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Abstract

Retrieval-induced forgetting (RIF) refers to the finding that retrieving a memory can impair subsequent
recall of related memories. Here, we present a new model of how the brain gives rise to RIF in both seman-
tic and episodic memory. The core of the model is a recently developed neural network learning algorithm
that leverages regular oscillations in feedback inhibition to strengthen weak parts of target memories and
to weaken competing memories. We use the model to address several puzzling findings relating to RIF
including: why retrieval practice leads to more forgetting than simply presenting the target item; how RIF
is affected by the strength of competing memories and the strength of the target (to-be-retrieved) memory;
and why RIF sometimes generalizes to “independent cues”, and sometimes does not. For all of these ques-
tions, we show that the model can account for existing results, and we generate novel predictions regarding
boundary conditions on these results.
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4 A Neural Network Model of Retrieval-Induced Forgetting

Introduction: The puzzle of retrieval-induced
forgetting

Over the past decade, several researchers (see
Anderson, 2003) have argued that retrieving a mem-
ory can cause forgetting of other, competing memo-
ries. Anderson has argued that this retrieval-induced
forgetting (RIF) effect is cue-independent (i.e., it
generalizes to cues other than the previously utilized
retrieval cue) and that it is competition-dependent
(i.e., the amount that a memory is punished is pro-
portional to how strongly it competes; see Ander-
son, 2003 for more discussion of these claims).
Anderson and others have marshaled an impres-
sive array of evidence for these principles, although
not all studies have obtained results consistent with
these claims (e.g., Perfect, Stark, Tree, Moulin,
Ahmed, & Hutter, 2004).

The scope of the paper

In this paper, we present a new theory (imple-
mented in neural network form) of how the brain
gives rise to RIF effects. The introduction to the pa-
per consists of three parts: In the RIF basics sec-
tion, we describe the RIF paradigm, and we re-
view evidence for cue-independent forgetting and
competition-dependent forgetting. In the RIF as
competitor weakening section, we briefly review
Anderson’s arguments regarding why RIF results
are problematic for blocking and associative un-
learning theories of forgetting. Finally, in the Find-
ing RIF in the brain section, we discuss possible
neural mechanisms for RIF.

After providing an overview of existing findings
and theories, we present our account of RIF. In the
Competitor punishment through oscillating inhibi-
tion section, we describe a neural network learn-
ing algorithm (previously developed by Norman,
Newman, Detre, & Polyn, 2006b) that leverages
regular oscillations in neural feedback inhibition to
strengthen weak target memories, and to weaken
other (non-target) memories. The Norman et al.
(2006b) paper focused on the functional properties
of the oscillating algorithm (how many patterns it
can store, etc.). The present manuscript focuses on
the psychological implications of the oscillating al-
gorithm.

In the Model architecture section, we discuss
how the model is comprised of a cortical seman-
tic memory network and a hippocampal episodic
memory network, and we provide a detailed ac-
count of the structure and functioning of these net-

works. Crucially, the oscillating algorithm is ap-
plied to both networks, making it possible for us to
simulate RIF effects in both semantic and episodic
memory.

In the RIF simulation methods section, we de-
scribe how we constructed patterns to use in our
simulations, and how we simulated each of the three
phases of the typical RIF experiment (study, prac-
tice, and test).

In the Simulations of retrieval-induced forget-
ting section, we show that the oscillating algorithm
can account for detailed patterns of RIF data. This
section starts with a Precis of simulations; read-
ers who are interested in a quick overview of our
simulation results should skip ahead to the Precis.
In Simulation 1, we show that the model can ac-
count for the basic RIF findings mentioned above
(more RIF in high-competition vs. low-competition
situations; RIF using independent cues). We also
show (in subsequent simulations) that the model
provides a clear account of the boundary conditions
on these basic RIF findings. As such, the model
can account for findings that are inconsistent with
competition-dependence and cue-independence, as
well as findings that are consistent with these prin-
ciples. Throughout the Simulations section, simu-
lations addressing existing findings are intermixed
with simulations that generate novel, testable pre-
dictions about how different factors will modulate
the size of RIF effects.

In the General discussion, we describe how our
theory of RIF relates to other theories of forgetting;
we provide a summary list of predictions; we de-
scribe key challenges for theory; and we discuss
how the model can be applied to other domains (be-
sides RIF).

RIF basics

In this section, we describe the basic RIF
paradigm and provide a brief overview of evidence
for RIF (for a more thorough overview, see An-
derson, 2003). In one commonly-used variant of
the RIF paradigm (see, e.g., Anderson, Green, &
McCulloch, 2000b), participants are given a list
of category-exemplar pairs (e.g. Fruit-Apple and
Fruit-Pear) one at a time and are told to memorize
the pairs. Immediately after viewing the pairs, par-
ticipants are given a practice phase where they prac-
tice retrieving a subset of the items on the list (e.g.
they are given Fruit-Pe and must say Pear). Af-
ter a delay (e.g., 20 minutes), participants’ memory
for all of the pairs on the study list is tested. The
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Fruit - Pear

Fruit - Apple

Animal - Cow

Animal - Sheep

Fruit - Pe___

Fruit - P____

Fruit - A____

Animal - C____

Animal - S____

Study Practice Test

Figure 1: Flowchart diagram for Anderson’s Retrieval-Induced Forgetting paradigm. See text for explana-
tion.

paradigm is illustrated in Figure 1.
There are several notable results:

• Memory for practiced stimulus pairs (e.g.,
Fruit-Pear) is better than memory for control
pairs that were not practiced and have no re-
semblance to practiced stimulus pairs (e.g.,
Animal-Sheep).

• Memory for non-practiced pairs that are re-
lated to practiced pairs (e.g., Fruit-Apple) is
worse than memory for control pairs.

• Forgetting of pairs like Fruit-Apple is not lim-
ited to situations where Fruit is used as a re-
trieval cue. Forgetting also occurs when mem-
ory is tested with other cues that are related to
Apple, but not to practiced stimulus pairs like
Fruit-Pear. For example, forgetting is observed
when Red is used to cue for Apple. Anderson
calls this property cue-independent forgetting,
although (as discussed in Simulation 5) some
types of test cues are more effective at eliciting
RIF than others.

This basic pattern (facilitated recall of the prac-
ticed pair, and cue-independent forgetting of re-
lated, non-practiced pairs) has been observed when
category-plus-one-letter-stem cues (like those de-
picted in Figure 1) are used at test (Anderson et al.,
2000b), and also when category cues alone are
used at test (Anderson & Spellman, 1995; Camp,
Pecher, & Schmidt, 2005; Starns & Hicks, 2004).
Forgetting has been observed when the “indepen-
dent cue” is a related extralist word (e.g., study
Fruit-Pear, Fruit-Apple; practice Fruit-Pe ; cue
with “tell me a studied word that is related to Red
and starts with A”; Anderson et al., 2000b; see also
Carter, 2004). Forgetting has also been observed

when the “independent cue” is a related word that
was paired with the competitor at study, but not
presented at practice (e.g., study Fruit-Pear, Red-
Apple; practice Fruit-Pe ; cue with Red-A ;
Anderson & Spellman, 1995; Shivde & Anderson,
2001; Carter, 2004; Camp et al., 2005).

The RIF paradigm described above draws on
both semantic and episodic memory (insofar as it
uses pre-experimentally familiar category-exemplar
pairs as stimuli). RIF has also been observed in
paradigms that are more purely episodic. For ex-
ample, Anderson and Bell (2001) observed cue-
independent RIF for novel episodic associations be-
tween words; this finding is addressed in Simula-
tion 4. Also, Ciranni and Shimamura (1999) ob-
served RIF for novel episodic associations between
colors, shapes, and locations. More recently, RIF
has also been demonstrated on tests of semantic re-
trieval. For example, Carter (2004) demonstrated
cue-independent forgetting of nonstudied seman-
tic associates in an associate-generation paradigm.
Specifically, Carter (2004) found that practicing re-
trieval of Clinic-Sick reduces the likelihood that
participants will subsequently generate other, non-
studied associates of Clinic (e.g., Doctor), even in
response to independent cues like Lawyer; this find-
ing is addressed in Simulation 6. For another exam-
ple of RIF in semantic memory, see Johnson and
Anderson (2004).

The above examples are meant to provide a
general sense of the kinds of studies that have
found RIF; they are not meant to provide an ex-
haustive list (for other, recent examples of cue-
independent forgetting, see, e.g., Shivde & Ander-
son, 2001; Veling & van Knippenberg, 2004; Saun-
ders & MacLeod, 2006).

In light of the aforementioned successes, it is
also worth noting a recent published failure to show
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RIF using independent cues: Instead of using an in-
dependent cue that was semantically related to the
competitor itself (e.g., cuing for Apple using Red),
Perfect et al. (2004) paired the competitor with a se-
mantically unrelated word (e.g., Zinc-Apple) prior
to the RIF experiment, and used this “external asso-
ciate” to cue memory. No RIF was observed in this
condition. We discuss possible explanations for this
null RIF effect in Simulation 5.

Evidence for competition-dependent forgetting
As stated earlier, another one of Anderson’s

key claims is that RIF effects are competition-
dependent: Forgetting should be observed for strong
competitors but not for weak competitors (Ander-
son, Bjork, & Bjork, 1994; Anderson, 2003). More
concretely, we can define a strong competitor as an
item that receives a high level of excitatory input
(given a particular cue), but not enough to actu-
ally win the competition. According to this frame-
work, practicing retrieval of Pear (using the cue
Fruit-Pe ) causes forgetting of Apple because Ap-
ple receives a high level of excitatory input, but not
enough to cause it to win over Pear.

The most important prediction of the
competition-based account is that reducing the
extent to which Apple competes with Pear (i.e.,
reducing the amount of excitatory input that Apple
receives, relative to Pear) should reduce forgetting
of Apple. Anderson tested this by changing the
practice phase such that, instead of giving par-
ticipants partial practice cues and asking them
to complete the cues (Fruit-Pe ), participants
were given additional presentations of previously
studied pairs (Fruit-Pear). We will refer to this
latter condition as the extra study condition. The
intuition here is that the relative match between the
cue and Pear (vs. Apple) is larger in the extra study
condition than in the partial practice condition, so
there should be less competition between Apple
and Pear in the extra study condition. According
to the competition-based view of RIF, this implies
that recall of Apple should be hurt less in the extra
study condition (vs. the partial practice condition).
This was confirmed by Anderson and Shivde (in
preparation), who found forgetting of competitors
(measured using an independent cue) after partial
practice but not extra study (see Blaxton & Neely,
1983; Ciranni & Shimamura, 1999; Anderson,
Bjork, & Bjork, 2000a; Shivde & Anderson,
2001; Bauml, 1996, 2002 for related findings).
We address the “retrieval-dependence” of RIF in
Simulation 1.

Another way that Anderson has tested the
competition-based account is by manipulating the
taxonomic strength of the competing category-
exemplar pairs. For example, participants might
study Fruit-Apple, Fruit-Kiwi, and Fruit-Pear, then
practice Fruit-Pe . In this example, strong as-
sociates of Fruit (Apple) should compete more
strongly during retrieval than weak associates of
Fruit (Kiwi), so strong associates should show more
RIF than weak associates. This prediction was con-
firmed by Anderson et al. (1994) and also Bauml
(1998). Both of these studies found RIF for strong
associates but no RIF at all for weak associates (but
see Williams & Zacks, 2001 for a failure to repli-
cate the result). We address the effects of competi-
tor strength on RIF in Simulation 2.

RIF as competitor weakening

To account for the above findings, Anderson
has argued that RIF involves direct weakening of
competing memory representations — that is, Ap-
ple is harder to retrieve in the paradigms described
above (even with independent cues) because the Ap-
ple representation itself has been weakened. Ander-
son has been careful to distinguish this account from
other theories of RIF, most prominently:

• Blocking theories, which posit that impaired
recall of Apple is an indirect consequence of
strengthening Pear, and that no actual weak-
ening of Apple takes place (e.g., McGeoch,
1936). According to these theories, strength-
ening Pear at practice hurts subsequent recall
of Apple by increasing the odds that Pear will
come to mind and block recall of Apple. Some
theories of this type are referred to as ratio-rule
theories, because — according to these theo-
ries — the probability of recalling a memory
is a function of the ratio of the strength of the
sought-after memory, compared to other mem-
ories. As such, increasing the strength of Pear
can impair recall of Apple, even if the actual
strength of Apple is unchanged (for examples
of ratio-rule theories, see Rundus, 1973; An-
derson, 1983; Raaijmakers & Shiffrin, 1981;
Gillund & Shiffrin, 1984; Mensink & Raaij-
makers, 1988).

• Associative unlearning theories, which posit
that learning at practice involves weakening of
the connection between Fruit and Apple (and
strengthening of the connection between Fruit
and Pear), but the Apple and Pear representa-
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tions themselves are unaffected (e.g., Melton &
Irwin, 1940).

See Anderson (2003) and Anderson and Bjork
(1994) for a much more detailed overview of these
theories and other theories of RIF. While blocking
and associative unlearning theories can account for
certain aspects of the RIF data space (e.g., the ba-
sic finding that practicing Fruit-Pe hurts partici-
pants’ ability to subsequently recall Apple using the
cue Fruit-A ), other aspects of the RIF data space
are more problematic for blocking and associative
unlearning theories.

With regard to blocking theories: The key claim
of these theories is that forgetting of the competi-
tor (Apple) is a consequence of strengthening of the
practiced item (Pear). As such, a given manipula-
tion should boost RIF if and only if that manipula-
tion also boosts target strengthening. Several find-
ings from the RIF literature contradict this predic-
tion. For example, Ciranni and Shimamura (1999)
found a difference in competitor forgetting for par-
tial practice vs. extra study (RIF was obtained in the
former condition but not the latter) but no difference
in target strengthening for partial practice vs. extra
study (for similar results, see, e.g., Anderson et al.,
2000a and Anderson & Shivde, in preparation).

With regard to associative unlearning theories:
The main prediction of these theories (illustrated
in Figure 2) is that forgetting of Apple should be
limited to the cue Fruit. Other cues like Red-
A should be able to bypass both the weakened
Fruit-Apple association (and the strengthened Fruit-
Pear association) and access the intact Apple mem-
ory. However, this prediction contradicts the find-
ing (discussed earlier) that forgetting generalizes to
cues other than Fruit (e.g., Anderson & Spellman,
1995).

In summary, the idea that RIF involves direct
weakening of competitors appears to provide a bet-
ter account of extant RIF data than the blocking
and associative unlearning theories described above.
However, as discussed later, we think that a more
sophisticated version of associative unlearning (that
operates on “micro-features” of distributed repre-
sentations, as opposed to word-level concepts) plays
an important role in RIF, and we think that block-
ing can also contribute to RIF in certain circum-
stances. We re-visit the issue of how our theory
relates to competitor weakening, blocking, and as-
sociative unlearning in the General discussion.

