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Mental representations compete to 
become active



duck? rabbit?





What did you have for breakfast today?



Reducing Competition Through Learning
• To function properly, we need to be able to quickly and 

reliably access relevant knowledge

• I will describe a simple, biologically-grounded learning 
principle that optimizes memory retrieval by detecting and 
then reducing competition



Reducing Competition Through Learning
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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Nonmonotonic Plasticity Hypothesis 
(NMPH)



Evidence for Nonmonotonic Plasticity

• Neural evidence:

• At the synaptic level, moderate excitation of the 
postsynaptic neuron leads to synaptic weakening (LTD)

• Higher levels of excitation lead to synaptic strengthening 
(LTP; e.g., Artola et al., 1990)
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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Evidence for Nonmonotonic Plasticity

• Computational modeling work in my lab suggests that this 
synaptic-level principle should “scale up” to the level of 
cognitive representations (Norman et al., 2006, Neural 
Computation; Norman et al., 2007, Psychological Review)

• Long tradition of neural network modeling work using learning 
rules with this form (e.g., Bienenstock, Cooper, & Munro, 1982)
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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Outline
• Situate NMPH relative to other kinds of learning

• Implications of NMPH for memory weakening

• Key prediction: Moderate activation leads to weakening 
of competing memories

• Implications of NMPH for the similarity structure of 
memories

• Key prediction: Moderate activation leads to 
differentiation of competing memories

• Current directions
• Role of NMPH in learning during sleep
• Using neurofeedback to promote discrimination learning 



Outline
• Situate NMPH relative to other kinds of learning

• Implications of NMPH for memory weakening

• Key prediction: Moderate activation leads to weakening 
of competing memories

• Implications of NMPH for the similarity structure of 
memories

• Key prediction: Moderate activation leads to 
differentiation of competing memories

• Current directions
• Role of NMPH in learning during sleep
• Using neurofeedback to promote discrimination learning 



High-Level Overview of Neural Learning Rules
• Key goal of learning: build an internal model of the world 

that allows you to make accurate inferences / responses 
given a particular input

https://towardsdatascience.com/explainable-ai-the-key-to-open-black-boxes-4ad09e04d791

“this is a squirrel”

squirrel-relevant 
predictions (climb 
trees, eat nuts, etc)



High-Level Overview of Neural Learning Rules

• Researchers have come up with several ideas about how 
we learn this internal model

• Supervised: compare your guess to the right answer
• Unsupervised: where you don’t have access to the right 

answer



Supervised Learning

• Make a guess; compare to outcome; adjust weights to 
minimize discrepancy between guess and outcome

• Workhorse of deep learning (e.g., backpropagation)

• Extremely powerful — the magic of LLMs depends on this, 
as do advances in computer vision

• There’s widespread consensus that the brain needs to be 
doing some kind of supervised learning 

• Lots of recent progress in thinking about how this can be 
implemented in the brain (e.g., Richards et al., 2019; 
Lillicrap et al., 2020; Whittington & Bogacz, 2109)



Unsupervised Learning
• Supervised learning requires us knowing the correct answer, 

which we can compare to our guess

• Importantly, there are many useful kinds of learning that we 
can do, even when we don’t know the correct answer

IF two things are known to be the same (in some sense) 
THEN push their internal representations together



Unsupervised Learning
• This kind of idea…

• pushing together representations of the “same” things
• pulling apart representations of “different” things

• … has become very popular in computer vision



Unsupervised Learning
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Unsupervised neural network models of the ventral
visual stream
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Deep neural networks currently provide the best quantitative
models of the response patterns of neurons throughout the
primate ventral visual stream. However, such networks have
remained implausible as a model of the development of the
ventral stream, in part because they are trained with super-
vised methods requiring many more labels than are accessible to
infants during development. Here, we report that recent rapid
progress in unsupervised learning has largely closed this gap.
We find that neural network models learned with deep unsuper-
vised contrastive embedding methods achieve neural prediction
accuracy in multiple ventral visual cortical areas that equals or
exceeds that of models derived using today’s best supervised
methods and that the mapping of these neural network models’
hidden layers is neuroanatomically consistent across the ventral
stream. Strikingly, we find that these methods produce brain-
like representations even when trained solely with real human
child developmental data collected from head-mounted cameras,
despite the fact that these datasets are noisy and limited. We
also find that semisupervised deep contrastive embeddings can
leverage small numbers of labeled examples to produce represen-
tations with substantially improved error-pattern consistency to
human behavior. Taken together, these results illustrate a use of
unsupervised learning to provide a quantitative model of a mul-
tiarea cortical brain system and present a strong candidate for
a biologically plausible computational theory of primate sensory
learning.

ventral visual stream | deep neural networks | unsupervised algorithms

The remarkable power of primate visual object recognition is
supported by a hierarchically organized series of anatom-

ically distinguishable cortical areas, called the ventral visual
stream. Early visual areas, such as primary visual cortex (V1),
capture low-level features including edges and center-surround
patterns (1, 2). Neural population responses in the highest ven-
tral visual area, inferior temporal (IT) cortex, contain linearly
separable information about object category that is robust to
significant variations present in natural images (3–5). Midlevel
visual areas such as V2, V3, and V4 are less well understood,
but appear to perform intermediate computations between sim-
ple edges and complex objects, correlating with sequentially
increasing receptive field size (6–14).

Recently, significant progress has been achieved in approxi-
mating the function of the adult primate ventral visual stream
through using deep convolutional neural networks (DCNNs), a
class of models directly inspired by many of these neurophysio-
logical observations (15, 16). After being trained to learn image
categorization tasks from large numbers of hand-labeled images,
DCNNs have yielded the most quantitatively accurate predictive
models of image-evoked population responses in early, interme-
diate, and higher cortical areas within the ventral visual stream
(17–20). The behavioral error patterns generated by these net-
works are also more consistent with those of humans and non-
human primates than alternative models (21). Notably, such

networks are not directly optimized to fit neural data, but rather
to solve behaviorally relevant tasks such as object recognition.
Strong neural and behavioral predictivity just “falls out” of these
“goal-driven” neural network models as a consequence of the
high-level functional and structural assumptions constraining
the networks’ optimization (22). Similar task-based neural net-
work optimization approaches have led to successes in modeling
the human auditory cortex (23) and aspects of motor cortex
(24). These results suggest that the principle of “goal-driven
modeling” may have general utility for modeling sensorimotor
systems.

