep

 Less coupling between hippocampus and cortex

 Less evidence for replay (but still some)

* Function is less well understood

* Hypothesis: REM sleep may play a key role in
representational change

- During REM, the brain settles on newly acquired
memories and activation is allowed to spread outward

- Representations are adjusted using NMPH

- Theta oscillations during REM may play a role in
promoting plasticity (Boyce et al., 2016; Poe et al., 2000)
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NMPH Learning During Sleep

- This ability to re-evoke competitors repeatedly through
oscillations suggests REM may be particularly useful for
driving representational change

- |In some situations, waking plasticity alone may not be
sufficient to cause differentiation...

* ... In which case you may also need REM sleep to show these
effects



NMPH Learning During Sleep

- Sleep-dependent plasticity may have (inadvertently) played a
role in the Kim et al. (2017) statistical learning study that |
mentioned earlier
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Non-violation




Pattern similarity (r)
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NMPH Learning During Sleep

 Crucially, there was a 1-day gap between the statistical
learning task and the imaging session where we took post-
learning “snapshots” of neural representations of the scenes

* Presumably, participants slept during this 1-day gap

- That period of sleep might (or might not) have contributed to
the hippocampal differentiation effect that we observed



NMPH Learning During Sleep
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NMPH Learning During Sleep
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NMPH Learning During Sleep
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Modeling Learning During Sleep
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A model of autonomous interactions between hippocampus
and neocortex driving sleep-dependent memory consolidation
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Neurofeedback and the NMPH

« Can we use neurofeedback, in concert with the NMPH, to
facilitate learning of difficult tasks?

* Focus on discrimination learning:

 Learning to give different responses to similar stimuli

» Discrimination learning is challenging because similar stimuli
tend to strongly coactivate (as in Wammes et al., 2022,

above)

- This strong coactivation will lead to integration (which hurts
discrim. learning) instead of differentiation (which would help)

- How do we “turn the tide” from integration to differentiation?



Neurofeedback and the NMPH

* Intuition: if we can somehow engineer a situation where the
to-be-discriminated stimuli moderately coactivate (instead of

strongly coactivating)...

- ... this will trigger neural differentiation, which will faciliate
differential responding to the two stimuli



Neurofeedback and the NMPH

- We set out to test this idea in a study led by Coraline lordan
(lordan et al., 2024, PNAS)

Jon Cohen Nick Turk-Browne Victoria Ritvo

Coraline lordan



Stimulus Set: Fourier-Descriptor Shape Space

Op de Beeck et al. (2001), Kok et al. (2018)







Manipulating stimulus representations
with the NMPH
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Manipulating stimulus representations
with the NMPH

N NONON N
N NONON N _
s



Manipulating stimulus representations
with the NMPH
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Manipulating stimulus representations
with the NMPH
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Manipulating stimulus representations
with the NMPH
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Manipulating stimulus representations
with the NMPH

)
.0
O

Classifier

¥

Classifier

Reward

p



Manipulating stimulus representations
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Manipulating stimulus representations
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Manipulating stimulus representations
with the NMPH

")

80000

O00®@®
N

Classifier

¥

Classifier




Manipulating stimulus representations
with the NMPH

Classifier‘ Classifier

¥

N



Manipulating stimulus representations
with the NMPH

Classifier Classifier

R ¥
O00 0@
D00 0@

W




Manipulating stimulus representations
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Manipulating stimulus representations
with the NMPH

Wiggle Wiggle

more‘ K less
i @O O O
__NONONG®

Reward

s

<Wiggles>






Behavioral Norming: Match-to-Category 2AFC




Behavioral Norming: Match-to-Category 2AFC
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Perceptual Distinctions Enhanced Across Category Boundary
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- The flow of activation through neural networks can powerfully
sculpt memories that are activated

- strengthening them or weakening them
* integrating or differentiating them

- .. In ways that can’t always be explained by supervised learning

- The NMPH provides a promising framework for understanding
these unsupervised learning effects
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- We are particularly excited to find ways to leverage the
NMPH to drive new learning in difficult situations...
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 There is much more work to be done to test & refine these
ideas

« Good news: we've gotten much better at measuring memory
activation and representational change with fMRI

« We are making progress in building computational models
of these NMPH effects
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