Finding RIF in the brain

The results reviewed above suggest that brain
mechanisms responsible for RIF need to be able to
weaken memories according to the degree that they
compete. Recently, Levy and Anderson (2002) and
Anderson (2003) have focused on the possible role
of prefrontal cortex (PFC) in mediating competi-
tor punishment. There is a large body of research
(see, e.g., Miller & Cohen, 2001) suggesting that
PFC plays a role in guiding the on-line dynamics
of competition, by providing extra activation to the
contextually appropriate response (thereby ensuring
that the correct response wins and other responses
lose the competition). However, this “biased com-
petition” idea does not address the most salient as-
pect of RIF: Namely, that losing the competition to
be retrieved has lasting effects on the accessibility
of the losing memory. Although there is some de-
bate over exactly how long RIF effects last (e.g.,
MacLeod & Macrae, 2001), there is widespread
agreement that RIF can last for at least 20 min-
utes (Anderson, 2003; we address the time-course
of RIF in more detail in the General discussion).
To explain why losing the competition has lasting
effects, our theory provides an account of how lo-
cal learning mechanisms, operating within the net-
works where semantic and episodic memories are
stored (cortex and hippocampus, respectively) can
weaken competing memories. This approach is de-
scribed in detail below.

Competitor punishment through oscillating
inhibition

In this section, we present the core of our the-
ory of RIF: a neural network learning algorithm that
specifies how local synaptic modification mecha-
nisms can implement selective weakening of strong
competitors, and selective strengthening of weak
parts of the to-be-learned (target) memory. In previ-
ous work, Norman et al. (2006b) mapped out the al-
gorithm’s capacity for storing patterns, and showed
that the algorithm’s ability to punish competitors
greatly improves its ability to memorize and recall
overlapping input patterns (relative to similar algo-
rithms that do not incorporate competitor punish-
ment; this point is discussed in more detail in the
General discussion). While the development of the
algorithm was inspired by behavioral data indicat-
ing competitor punishment, Norman et al. (2006b)
did not address the algorithm’s ability to account for
this behavioral data. The goal of the present paper is
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Pear

Apple

Fruit

Red

Pear

Apple

Fruit

Red

Before Practice After Practice

Figure 2: Illustration of associative unlearning theory (adapted from Anderson & Bjork, 1994, Figure 4).
Practice of Fruit-Pe strengthens the Fruit-Pear connection and weakens the Fruit-Apple connection. This
view predicts that forgetting of Apple should only be observed when using the cue Fruit (but not with other
cues like Red). For evidence that contradicts this prediction, see, e.g., Anderson and Spellman (1995).

to evaluate how well this algorithm works as a psy-
chological theory, by exploring its ability to account
for detailed patterns of RIF data.

The learning algorithm depends critically on os-
cillations in the strength of neural feedback inhibi-
tion. By way of background, we describe the role
of inhibition in regulating excitatory activity in the
model. Then, we provide an overview of how the
learning algorithm leverages changes in the strength
of inhibition to “flush out” strong competitors (so
they can be punished), and to identify weak parts of
target memories (so they can be strengthened). Fi-
nally, we provide a more detailed account of how
synaptic weights are updated in the model, and we
briefly discuss how the algorithm may be imple-
mented in the brain by theta oscillations.

The role of inhibition in recurrently connected
networks

The network used in our simulations, like the
brain itself, has recurrent connectivity: if unit X
projects to unit Y, there is a path back from unit Y to
unit X (although not necessarily a direct path; see,
e.g., Felleman & Van Essen, 1991; Douglas, Koch,
Mahowald, Martin, & Suarez, 1995).

Recurrently connected networks like this one
need some way of controlling excitatory activity,
so activity does not spread across the entire net-
work (causing a seizure). In the brain, this prob-
lem is solved by inhibitory interneurons. These in-
terneurons enforce a set point on the amount of ex-

citatory activity within a localized region, by sam-
pling the amount of excitatory activity in that re-
gion, and sending back a commensurate amount of
inhibition (Szentágothai, 1978; Douglas et al., 1995;
Douglas & Martin, 1998; O’Reilly & Munakata,
2000). In our model, we capture this set point dy-
namic using a k-winners-take-all (kWTA) inhibition
rule, which adjusts inhibition such that the k units in
each layer that receive the most excitatory input are
active, and all other units are inactive (O’Reilly &
Munakata, 2000; Minai & Levy, 1994).1

Figure 3 provides a schematic illustration of the
kWTA algorithm. First, the algorithm ranks all of
the units in the layer according to the amount of ex-
citatory input they are receiving. Next, the kWTA
algorithm sets inhibition such that the inhibitory
threshold (the point at which inhibition exactly bal-
ances out excitation) is located between the level of
excitation received by the kth unit and the level of
excitation received by the k +1st unit. This ensures
that the top k units are above threshold and all of the
other units are below threshold.

In the simulations below, we set k equal to the
number of active units per layer in each studied
pattern, such that (when kWTA is applied to the

1There are circumstances under which kWTA inhibition (as
implemented in our model) can lead to slightly more or slightly
fewer than k units being active; for a thorough treatment of
this issue see O’Reilly and Munakata (2000). These small de-
viations are not important for explaining how kWTA shapes
our model’s behavior, so we gloss over them when discussing
kWTA in the main text.
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Net Input (Excitation)

HighestLowest

5678 4 3 2 1

Active units
excitation > inhibition

Inactive units
inhibition > excitation

k-Winners-Take-All Inhibition Rule, k = 4

Inhibitory Threshold

Figure 3: Illustration of key features of the k-winners-take-all (kWTA) inhibitory algorithm. The goal of
the algorithm is to set inhibition such that the k units receiving the most excitatory input are active (for this
example, assume that k = 4). To accomplish this goal, the algorithm ranks the units in a layer according
to the amount of excitation that they are receiving. Next, the algorithm sets the level of inhibition such that
the inhibitory threshold (the point at which inhibition exactly balances out excitation) is located between
the level of excitation received by the kth unit and the level of excitation received by the k + 1st unit. This
results in a situation where the top k units (and only those units) are above threshold.

network) the best-fitting memory — and only that
memory — is active. For a more detailed mathe-
matical description of kWTA, see Appendix A.

Summary of the learning algorithm

The goal of the oscillating learning algorithm is
to adjust synaptic weights to optimize retrieval of
the target memory on subsequent trials. Because
memory retrieval is a competitive process, the al-
gorithm seeks to optimize target retrieval both by
strengthening the target memory, and also by weak-
ening competing memories. Another key learning
principle is that synaptic modification should be as
frugal as possible: While there is a clear overall
benefit to weakening competing memories, exces-
sive weakening can have harmful consequences if
it ever becomes necessary to recall those competi-
tors later. Thus, memory weakening should only be
applied to non-target memories that are threatening
to displace the target memory. Likewise, there is
no benefit to strengthening a memory trace if that
trace is already strong enough to support robust re-
call. Thus, strengthening should be limited to weak
parts of the target memory (the parts that are most
likely to be displaced by competitors).

In order to selectively strengthen weak target
units, the algorithm needs a way of identifying
which parts of the target memory trace are weak.
Likewise, in order to selectively punish strong com-
petitors, the algorithm needs a way of identifying
which memories are strong competitors. The learn-
ing algorithm achieves these goals by oscillating

inhibition above and below its baseline level, and
learning based on the resulting changes in activa-
tion. The major components of the algorithm are
summarized here, and depicted graphically in Fig-
ure 4:

• First, the target pattern is presented to the
network, by applying an external input to each
of the units that are active in the target pattern
(this input is held constant throughout the en-
tire trial). Given strong external input, the total
amount of excitatory input will be larger for
target units than non-target units. In this situ-
ation, the kWTA rule will set inhibition such
that the target units are active, and other (non-
target) units are inactive.

• Second, the algorithm identifies weak parts
of target memories by raising inhibition
above the baseline level of inhibition (set by
kWTA). This acts as a “stress test” on the tar-
get memory. If a target unit is receiving rel-
atively little support from other target units,
such that its net input is just above threshold,
raising inhibition will trigger a decrease in the
activation of that unit. However, if a target unit
is receiving strong support from other target
units, such that its net input is far above thresh-
old, it will be relatively unaffected by this ma-
nipulation.

• Third, the algorithm strengthens units that
turn off when inhibition is raised (i.e., weak
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Active units

excitation > inhibition

Inactive units

inhibition > excitation

Present the target

pattern to the network

Identify weak target units

by raising inhibition

Strengthen units that turn off

(= weak target units)

Identify competitors

by lowering inhibition

Weaken units that turn on

(= strong competitors)

1)
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Net Input (Excitation)

Figure 4: High-level summary of the learning algorithm. For all sub-parts of the figure, target units (labeled
with a T) and competitor units (labeled with a C) are ordered according to the amount of excitatory net
input they are receiving. Active units (excitation > inhibition) are shown with a white background color
and inactive units (inhibition > excitation) are shown with a black background color. Step 1 depicts what
happens when the target pattern is presented to the network. Assuming that the external input (applied to
the target units) is strong enough, the total amount of excitatory input will be higher for target units than
for competitor units. In this situation, if k equals the number of target units, the k-winners-take-all rule sets
inhibition such that the k target units are above threshold, and competitor units are below threshold. Steps 2
and 3: Raising inhibition causes target units that are just above threshold to turn off; the learning algorithm
then acts to strengthen these units. Steps 4 and 5: Lowering inhibition causes competitor units that are
just below threshold to become active; the learning algorithm then acts to weaken these units. See text for
additional details.
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target units), by increasing weights that con-
nect these units to other active units. By do-
ing this, the learning algorithm ensures that a
target unit that drops out on a given trial will
receive more input the next time that cue is pre-
sented. If the same pattern is presented repeat-
edly, eventually the input to that unit will in-
crease to the point where it no longer drops out
in the high inhibition condition. At this point,
the unit should be well-connected to the rest of
the target representation (making it possible for
the network to activate that unit, given a partial
cue) and no further strengthening will occur.

• Fourth, the algorithm identifies competitors
by lowering inhibition below the baseline
level of inhibition. Effectively, lowering in-
hibition reduces the threshold amount of exci-
tation needed for a unit to become active. If a
non-target unit is just below threshold (i.e., it is
receiving strong input, but not quite enough to
become active) lowering inhibition will cause
that unit to become active. If a non-target unit
is far below threshold (i.e., it is not receiving
strong input), it will be relatively unaffected by
this manipulation.

• Fifth, the algorithm weakens units that turn
on when inhibition is lowered (i.e., strong
competitors), by reducing weights that con-
nect these units to other active units. By do-
ing this, the learning algorithm ensures that a
unit that competes on one trial will receive less
input the next time that cue is presented. If
the same cue is presented repeatedly, eventu-
ally the input to that unit will diminish to the
point where it no longer activates in the low in-
hibition condition. At this point, the unit is no
longer a competitor, so no further punishment
occurs.

Algorithm details

The Norman et al. (2006b) learning algorithm
adjusts connection strengths using the Contrastive
Hebbian Learning (CHL) equation (Ackley, Hin-
ton, & Sejnowski, 1985; Hinton & Sejnowski, 1986;
Hinton, 1989; Movellan, 1990). CHL involves con-
trasting a more desirable state of network activity
(sometimes called the plus state) with a less desir-
able state of network activity (sometimes called the
minus state). The CHL equation adjusts network
weights to strengthen the more desirable state of
network activity (so it is more likely to occur in the

future) and weaken the less desirable state of net-
work activity (so it is less likely to occur in the fu-
ture).

dWij = ε
(
X+

i Y +
j −X−

i Y −
j

)
(1)

In the above equation, Xi is the activation of the
presynaptic (sending) unit, Yj is the activation of the
postsynaptic (receiving) unit. The + and − super-
scripts refer to plus-state and minus-state activity,
respectively. dWij is the change in weight between
the sending and receiving units, and ε is the learning
rate parameter.

The description of the oscillating algorithm in
Figure 4 shows inhibition changing in discrete
jumps (between normal, high, and low inhibition).
In the actual model, we implement the learning dy-
namics shown in Figure 4 by varying inhibition in
a continuous, sinusoidal fashion, over the course
of multiple time steps. At the outset of each trial,
we set inhibition to its normal level (i.e., the level
set by kWTA), such that — assuming that the tar-
get units receive sufficient external input — all of
the target units (and only those units) are active.
This is the maximally correct state of network activ-
ity. Next, we distort the pattern of network activity
by continuously oscillating inhibition from its nor-
mal level to higher-than-normal, then to lower-than-
normal, then back to normal. Weight changes are
computed by applying the CHL equation to succes-
sive time steps of network activity. At each point in
the inhibitory oscillation, inhibition is either mov-
ing toward its normal level (the “maximally correct”
state), or it is moving away from this state. If inhi-
bition is moving toward its normal level, then the
activity pattern at time t + 1 will be more correct
than the activity pattern at time t. In this situation,
we will use the CHL equation to adapt weights to
make the pattern of activity at time t more like the
pattern at time t + 1. However, if inhibition is mov-
ing away from its normal level, then the activity pat-
tern at time t + 1 will be less correct than the activ-
ity pattern at time t (it will either contain too much
or too little activity, relative to the target pattern).
In this situation, we will use the CHL equation to
adapt weights to make the pattern of activity at time
t + 1 more like the pattern at time t. These rules are
formalized in Equation 2 and Equation 3.

If inhibition is returning to its normal value:

dWij = ε (Xi(t + 1)Yj(t + 1)−Xi(t)Yj(t)) (2)

If inhibition is moving away from its normal
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value:

dWij = ε (Xi(t)Yj(t)−Xi(t + 1)Yj(t + 1)) (3)

Note that Equation 3 is the same as Equation 2,
except for a change in sign. One useful to way to
re-express these equations is to combine the sign
change and ε into a single learning rate term (lrate):

dWij = lrate (Xi(t + 1)Yj(t + 1)−Xi(t)Yj(t))
(4)

where lrate takes on a positive value (ε) when in-
hibition is returning to its normal value, and lrate
takes on a negative value (−ε) when inhibition is
moving away from its normal value.

Figure 5 summarizes how the learning algorithm
affects target and competitor representations. The
algorithm strengthens the connections between tar-
get units that drop out (during the high inhibition
phase) and other target units. Also, it weakens the
connections between competitor units that pop up
(during the low inhibition phase) and other units that
are active during the low inhibition phase. The net
effect of these weight changes is to increase the av-
erage degree of interconnectivity between the units
in the target pattern, and to decrease the average de-
gree of interconnectivity between the units in the
competitor pattern.2

The increased interconnectivity of the target pat-
tern makes it a stronger attractor in the network:
Because target units all send mutual support to one
another, it is easier to activate the target pattern (i.e.,
it is a more “attractive” state of network activity),
regardless of the cue. Likewise, the decreased in-
terconnectivity of the competitor pattern makes it a
weaker attractor in the network: Because competi-
tor units do not send strong support to one another, it
is easy for the network to slip out of the competitor
activity pattern, and into some other pattern. This
should hurt the network’s ability to subsequently re-
trieve the competitor pattern.