Although this progress at the intersection of deep learning and
computational neuroscience is intriguing, there is a fundamen-
tal problem confronting the approach: Typical neural network
models of the ventral stream are built via supervised training
methods involving huge numbers of semantic labels. In particu-
lar, today’s best models of visual cortex are trained on ImageNet,
a dataset that contains millions of category-labeled images orga-
nized into thousands of categories (25, 26). Viewed as a technical
tool for machine learning, massive supervision can be accept-
able, although it limits the purview of the method to situations
with large existing labeled datasets. As a real model of bio-
logical development and learning, such supervision is highly
implausible, since human infants and nonhuman primates sim-
ply do not receive millions of category labels during development

Significance

Primates show remarkable ability to recognize objects. This
ability is achieved by their ventral visual stream, multiple hier-
archically interconnected brain areas. The best quantitative
models of these areas are deep neural networks trained with
human annotations. However, they receive more annotations
than infants, making them implausible models of the ventral
stream development. Here, we report that recent progress
in unsupervised learning has largely closed this gap. We
find the networks learned with recent unsupervised meth-
ods achieve prediction accuracy in the ventral stream that
equals or exceeds that of today’s best models. These results
illustrate a use of unsupervised learning to model a brain sys-
tem and present a strong candidate for a biologically plausible
computational theory of sensory learning.
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• Networks imbued with this kind of learning (in addition to 
supervised learning):

• Perform better on object recognition benchmarks
• Develop visual representations that map more closely 

onto neural data

• While this supports the idea that the brain is doing 
something like this, how exactly the brain does this is a 
topic of active investigation



Back to the NMPH

• Definitely a form of unsupervised learning — no need to 
specify the “right answer”

• Simpler than the form of unsupervised learning I just 
discussed — no need to mark inputs as “same” or “different”

• Clear biological basis
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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Back to the NMPH

• Goal of our lab’s work: See how much we can explain with this 
very simple form of plasticity

• Important point: Not mutually exclusive with other ideas about 
plasticity
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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Outline
• Situate NMPH relative to other kinds of learning

• Implications of NMPH for memory weakening

• Key prediction: Moderate activation leads to 
weakening of competing memories

• Implications of NMPH for the similarity structure of 
memories

• Key prediction: Moderate activation leads to 
differentiation of competing memories

• Current directions
• Role of NMPH in learning during sleep
• Using neurofeedback to promote discrimination learning 



How do competitive dynamics drive learning?

• When representations compete, the representation that 
wins the competition becomes easier to retrieve later

• e.g., testing effects (Karpicke & Roediger, 2008)

• What happens to memories that compete but lose the 
competition?

• Several lines of research suggest that people can inhibit 
these irrelevant memories in a lasting fashion

• “Inhibit” = something happens to these memories that 
makes them harder to retrieve in the future



Retrieval-Induced Forgetting (RIF) 
(Levy & Anderson, 2002)

Fruit – Apple

Fruit – Pear


Animal – Sheep

Animal - Cow

STUDY

Fruit – Pe__

PRACTICE

Fruit – A___

Fruit – P___


Animal – S___

Animal – C___

TEST



Fruit – Apple

Fruit – Pear


Animal – Sheep

Animal - Cow

STUDY

Fruit – Pe__

PRACTICE

Fruit – A___

Fruit – P___


Animal – S___

Animal – C___

TEST

• Retrieval practice helps the practiced item (Pear) & hurts 
non-practiced items from the practiced category (Apple)

Retrieval-Induced Forgetting (RIF) 
(Levy & Anderson, 2002)



Think/No-Think (Anderson & Green, 2001)
• Study phase: Learn word pairs like “elephant-wrench” 

• Later, participants are given cue words and told not to think of 
the studied associate

• At the end of the experiment, participants are given a cued 
recall memory test for studied items

• The no-think procedure leads to impaired recall



 Variability
• These “inhibitory” memory effects are highly variable 

• While a large number of studies have replicated Anderson’s 
think/no-think effect...

• .. there have also been several published failures to replicate 
these results (e.g., Bulevich et al., 2006; Bergstrom et al., 
2007)

• Same thing with other inhibitory effects (e.g., retrieval-induced 
forgetting)



Explaining Inhibitory Memory Effects

• No think trial: Don’t think of what went with Elephant
Wrench
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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Wrench
• No think trial: Don’t think of what went with Elephant
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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• This theory makes it clear how inhibition can arise in this 
paradigm, and also why it is very difficult to get this effect...

Wrench WrenchWrench

W
e
a
ke

n
in

g

Degree of memory activation

Low Moderate HighC
h

a
n

g
e

 i
n

 m
e

m
o

ry
 s

tr
e

n
g

th

S
tr

e
n
g
th

e
n
in

g

Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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• How do we test this idea?
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was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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Measuring Memory Activation using fMRI

• Our approach: use pattern classifiers, applied to fMRI and 
EEG data, to measure how strongly memories are coming 
to mind on individual trials

• We then relate this covert neural measure of retrieval to 
performance on the final memory test

Wrench WrenchWrench

W
e
a
ke

n
in

g

Degree of memory activation

Low Moderate HighC
h

a
n

g
e

 i
n

 m
e

m
o

ry
 s

tr
e

n
g

th

S
tr

e
n
g
th

e
n
in

g

Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
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higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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fMRI Study of Think / No-Think (Detre et al., 
2013)

Greg Detre Malai Natarajan Sam Gershman



Detre et al. (2013)
• As in Anderson & Green (2001), participants studied novel 

paired associates

• Instead of word-word pairs (like elephant-wrench), we used 
word-picture pairs

• Pictures were drawn from 4 categories: Face, Scene, Car, Shoe

nickel

a novel Bayesian curve-fitting procedure to estimate the posterior distribution
over plasticity curves, given the neural and behavioral data (see Section 2.7).

2.2. Participants

31 participants (19 female, aged 18–35) participated in a paid experiment
spanning 2 days, advertised as an experiment on ‘‘attention and mental imagery’’.
All of the participants were native English speakers and were drawn from the
Princeton community.

We excluded five of the 31 participants for the following reasons: One
participant was excluded because they fell asleep during the scanning session.
Another participant was excluded because (due to a technical glitch) they did not
study the full set of items. Finally, three participants were excluded because they
performed poorly (more than 2 SD below the mean¼ less than 55% correct) on the
functional localizer one-back task; these participants’ poor performance suggests
that they were not paying close attention to the stimuli during the functional
localizer. Since the functional localizer data were used to train the classifier,
inattention during this phase could have compromised classifier training and
(through this) could have compromised our ability to track memory retrieval on
no-think trials.

2.2.1. Stimuli
During the experiment, participants learned 54 word-picture pairs. 18 words

were paired with faces, 18 words were paired with scenes, nine words were paired
with cars, and nine words were paired with shoes. Two additional word-car pairs
and two additional word-shoe pairs were set aside for use as primacy and recency
filler stimuli during the study phase. There were also 10 pictures from each
category that were used during the functional localizer phase (but not elsewhere
in the experiment). All of the associate images were black and white photographs.
The face photos depicted anonymous and unfamiliar male faces with neutral
expressions; images were square-cropped to show the face only (not hair). The

scene photos depicted bedroom interiors. Car and shoe photos depicted these
items from a side view. See Fig. 2a for sample images.

The word cues were imageable nouns drawn from the Toronto Word Pool
(Friendly, Franklin, Hoffman, & Rubin, 1982) and other sources (mean K-F
frequency, when available, was 24; mean imageability [1¼ low, 7¼high], when
available, was 5.7; mean length was 5.5 letters). The word pool was filtered to
exclude nouns that were judged to be semantically related to any of the image
categories (to minimize encoding variability between word/image pairs), leaving
a pool of 611 words. The word-picture pairings were generated by drawing
randomly from the pool of available words and pictures for each participant,
subject to the constraints outlined above.