2This target-strengthening and competitor-weakening is
contingent on the assumption that target units are active given
normal inhibition (and competitor units are not). If target units
do not fully activate given normal inhibition, this will reduce
target strengthening (see Simulation 1.1 and Simulation 9).
Likewise, if competitor units start to activate before inhibition
is lowered, this will reduce competitor weakening (see Simula-
tion 2.1 and Simulation 2.2).

Theta oscillations: A possible neural substrate for
the oscillating learning algorithm

As discussed in Norman et al. (2006b), several
findings suggest that theta oscillations (rhythmic
changes in local field potential at a frequency of ap-
proximately 4 to 8 Hz in humans) could serve as the
neural substrate for the oscillating algorithm:

• Theta oscillations depend critically on changes
in the firing of inhibitory interneurons
(Buzsaki, 2002; Toth, Freund, & Miles, 1997).

• Theta oscillations have been observed in hu-
mans in the two structures that are most impor-
tant for semantic and episodic memory: cor-
tex (e.g., Kahana, Seelig, & Madsen, 2001)
and hippocampus (e.g., Ekstrom, Caplan, Ho,
Shattuck, Fried, & Kahana, 2005).

• Most importantly, theta oscillations have been
linked to learning, in both animal and hu-
man studies (e.g. Seager, Johnson, Chabot,
Asaka, & Berry, 2002; Sederberg, Kahana,
Howard, Donner, & Madsen, 2003). Sev-
eral studies have found that the direction of
potentiation (LTP vs. LTD) depends on the
phase of theta (peak vs. trough; Huerta & Lis-
man, 1996; Holscher, Anwyl, & Rowan, 1997;
Hyman, Wyble, Goyal, Rossi, & Hasselmo,
2003). This result mirrors the property of
our model whereby the high-inhibition phase
of the oscillation is primarily concerned with
strengthening target memories (LTP) and the
low-inhibition phase of the oscillation is pri-
marily concerned with weakening competitors
(LTD).

At this point, the linkage to theta is only sugges-
tive. However, if we take the linkage seriously, it
leads to several predictions that should (in principle)
be testable using human electrophysiology. These
predictions are described in the Neurophysiological
predictions section at the end of the paper.

Model architecture

As discussed in the Introduction, RIF can oc-
cur in both semantic and episodic memory. In or-
der to encompass both types of RIF, the model
used in our simulations incorporates both a semantic
memory network and an episodic memory network.
In keeping with prior work (e.g., McClelland, Mc-
Naughton, & O’Reilly, 1995) suggesting that cortex
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Figure 5: Summary of the oscillating learning algorithm (Norman et al., 2006b). Part A shows how target
and competitor activation change during different phases of the oscillation. The target and competitor pat-
terns are represented as interconnected sets of units (active units are represented by white circles and inactive
units are presented by black circles). The high-inhibition part of the oscillation causes some target units to
drop out and then reappear; the low-inhibition part of the oscillation causes some competitor units to activate
and then disappear. The boxes in part A summarize how these activation changes affect network weights.
To a first approximation, weight change in the model (for a particular unit) is a function of the change in
that unit’s activation, multiplied by the current learning rate (which is positive if inhibition is returning to its
normal value, and negative if inhibition is moving away from its normal value; see Equation 4). Applying
this heuristic to all four quadrants of the oscillation, the net effect of the first two quadrants is to increase
weights coming into target units, and the net effect of the second two quadrants is to reduce weights coming
into competitor units. Part B illustrates more specifically how the activation changes in part A affect the
target and competitor representations: Target units that dropped out during the high-inhibition phase in part
A become better linked to other target units; and competitor units that popped up during the low-inhibition
phase in part A are cut off from the target representation (and from each other).
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ItemContext

Hippo

Associate

Semantic Memory System

Episodic Memory System

Figure 6: Diagram of the network used in our simulations. The associate and item layers constitute the
network’s semantic memory system: Patterns of activity in these layers directly represent the features of
studied stimulus pairs (such that the first stimulus in the pair is represented in the associate layer, and
the second stimulus in the pair is represented in the item layer). The item and associate layers are fully
connected, such that each unit in either layer is connected to all of the units in both layers. Patterns of
activity in the context layer serve as “contextual tags” (e.g., during the study phase, a fixed pattern of
activity is imposed on this layer to represent the study context). Each unit in the hippocampal layer is
bidirectionally connected to all of the units in the context, associate, item, and hippocampal layers (including
itself). The role of the hippocampal network is to rapidly bind together co-active context, associate, and
item representations in a manner that supports pattern completion (retrieval of the entire stored “episode” in
response to a partial cue).
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is the key structure for semantic memory and hip-
pocampus is the key structure for episodic memory,
we will refer to the semantic network as the “corti-
cal network” and the episodic network as the “hip-
pocampal network”. However, we should empha-
size that the networks used in this paper are highly
simplified, relative to the more biologically-detailed
cortico-hippocampal model that was used in our
previous simulation work (Norman & O’Reilly,
2003; for similar models see, e.g., Hasselmo, Bode-
lon, & Wyble, 2002; Becker, 2005). Most of
these simplifications were driven by practical ne-
cessity: The oscillating learning algorithm is highly
computation-intensive because it computes weight
changes at each time step (whereas most learning al-
gorithms only factor in the final settled state of the
network when changing weights; this point is dis-
cussed in the Comparison to other models section
at the end of the paper). Thus, to keep the model
from running too slowly, we tried to use the small-
est and simplest possible network that allowed us
to capture the relevant data. In the simulations de-
scribed here, both the cortical (semantic) network
and the hippocampal (episodic) network use the os-
cillating learning algorithm to update weights. The
two systems are described in more detail below.

Cortical (semantic memory) network

The cortical semantic memory network consists
of two layers, an associate layer and an item layer,
consisting of 40 units apiece (see Figure 6). The
semantic memory network is fully connected both
within and across layers, such that each unit in the
associate and item layers projects to (and receives a
projection from) every unit in both layers, including
itself. Our primary reason for splitting the seman-
tic network into two layers was interpretive conve-
nience: All of the paradigms that we simulate in
this paper involve memory for stimulus pairs (e.g.,
Fruit-Apple), where the first stimulus is used to cue
the second at test. Using a 2-layer scheme allows
us to use one layer to represent the first stimulus in
the pair (the associate: Fruit) and another layer to
represent the second stimulus in the pair (the to-be-
recalled item: Apple).

The associate-item patterns were instantiated in
the model by turning on 4/40 units in each of the as-
sociate and item layers, and leaving the other units
inactive (so, the 4 active units in the associate layer
correspond to Fruit and the 4 active units in the item
layer correspond to Apple). For more information
on these patterns see the Patterns used in the simu-

lation section below.
Prior to the start of the simulated RIF experi-

ment, we pretrained a limited set of associate-item
pairs into the cortical network using a simple Heb-
bian rule. This pretraining process was meant to
capture the effects of pre-experimental experience
with the stimuli that were used in the (simulated)
RIF experiment. To implement pretraining, weights
in the cortical network were first initialized to .5.
We then ran a script that looped once through all of
the patterns that we wanted to pretrain and strength-
ened weights between co-active units in each pat-
tern.3 For more details on how we implemented
pretraining, see Appendix B.

During the simulated experiment, synchronous
inhibitory oscillations were imposed on both layers
(associate and item), and the oscillating learning al-
gorithm was used to modify weights within and be-
tween layers.

Hippocampal (episodic memory) network

The hippocampal component of the model (Fig-
ure 6, top layer) is responsible for episodic mem-
ory. Specifically, the job of the hippocampal net-
work is to rapidly memorize patterns of cortical
activity in a manner that supports pattern comple-
tion (i.e., retrieval of the entire pattern, in response
to a partial cue) after a single study exposure to
the pattern. A key challenge for the hippocampal
network is how to enact this rapid memorization
without suffering from unacceptably high (catas-
trophic) levels of interference. In keeping with other
hippocampal models, we posit that the hippocam-
pus accomplishes this goal of rapid learning with-
out catastrophic interference through its use of rela-
tively non-overlapping, pattern separated represen-
tations (Marr, 1971; O’Reilly & McClelland, 1994;
McClelland et al., 1995; Norman & O’Reilly, 2003;
Becker, 2005).

In our previous modeling work, we used a
3In previous versions of the model, semantic pretrain-

ing was implemented using the oscillating learning algorithm.
However, it proved to be impractical to use the oscillating learn-
ing algorithm to pretrain semantic memory for each simulated
participant (it was too slow, and too difficult to precisely set
memory strength values). Insofar as the focus of this paper is
on simulating what happens during the experiment, we decided
to use the simple Hebbian procedure outlined above (strengthen
weights between co-active units) for pretraining. This Hebbian
procedure would not work as an actual cortical learning rule
(e.g., it does not have a means of decrementing weights). How-
ever, for the simplified patterns that we use in this simulation,
it is a very efficient means of implanting attractors into the net-
work.
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relatively complex hippocampal model that maps
closely onto the neurobiology of the hippocampus
(Norman & O’Reilly, 2003). The full hippocam-
pal model that was used by Norman and O’Reilly
(2003) relies on passing activity through a “den-
tate gyrus” layer with a very large number of units
(1600) and very sparse activity in order to enact pat-
tern separation. Including this large dentate gyrus
layer in our present model would make it run far too
slowly. Thus, for this paper, we decided to radically
simplify the hippocampal network, with the goal of
keeping its essential properties (i.e., the ability to
complete patterns after one study trial, and its use
of pattern separation to reduce interference) while
at the same time keeping the network as small as
possible.

In this section, we first discuss the connectivity
of the hippocampal network, including the role of
context; next, we discuss how pattern separation is
implemented in this network; and lastly we discuss
learning and pattern completion in the model.

Connectivity and context
The hippocampal network used in our simula-

tions here has 80 units. Each unit in the hippocam-
pal layer is bidirectionally connected to all of the
units in the (cortical) associate and item layers. The
hippocampal layer also has full recurrent connectiv-
ity, such that each unit connects to all of the other
units, including itself.

To simulate findings showing that context
change between study and test can affect episodic
memory (e.g., Smith, 1988), we also incorporated
a separate “context” layer into the model (see Fig-
ure 6, lower left). This context layer can be viewed
as representing aspects of the experimental situation
other than the core semantic features of the associate
and the item.4

The context layer contains 40 units and is
bidirectionally connected to the hippocampal layer
(such that each hippocampal unit receives a connec-
tion from each context unit, and sends a projection
to each context unit). When simulating RIF exper-
iments, we presented patterns with 4 active units
to the context layer to represent particular contexts
(e.g., we kept a particular set of 4 context units ac-

4In this paper, we will remain agnostic about the neural in-
stantiation of this context representation. In the General discus-
sion, we mention that prefrontal cortex may play an especially
important role in representing contextual information (Cohen &
Servan-Schreiber, 1992). For additional discussion of the neu-
ral substrates of temporal context memory see Norman, Detre,
and Polyn (in press).

tive throughout the entire study phase, to represent
the fact that all of the study pairs are being presented
in the “study context”). This “static context tag”
mechanism was the simplest possible mechanism
that we could devise that would allow us to simu-
late effects of context change. For reasons of sim-
plicity, we also decided not to have the context layer
oscillate, and we decided not to directly connect the
context layer to the associate and item layers.5

All connections involving hippocampal units
were initialized to zero prior to the simulation and
then adjusted according to the rules outlined below.

Pattern separation: Pretraining conjunctive repre-
sentations

A key property of the hippocampus is its abil-
ity to assign distinct representations to different
combinations of stimuli (so it can memorize these
combinations rapidly without catastrophic interfer-
ence). Since the hippocampal network in this model
is too small to use our standard approach to pat-
tern separation (i.e., passing activity through a very
large, very sparse “dentate gyrus” layer), we en-
forced pattern separation directly on the model by
pretraining a unique conjunctive representation in
the hippocampus for each associate-item combina-
tion.6 These conjunctive representations were com-
prised of 4 active hippocampal units out of 80 to-
tal (e.g., Fruit-Apple would get its own set of 4
units; Fruit-Pear would get a different set of 4
units). For all simulations except for Simulation 8,
the hippocampal representations corresponding to
distinct associate-item pairs were completely non-
overlapping.

To establish the conjunctive representation for a
particular associate-item pair, we strengthened con-
nections from active associate-layer and item-layer
units to the 4 hippocampal units in the conjunc-
tive representation. Also, to ensure robust hip-

5We do not want to rule out the possibility that incremen-
tal associative learning can occur between semantic features
and contextual representations. We experimented with a ver-
sion of the model that included direct context-associate/item
connections, and decided to leave them out after finding that
they greatly increase model complexity, without improving the
model’s ability to explain the findings discussed here.

6Given that it was combinatorially infeasible to pretrain
a conjunctive representation for every possible associate-item
combination, we focused on pretraining representations for
associate-item pairs that were either semantically or episodi-
cally linked during the experiment. Specifically, we pretrained
a conjunctive representation for every associate-item pair that
was pretrained into semantic memory (via the cortical pretrain-
ing process described above) and/or presented during the study
phase.
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pocampal attractor dynamics, recurrent connections
between these 4 units were strengthened. Weight
values for strengthened connections were sampled
from a uniform distribution with mean .95 and half-
range .05 (weight-values for non-strengthened con-
nections were kept at zero). These pretrained con-
nections were fixed over the duration of the simu-
lation. Importantly, while connections into the hip-
pocampus from the associate and item layers were
pretrained (giving each hippocampal unit a partic-
ular conjunctive “receptive field”), connections out
from the hippocampus to the associate, item, and
context layers were not pretrained. These connec-
tions all start out with zero strength. Without these
outbound connections, activation can go into the
hippocampus, but it can not feed back into cortex
and support recall of cortical representations.7

Learning and pattern completion in the hippocam-
pal network

During the simulated experiment, learning in the
hippocampal network was focused on two sets of
connections:

• Connections from the context layer to the
hippocampus (which serve to bind particular
associate-item pairings to the study context)

• Connections from the hippocampus back to as-
sociate and item layers (which allow the hip-
pocampus to support pattern completion of
missing pieces of associate-item pairs).

We applied the oscillating algorithm to the hip-
pocampal layer and allowed it to modify these two
sets of connections. Also, in keeping with the idea
that hippocampus learns rapidly (in order to sup-
port pattern completion after a single study trial)
but cortex learns more incrementally (McClelland
et al., 1995; Norman & O’Reilly, 2003), we used a
much higher learning rate for hippocampal connec-
tions (2.0) than for cortical connections (.05).

7Our use of fixed inbound connections to the hippocam-
pus and fixed recurrents is a major simplification, relative to
the Norman and O’Reilly (2003) model, which allowed both
of these connections to be modified. However, we found that
using fixed inbound and recurrent connections was necessary
to get our simplified model to work in a robust fashion: Fixed
inbound connections ensure pattern separation. Fixed recurrent
connections are necessary because the oscillating algorithm re-
quires robust attractor dynamics. In the absence of well-defined
attractor states, the net input gap between the “winning” units
and all of the other units in the network is small. In this situ-
ation, lowering inhibition tends to cause seizures where all of
the hippocampal units activate at once.

Pattern completion in the hippocampus works
in the following manner: When a partial version
of a studied associate-item pair is presented, ac-
tivation spreads upward in the model to the hip-
pocampal layer, activating the hippocampal repre-
sentation of that pair. If that hippocampal represen-
tation was linked back to the associate/item layers at
study, then activation will flow back from the hip-
pocampal representation to the associate/item lay-
ers and fill in the missing pieces of the cortical pat-
tern. This process is modulated by contextual con-
nections: If the hippocampal representation of the
relevant associate-item pair was linked to the study
context (during the study phase), and we cue at test
with a representation of the study context, this will
result in extra excitation being sent to the relevant
hippocampal representation, making it more likely
to activate.

Hippocampal model summary
We set out to devise the simplest possible hip-

pocampal network that:

• instantiated the key hippocampal properties of
pattern completion and pattern separation

• was compatible with the oscillating learning
algorithm (in the sense that it showed robust at-
tractor dynamics and was not too large, given
the need to update every weight on every time
step)

To accomplish this goal, we used a relatively
small, one-layer hippocampal network and pre-
trained the network such that each associate-item
pair that might come up in the experiment has its
own “conjunctive representation” (i.e., a set of hip-
pocampal units that are tuned to represent this par-
ticular associate-item pair). At the outset of the
simulated experiment, these conjunctive representa-
tions are not contextualized (because they have not
been linked to any patterns on the context layer),
and they are not capable of supporting pattern com-
pletion in cortex (because they have not been linked
back to the associate and item layers). During the
simulated experiment, the oscillating learning algo-
rithm can strengthen connections in order to bind
hippocampal representations to the study context,
and to link hippocampal representations back to
the associate and item layers (so they can support
pattern completion). Crucially, if a particular hip-
pocampal representation pops up as a competitor
during the practice phase, the oscillating algorithm
can also weaken connections that were strengthened
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at study, leading to forgetting of the episodic mem-
ory trace.

RIF simulation methods

Our basic RIF simulation procedure was struc-
tured to match the three phases of the retrieval-
induced forgetting paradigm: A study phase, where
the network learns about some patterns; a practice
phase, where some of the studied patterns (but not
others) are presented again, either in their entirety
or in partial form; and a test phase, which measures
the network’s ability to complete partial versions of
studied patterns.

First, we describe how we generated the patterns
that were used in the simulations. Next, we describe
aspects of our procedure that were common to all
three phases (study, practice, and test). Finally, we
describe the different phases of the simulation in
more detail.

Patterns used in the simulation

The standard RIF paradigm involves studying
items from various semantic categories, where mul-
tiple items are studied per category. This was in-
stantiated in our model using category patterns (in
the associate layer) that are each linked to multiple
item patterns (in the item layer). Each “category
tag” in the associate layer is distinct from (i.e., has
no overlap with) the category tags corresponding to
other categories. Furthermore, the item-layer pat-
terns corresponding to different studied items have
zero overlap with one another (see Figure 7 for sam-
ple patterns).8

These semantic category-item pairs were pre-
trained into the network before the start of the sim-
ulated RIF experiment, via the weight pre-setting
mechanism described above (in the Cortical net-
work section): For semantically strong patterns, the
weights between active units in the pattern were set
to a high value (e.g., .90); for semantically weaker
patterns, the weights between active units in the pat-
tern were set to a lower value (e.g., .65). For specific
details of the algorithm that we used to pretrain cor-
tical weights, see Appendix B.

Neighbor patterns In addition to pretraining
patterns that actually appear in the (simulated) ex-
periment, we also wanted to account for the fact
that other patterns exist in semantic memory that are

8Our use of zero overlap between item-layer patterns is a
simplification; we explore the effects of higher levels of item-
layer overlap in Simulation 8.

similar to items from the experiment, but do not ac-
tually appear in the experiment. To accomplish this
goal, we took each of the categorized patterns that
we pretrained (for use in the experiment) and we
generated another neighbor pattern that had 100%
associate-layer overlap with that pattern (4/4 active
units in common) and 75% item-layer overlap with
that pattern (3/4 active units in common; see Fig-
ure 7, second row). Each of these neighbor pat-
terns was pretrained into the cortical network prior
to the simulated study phase.9 Neighbor patterns
were never presented to the network during the sim-
ulated study phase, insofar as they are meant to sim-
ulate nonstudied, similar patterns. Note that the re-
trieval cues that we use at practice and test (see Fig-
ure 7) match both the to-be-retrieved item and its
neighbor equally well. This mirrors the fact that, in
actual RIF experiments, retrieval cues (e.g., Fruit-
A ) typically match multiple items stored in se-
mantic memory, although they only match one stud-
ied item. For example, if you study Fruit-Apple,
the cue Fruit-A matches the studied item Apple,
but it also matches the nonstudied “neighbor” item
Apricot.

Neighbor patterns contribute to the functioning
of the model in two important ways: First, competi-
tion between studied items and their neighbors helps
to keep recall of studied items below ceiling. Sec-
ond, by influencing competitive dynamics, neighbor
patterns also exert a strong influence on the learn-
ing that takes place on study and practice trials; this
point is discussed in more detail in Simulation 1.1.

Finally, note that neighbor patterns were in-
cluded in all of the simulations described in this
paper (the only simulation that explicitly discusses
their contributions is Simulation 1.1, but they are
present in other simulations also).

General simulation procedure

This section describes our basic procedure for
simulating a single trial; this procedure was the
same for all three phases of the simulated exper-
iment (study, practice, and test). We provide a
substantially more detailed account of our simula-
tion procedure (including relevant equations) in Ap-
pendix A.

The simulation itself was implemented using a
9Neighbor patterns were pretrained with semantic strength

.70 (i.e., connections from shared item units to the unique
neighbor item unit were set to .70, and connections from cat-
egory units to the unique neighbor item unit were also set to
.70).
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Figure 7: Figure illustrating a subset of the input patterns used during the study, practice, and test phases
of Simulation 1; these phases are described in the Simulation phases section of the text. Each input pattern
consists of a pattern of activity across the associate layer and a pattern of activity across the item layer. The
top row shows examples of patterns that were shown at study. The target and competitor patterns come from
one category and the target control and competitor control patterns come from another category. Studied
patterns from the same category have 100% overlap in the associate layer but zero overlap in the item
layer; studied patterns from different categories have zero overlap in both layers. The second row shows
nonstudied neighbor patterns corresponding to each of the studied items in the top row (see the Neighbor
patterns section for details). The third row shows examples of patterns used to probe target memory in the
three different practice conditions. The fourth row shows examples of patterns used to probe memory at test.
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variant of the O’Reilly and Munakata (2000) Leabra
model, which includes the k-winners-take-all inhi-
bition rule described above, as well as other useful
rules governing activation propagation. The only
differences between our simulations and “standard
Leabra” were our addition of the inhibitory oscil-
lation, and our use of the learning rule specified in
Equation 4 (instead of the standard Leabra learning
rule).

For all of our simulations, the k parameter that
governs k-winners-take-all was set to k = 4 for each
of the layers (to match the fact that associate-layer,
item-layer, and context-layer patterns were all com-
prised of 4 active units, and that hippocampal “con-
junctive representations” were also comprised of 4
active units).

On each trial, a pattern of activity (e.g., Fruit-
Apple) was presented to the network by providing
excitatory input to associate-layer and item-layer
units that are active in that pattern. This “cue-
related” input was held constant throughout the trial.
The network was given 40 time steps to settle be-
fore we started to oscillate inhibition. Starting at the
40th time step, inhibition was oscillated by adding
an sinusoidally varying inhibition value (at each
time step) to the value of inhibition computed by
k-winners-take-all. There was one full oscillation
(from normal to high to normal to low to normal
inhibition) per trial.10

During the trial, the model uses Equation 4 to
compute a weight change value at each time step.
Importantly, the model “saves up” (accumulates)
these weight change values during the trial, and then
applies them to the network at the end of the trial.

Simulation phases

Before the start of the simulated RIF experiment,
we pretrained cortical weights (using the procedure
outlined in the Cortical network section above) in
order to implant semantic memory attractors into
the network; see Appendix B for more details. We
also pretrained hippocampal weights (using the pro-
cedure outlined in the Hippocampal network section
above) in order to establish an appropriate set of hip-
pocampal conjunctive representations.

10While the general form of the inhibitory oscillation was the
same for the hippocampal network and the cortical network, the
specific parameters governing the oscillation (e.g., maximum
and minimum inhibition values) were slightly different in hip-
pocampus vs. in cortex. For description of these differences see
Appendix A.

Phase one: Study phase
During the study phase, complete patterns (i.e.,

4/4 active associate units, 4/4 active item units) were
presented to the network.

In most experiments, we presented two cate-
gories of patterns at study: the practiced category
and the control category. As discussed above, stud-
ied items from the same category all share a com-
mon associate-layer pattern, and all have (com-
pletely) unique item-layer patterns. Items from dif-
ferent categories have zero overlap with one an-
other.

The practiced category can be subdivided into:

• Target patterns. These patterns are presented
at study and also during the practice phase.
This condition is analogous to Fruit-Pear in
Figure 1.

• Competitor patterns. Competitor patterns are
presented at study but not at practice. This con-
dition is analogous to Fruit-Apple in Figure 1.

The control category has the same number of
items as the practiced category, and is structured
identically to the practiced category (e.g., if the
practiced category consists of items with mean se-
mantic strength values .95, .85, .85, .85, the control
category is structured this way also). This way, each
item in the practiced category has a matched item in
the control category. These control items are analo-
gous to Animal-Cow and Animal-Sheep in Figure 1.

Each study trial involved presenting an
associate-item pair from the study list, along with a
“study context tag” (on the context layer) that was
held constant throughout the entire study phase.
The oscillating algorithm was applied to the net-
work and used to update cortical and hippocampal
weights.

In the simulations presented here, each item in
the study list was studied once. Studied items were
presented in a permuted order for each simulated
participant.

Phase two: Practice phase
During the practice phase of the simulation, the

target item(s) were presented to the network. As
with the study phase, the oscillating algorithm was
applied to the network and used to update cortical
and hippocampal weights.

We explored three types of practice in the simu-
lations reported here:
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• Partial practice (also referred to as retrieval
practice) involved presenting 4/4 of the active
associate units, and 3/4 of the active item units.

• Extra study used full patterns (just like the
study phase): 4/4 of the active associate units
and 4/4 of the active item units were presented
to the network.

• Reversed practice involved presenting 3/4 of
the active associate (category) units and 4/4
of the active item units (e.g., after studying
Fruit-Orange, reversed practice would use the
cue Fr -Orange and ask the model to re-
call Fruit). This reversed practice manipulation
was introduced by Anderson et al. (2000a) and
is discussed in more detail in Simulation 1.1.

In most of the simulations presented here, the
target items were presented three times at practice
(i.e., all of the target items were presented, then
the list was presented again, then the list was pre-
sented again). Our use of three target repetitions
matches the procedure typically used in RIF experi-
ments (e.g., Anderson et al., 1994). The order of the
target items was permuted with each pass through
the target list.

Typically, the same “context tag” that we used at
study was also presented to the network during the
practice phase (but see Simulation 5 for an excep-
tion to this rule). This allows us to capture the fact
that participants are actively trying to think back to
the study phase during partial practice. The influ-
ence of this context tag on retrieval was modulated
by a context scale parameter that is described in the
Contextual cue strength section below.

Phase three: Test phase
During the test phase, we cued recall for stud-

ied patterns using 4/4 of the active associate units
and 2/4 of the active item units. Note that the test-
phase partial cue (2/4 units) is slightly sparser than
the practice-phase partial cue (3/4 units). This mir-
rors the fact that, in RIF experiments, cues at test are
typically slightly sparser than cues at practice (e.g.,
participants might be given a 2-letter word stem at
practice and a 1-letter word stem at test; e.g., An-
derson et al., 1994). Using stronger cues at practice
vs. test helps to ensure good recall at practice while
also keeping recall at test below ceiling.

The study context tag was presented to the con-
text layer at test (just as it typically was at practice).
With a few exceptions (described below), the pa-

rameters used at test were the same as the parame-
ters used in other phases.

Learning at test One simplification relates to
the issue of learning that occurs during the test
phase. Several studies have demonstrated that RIF
effects can be induced by retrieval at test (see, e.g.,
Bauml, 1997, 1998; for further discussion of this is-
sue see the “output interference effects” section of
Anderson, 2003). However, the fact remains that
learning during the test phase is not necessary to ex-
plain the vast majority of the key findings in the RIF
literature.

As such, we decided to default to having learn-
ing turned off at test. This allows us to run our sim-
ulations much more quickly (since we do not have
to compute weight changes at test, and we do not
have to counterbalance the order in which items ap-
pear at test). Also, by removing an extra source of
variance from the model, it makes it easier to draw
inferences about how the practice phase is affect-
ing stored memories. Finally, removing learning at
test gives us more flexibility in how we can measure
performance (e.g., as discussed below, we can test
recall both before and after practice with learning
turned off, and look at “pre-test - post-test” differ-
ence scores to index effects of practice).

To demonstrate that our model can account for
effects of learning at test, we did run one simulation
where learning at test was turned on (see Simulation
1.1, Figure 17 and Figure 19).

Computing recall accuracy at test As noted
above, the inhibitory oscillation does not start right
away on a given trial — the network is given 40
time steps to settle. We measure recall accuracy on
the 39th time step (right before the onset of the os-
cillation).

In RIF experiments, the test phase measures
recall of properties that are unique to the to-be-
recalled item (e.g., the letters in the word “Ap-
ple”), rather than properties shared by practiced and
non-practiced stimuli (e.g., the fact that they are all
fruits). To capture this fact in our model, we opera-
tionalized recall performance (for a given test item)
by computing the activity of the one item-layer unit
per pattern that is active for the to-be-recalled item
but not its neighbor (see Figure 7). We call this mea-
sure percent correct recall.

For simulations that used our canonical two-
category structure (where there was a “practiced
category” and a “control category”), we measured
the effects of practice-phase learning on targets and
competitors by computing the difference between
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recall of the item from the practiced category (e.g.,
the target or the competitor) and recall of the corre-
sponding control item. This is the way that practice
effects are typically measured in RIF experiments.

However, for some simulations (in particular,
Simulation 2.1) it was impractical to use a two-
category structure. In this case, we used a scheme
where we tested recall performance prior to the
practice phase (with learning turned off), then ran
the practice phase, and then ran the test phase (with
learning turned off also). In this case, we can use
the difference in test performance prior to practice
vs. after practice to index the effects of the practice
phase on recall (with each item serving as its own
control).

Contextual cue strength

In running these simulations, we discovered that
we needed some way of capturing the extent to
which participants were actively trying to retrieve
memories from a particular context. The idea that
participants can vary the extent to which they cue
with contextual information has extensive precedent
in the modeling literature (e.g., Gillund & Shiffrin,
1984; Shiffrin, Ratcliff, & Clark, 1990). As a simple
illustration of how contextual cuing can influence
behavior, participants are more likely to give a stud-
ied completion to a word-stem cue if they are specif-
ically asked to provide completions from the study
phase, vs. if they are asked to give the first comple-
tion that comes to mind (e.g., Graf, Squire, & Man-
dler, 1984).