Controlling the low-level visual characteristics of the image categories: Images
from all four categories were matched for size and luminance. The scene
photographs were rectangular, yet the cars, faces, and shoes all had irregular
boundaries and took up differently sized areas on the screen. To compensate for
this, we generated noisy background images by scrambling the Fourier compo-
nents of the scenes, and placed each car, face and shoe image onto one, making
them the same rectangular size and shape as the scenes. Additionally, the various
photographs differed in their luminance profile. In an effort to reduce this, we
utilized Matlab’s imadjust and adapthiseq functions to readjust the contrast,
normalize the luminance within each ‘‘tile’’ of the image, and then smooth the
boundaries between tiles. To combine the separate boundary shape/size and
luminance compensation procedures described above, we first equalized the scene
images, generated the scrambled backgrounds, superimposed the other categories
on top of the backgrounds, and then ran the luminance equalization for these
compound images.

2.3. Behavioral methods

2.3.1. Study phase (Day 1, outside the scanner)
On the first day, participants learned a set of paired associations between

words and images.
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Fig. 2. (a) Examples of the car, face, scene and shoe stimuli used in the study. (b–d) Timelines for the study phase (b), think-no think phase (c), and test phase (d).
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Detre et al. (2013)
• Standard 3-phase design

• study word-picture pairs
• Think / no-think phase
• memory test for studied pairs

nickel

a novel Bayesian curve-fitting procedure to estimate the posterior distribution
over plasticity curves, given the neural and behavioral data (see Section 2.7).

2.2. Participants

31 participants (19 female, aged 18–35) participated in a paid experiment
spanning 2 days, advertised as an experiment on ‘‘attention and mental imagery’’.
All of the participants were native English speakers and were drawn from the
Princeton community.

We excluded five of the 31 participants for the following reasons: One
participant was excluded because they fell asleep during the scanning session.
Another participant was excluded because (due to a technical glitch) they did not
study the full set of items. Finally, three participants were excluded because they
performed poorly (more than 2 SD below the mean¼ less than 55% correct) on the
functional localizer one-back task; these participants’ poor performance suggests
that they were not paying close attention to the stimuli during the functional
localizer. Since the functional localizer data were used to train the classifier,
inattention during this phase could have compromised classifier training and
(through this) could have compromised our ability to track memory retrieval on
no-think trials.

2.2.1. Stimuli
During the experiment, participants learned 54 word-picture pairs. 18 words

were paired with faces, 18 words were paired with scenes, nine words were paired
with cars, and nine words were paired with shoes. Two additional word-car pairs
and two additional word-shoe pairs were set aside for use as primacy and recency
filler stimuli during the study phase. There were also 10 pictures from each
category that were used during the functional localizer phase (but not elsewhere
in the experiment). All of the associate images were black and white photographs.
The face photos depicted anonymous and unfamiliar male faces with neutral
expressions; images were square-cropped to show the face only (not hair). The

scene photos depicted bedroom interiors. Car and shoe photos depicted these
items from a side view. See Fig. 2a for sample images.

The word cues were imageable nouns drawn from the Toronto Word Pool
(Friendly, Franklin, Hoffman, & Rubin, 1982) and other sources (mean K-F
frequency, when available, was 24; mean imageability [1¼ low, 7¼high], when
available, was 5.7; mean length was 5.5 letters). The word pool was filtered to
exclude nouns that were judged to be semantically related to any of the image
categories (to minimize encoding variability between word/image pairs), leaving
a pool of 611 words. The word-picture pairings were generated by drawing
randomly from the pool of available words and pictures for each participant,
subject to the constraints outlined above.

Controlling the low-level visual characteristics of the image categories: Images
from all four categories were matched for size and luminance. The scene
photographs were rectangular, yet the cars, faces, and shoes all had irregular
boundaries and took up differently sized areas on the screen. To compensate for
this, we generated noisy background images by scrambling the Fourier compo-
nents of the scenes, and placed each car, face and shoe image onto one, making
them the same rectangular size and shape as the scenes. Additionally, the various
photographs differed in their luminance profile. In an effort to reduce this, we
utilized Matlab’s imadjust and adapthiseq functions to readjust the contrast,
normalize the luminance within each ‘‘tile’’ of the image, and then smooth the
boundaries between tiles. To combine the separate boundary shape/size and
luminance compensation procedures described above, we first equalized the scene
images, generated the scrambled backgrounds, superimposed the other categories
on top of the backgrounds, and then ran the luminance equalization for these
compound images.

2.3. Behavioral methods

2.3.1. Study phase (Day 1, outside the scanner)
On the first day, participants learned a set of paired associations between

words and images.
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Detre et al. (2013)
• Pattern classification approach:

• We trained fMRI pattern classifiers to track activation relating 
to the four categories (Face, Scene, Car, Shoe)

• We used these classifiers to covertly track recall on no-think 
trials

nickel

a novel Bayesian curve-fitting procedure to estimate the posterior distribution
over plasticity curves, given the neural and behavioral data (see Section 2.7).

2.2. Participants

31 participants (19 female, aged 18–35) participated in a paid experiment
spanning 2 days, advertised as an experiment on ‘‘attention and mental imagery’’.
All of the participants were native English speakers and were drawn from the
Princeton community.

We excluded five of the 31 participants for the following reasons: One
participant was excluded because they fell asleep during the scanning session.
Another participant was excluded because (due to a technical glitch) they did not
study the full set of items. Finally, three participants were excluded because they
performed poorly (more than 2 SD below the mean¼ less than 55% correct) on the
functional localizer one-back task; these participants’ poor performance suggests
that they were not paying close attention to the stimuli during the functional
localizer. Since the functional localizer data were used to train the classifier,
inattention during this phase could have compromised classifier training and
(through this) could have compromised our ability to track memory retrieval on
no-think trials.

2.2.1. Stimuli
During the experiment, participants learned 54 word-picture pairs. 18 words

were paired with faces, 18 words were paired with scenes, nine words were paired
with cars, and nine words were paired with shoes. Two additional word-car pairs
and two additional word-shoe pairs were set aside for use as primacy and recency
filler stimuli during the study phase. There were also 10 pictures from each
category that were used during the functional localizer phase (but not elsewhere
in the experiment). All of the associate images were black and white photographs.
The face photos depicted anonymous and unfamiliar male faces with neutral
expressions; images were square-cropped to show the face only (not hair). The

scene photos depicted bedroom interiors. Car and shoe photos depicted these
items from a side view. See Fig. 2a for sample images.

The word cues were imageable nouns drawn from the Toronto Word Pool
(Friendly, Franklin, Hoffman, & Rubin, 1982) and other sources (mean K-F
frequency, when available, was 24; mean imageability [1¼ low, 7¼high], when
available, was 5.7; mean length was 5.5 letters). The word pool was filtered to
exclude nouns that were judged to be semantically related to any of the image
categories (to minimize encoding variability between word/image pairs), leaving
a pool of 611 words. The word-picture pairings were generated by drawing
randomly from the pool of available words and pictures for each participant,
subject to the constraints outlined above.