In our simulations, we operationalize differences
in contextual cuing by varying a parameter called
context scale. This parameter multiplicatively mod-
ifies the strength of the projection between the con-
text layer and the hippocampal layer (for more
information on how projection scaling parameters
work in the model, see Appendix A).

During the study phase (and during “extra
study” practice trials and “reversed practice” trials)
we typically set this context scale parameter to 0.0,
reflecting the fact that participants are not actively
trying to retrieve episodic memories during these
phases (or, at least, they are not trying to do this to
the same extent that they do at test). Importantly,
setting the context scale parameter to zero inter-
rupts transmission of activity from the context layer
to the hippocampus, but it does not affect the net-
work’s ability to learn associations between context
and hippocampal representations.

For partial practice and the test phase, we typi-

cally set context scale to 1.0, reflecting the fact that
participants are more likely to try to actively “tar-
get” the study context during these phases. In Sim-
ulation 4, we also discuss the possibility that par-
ticipants might use a higher context scale value on
tests that rely purely on episodic memory, compared
to tests where both semantic and episodic memory
contribute.

Variability in oscillation amplitude

In our model, successful encoding depends crit-
ically on changes in activation driven by the in-
hibitory oscillation. To account for the fact that en-
coding is not always successful, the model incor-
porates the assumption that stimuli do not always
trigger a strong inhibitory oscillation. In the simu-
lations presented below, we use a simple “oscilla-
tory variability” scheme where (on each trial) there
is a 50% chance that the stimulus will elicit a full-
sized oscillation. Otherwise, the stimulus elicits a
half-sized inhibitory oscillation (i.e., the amplitude
of the oscillation is multiplied by .5). The half-sized
oscillation triggers smaller activation changes (on
average) in hippocampus and cortex and thus trig-
gers less learning. In particular, the half-sized oscil-
lation is not sufficient to support formation of new
hippocampal traces at study (see Figure 10 for an
illustration of this point).

The idea that oscillatory amplitude varies from
study trial to study trial, and that variations in os-
cillatory amplitude affect subsequent memory, re-
ceives strong support from the empirical litera-
ture. In particular, several studies of theta oscilla-
tions in humans have found that theta-band oscil-
latory power varies from trial to trial, and — cru-
cially — that the strength of theta at encoding (for
a particular stimulus) predicts subsequent retrieval
success for that stimulus (Sederberg et al., 2003;
Klimesch, 1999; Klimesch, Doppelmayr, Russeg-
ger, & Pachinger, 1996; Osipova, Takashima, Oost-
enveld, Fernandez, Maris, & Jensen, 2006).
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Precis of simulations

This section briefly summarizes key findings
from our RIF simulations. Some simulations focus
on explaining specific findings from the RIF litera-
ture, whereas other simulations (in particular, Simu-
lations 2.2, 2.3, 8, and 9) explore effects of chang-
ing model parameters without trying to simulate any
particular published study. Differences between the
simulations are summarized in Table 1.

• In Simulation 1.1 we address the retrieval-
dependence of RIF. Specifically, we simulate
the finding that forgetting of competitors oc-
curs after partial practice but not after ex-
tra study or reversed practice (e.g., Anderson
et al., 2000a). This result occurs because the
degree of competition between the target and
the competitor is higher given partial (i.e., in-
completely specified) retrieval cues, vs. when
the full target item is presented. We also sim-
ulate the finding of test order effects in RIF
studies: Recall is worse for category exem-
plars that are tested later in the test phase vs.
earlier in the test phase (e.g., Bauml, 1998).
This occurs because items tested later act as
competitors during recall of items tested ear-
lier. Finally, we simulate the finding that, even
though retrieval practice hurts competitor re-
call more than extra study or reversed prac-
tice, these practice conditions have equivalent
(beneficial) effects on target recall (e.g., An-
derson et al., 2000a). We explain this finding
of equivalent strengthening in terms of two op-
posing factors that cancel each other out: In-
creased competition during partial practice (vs.
the other conditions) boosts target strengthen-
ing, but target misrecall during partial practice
reduces target strengthening (see also Simula-
tion 9).

• In Simulation 1.2 we simulate the finding that
RIF can be observed when memory is probed
with independent cues (i.e., cues that did not
appear at practice, and are unrelated to prac-
ticed target items; see, e.g., Anderson & Spell-
man, 1995; Anderson & Shivde, in prepa-
ration). Forgetting occurs for independent
cues because of a combination of two factors:
First, if the independent cue was paired with
the competitor at study (e.g., Red-Apple), the
episodic trace of that event sometimes pops
up during the low inhibition phase at practice,

thereby weakening the trace and harming sub-
sequent recall. Second, pop-up of the cortical
(semantic) trace of the competitor triggers in-
cremental weakening of the competitor’s cor-
tical representation. This incremental weak-
ening of the Apple attractor in cortex leads to
subtle but measurable RIF effects in response
to independent cues (see also Simulation 6).

• In Simulation 2.1 we explore how the semantic
strength of competitors and targets affects RIF.
We replicate the pattern of results obtained by
Anderson et al. (1994), whereby RIF occurs
for semantically strong competitors but not se-
mantically weak competitors, and RIF is not
affected by target strength. RIF is observed
for strong but not weak competitors because
strong competitors pop up in semantic mem-
ory during the low inhibition phase, but weak
competitors do not. Crucially, for the param-
eters used in this simulation, semantic pop-up
is a prerequisite for episodic pop-up (so weak
competitors do not pop up in episodic memory
either). Because of this complete lack of pop-
up, the memory traces of weak competitors are
not harmed at practice, and no RIF occurs for
these items.

• In Simulation 2.2 we parametrically manip-
ulate target strength and show that target
strength actually has a nonmonotonic effect on
RIF: Increasing target strength initially boosts
RIF but further increases in target strength re-
duce RIF. This nonmonotonic pattern is ob-
served because of two contrasting effects of
target strength on competitor activation at prac-
tice. When targets are weak, competitors acti-
vate strongly, but this activation “spills over”
into the high-inhibition (target strengthening)
phase; this spill-over reduces RIF. The initial
effect of increasing target strength is to elimi-
nate this spill-over, thereby boosting RIF. Fur-
ther increases in target strength reduce RIF by
reducing the overall amount of competitor ac-
tivation.

• In Simulation 2.3 we present simulations
showing effects of relative competitor strength:
Increasing the strength of one competitor, rel-
ative to a second competitor, reduces RIF for
the second competitor. This occurs because the
baseline level of inhibition in the model is an
(increasing) function of both the level of exci-
tation of the target and the level of excitation of
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the strongest competitor. As such, increasing
the strength of the strongest competitor trig-
gers an increase in baseline inhibition, which
makes it less likely that other, weaker competi-
tors will activate at practice.

• In Simulation 3 we simulate the Bauml (2002)
finding that semantic generation of nonstudied
category exemplars leads to forgetting of previ-
ously studied exemplars from those categories.
This occurs for the same reason that we see
RIF in Simulation 1 and Simulation 2: During
the semantic generation phase, strong seman-
tic competitors pop up in cortex during the low
inhibition phase. This, in turn, triggers pop-
up (and weakening) of the episodic representa-
tions of these competitors that were formed at
study.

• In Simulation 4 we simulate the finding from
Anderson and Bell (2001) that independent-
cue RIF can be observed when the “practiced”
and “control” groups are defined in terms of
novel episodic associations (as opposed to pre-
existing semantic associations). A key finding
from this simulation is that different parameter
settings are required to simulate the null RIF
effect for weak semantic associates observed
by Anderson et al. (1994) and the presence of
an RIF effect for novel episodic associates. To
simulate the Anderson et al. (1994) result, we
need to ensure that episodic links are not suf-
ficient to trigger pop-up during the low inhi-
bition phase at practice (otherwise weak, stud-
ied competitors will pop up at practice, lead-
ing to RIF for these items). To simulate the
Anderson and Bell (2001) episodic RIF result,
we need to ensure that episodic links between
the retrieval cue and the competitor are suffi-
cient to trigger pop-up at practice. We address
this problem by positing that participants cue
more strongly with context on purely episodic
memory tests (vs. tests where semantic mem-
ory also contributes). In the model, we opera-
tionalize this difference by increasing the con-
text scale parameter. This change sends ex-
tra excitation to episodic memory traces from
the study context, thereby making it possible
to observe pop-up of episodic associates of the
practice cue (even if they do not pop up in se-
mantic memory first).

• In Simulation 5 we simulate the finding from
Perfect et al. (2004) that not all independent

cues show RIF. Specifically, RIF is not ob-
served when the competitor is paired with a se-
mantically unrelated “external associate” prior
to the start of the RIF experiment, and the ex-
ternal associate is used to cue memory at test.
In the model, the lack of RIF is attributable to
contextual focusing during the practice phase:
Cuing with the study context during the prac-
tice phase prevents episodic traces that were
formed outside of the study context (e.g., the
external associate) from activating as competi-
tors. Because the episodic trace of the external
associate does not activate during the low inhi-
bition phase at practice, it retains its efficacy in
supporting retrieval at test.

• Simulation 6 focuses on RIF effects in se-
mantic memory. We simulate the finding
from Carter (2004) that practicing retrieval of
Clinic-Sick impairs memory for nonstudied se-
mantic associates of Clinic (such as Doctor),
when memory for Doctor is tested using an in-
dependent cue (“Generate a semantic associate
of Lawyer”). This effect occurs because Doc-
tor pops up as a competitor in semantic mem-
ory when participants are practicing retrieval
of the Clinic-Sick association, leading to weak-
ening of the cortical (semantic) representation
of Doctor.

• Simulation 7 shows that, despite the model’s
tendency to punish semantically related com-
petitors, it still shows robust false recall of non-
studied “critical lures” that are strongly associ-
ated with studied items (e.g., Roediger & Mc-
Dermott, 1995). We also simulate the finding
from Starns and Hicks (2004) that RIF is ob-
served both for (true) recall of studied com-
petitors and (false) recall of nonstudied criti-
cal lures. The false recall effect is largely a
consequence of the model’s tendency to gener-
ate critical lures at study (when given a chance
to “free associate” to other items). When the
model generates critical lures at study, it forms
an episodic link between the critical lure and
the study context. False recall can be explained
in terms of the presence of this episodic trace,
and RIF for the critical lure can be explained
in terms of weakening of this episodic trace at
practice.

• Simulation 8 explores boundary conditions on
forgetting caused by extra study. We manipu-
late the level of pattern overlap between same-
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category items, in both the item layer and in the
hippocampal layer. When overlap is low, we
replicate the finding from Simulation 1.1 that
extra study does not cause forgetting. How-
ever, when overlap is sufficiently high, we start
to see an effect of extra study on competitor
memory (such that extra study of some cate-
gory exemplars causes forgetting of other cate-
gory exemplars). This occurs because increas-
ing overlap boosts the level of net input re-
ceived by the hippocampal representations of
competitors, relative to the target. Eventually,
the level of net input gets high enough to trig-
ger pop-up of competitors on extra study tri-
als, which (in turn) leads to forgetting of these
items.

• Simulation 9 explores factors that affect the
amount of target strengthening that occurs at
practice. We manipulate retrieval success at
practice by varying the semantic strength of
target items, and by varying the structure of
the cue at practice (specifically, by varying the
number of active item-layer units in the re-
trieval cue). In keeping with the idea that com-
petition drives learning in the model, we show
that optimal strengthening occurs in conditions
where the target just barely wins at practice
(i.e., recall accuracy at practice is high, and
competition is also high).

Data fitting strategy The overall goal of this
modeling work is to account for key empirical
regularities in the RIF data space, and to estab-
lish boundary conditions on these regularities. As
such, the modeling work described below focuses
more on qualitative fits to general properties of the
RIF data space, rather than quantitative fits to re-
sults from specific studies. Unless explicitly noted,
model parameters were held constant across all of
the simulations presented here.

All of the simulation results that we report in the
text of the paper (showing differences between con-
ditions) are significant at p < .001. In graphs of
simulation results, error bars indicate the standard
error of the mean, computed across simulated par-
ticipants. Most simulations used on the order of
1000 simulated participants. When error bars are
not visible, this is because they are too small rel-
ative to the size of the symbols on the graph (and
thus are covered by the symbols). 11

11To ensure that the results reported in the paper were statis-
tically reliable, we sometimes ran extra simulated participants

Simulation 1: Retrieval-dependence and
cue-independence

This simulation addresses fundamental proper-
ties of RIF mentioned in the Introduction. Simula-
tion 1.1 explores retrieval-dependence: the extent to
which forgetting is dependent on participants hav-
ing to retrieve the target item at practice (based on
partial cues). Simulation 1.2 explores the extent to
which RIF can be observed using independent cues
at test.

Simulation 1.1: Basic RIF and retrieval-
dependence

Background

The goal of this simulation is to explore how
the structure of the cue at practice affects target
strengthening and competitor weakening. Some il-
lustrative results from Anderson et al. (2000a) are
shown in Figure 8. This study used a variant of
the Fruit-Apple RIF paradigm; at practice, Ander-
son et al. (2000a) compared partial practice (Fruit-
Pe ) to reversed practice (Fr -Pear). Reversed
practice is conceptually similar to giving partici-
pants extra study of Fruit-Pear; in both cases, the
item pattern (Pear) is presented outright at prac-
tice, so competition among item representations
should be minimal. Thus, to the extent that RIF is
competition-dependent, no RIF should be observed
after reversed practice.

The left-hand panel shows that both partial prac-
tice and reversed practice improved target recall
in this study to a roughly equal extent; this find-
ing is consistent with other findings showing equal
strengthening for partial practice vs. extra study
(e.g., Ciranni & Shimamura, 1999). The right-hand
panel shows that partial practice affected competi-
tor recall but reversed practice did not. Below, we
explore whether the model can generate this pattern
of results.

Methods

The pattern structure used in this simulation is
illustrated in Figure 9. As shown in the figure, two
semantic categories (A and B) with 4 items apiece
were pretrained into semantic memory prior to the
start of the simulated RIF experiment. The semantic
strength value for each of these items was sampled
from a uniform distribution with mean .85 and half-
range .15. The purpose of adding noise to the se-

to disambiguate the results of a particular simulation.
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(Fruit-Pe ) and reversed practice (Fr -Pear) on targets and competitors. This experiment used dependent
cues at test (Fruit-A ). The left-hand figure shows that practice boosts target recall in both the partial
practice and reversed practice conditions, to a similar degree. The right-hand figure shows that practice
hurts competitor recall in the partial practice condition, but not the reversed practice condition.

Associate-Layer

Patterns

Practiced Set

A

1 3
Item-Layer

Patterns

Control Set

T
a
rg

e
ts

C
o
m

p
e
ti
to

rs

T
a
rg

e
t

C
o
n
tr

o
ls

C
o
m

p
e
ti
to

r

C
o
n
tr

o
ls

.85 .85

2 4
.85 .85

B

5 7
.85 .85

6 8
.85 .85

Studied Pair
Pretrained Semantic Memory
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pretrained into semantic memory. All 8 patterns were presented at study.
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mantic strength values was to eliminate the possibil-
ity of multiple competitors receiving the exact same
level of excitatory support at practice. This situa-
tion (where no one competitor stands out above the
others) is undesirable because it prevents the net-
work from showing normal attractor dynamics —
when this occurs, the network stays poised on the
boundary between attractor states and none of the
competitors activate strongly.

Category A served as the practiced category; this
category was subdivided into 2 target items (A-1, A-
2) and 2 competitor items (A-3, A-4). The other cat-
egory served as the control category. All 8 category-
item pairs were presented at study.

At practice, each of the 2 target items was pre-
sented 3 times. The type of practice was ma-
nipulated in a “between-simulated-subjects” fash-
ion. We ran simulations using partial practice, extra
study, and reversed practice. For partial practice tri-
als, context scale was set to 1 (reflecting the fact
that participants are deliberately thinking back to
the study phase). For extra study and reversed prac-
tice trials, context scale was set to 0 (reflecting the
fact that participants do not have to think back to the
study phase when they are studying items; likewise,
they do not have to think back to the study phase
when they are retrieving category membership in-
formation).

Standard “dependent” cues (4/4 active category
units and 2/4 active item units) were used at test.

Results

Activation dynamics at study
Figure 10 illustrates the activation dynamics that

are present at study (averaging across trials) in the
item and hippocampal layers, for both large (full-
sized) oscillations and small (half-sized) oscilla-
tions. There are three important points to take away
from this figure:

• The inhibitory oscillation does not have a
strong effect on item-layer activation at study.
There is a slight dip-down in activation of the
target representation during the high inhibition
phase, but nothing else. This result can be
explained by considering the distributions of
net input values associated with target units
vs. other units (Figure 11). Because all of the
target units are receiving strong external in-
put (as well as strong input from each other),
but none of the other item-layer units are re-
ceiving external input, the net input distribu-

tion for target units is located far above the net
input distribution for other units. Given the
wide separation between the distributions, the
inhibitory threshold is not very close to either
distribution, so raising the inhibitory thresh-
old does not cause a strong reduction in target
activation, and lowering the inhibitory thresh-
old does not trigger activation of competitor
units.12

• In the hippocampus, large oscillations (but not
small oscillations) cause the hippocampal rep-
resentation of the target pattern to dip down.
Because the target and target neighbor patterns
are so similar, the hippocampal representations
of these items receive very similar levels of net
input when the target pattern is active in cor-
tex. The k-winners-take-all algorithm ends up
placing the inhibitory threshold just below the
target representation, and just above the target
neighbor representation. Since the target rep-
resentation’s net input value is not far above
threshold, its activity dips down when inhibi-
tion is raised (assuming that the oscillation is
sufficiently large). This dip in target activation
leads to strengthening of the context-item as-
sociation, as well as strengthening of connec-
tions from the hippocampus back to the item
and associate layers. Importantly, small (half-
sized) oscillations are not powerful enough to
displace the hippocampal representation of the
target, so virtually no hippocampal learning
about the target occurs on small-oscillation tri-
als.

• The “target neighbor” pattern pops up in the
hippocampus but other items from the study list
do not. Because (as mentioned above) the hip-
pocampal representation of the target neighbor
receives strong excitatory support, this repre-
sentation pops up strongly when inhibition is
lowered. The hippocampal representations of
other study-list items receive much less excita-
tory support (because they are much less sim-
ilar to the target), so they do not pop up when
inhibition is lowered.

In summary, the primary effect of studying a
new item is strengthening of cortico-hippocampal

12Note that the items used in this simulation had relatively
strong semantic memory traces (mean strength .85). When we
use items with weaker semantic memory traces, the inhibitory
oscillation has a larger effect on cortical activation at study
(thereby serving to strengthen these items in semantic mem-
ory).
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Figure 10: Plot showing average activation dynamics (over time, across the span of a trial) in the item layer
and the hippocampal layer, for study trials with a large (full-size) oscillation and trials with a small (half-
sized) oscillation. The solid black line plots activation of the currently studied (target) item’s representation,
the solid gray line plots activation of the target neighbor’s representation, and the dashed gray line plots the
activation of competitors (other study-list items from the practiced category). For all three lines, we only
plot activation of unique features of the representation (i.e., features not shared with other items). The dotted
line plots the time course of the inhibitory oscillation. The inhibitory oscillation does not have a large effect
on activation in the item layer. In the hippocampus, large oscillations (but not small oscillations) result in a
decrease in target activation during the high-inhibition phase. The hippocampal representation of the target
neighbor pattern activates during the low inhibition phase, but the representations of other items from the
target category (besides the neighbor pattern) do not activate.
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Figure 11: This figure schematically illustrates the distribution of net input scores for target units (marked
with a T) and competitor units (marked with a C) in the item layer during a study trial, when inhibition is
set to its normal (baseline) level. The k-winners-take-all rule places the inhibitory threshold between the kth

unit and the k + 1st unit. The punishment zone marks the range of net input values (below the inhibitory
threshold) that would be pushed above-threshold when inhibition is lowered, thereby leading to competitor
punishment. The strengthening zone marks the range of net input values (above the inhibitory threshold)
that would be pushed below-threshold when inhibition is raised, thereby leading to target strengthening.
The gap in net input between target units and other units is large, so most target units fall outside of the
strengthening zone, and competitor units fall outside of the punishment zone.

connections for that item (triggered by hippocam-
pal dip-down during the high inhibition phase). An-
other important point is that studying new items
does not cause forgetting of memory traces corre-
sponding to other studied items. The key insight
here is that, since the context scale parameter is set
to zero at study, hippocampal competitor pop-up
is determined by feature match alone (as opposed
to contextual match). As such, competitor pop-up
is dominated by hippocampal representations corre-
sponding to nonstudied “neighbor” patterns (which
share a very large number of features with the tar-
get), as opposed to other patterns from the study
context (which have a lesser degree of feature over-
lap with the target).

Activation dynamics during the practice phase
We can use the same kind of activation dynam-

ics graph to explore activation dynamics during the
practice phase, as a function of practice type (partial
practice, extra study, reversed practice). Figure 12
illustrates how (on average) target and competitor
activation in the item layer and the hippocampal
layer fluctuate over the course of partial practice tri-
als, extra study trials, and reversed practice trials (in
contrast to Figure 10, this figure and all subsequent
dynamics figures collapse across large-oscillation
and small-oscillation trials).

Dynamics during extra study and reversed prac-
tice Activation dynamics in the extra study and re-
versed practice conditions were identical (at least
with regard to item-layer and hippocampal-layer ac-

tivity) so they are plotted together in the bottom part
of Figure 12. The overall pattern of dynamics here
is the same pattern that we observed at study: In
the item layer, target units do not dip down (be-
cause they are all receiving strong external input)
and competitor units do not pop up. In the hip-
pocampus, close competition between the target and
the target neighbor representation causes the target
representation to dip down, but hippocampal com-
petitor representations do not receive enough sup-
port (relative to targets and target neighbors) to pop
up. Thus, we expect to see episodic target strength-
ening, but no semantic or episodic competitor pun-
ishment in the extra study and reversed practice con-
ditions.13

Dynamics during partial practice Retrieval
dynamics in the partial practice condition (depicted
in the top part of Figure 12) differ strongly from dy-
namics in the extra study and reversed practice con-
ditions: In both the item layer and the hippocam-
pal layer, the target shows a large dip in activation
when inhibition is raised above its normal level, and
the competitor shows a large increase in activation

13The one place where reversed-practice dynamics diverge
from extra-study dynamics is in the associate layer. Because
the model is only given a partial cue in the associate layer dur-
ing reversed practice, there is some pop-up of the “control cat-
egory” pattern in the associate layer during the low inhibition
phase. However, this pop-up is inconsequential to the strength
of the target and competitor representations, insofar as these
items were not linked to the control category in the first place.



Norman, Newman, & Detre 31

Time (Time Steps)

Target

Target Neighbor
Competitor

Inhibition

Time (Time Steps)

Extra Study and Reversed Practice

0 20 40 60 80 100 120

In
h

ib
it
io

n

-2

0

2

0 20 40 60 80 100 120

P
e

rc
e
n
t 

A
c
ti
v
a
ti
o
n

0.0

0.2

0.4

0.6

0.8

1.0

Item Layer (Cortex)

Partial Practice

0 20 40 60 80 100 120

P
e

rc
e
n
t 

A
c
ti
v
a
ti
o
n

0.0

0.2

0.4

0.6

0.8

1.0

Practice Phase Dynamics

Hippocampus

Practice Trial 1 

0 20 40 60 80 100 120

In
h

ib
it
io

n

-2

0

2

Figure 12: Plot showing average activation dynamics for partial practice, extra study, and reversed practice
trials; these results are from the first practice trial (i.e., the first time this item was practiced). Extra study
and reversed practice dynamics were not significantly different from one another and thus are combined
in the figure. See the caption of Figure 10 for explanation of the lines in the figure; note that, here, the
“competitor” line plots the activation of the most active of the two competitor patterns. The partial practice
condition shows a large target activation dip during the high inhibition phase and a large competitor pop-up
effect during the low inhibition phase, for both networks. The extra study and reversed practice conditions
show a large target activation dip in the hippocampal layer, a much smaller target activation dip in the item
layer, and no appreciable pop-up of studied competitor items.
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Figure 13: This figure schematically illustrates the distribution of net input scores for target units (marked
with a T) and competitor units (marked with a C) in the item layer during partial practice, when inhibition is
set to its normal (baseline) level. The gap between the lowest target unit and the highest other unit is smaller
in the partial practice condition than in the extra study condition. As such, the weakest target unit falls into
the strengthening zone, and some competitor units fall into the punishment zone.

when inhibition is lowered below its normal level.14

The observed dynamics in the item layer (with
the target dipping down and the competitor pop-
ping up) can be explained in terms of the distri-
bution of net input scores for target units vs. other
units (shown in Figure 13). The partial practice
cue provides external input to three of the four tar-
get units. On average, the remaining target unit re-
ceives only slightly more net input than other (non-
target) units. Given this distribution of net inputs,
the kWTA algorithm places the inhibitory threshold
in the (very small) gap between the weakest target
unit and the strongest other unit. Because the tar-
get unit that does not receive external support is just
above threshold (given normal inhibition), raising
inhibition results in a strong decrease in the activa-
tion of this unit. Likewise, because strong competi-
tor units are just below threshold, lowering inhibi-
tion results in a strong increase in the activation of
these units.

The observed dynamics in the hippocampal
layer are basically an echo of the cortical dynam-
ics. When the item-layer representation of the tar-
get drops out during the high inhibition phase, the
hippocampal representation of the target drops out
also (because it is no longer receiving support from

14On trials where the competitor has a stronger representa-
tion in semantic memory than the target, the competitor some-
times displaces the target in cortex during the low inhibition
phase (see Figure 12, upper-left-hand plot). The net result of
this extra “dip” in target activation is incremental strengthen-
ing of the target (since the learning rate is negative at this point
in the oscillation, increased competitor activity weakens com-
petitor weights, and decreased target activity strengthens target
weights). In the context of the other weight changes that occur
at practice, the effect of this extra “target dip” on target recall
is negligible.

cortex). Furthermore, when competitor representa-
tions pop up in the item layer during the low inhi-
bition phase, this provides strong support to com-
petitor representations in the hippocampus, causing
them to pop up also.

In terms of the oscillating learning algorithm,
these dynamics have clear implications for the
strength of target and competitor memories. When
the cortical and hippocampal representations of the
target dip down during the high-inhibition phase,
this triggers target strengthening in both semantic
and episodic memory. Likewise, when competitor
representations pop up in cortex and hippocampus
during the low-inhibition phase, this leads to com-
petitor weakening in both semantic and episodic
memory.

Effects of repeated practice on dynamics Fig-
ure 14 shows partial practice activation dynamics in
the item layer and hippocampal layer, as a function
of the practice trial number (i.e., whether this is the
first or third time the target item has been practiced).
During the first practice trial, target activation de-
creases sharply during the high-inhibition phase,
and competitor activation increases during the low-
inhibition phase. These activation changes trigger
weight changes (target strengthening and competi-
tor weakening, respectively) that reduce the size of
the activation changes on subsequent practice trials.
Thus, the overall effect of the learning algorithm is
to “iron out the bumps” observed in the graph.

Effects of practice on target and competitor recall
Having mapped out the practice-phase dynam-

ics, we now explore the effects of these dynamics
on recall at test.
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Figure 14: Plot of activation dynamics in the item layer and hippocampal layer during partial practice, as a
function of practice trial (i.e., whether this is the first or third time the target has been practiced). Repeated
practice reduces the extent to which the target representation dips down during the high inhibition phase,
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The left side of Figure 15 shows the effects of
partial practice, extra study, and reversed practice on
recall of target items in the model. Similar levels of
strengthening were observed in all three conditions.
This matches the widespread finding in the literature
of equivalent strengthening given retrieval practice
compared with either extra study or reversed prac-
tice (e.g., Ciranni & Shimamura, 1999; Anderson
et al., 2000a; Anderson & Shivde, in preparation).

The right side of Figure 15 shows the effects
of partial practice, extra study, and reversed prac-
tice on competitor recall in the model. Forgetting
effects (relative to control items) were obtained in
the partial practice condition but not the extra study
condition or the reversed practice condition. This
matches the findings reviewed earlier (e.g., Ander-
son et al., 2000a) showing that RIF is retrieval-
dependent.

The competitor-recall results follow in a
straightforward way from our dynamics analyses:
Competitor pop-up was present for partial practice
but not extra study or reversed practice, which ex-
plains why RIF was observed for the first condition
(but not the other two). The relationship between
the target-recall results and practice-phase dynam-
ics is less straightforward. As shown in Figure 12,
raising inhibition causes a larger “target dip” (in
both the cortical and hippocampal networks) given
partial practice vs. extra study or reversed practice.
This is because the target representation is receiv-
ing less support from the cue in the partial practice
condition vs. the other conditions. According to the
oscillating learning algorithm, this larger target dip
during partial practice should result in greater target
strengthening in this condition.

The reason why partial practice does not yield
greater target strengthening than the other condi-
tions is because target recall accuracy (during prac-
tice) is worse in the partial practice condition than in
the other conditions (mean activation of the unique
part of the target representation = .87 in the partial
practice condition vs. .97 in the extra study and re-
versed practice conditions). On trials where target
recall succeeds, partial practice should yield more
strengthening than extra study and reversed practice
(for the reasons outlined above), but on trials where
target recall fails, no target strengthening should oc-
cur.15 For the parameters used in this simulation,

15Another factor that can reduce target strengthening in the
partial practice condition is that practiced items can punish
each other. For example, if participants practice retrieving both
A-1 and A-2, A-1 might pop up as a competitor when practic-
ing retrieval of A-2, resulting in weakening of the A-1 memory.

these two forces (to a first approximation) cancel
each other out.