Controlling the low-level visual characteristics of the image categories: Images
from all four categories were matched for size and luminance. The scene
photographs were rectangular, yet the cars, faces, and shoes all had irregular
boundaries and took up differently sized areas on the screen. To compensate for
this, we generated noisy background images by scrambling the Fourier compo-
nents of the scenes, and placed each car, face and shoe image onto one, making
them the same rectangular size and shape as the scenes. Additionally, the various
photographs differed in their luminance profile. In an effort to reduce this, we
utilized Matlab’s imadjust and adapthiseq functions to readjust the contrast,
normalize the luminance within each ‘‘tile’’ of the image, and then smooth the
boundaries between tiles. To combine the separate boundary shape/size and
luminance compensation procedures described above, we first equalized the scene
images, generated the scrambled backgrounds, superimposed the other categories
on top of the backgrounds, and then ran the luminance equalization for these
compound images.

2.3. Behavioral methods

2.3.1. Study phase (Day 1, outside the scanner)
On the first day, participants learned a set of paired associations between

words and images.

4000ms

4000ms

nickel

+

nickel

nickel

1500ms

4000ms

nickel

4000ms

nickel

nickel

:) nickel

1 = shoe
2 = car
3 = face
4 = bedroom

2000ms
X

nickel

750ms

750ms

4000ms

2500 ms

nickel

tablet

4000ms

2000ms

tablet
1 = shoe
2 = car
3 = face
4 = bedroom

+

4000ms

nickel

nickel
nickel1 = shoe

2 = car
3 = face
4 = bedroom

4000ms

2000ms

2500ms

Initial Study Trial

Subsequent Study Trial

Think Trial

No-Think Trial

Test Trial

Fig. 2. (a) Examples of the car, face, scene and shoe stimuli used in the study. (b–d) Timelines for the study phase (b), think-no think phase (c), and test phase (d).

G.J. Detre et al. / Neuropsychologia ] (]]]]) ]]]–]]]4

Please cite this article as: Detre, G. J., et al. Moderate levels of activation lead to forgetting in the think/no-think paradigm.
Neuropsychologia (2013), http://dx.doi.org/10.1016/j.neuropsychologia.2013.02.017i



Sample No-Think Trial

• If nickel was paired with a scene at study, we would use the 
scene classifier on this trial to measure the extent to which the 
scene associate was coming to mind

• Prediction for this trial: Moderate levels of scene activity should 
be associated with forgetting, higher levels of scene activity 
should be associated with improved memory 

nickel



Analysis of fMRI Data
• Analysis goal: Estimate the shape of the function relating:
• how strongly a memory activated during the no-think 

phase (as measured by the classifier), and
• how well that memory was recalled on the final test

• To map out the shape of this function, we used an algorithm 
developed in my lab: P-CIT

• Probabilistic Curve Induction and Testing (Detre et al., 2013)
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the

3



How P-CIT Works
• Step 1: Randomly generate a large number of curves

• Step 2: For each randomly generated curve, evaluate how 
well it explains our data

• Step 3: Compute a weighted average of the curves, where 
each curve is weighted by how well it explains the data
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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Parameterized Curve
• Problem: The space of all possible curves is too big
• Solution: Use parameterized curves
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Examples of Curves
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Estimated curve

• Results were consistent with the nonmonotonic plasticity 
hypothesis

the same population, the odds are very high that we would obtain
evidence consistent with our theory.

4. Discussion

By applying pattern classifiers to fMRI data, we were able to derive
a trial-by-trial readout of memory retrieval on no-think trials. We
used this readout of the neural activity to predict subsequent memory
for no-think items, and we found that the relationship between

activation and subsequent memory was nonmonotonic for scene
trials: Moderate activity of no-think scenes was associated with
subsequent forgetting, but higher and lower levels of scene activity
were not associated with forgetting (for discussion of scene/face
differences see Section 4.3 below). While there have been many other
fMRI studies of the think/no-think paradigm (Anderson et al., 2004;
Butler & James, 2010; Depue et al., 2007; Depue, Burgess, Willcutt,
Ruzic, & Banich, 2010; Levy & Anderson, 2012), ours is the first to use
pattern classifiers to track memory activation, and it is the first to
look for (and find) a nonmonotonic relationship between memory
activation and learning.
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Fig. 10. Results of a permutation test of the P(theory consistent) value obtained
for no-think, scene trials. The bars indicate the empirical null distribution
of P(theory consistent) values, generated under the null hypothesis that there
was no real relationship between brain activity and behavior. The dot indicates
the value of P(theory consistent) that was actually observed for no-think, scene
trials. Six out of 1000 permuted samples yielded a P(theory consistent) value
greater than the actually observed value.
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consistent) values obtained by running 1000 pseudoreplications of the experi-
ment. For each pseudoreplication, we sampled 26 participants with replacement
from our actual set of 26 participants, and we re-computed P(theory consistent).
947 out of 1000 pseudoreplications had P(theory consistent) values greater
than 0.5.
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Summary Thus Far...
• U-shaped result in think-no think
• … and in several other studies, not shown here

• Think-no think involves use of executive control

• Michael Anderson has argued that use of executive control is 
necessary to get these effects (e.g., Anderson & Huddleston, 
2012)

• To the contrary, our model posits that executive control is not 
necessary for memory inhibition



Role of Executive Function in Causing Forgetting

• According to our theory, the level of activation of a 
representation determines the learning that takes place

• Top-down control processes can indirectly affect learning by 
affecting the level of activation of the memories
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the

3



Role of Executive Function in Causing Forgetting

• For example, in the think-no think paradigm, top-down control 
processes can boost forgetting by taking an item that would 
normally fall in the green zone and pushing it down into the 
red zone
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whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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Role of Executive Function in Causing Forgetting

• Key implication of our model: While top-down control can 
promote memory inhibition, top-down control is not (strictly 
speaking) necessary in order to get memory inhibition

• If a memory activates moderately in the absence of top-down 
control, forgetting should occur
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was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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Later: surprise recognition test for 
faces and scenes
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• Question: How does prediction of the scene affect subsequent 
memory for the scene?
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whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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• Question: How does perception 
of the scene during the initial 
triplet affect subsequent 
memory?



Design in encoding phase

Face Face Scene

Scene Scene Face
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• Analysis strategy:
• Use pattern classifiers to measure activity relating to 

perception and prediction
• Relate these activity measurements to subsequent memory



Relationship between prediction strength 
and subsequent memory 

Higher levels of prediction strength 
were associated with worse subsequent 
memory

Prediction Strength



Relationship between perceptual activity 
and subsequent memory 

Higher levels of perceptual activity were 
associated with better subsequent 
memory

Perceptual Activity



Prediction Perception





Perception + Prediction



Summary: Statistical Learning
• We used a pattern classifier to relate activity during 

perception and prediction to subsequent memory

• We found a consistent relationship where, for both 
perception and prediction, moderate levels of activation 
were associated with worse memory

• These results fit with the nonmonotonic plasticity 
hypothesis
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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Summary: Statistical Learning
• Importantly, participants reported being completely 

unaware that the contexts were repeating

• It appears that forgetting was occurring as a result of 
implicit predictions triggered by context; there was no 
explicit intent to retrieve and no awareness of retrieval

• This suggests that memory inhibition effects do not 
require an intent to retrieve or an intent to suppress



Outline
• Situate NMPH relative to other kinds of learning

• Implications of NMPH for memory weakening

• Key prediction: Moderate activation leads to weakening 
of competing memories

• Implications of NMPH for the similarity structure 
of memories

• Key prediction: Moderate activation leads to 
differentiation of competing memories

• Current directions
• Role of NMPH in learning during sleep
• Using neurofeedback to promote discrimination learning 



Representational Change
• Up to this point, I have been discussing coarse-grained 

predictions about strengthening and weakening of entire 
memories

• Now I will discuss finer-grained predictions, dealing with 
how neural representations grow more or less similar as 
a function of training

• Our initial investigations looked at this in the context of 
interleaved learning

• What happens if you have two competing stimuli, and 
you alternate back and forth between studying them
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Neural Learning & revRIF

Key prediction:


IF revRIF occurs because of neural differentiation, 
THEN


Across participants, the amount of neural 
differentiation should predict the amount of 
behavioral revRIF 

Hulbert & Norman (2015, Cerebral Cortex)
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Conclusions

As predicted by a neural network model of memory:

We observed a trend towards revRIF


Differentiation in the left hippocampus predicted revRIF 

Without differentiation, memory is a zero-sum game

Differentiation provides a way out of this zero-sum trap


Pulling representations apart reduces competition while still 
preserving access to all of the memories

Hulbert & Norman (2015, Cerebral Cortex)



Further Tests of Differentiation Prediction
• Hulbert & Norman (2015) showed that differentiation 

can occur after competition & restudy

• Crucially, the NMPH predicts that differentiation will 
depend on the level of activation of the competing 
memory
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Further Tests of Differentiation Prediction
• To test the prediction that differentiation is activation-

dependent, Kim, Norman, & Turk-Browne (2017, J. 
Neurosci.) used a statistical learning paradigm
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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Further Tests of Differentiation Prediction
• Kim, Norman, & 

Turk-Browne 
(2017, J. 
Neurosci.) 
showed activity 
dependence of 
differentiation, but 
they did not show 
the “full U”

• In our next study, 
we set out to do 
this
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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Competitor Activation
LO HI

• How do we sample the full activity 
continuum from low to high?

• Key idea: Parametrically manipulate 
the visual similarity of the competing 
items

• Higher levels of visual similarity
• => more representational overlap
• => more competitor activation

• Kim et al. (2017) used unrelated scene 
images

• By increasing visual similarity, we can 
access higher levels of competitor 
activation and trace out the full U

• Slightly different logic from previous studies: Instead of measuring 
competitor activation, manipulate it in a graded fashion (8 levels of 
visual similarity)



Wammes et al. (2022, eLife) 
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Solving Puzzles Relating to 
Representational Change

• Supervised learning models that I mentioned earlier adjust 
internal representations to minimize prediction error

• According to these models:

• Stimuli with similar predictive consequences end up 
with more similar internal representations

• Stimuli with different predictive consequences end up 
with more distinct (differentiated) internal representations

• Lots of fMRI data consistent with this (e.g., Schapiro et al., 
2013, 2016; Tompary & Davachi, 2017)



Solving Puzzles Relating to 
Representational Change

• At the same time, some recent fMRI findings have 
challenged the supervised-learning account (Favila et al., 
2016; Schlichting et al., 2015; Molitor et al., 2021)

• All of these findings have the property that linking two stimuli 
to the same associate makes their representations less 
similar, not more similar

• for related findings, see Chanales et al. (2017); 
Dimsdale-Zucker et al. (2018); Ballard et al. (2019); 
Wanjia et al. (2021); Zeithamova et al. (2018); Jiang et 
al. (2020); Fernandez et al. (2023)
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Solving Puzzles Relating to 
Representational Change

Opinion

Nonmonotonic Plasticity: How Memory
Retrieval Drives Learning
Victoria J.H. Ritvo,1 Nicholas B. Turk-Browne,2 and Kenneth A. Norman1,3,*

What are the principles that govern whether neural representations move apart
(differentiate) or together (integrate) as a function of learning? According to
supervised learning models that are trained to predict outcomes in the world,
integration should occur when two stimuli predict the same outcome. Numerous
findings support this, but – paradoxically – some recent fMRI studies have found
that pairing different stimuli with the same associate causes differentiation, not
integration. To explain these and related findings, we argue that supervised
learning needs to be supplemented with unsupervised learning that is driven
by spreading activation in a U-shaped way, such that inactive memories are
not modified, moderate activation of memories causesweakening (leading to dif-
ferentiation), and higher activation causes strengthening (leading to integration).

Understanding Representational Change
How do stored memories change as a function of experience? The neural representations of past
events can get stronger or weaker individually, but can also change with respect to each other,
with neural overlap either decreasing (differentiation) or increasing (integration). These changes
to the similarity structure of memories have an enormous effect on subsequent retrieval, affecting
how much memories compete (less overlap results in less competition and thus better recall of
distinctive features [1]) and how much generalization occurs (more overlap leads to more gener-
alization [2]).

Here we address two fundamental, interrelated questions: (i) What are the learning rules that gov-
ern how representations change in the brain? and (ii) according to these rules, which situations
lead to differentiation versus integration? These questions have come to the forefront of learning
and memory research in recent years, driven by new, multivariate functional magnetic resonance
imaging (fMRI) analysis methods that make it possible to track how neural similarity structure
changes with learning [3]. These new representational similarity analysis (see Glossary)
methods [4] have led to a wealth of new fMRI results that have proven to be highly constraining
about underlying learning mechanisms. Some of these new results are well explained by classic
supervised learning models, which posit that the brain adjusts representations to predict out-
comes in the world [5,6]. Consistent with these theories, such studies find integration when two
stimuli predict the same outcome and differentiation when two stimuli predict different outcomes
(e.g., [7–9]). However, contrary to these findings, other fMRI studies have found that linking two
stimuli to the same associate leads to differentiation rather than integration [10–12].

What do these seemingly contradictory findings tell us about the underlying neural learning rules?
We argue that explaining representational change requires supplementing supervised learning
rules with unsupervised learning rules that adjust neural representations based on how
strongly memories are activated during the retrieval process. Furthermore, we argue that the
function relating memory activation to learning is U-shaped, such that inactive memories are

Highlights
Multivariate fMRI pattern analysis
methods make it possible to track how
neural representations change as people
learn, providing new opportunities for
testing theories of learning and memory.

Some recent fMRI results fit with super-
vised learning theories, which predict
that linking two stimuli to the same
associatewillmake their neural represen-
tations more similar (integration). How-
ever, other fMRI studies have found that
representations of stimuli become less
similar when linked to the same associ-
ate (differentiation).