Testing for blocking effects As stated in the
Summary of the learning algorithm section, we be-
lieve that improved target recall after partial prac-
tice is attributable to target strengthening that occurs
during the high-inhibition phase of the inhibitory
oscillation, and that RIF is attributable to competi-
tor weakening that occurs during the low-inhibition
phase of the inhibitory oscillation. However, it is
also possible that blocking effects are contributing
to the observed pattern of recall data in this sim-
ulation. To the extent that items compete at re-
call, strengthening targets during the high-inhibition
phase might indirectly hurt recall of competitors (by
increasing the odds that targets will block competi-
tor recall). Likewise, weakening competitors dur-
ing the low-inhibition phase might indirectly boost
recall of targets (by reducing the odds that competi-
tors will block target recall).

To test this idea, we ran follow-up simulations
where we restricted learning during partial prac-
tice to either the high-inhibition phase or the low-
inhibition phase of the inhibitory oscillation (note
that learning at study used both phases). The re-
sults of these simulations are shown in Figure 16:
The “high-inhibition-only” simulations show a ro-
bust improvement in target recall, but no RIF, and
the “low-inhibition-only” simulations show a robust
RIF effect but no change in target recall.

This pattern of results (showing that it is possi-
ble to boost target recall without hurting competi-
tor recall, and vice-versa) provides strong evidence
against the idea that blocking is contributing to RIF
in this simulation. Conversely, these results provide
support for the idea that (in this simulation) RIF is
a direct consequence of competitor-weakening that
occurs during the low-inhibition phase. We re-visit
the issue of blocking in Simulation 7 and in the Gen-
eral Discussion.

Effects of context scale The above simulations
show a stark difference in forgetting effects ob-
served after partial practice (on the one hand) vs.
extra study and reversed practice (on the other).
There are two differences between these conditions
in our simulations: Context scale is set differently
(1.0 for partial practice vs. 0.0 for the other two con-
ditions); also, the item-layer cues are structured dif-
ferently (3/4 item-layer units are externally cued for
partial practice, whereas all 4 item-layer units are
externally cued for the other two conditions). To
what extent is the difference in RIF attributable to
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Figure 16: Graph of the effect of partial practice on target and competitor when learning is limited to the low-
inhibition phase at practice and when learning is limited to the high-inhibition phase at practice. Learning
during the high-inhibition phase boosts target recall without hurting competitor recall, and learning during
the low-inhibition phase hurts competitor recall without boosting target recall.

the use of different context scale settings, and to
what extent is the difference in RIF due to the struc-
ture of the item-layer cue? To address this question,
we ran a version of the simulation where context
scale was set to 1.0 throughout the entire simula-
tion.

The results of this simulation showed the same
qualitative pattern that we found in our previous RIF
simulations: A robust RIF effect was observed for
partial practice but not for extra study or reversed
practice. This finding indicates that the partiality of
the retrieval cue, on its own, is sufficient to account
for the observed pattern of RIF effects.16

Learning at test It is also important to show
that the basic pattern of RIF effects is still observed
when we allow learning to occur at test. To address
this question, we re-ran the above simulations with
learning turned on during the test phase (as well as
the study and practice phases). We tested all of the
items from one category before testing any of the
items from the other category; also, within the prac-
ticed category, competitors were tested before tar-
gets. For half of the simulated participants, the con-
trol category was tested before the practiced cate-
gory; vice-versa for the other half.

16In this simulation, setting context scale to 1.0 at study did
not have any adverse consequences. However, in Simulation 8,
we show that using a high context scale value at study can result
in massive (catastrophic) interference if there is high overlap
between input patterns.

Figure 17 shows the results of our simulations
with learning at test. Overall, the results were sim-
ilar to all of our previous simulations: There was
equivalent strengthening of targets in the three prac-
tice conditions; there was a large RIF effect for com-
petitors in the partial practice condition; and no RIF
was observed in the other conditions.

The fact that learning was activated at test in this
simulation makes it possible for us to examine test
order effects. Several RIF studies have found that,
when multiple items linked to the same associate
appear at test (e.g., Fruit-A , Fruit-P ), recall is
better for items that are tested first vs. items that are
tested last. Figure 18 illustrates this pattern, using
data from Bauml (1998).17

To explore whether our model shows test order
effects, we compared recall (at test) of the first two
control items that were tested, vs. the last two con-
trol items that were tested. Results of this analy-
sis are shown in Figure 19. The results shown are
from the partial practice condition; the same pattern
was observed when the practice phase involved ex-
tra study or reversed practice. As expected, recall
was worse for the last two control items that were
tested vs. the first two control items.

In terms of our theoretical framework, these test
17Bauml (1998) also found that test order effects are larger

for semantically strong items than semantically weak items; ef-
fects of semantic strength on RIF are addressed in Simulation
2.1.
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Simulation: Recall as a Function of Practice Type
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Figure 17: Graph of the effect of partial practice, extra study, and reversed practice on target recall (left-hand
plot) and competitor recall (right-hand plot), when dependent cues are used at test and learning occurs at
test. The results are unchanged relative to the preceding simulations: All three practice conditions lead to
equivalent levels of target strengthening. For competitors, there is a large RIF effect in the partial practice
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Figure 18: Results from Bauml (1998) (adapted from Figure 1, strong item condition) showing test order
effects: Recall is better for the first three items that are tested from a particular category, vs. the last three
items that are tested from that category.
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Simulation: Recall of Control Items 

as a Function of Within-Category Test Order
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Figure 19: Graph showing test order effects. When learning is turned on at test, recall is worse for the last
two control-category items that are tested, compared to the first two control-category items that are tested.

order effects can be attributed to competitor pun-
ishment occurring at test: When the first few items
from a category are tested, other category exemplars
pop up as competitors at retrieval and (as a result)
are weakened.

Simulation 1.2: Cue-independent forgetting

Background

The previous simulations explored RIF with de-
pendent cues (i.e., where the same cue was used
at practice and test). In this simulation, we ex-
plore the critical issue of whether the model shows
RIF when it is probed at test with an independent
cue (in this case, a semantic associate of the to-be-
recalled item that was not itself presented at prac-
tice). As discussed in the Introduction, several stud-
ies have observed RIF with independent cues (Fig-
ure 20 shows representative results from Ander-
son & Shivde, in preparation) and the presence of
this “cue-independent” effect is a critical constraint
on theories of RIF.

Methods

The small size of the network being used here
(and our constraint that studied item-layer patterns
should not overlap) places limits on the number of
patterns that we can accommodate in our simula-
tions. In order to accommodate the use of indepen-
dent cues, we had to use smaller categories in this
simulation (2 items per category) than in the pre-
ceding simulations.

Figure 21 illustrates the structure of the patterns
used in this simulation. The key difference between

this simulation and Simulation 1.1 is that, in addi-
tion to the A and B categories, we pretrained two
additional categories (C and D) that overlap with A
and B, respectively. Crucially, the competitor item
(2) is semantically linked to both category A and
category C. Likewise, the competitor control item
(5) is semantically linked to both category B and
category D. When pretraining patterns, each pat-
tern’s semantic strength value was set to .85.18

All 8 pretrained pairings (A-1, A-2, C-2, C-
3, B-4, B-5, D-5, D-6) were presented at study.
The target item (A-1) was presented three times at
practice. As in the preceding simulations, we also
manipulated practice type in a “between-simulated-
subjects” fashion (partial practice vs. extra study vs.
reversed practice).

At test, we probed for the competitor item (2)
using category C plus two item units. This consti-
tutes an independent cue insofar as category C did
not appear at practice. We also probed recall of the
competitor control item (5) using category D plus
two item units.

18In simulations (like this one) where there is just one com-
petitor item, it is not necessary to add noise to semantic strength
values at pretraining. The main purpose of adding noise to se-
mantic strength values in Simulation 1.1 was to “break ties”
between competitors, and there is no possibility of a tie if there
is only one competitor. Nonetheless, to match Simulation 1.1,
we also ran a variant of this simulation where semantic strength
values were sampled from a uniform distribution with mean .85
and half-range .15; the results of this simulation were qualita-
tively identical to the results reported here.
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Independent-Cue Competitor Recall as a 
Function of Practice Type

Data from Anderson & Shivde (in preparation)
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Figure 20: Data from Anderson and Shivde (in preparation), showing the effects of partial practice and
extra study on competitor recall, when memory is tested using independent cues (semantic associates of the
competitor that were not presented at practice). Partial practice impairs competitor recall using independent
cues, but extra study does not.
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Figure 21: Illustration of the structure of patterns used in Simulation 1.2. As in Figure 9, gray bars indicate
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Simulation: Independent-Cue Competitor Recall 

as a Function of Practice Type
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Figure 22: Graph of the effect of partial practice, extra study, and reversed practice on competitor recall
in the model, when independent cues (semantic associates of the target word) were used to probe memory
at test. RIF was observed in the partial practice condition but not the extra study condition or the reversed
practice condition.

Results

The results of the independent-cue RIF simu-
lation are shown in Figure 22. In keeping with
the findings of Anderson and Shivde (in prepara-
tion; Anderson & Spellman, 1995; Anderson et al.,
2000b) and many others, we observed a robust RIF
effect given independent cues (semantic associates
of the target word). As in our dependent-cue sim-
ulations above, the RIF effect was observed given
partial practice but not given extra study or reversed
practice.

The independent-cue RIF effect can be ex-
plained in the following manner: When the A-1
(partial) cue is presented at practice, the competi-
tor pattern (2) activates in the item layer during
the low-inhibition phase. This triggers hippocampal
pop-up of the A-2 hippocampal representation. It
also (to a lesser degree) triggers hippocampal pop-
up of the C-2 hippocampal representation (if C-2
was encoded in the hippocampus at study). To quan-
tify competitor pop-up in the hippocampal layer, we
measured the activation of hippocampal representa-
tions at the trough of the inhibitory oscillation (i.e.,
when inhibition was lowest, and competitor activa-
tion was at its peak) during the first practice trial.
Peak activation of the A-2 hippocampal represen-
tation was .58 (SEM .01) and peak activation of the
C-2 hippocampal representation was .17 (SEM .01).
Thus, we end up seeing hippocampal pop-up (and
punishment) of both traces that could possibly sup-

port recall of the 2 pattern at test. This, in turn, re-
sults in diminished recall of the 2 pattern using both
the A and C cues.

In addition to the hippocampal weakening de-
scribed above, pop-up of the competitor’s cortical
representation should weaken recall of this repre-
sentation, which (in turn) should incrementally re-
duce recall of the competitor, regardless of the cue.
To get a rough estimate of how much hippocampal
weakening vs. cortical weakening were contributing
to the observed independent-cue RIF effect, we ran
one variant of the simulation where cortical learn-
ing was turned off at practice, and another variant
where hippocampal learning was turned off at prac-
tice. With both hippocampal learning and cortical
learning at practice, the size of the RIF effect was
.048 (SEM .001). With hippocampal learning (but
not cortical learning) at practice, the size of the RIF
effect was .034 (SEM .001). With cortical learn-
ing (but not hippocampal learning) at practice, the
size of the RIF effect was .008 (SEM .001). Taken
together, these results show that both cortical and
hippocampal learning reliably contribute to RIF, but
the effects of hippocampal learning are proportion-
ally much larger. This result is a straightforward
consequence of the fact that the hippocampal learn-
ing rate is larger than the cortical learning rate in
these simulations (2.0 vs. .05).
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Simulation 1: Discussion

In Simulation 1, we showed that the model cap-
tures several key aspects of the RIF data space:

• All three practice conditions (partial practice,
extra study, and reversed practice) boost re-
trieval of the target item, as evidenced by better
recall of this item vs. control items.

• Partial practice leads to RIF (as evidenced by
worse recall of the competitor than control
items) but extra study and reversed practice do
not cause forgetting of the competitor.

• Given that we used an independent cue to
probe for the competitor in Simulation 1.2, our
results confirm that competitor-punishment
can be obtained in the model even when there
is no overlap between the cue used to probe
for the competitor at test (e.g., Red-A )
and the cue that was used to probe for the
target at practice (e.g., Fruit-Pe ). This
independent-cue RIF effect arises because of
two factors: Pop-up (and weakening) of the
hippocampal trace corresponding to the inde-
pendent cue-competitor pairing; and also pop-
up (and weakening) of the competitor’s repre-
sentation in cortex.

Boundary conditions
This simulation provides a mechanistic account

of why competitor punishment is larger after partial
practice (“retrieval practice”) vs. extra study. In the
model, there is nothing special about partial practice
per se. Rather, the key determinant of learning in
the model is the gap in excitatory net input between
target units and competitor units. Competitor pun-
ishment was smaller in the extra study (vs. partial
practice) condition because the gap in net input be-
tween targets and competitors was larger in this con-
dition (compare Figure 11 to Figure 13). This view
implies that it should be possible to get competitor
punishment effects after extra study if we could re-
duce the gap in net input between the target pattern
and competitors. One way to reduce this gap is to
increase feature overlap between targets and com-
petitors. To the extent that targets and competitors
share features, anything that excites the target rep-
resentation will tend to excite the competitor repre-
sentation as well. We explore how feature overlap
interacts with the effects of extra study in Simula-
tion 8.

Another boundary condition relates to target
strengthening effects. In Simulation 1.1, we found

equivalent target strengthening after partial practice
vs. extra study. This finding is consistent with ex-
tant data (e.g., Ciranni & Shimamura, 1999) but
inconsistent (at least on the surface) with the idea
that more learning should occur in conditions where
there is high competition (e.g., partial practice) vs.
low competition (extra study). We argued that
the higher competition in the partial-practice condi-
tion (which should boost strengthening) was offset
by target misrecall in the partial-practice condition
(which should reduce strengthening). This leads to
the prediction that, if we could increase the odds
of targets being recalled successfully during partial
practice (e.g., by strengthening their representations
in semantic memory) we would see greater strength-
ening during partial practice vs. in the other condi-
tions. Conversely, if we reduced the odds of tar-
gets being recalled successfully, we would see less
strengthening during partial practice vs. other con-
ditions. These predictions are addressed in Simula-
tion 9.

Simulation 2: Effects of competitor strength
and target strength on RIF

In this simulation, we explore how competitor
strength and target strength interact with RIF. In
Simulation 2.1 we simulate results from a study by
Anderson et al. (1994) that orthogonally manipu-
lated competitor and target strength. In Simula-
tion 2.2, we parametrically explore effects of target
strength on RIF, and in Simulation 2.3 we explore
how adjusting the strength of competitors relative
to each other affects RIF.