To explain these and related findings, we
argue that supervised learning needs to
be supplemented with unsupervised
learning that is driven by spreading acti-
vation in a U-shaped way, such that
inactive memories are not modified,
moderate activation of memories causes
weakening (leading to differentiation),
and higher activation causes strengthen-
ing (leading to integration).
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Figure 7. Modeling Favila et al. (2016): (A) Participants learned to associate individual scenes with faces (faces
not shown here due to bioRxiv rules). Each scene had a pairmate (another, similar image from the same
scene category, e.g., another barn), and categories were not re-used across pairs (e.g., if the stimulus set
included a pair of barns, then none of the other scenes would be barns). Pairmates could be associated with
the same face, di�erent faces, or no face at all (not shown). Participants were scanned while looking at each
individual scene in order to get a measure of neural representations for each scene. (B) Neural similarity was
measured by correlating scene-evoked patterns of fMRI activity. A scene pair di�erence score was calculated
by subtracting non-pairmate similarity from pairmate similarity; this measure shows the relative
representational distance of pairmates. Results for the di�erent-face and same-face condition in the
hippocampus are shown here: Linking scenes to the same face led to a negative scene pair di�erence score,
indicating that scenes became less similar to each other than they were to non-pairmates (di�erentiation). (C)
To model this study, we used the same basic structure that was described in Basic Network Properties. In this
model, the category layer represents the type of scene (e.g., barn, bridge, etc.), and the item layer represents
an individual scene. The output layer represents the face associate. Activity shown is for pairmate A in the
same-face condition. Category-to-hidden, item-to-hidden and hidden-to-hidden connections are pre-wired
similarly to the 2/6 condition of our model of Chanales et al. (2021) (see Figure 2). The hidden A and B units
have random, low-strength connections to all output units, but are additionally pre-wired to connect strongly
to either one or two units in the output layer. In the di�erent-face condition, hidden A and B units are
pre-wired to connect to two di�erent face units, but in the same-face condition, they are pre-wired to connect
to the same face unit. (D) This model has two conditions: same face and di�erent face. The only di�erence
between conditions is whether the hidden A and B units connect to the same or di�erent face unit in the
output layer.
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Figure 8. Model of Favila et al. (2016), Results: (A) Within-pair correlation between A and B hidden layer
representations before and after learning. Error bars indicate the 95% con�dence interval around the mean.
In the same-face condition, the within-pair correlation is reduced after learning, indicating di�erentiation. (B)
Activity patterns of both pairmates in the hidden layer before and after learning for a sample “same-face” run
are shown. Asymmetry in distortion can be seen in how pairmate 1’s representation is unchanged and
pairmate 2 picks up additional units that did not previously belong to either item (note that there is no
topography in the hidden layer in this simulation, so we would not expect the newly-acquired hidden units to
fall on one side or the other of the layer). (C) MDS plots for each condition illustrate representational change
in the hidden layer. The di�erentiation in the same-face condition is asymmetric: Pairmate 2after generally
moves further away from pairmate 1 in representational space, while pairmate 1 generally does not change.
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Relating the NMPH and Supervised Learning

• Supervised learning can’t explain some fMRI data on 
representational change (e.g., Favila et al., 2016)

• NMPH can fill in this gap

• Importantly, the NMPH is not meant to replace supervised 
learning

• The ability to learn to predict specific outcomes from 
inputs is too valuable to replace 

• Rather, we think of NMPH learning as supplementing 
supervised learning



• From a functional perspective, why do we need both 
NMPH and supervised learning?

• Supervised learning can train complex neural nets to make 
useful predictions…

• … but these networks can suffer from major problems 
relating to competition 

• If the network vacillates between nearby states without fully 
settling into one, this can prevent the network from acting 
decisively in response to the current stimulus

Relating the NMPH and Supervised Learning



• Key claim: NMPH does housekeeping in the brain

• When memories compete, NMPH restructures memories:

• if the competing memory activates moderately, NMPH 
pushes it away, so it competes less

• if the competing memory activates strongly, NMPH 
integrates the memories together, so they compete less  

Relating the NMPH and Supervised Learning



• Common thread: Differentiation effects are most reliably 
observed in the hippocampus (although they are sometimes 
observed elsewhere)

• What explains this? 

• One factor: hippocampal representations are sparse (not 
many neurons can be active at once)…

• … so it’s hard to activate competitors strongly

• Put another way: Activity might be “confined” to the 
moderate activation range that gives rise to differentiation

• Another factor: Hippocampus has a large learning rate

Differentiation and the Hippocampus
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What happens with a smaller learning 
rate
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• Standard story about hippocampal functioning: It is wired to 
try to assign orthogonal representations to similar stimuli 
(“pattern separation”; Yassa & Stark, 2011; Marr, 1971)

• Key point: The hippocampus’ pattern separation abilities are 
limited — when inputs to the hippo are very similar, there 
might end up being enough overlap to cause competition 
and degrade performance

• In this case, it is useful to have an extra “emergency” 
mechanism that completely removes overlap between the 
hippocampal representations

• … and that is what we think the NMPH does

What is the purpose of hippocampal 
differentiation?



• You wouldn’t want to use this “emergency differentiation” 
mechanism routinely

• If the hippocampus used completely non-overlapping codes 
routinely it would rapidly run out of space

• But we think this is a useful mechanism to deploy on an “as 
needed” basis to mitigate competition

What is the purpose of hippocampal 
differentiation?



• Rapidly-formed, differentiated hippocampal codes can act as 
a kind of “pry bar” to help pull apart representations 
elsewhere in the brain (e.g., cortex)

• When studies report differentiation effects in cortex, we think 
this may reflect the influence of projections from 
differentiated representations in the hippocampus

• By replaying memories over time, hippocampus can teach 
cortex to distinguish these representations on its own

What is the purpose of hippocampal 
differentiation?



Outline
• Situate NMPH relative to other kinds of learning

• Implications of NMPH for memory weakening

• Key prediction: Moderate activation leads to weakening 
of competing memories

• Implications of NMPH for the similarity structure of 
memories

• Key prediction: Moderate activation leads to 
differentiation of competing memories

• Current directions
• Role of NMPH in learning during sleep
• Using neurofeedback to promote discrimination learning 



NMPH Learning During Sleep
• During sleep, the brain is cut off from the world and sensory 

input can not provide a “target” for supervised learning

• … so the brain needs to rely on unsupervised learning rules 
like the NMPH

• Sleep consists of multiple, neurophysiologically distinct stages



Stages of Sleep

• 3 stages of non-REM (NREM) sleep
○ Stage 1
○ Stage 2
○ Stages 3 and 4: together known as slow wave sleep 

(SWS)

• Rapid eye movement (REM) sleep



• SWS is more prevalent toward the beginning of the 
night

• REM is more prevalent toward the end of the night 

A Good Night’s Sleep

Sleep onset

Stage 2 NREM

Diekelmann & Born (2010, Nature Reviews Neuroscience)



Slow wave sleep (SWS)
• Strong coupling between hippocampus and cortex

• Strong evidence for neural replay of recently experienced 
events

• Thought to be involved in systems consolidation
• What is going on in your brain when you sleep?

• Active systems consolidation theory

Klinzing et al. (2019), Nature Neuroscience

Neural Mechanisms



REM sleep
• Less coupling between hippocampus and cortex

• Less evidence for replay (but still some)

• Function is less well understood

• Hypothesis: REM sleep may play a key role in 
representational change

• During REM, the brain settles on newly acquired 
memories and activation is allowed to spread outward

• Representations are adjusted using NMPH

• Theta oscillations during REM may play a role in 
promoting plasticity (Boyce et al., 2016; Poe et al., 2000)
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NMPH Learning During Sleep
• This ability to re-evoke competitors repeatedly through 

oscillations suggests REM may be particularly useful for 
driving representational change

• In some situations, waking plasticity alone may not be 
sufficient to cause differentiation…

• … in which case you may also need REM sleep to show these 
effects



NMPH Learning During Sleep
• Sleep-dependent plasticity may have (inadvertently) played a 

role in the Kim et al. (2017) statistical learning study that I 
mentioned earlier
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NMPH Learning During Sleep
• Crucially, there was a 1-day gap between the statistical 

learning task and the imaging session where we took post-
learning “snapshots” of neural representations of the scenes

• Presumably, participants slept during this 1-day gap

• That period of sleep might (or might not) have contributed to 
the hippocampal differentiation effect that we observed



NMPH Learning During Sleep
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NMPH Learning During Sleep

• Preregistered prediction: More hippo differentiation after REM



NMPH Learning During Sleep

Springer Nature 2021 LATEX template

10 Sleep and representational change

di↵erentiation in the REM group was item-specific in right DG (t22 = �2.48,
p = 0.02, r = 0.47).

*

Fig. 5 Neural di↵erentiation in CA2/3 and DG separately. MOVE TO SUP-

PLEMENT Neural di↵erentiation scores, calculated as the di↵erence in pattern similarity

for the violation minus nonviolation task conditions, in each experimental group in CA2/3

and dentate gyrus (DG) separately. A contrast revealed significantly more violation-related

neural di↵erentiation in the REM group compared to the Wake and NREM groups in right

DG (p = 0.03). Within the REM group, the neural di↵erentiation score was reliably item-

specific based on a randomization analysis (p = 0.02). n=23 in each group.

Relationship between prediction and di↵erentiation

As part of the hypothesized di↵erentiation mechanism, we predicted that the
degree to which A and B items di↵erentiated would be related to the amount
of B activation during violation trials. That is, after three instances of learn-
ing that B follows A in the stimulus sequence, how much did item B come to
mind when a participant was presented with item A followed by a face? To
measure the amount of ”B prediction” on violation trials (two violation trials
per pair, with a unique face presented during each violation, which we refer
to as faces X and Y), we calculated the Pearson correlation between the pre-
learning snapshot of B and the pattern of activity evoked by the X and Y
violation events, then averaged these values for one B prediction score per pair
in the violation condition. Across pairs, we computed the correlation of this
prediction score with the preA/postB pattern similarity values within each

McDevitt et al. (accepted pending revisions)



Modeling Learning During Sleep

Anna Schapiro

A model of autonomous interactions between hippocampus
and neocortex driving sleep-dependent memory consolidation
Dhairyya Singha,1 , Kenneth A. Normanb,c , and Anna C. Schapiroa,1

Edited by Katharine Simon, University of California, Irvine, CA; received January 31, 2022; accepted August 11, 2022 by Editorial Board Member
Henry L. Roediger III

How do we build up our knowledge of the world over time? Many theories of memory
formation and consolidation have posited that the hippocampus stores new informa-
tion, then “teaches” this information to the neocortex over time, especially during sleep.
But it is unclear, mechanistically, how this actually works—How are these systems able
to interact during periods with virtually no environmental input to accomplish useful
learning and shifts in representation? We provide a framework for thinking about this
question, with neural network model simulations serving as demonstrations. The model
is composed of hippocampus and neocortical areas, which replay memories and interact
with one another completely autonomously during simulated sleep. Oscillations are
leveraged to support error-driven learning that leads to useful changes in memory
representation and behavior. The model has a non–rapid eye movement (NREM) sleep
stage, where dynamics between the hippocampus and neocortex are tightly coupled,
with the hippocampus helping neocortex to reinstate high-fidelity versions of new
attractors, and a REM sleep stage, where neocortex is able to more freely explore exist-
ing attractors. We find that alternating between NREM and REM sleep stages, which
alternately focuses the model’s replay on recent and remote information, facilitates
graceful continual learning. We thus provide an account of how the hippocampus
and neocortex can interact without any external input during sleep to drive useful new
cortical learning and to protect old knowledge as new information is integrated.

neural network model j oscillations j sleep stages j continual learning

Building our knowledge of the world over time requires the ability to quickly encode
new information as we encounter it, store that information in a form that will serve us
well in the long term, and carefully integrate the new information into our existing
knowledge structures. These are difficult tasks, replete with pitfalls and trade-offs, but
the brain seems to accomplish them gracefully. The Complementary Learning Systems
(CLS) framework proposed that the brain achieves these feats through a division of
labor across two interacting systems: The hippocampus encodes new information using
a sparse, pattern-separated code, supporting rapid acquisition of arbitrary information
without interference with existing neocortical knowledge (1). The hippocampus then
replays this recently acquired information offline, gradually “teaching” this information
to the neocortex. The neocortex uses overlapping, distributed representations adept at
representing the structure across these memories, resulting in the construction and
updating of semantic knowledge over time. But how can these brain regions interact
autonomously, with no input from the environment, to produce useful learning and
reshaping of representations? How does the brain move from one memory to another
during offline replay, and which of these offline states does it learn from, and how?
CLS considered the possibility that sleep may be a useful time for this teaching to occur,

and other perspectives have also focused in on this idea, given the strong coupled dynamics
and parallel replay that occurs in these areas during sleep (2–4). Extant theories of consoli-
dation have focused particularly on stages 2 and 3 of non–rapid eye movement (NREM)
sleep, when nested oscillations associated with memory replay—hippocampal sharp wave
ripples, thalamocortical spindles, and neocortical slow oscillations—reflect especially strong
hippocampal–cortical interaction (2–11). These dynamics appear to be causally involved
in memory consolidation: Manipulations that enhance hippocampal–cortical synchrony
during sleep benefit memory (12–16).
Not all theories agree on whether offline hippocampal–cortical interactions serve to

increase the relative reliance on neocortex for episodic memories (17, 18), but most theo-
ries agree that the hippocampus helps to build and shape semantic representations in neo-
cortex (19, 20), and these theories often assign a central role to active processing during
sleep (ref. 21; cf. ref. 22). Here, we adopt the following core ideas, shared across several
perspectives: During sleep, the hippocampus actively helps to build neocortical semantic
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Neurofeedback and the NMPH
• Can we use neurofeedback, in concert with the NMPH, to 

facilitate learning of difficult tasks?

• Focus on discrimination learning: 

• Learning to give different responses to similar stimuli

• Discrimination learning is challenging because similar stimuli 
tend to strongly coactivate (as in Wammes et al., 2022, 
above)

• This strong coactivation will lead to integration (which hurts 
discrim. learning) instead of differentiation (which would help)

• How do we “turn the tide” from integration to differentiation?



Neurofeedback and the NMPH
• Intuition: if we can somehow engineer a situation where the 

to-be-discriminated stimuli moderately coactivate (instead of 
strongly coactivating)…

• … this will trigger neural differentiation, which will faciliate 
differential responding to the two stimuli



Neurofeedback and the NMPH

• We set out to test this idea in a study led by Coraline Iordan 
(Iordan et al., 2024, PNAS) 

Jon Cohen Nick Turk-Browne Victoria Ritvo

Coraline Iordan
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Stimulus Set: Fourier-Descriptor Shape Space

Op de Beeck et al. (2001), Kok et al. (2018)
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Stimulus Set: Fourier-Descriptor Shape Space

Op de Beeck et al. (2001), Kok et al. (2018)
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Manipulating stimulus representations 

with the NMPH
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Manipulating stimulus representations 

with the NMPH
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Manipulating stimulus representations 

with the NMPH
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Manipulating stimulus representations 
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Manipulating stimulus representations 

with the NMPH
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Manipulating stimulus representations 

with the NMPH


Classifier Classifier
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Manipulating stimulus representations 

with the NMPH
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Manipulating stimulus representations 

with the NMPH
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Manipulating stimulus representations 
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Manipulating stimulus representations 
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Manipulating stimulus representations 

with the NMPH
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Manipulating stimulus representations 

with the NMPH
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Manipulating stimulus representations 

with the NMPH
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Manipulating stimulus representations 

with the NMPH
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Manipulating stimulus representations 

with the NMPH
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Behavioral Norming: Match-to-Category 2AFC
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Op de Beeck et al. (2001), Kok et al. (2018)
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Behavioral Norming: Match-to-Category 2AFC

Amazon Mechanical Turk, n=28, 11 shapes x 20 repetitions per shape
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Fig. 4. Neurofeedback successfully sculpted new visual categories in the human brain and 
altered perception. (A) Shape space with example category boundaries. Diameters for trained 
category distinction: LLR = blue, psychometric function slope = average of yellow lines. 
Diameters for untrained category distinction: LLR = purple, psychometric function slope = 
average of red lines. (B) Effects of neural sculpting on neural representations and perception for 
trained and untrained categories: differences in LLR and psychometric function slopes (colors as 
in subpanel A; *p<0.05). (C) Changes in the brain due to neural sculpting predict perceptual 
changes. (D) Change in LLR between the last two days and the first two days of training for 
individual participants. Positive values indicate stronger neural boundaries in trained vs. untrained 
categories. (E) Change in psychometric function slope for trained vs. untrained categories between 
behavioral pre- and post-tests for individual participants. Positive values indicate stronger 
categorical perception for trained versus untrained categories. 
 

Our goal was not only to modify the brain but also to test the hypothesis that neural 
sculpting is sufficient to alter behavior. Namely, we predicted that training would induce 
categorical perception whereby shapes close to the category boundary come to be perceived as 
clearer category members. Thus, we hypothesized that the slope of the psychometric function 
running perpendicular to the sculpted boundary would become steeper. To measure these 
perceptual changes, we estimated psychometric functions for the trained and untrained categories 
from the 2AFC behavioral task conducted on Day 10 and calculated a normalized difference score 
from the slopes on Day 1 (Fig. 4A). The discrimination slope significantly increased for the trained 
categories compared to the untrained categories (Fig. 4B-E; +0.137±0.049 s.e.m., t(9)=2.79, 
p=0.021). We observed strong positive behavioral effects for 6 out of 10 participants (0.137-
0.414), a weak positive effect for one participant (0.021) and weak negative effects for 3 out of 10 
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0.414), a weak positive effect for one participant (0.021) and weak negative effects for 3 out of 10 
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the

3

• The flow of activation through neural networks can powerfully 
sculpt memories that are activated

• strengthening them or weakening them
• integrating or differentiating them

• .. in ways that can’t always be explained by supervised learning

• The NMPH provides a promising framework for understanding 
these unsupervised learning effects
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the

3

• We are particularly excited to find ways to leverage the 
NMPH to drive new learning in difficult situations…



Summary

W
e
a
ke

n
in

g

Degree of memory activation

Low Moderate HighC
h

a
n

g
e

 i
n

 m
e

m
o

ry
 s

tr
e

n
g

th

S
tr

e
n
g
th

e
n
in

g

Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the

3

• There is much more work to be done to test & refine these 
ideas

• Good news: we’ve gotten much better at measuring memory 
activation and representational change with fMRI

• We are making progress in building computational models 
of these NMPH effects
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Figure 1: Hypothesized nonmonotonic relationship between the level of activation of a memory and strength-
ening/weakening of that memory. Moderate levels of activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening of the memory. The background color redundantly codes
whether memory activation values are linked to weakening (red) or strengthening (green).

was successfully suppressed during the no-think trial does not imply that the memory will
stay suppressed on the final memory test; to explain forgetting on the final memory test,
the activation dynamics that are present during the no-think trial must somehow trigger
a lasting change in synaptic weights relating to the no-think item. Anderson’s executive
control theory (Levy & Anderson, 2002, 2008; Anderson & Levy, 2009, 2010; Anderson &
Huddleston, 2012; see also Depue, 2012) asserts that successful application of cognitive
control during the no-think trial causes lasting inhibition of the no-think memory; however,
crucially, Anderson’s theory does not provide a mechanistic account of how we get from
successful cognitive control to weakened synapses – there is a gap in the causal chain that
needs to be filled in.

The second key question relates to variability in the expression of these inhibitory mem-
ory effects. While the basic no-think forgetting effect has been replicated many times (see
Anderson & Huddleston, 2012 for a meta-analysis and review of 32 published studies,
which showed an average decrease in recall of 8%), there have also been several failures
to replicate this effect (e.g., Bulevich et al., 2006; Bergstrom et al., 2007; Hertel & Mahan,
2008; Mecklinger et al., 2009; for additional discussion of these findings, see Anderson &
Huddleston, 2012 and Raaijmakers & Jakab, submitted).

In this paper, we explore the idea that both of the aforementioned questions – why
does suppression (during a trial) cause forgetting, and why are memory inhibition effects
so variable – can be answered using a simple learning principle that we refer to as the
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Figure 9: Results from our curve-fitting procedure, applied to data from no-think trials with scene associates
(on the left) and face associates (on the right). In both figures, the dark line indicates the mean of the
posterior distribution over curves, and the gray ribbon indicates the 90% credible interval (i.e., 90% of the
probability mass is contained within the gray ribbon).

underlying curve was theory-consistent. 7

As stated above (see Figure 7), classifier sensitivity was better overall for scenes than
for faces – on scene no-think trials, classifier output was reliably greater for scenes than
faces, but on face no-think trials, the scene and face classifier outputs were indistiguishable
from one another on average. One possible explanation for our poor initial curve-fitting
results is that the classifier was not providing a useful index of memory retrieval on face
trials, and the lack of good “signal” on these face trials was preventing the curve-fitting
algorithm from uncovering the true underlying shape of the curve.

To address this issue, we ran the curve-fitting analysis separately on scene and face
trials – if face trials were dragging down the overall P(theory consistent) value, then the
results should be better when we focus just on scene trials. The results are shown in Fig-
ure 9. For faces, P(theory consistent) was low (0.40), but for scenes P(theory consistent)
was substantially higher (0.76) and the recovered curve showed a pronounced U shape.

Given that the scene results were more promising, we asked: What are the odds of
getting a result this good due to chance? To test this, we ran a nonparametric permutation
test (see Section 2.7.6). This permutation analysis yielded an empirical null distribution

7Note that, while the curve-fitting algorithm is stochastic (i.e., it incorporates random sampling), the
curve-fitting algorithm yielded results that were highly consistent across multiple runs of the algorithm. For
all of the curve-fitting results reported here, we ran the algorithm multiple times and found that P(theory
consistent) values differed by at most .01 across runs.
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