Simulation 2.1: Simulation of Anderson, Bjork,
and Bjork (1994)

Background

The first RIF experiment to explore effects of
target strength and competitor strength in detail was
Anderson et al. (1994). As mentioned earlier, An-
derson et al. (1994) found that partial practice of
items like Fruit-Pear led to RIF for semantically
strong competitors (e.g., Fruit-Apple) but not se-
mantically weak competitors (e.g., Fruit-Kiwi; but
see Williams & Zacks, 2001 for a failure to repli-
cate this result). Bauml (1998) obtained a simi-
lar result, using an output interference paradigm:
Retrieving moderate-frequency items at test led to
forgetting of subsequently-tested strong items but
not subsequently-tested weak items. With regard
to target strength: In the same study where they
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Retrieval-Induced Forgetting as a Function of
Target Strength and Competitor Strength
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Figure 23: Graph of results from Anderson et al. (1994), Experiment 3, showing how competitor strength
and target strength interact with RIF. There is RIF for strong competitors but not weak competitors (in both
the Weak Target and Strong Target conditions). RIF effects are of similar size in the Strong Target condition
and the Weak Target condition.
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manipulated the semantic strength of competitors,
Anderson et al. (1994) also manipulated the seman-
tic strength of target items, and found no effect
of target strength on RIF. The data from Anderson
et al. (1994), Experiment 3 (showing the pattern de-
scribed above) are shown in Figure 23.19

We set out to determine whether our model can
generate the pattern of results observed by Ander-
son et al. (1994) (a competitor strength effect but
no target strength effect). The finding of more pun-
ishment for strong vs. weak competitors is highly
compatible with the explanatory framework out-
lined earlier (in the Summary of the learning algo-
rithm section). Figure 24 schematically illustrates
the amount of net input received by target units,
units belonging to strong competitors, and units be-
longing to weak competitors. Units belonging to
strong competitors receive more input from the re-
trieval cue than units belonging to weak competi-
tors. Because units belonging to strong competitors
are closer to threshold than units belonging to weak
competitors, units belonging to strong competitors
are more likely to activate (and be punished) when
inhibition is lowered.

While the competitor strength effect observed
by Anderson et al. (1994) appears to be compatible
with our explanatory framework, the same explana-
tory framework also implies (contrary to what was
observed by Anderson et al., 1994) that competitor
punishment should be lower given strong vs. weak
targets. More specifically:

• In the model, strengthening a target pattern
amounts to strengthening the connections be-
tween the units in that pattern. As such, units
participating in strong target patterns receive
more net input (from each other) than units par-
ticipating in weak target patterns.

• The k-winners-take-all rule places the in-
hibitory threshold a between the kth unit (typ-
ically, the weakest target unit) and the k + 1st

unit. Thus, boosting the amount of net input re-
ceived by target units has the effect of boosting
the inhibitory threshold (pulling it away from
competitors).

• Because competitors are farther below the in-
hibitory threshold in the strong-target condi-
tion, they are less likely to activate when in-

19Figure 23 shows a numerical trend towards a reversed RIF
effect for weak competitors, but this effect was not consistent
across experiments in Anderson et al. (1994).

hibition is lowered, so they are less likely to be
punished.

Figure 25 illustrates hypothetical net input dis-
tributions given a strong target vs. a weak target.

In summary, based on Figure 24 and Figure 25,
we would expect more RIF for strong vs. weak com-
petitors, and less RIF given strong vs. weak targets
(contrary to the Anderson et al., 1994 finding of a
competitor strength effect but no target strength ef-
fect). In the simulations below, we show that (as ex-
pected) strong competitors are punished more than
weak competitors. With regard to target strength ef-
fects: As per Figure 25, we show that competitor
pop-up is larger given weak vs. strong targets. How-
ever, when targets are weak, we also show that com-
petitor activation starts to “spill over” into the high-
inhibition (target strengthening) phase of the oscil-
lation, reducing RIF. In this simulation, the spill-
over effect cancels out the effects of greater (over-
all) competitor activation in the weak target condi-
tion, thereby making it possible for us to simulate
the null effect of target strength on RIF observed by
Anderson et al. (1994).

Methods

In Anderson et al. (1994), Experiment 3, target
strength and competitor strength were manipulated
in a between-subjects fashion. The same seman-
tic categories were used in all conditions. The four
conditions of their experiment were defined by or-
thogonally crossing the following two factors:

• whether strong or weak items from these cate-
gories served as targets, and

• whether strong or weak items from these cate-
gories served as competitors

We set out to mirror this design in our simula-
tions. To do this, we needed semantic categories
that had more than one weak item (so we could si-
multaneously have a weak target and a weak com-
petitor) and more than one strong item (so we could
simultaneously have a strong target and a strong
competitor). We settled on using 8 items per cat-
egory, with 4 strong items and 4 weak items. Hav-
ing 4 strong items helps to spread out the competi-
tor weakening that occurs at practice, such that no
single item suffers a disproportionate amount of se-
mantic weakening.

With 8-item categories, there is no room to fit
patterns for two categories (8 ∗ 2 = 16 total items,
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Figure 24: Schematic illustration of the distribution of net input scores for target units (marked with a T),
units belonging to strong competitors (marked with an S), and units belonging to weak competitors (marked
with a W). Units belonging to strong competitors are closer to the inhibitory threshold, which in turn should
lead to greater punishment for strong vs. weak competitors.
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Figure 25: The figure schematically illustrates the distribution of net input scores for target units (marked
with a T) and competitor units (marked with a C) for weak targets (upper bar) and strong targets (lower
bar). Competitors are closer to the inhibitory threshold in the weak target condition than the strong target
condition, so they are more likely to be activate and be punished in the weak target condition.
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Figure 26: Illustration of the structure of the patterns used in Simulation 2.1. Gray bars indicate semanti-
cally pretrained pairings, black lines indicate pairings that were presented at study, and numbers below the
“item-layer” circles indicate the semantic strength of each item. There were four conditions, defined by
orthogonally crossing target strength (weak/strong) and competitor strength (weak/strong). Semantic pre-
training was the same in all four conditions: There was one category, paired with 4 strong items (strength
.90) and 4 weak items (strength .65). The only difference between the conditions is which two items were
used as targets and which two items were used as competitors.
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plus 16 neighbors) into the item layer without al-
lowing overlap between item patterns. Rather than
use overlapping item-layer patterns, we decided that
it would be simpler to forego our standard “two
category” procedure and use a single category.20

Since we did not have a control category in this
simulation, we measured RIF by testing recall per-
formance (with learning turned off) before practice
and after practice, and then computing the pretest -
posttest difference score.

Figure 26 illustrates the structure of the patterns
used in the simulation. During pretraining, we sam-
pled semantic strength values for the 4 weak cat-
egory exemplars from a uniform distribution with
mean .65, half-range .10, and we sampled semantic
strength values for the 4 strong category exemplars
from a uniform distribution with mean .90, half-
range .10.

In all of the conditions, 4 items were presented at
study (2 targets and 2 competitors). The only differ-
ence between the conditions was whether strong or
weak items were used as targets, and whether strong
or weak items were used as competitors. We used
partial practice during the practice phase. Finally, as
per Anderson et al. (1994), we used dependent cues
(our standard cues: 4/4 associate units, and 2/4 item
units) at test.

Results

Results from these conditions are shown in Fig-
ure 27. Overall, the results from this simulation
line up well with the results from Anderson et al.
(1994): Increasing competitor strength led to a large
increase in RIF, but increasing target strength by the
same amount did not affect RIF. As per Anderson
et al. (1994), there was no RIF whatsoever for weak
competitors.

Effects of competitor strength
The finding of greater RIF for strong vs. weak

competitors (in the model) can be explained in terms
of the principles expressed in Figure 24. Semanti-
cally strong competitors are closer to the inhibitory
threshold in cortex, so they show a larger increase in
cortical activation when inhibition is lowered. This
cortical pop-up for strong competitors triggers hip-
pocampal pop-up for these competitors also. Col-
lapsing across the Strong Target and Weak Target
conditions, peak competitor activation in cortex (at
the trough of the inhibitory oscillation) during the

20We address the issue of item-layer overlap in Simulation 8
and in the General discussion.

first practice epoch was .21 on average for strong
competitors (SEM .00) and .00 for weak competi-
tors (SEM .00). Hippocampal pop-up results were
very similar: .21 for strong competitors (SEM .00)
and .00 for weak competitors (SEM .00).

Another key to explaining the null RIF effect for
weak competitors is that, for the parameters used
here, hippocampal pop-up only occurs if cortical
pop-up occurs first. More concretely: The hip-
pocampal representation of the competitor needs
support from the item-layer representation of the
competitor in order to have enough excitatory sup-
port (in aggregate) to trigger pop-up. Thus, the fact
that weak competitors do not pop up in the item
layer ensures that these competitors will not pop up
in the hippocampus either.

Effects of using a higher context scale value
One way to underscore the importance of this dy-
namic (whereby cortical pop-up is a permissive con-
dition for hippocampal pop-up) is to change the
model’s parameters such that hippocampal pop-up
of the competitor can occur on its own. Specifi-
cally, we ran simulations where we increased the
context scale parameter at practice and test from 1.0
to 1.25. This change selectively boosts the excita-
tion of episodic traces from the study phase, making
it more likely that these traces will pop up when in-
hibition is lowered. Whereas weak competitors did
not show any pop-up (in cortex or hippocampus) for
context scale 1.0, they show a significant pop-up ef-
fect in both networks for context scale 1.25; pop-up
starts in the hippocampus and spreads back to cor-
tex. Collapsing across the Strong Target and Weak
Target conditions, peak competitor activation in the
hippocampus was .24 on average for strong com-
petitors and .10 for weak competitors (cortical pop-
up results were very similar: .22 for strong competi-
tors and .05 for weak competitors). This pop-up of
weak competitors results in a substantial RIF effect
for weak competitors, illustrated in Figure 28.21 We
re-visit the issue of how context scale interacts with
episodic RIF in Simulation 4.

Effects of target strength
With regard to target strength effects: Earlier, we

had argued that increasing target strength should re-
duce competitor pop-up and competitor punishment

21In this simulation, the RIF effect is even larger for weak
competitors than strong competitors. This is a consequence of
the fact that strong competitors can sometimes be retrieved cor-
rectly via semantic memory if their episodic trace is damaged,
but weak competitors can not — if their episodic trace is dam-
aged they are almost always forgotten.
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Figure 27: Graph of how competitor strength and target strength affect RIF in the model. In this simulation,
RIF is affected by competitor strength (there is a robust RIF effect for strong competitors but no RIF effect
for weak competitors), but target strength has no effect on RIF.

Strong Competitor Condition

Simulation: Retrieval-Induced Forgetting 

as a Function of Target Strength and Competitor Strength

Context Scale 1.25

Weak Competitor Condition

P
e

rc
e

n
t 

C
o

rr
e

c
t 

R
e

c
a

ll

0.0

0.2

0.4

0.6

0.8

1.0

Pre-Practice Competitor Recall
Post-Practice Competitor Recall

Weak

Target

Strong

Target

Weak

Target

Strong

Target

Figure 28: Graph of how competitor strength and target strength affect RIF in the model, given context
scale 1.25. Unlike the context scale 1.0 simulations shown earlier (which showed a null RIF effect for weak
competitors), the context scale 1.25 simulations show a very large RIF effect for weak competitors (even
larger than the RIF effect for strong competitors).
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(by increasing the “margin of victory” for the target;
less competition leads to less RIF). However, con-
trary to this principle, we found in this simulation
that increasing target strength did not affect the size
of the RIF effect.

To explore why we did not observe an effect of
target strength on RIF, we plotted dynamics graphs
showing competitor activation in cortex (over the
course of the first partial practice trial) for the “weak
target, strong competitor” condition, and the “strong
target, strong competitor” condition (Figure 29). As
in our previous dynamics graphs, the “competitor
activation” line shows the activation of the most ac-
tive of the two (strong) competitors on a given trial.

The first point to make about the graph is that,
for the “weak target, strong competitor” condition,
the competitor starts to activate before the onset
of the low-inhibition phase. The fact that some
competitor activation takes place during the end of
the high-inhibition (strengthening) phase, instead
of during the low-inhibition (weakening) phase,
should reduce RIF. Increasing the strength of the tar-
get has two effects on competitor activation:

• First, it pushes back competitor activation so
it occurs later in the trial. This has the effect
of boosting competitor punishment (by ensur-
ing that all of the competitor activation occurs
during the low-inhibition phase).

• Second, as discussed above, increasing tar-
get strength reduces the overall magnitude of
competitor activation during the low inhibition
phase, which should reduce competitor punish-
ment

For the parameters used in this simulation, these
two effects cancel each other out, resulting in a null
overall effect of target strength on RIF.

Having demonstrated that the model can simu-
late the two key results from Anderson et al. (1994)
(i.e., increasing competitor strength boosts RIF, but
increasing target strength does not affect RIF) we
now explore boundary conditions on these findings.
First, in Simulation 2.2, we show that increasing tar-
get strength does reduce RIF if we use a more pow-
erful target strength manipulation. Next, in Simu-
lation 2.3 section, we show that RIF is affected by
the strength of competitors relative to each other,
in addition to the strength of competitors relative to
targets.

Simulation 2.2: Boundary conditions on the
null target strength effect

Methods

To parametrically map out the effects of target
strength on RIF, we used a simpler paradigm in
which the model was pretrained on two categories,
each comprised of two items (the practiced cate-
gory was comprised of one target and one com-
petitor item; the control category was comprised of
one target control and one competitor control). The
paradigm is illustrated in Figure 30.

The competitor item and its control in the
other category were pretrained with mean seman-
tic strength .85. The semantic strength of the target
item (and its control in the other category) was var-
ied in a “between-simulated-subjects” fashion from
.65 to .95 in steps of .05.22

The target item was practiced once, using our
usual partial practice procedure. Our decision to use
one practice trial (instead of three) stems from our
desire to precisely control target strength — insofar
as each practice trial changes both target strength
and competitor strength, item strength values that
are present on the second practice trial (and sub-
sequent practice trials) might deviate considerably
from the original item strength settings.

Our decision to use one target item (instead of
two) was also driven by our desire to keep the target
strength manipulation as pure as possible. Consider
a situation where there are multiple target items
(say, A-1 and A-2). In this situation, strengthen-
ing the two target items affects retrieval dynamics
during “A-1” practice trials in two, qualitatively dis-
tinct ways: The strengthening manipulation boosts
the strength of the currently-practiced item (A-1),
but it also boosts the extent to which A-2 competes
with A-1. Put another way: Increasing the strength
of multiple targets also has the side-effect of chang-
ing the “competitive landscape” that is present when
any one of those targets is practiced. Limiting our-
selves to a single target item gets rid of this side
effect and allows us to observe (without any con-
founds) the effect of changing target strength on
RIF.

22To smooth out the curve relating target strength to RIF, we
added noise sampled from a uniform distribution with mean
0, half-range .05 to the semantic strength values of targets,
competitors, and their controls. The same qualitative pattern
is present if we do not add noise.
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Activation of Strong Competitors in Cortex
as a Function of Target Strength
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Figure 29: This plot shows competitor activation dynamics in cortex (during the first partial practice trial)
for the “weak target, strong competitor” condition and the “strong target, strong competitor” condition. In
the weak target condition, the competitor starts to activate before the onset of the low inhibition phase.
Increasing target strength makes competitor activation occur later in the trial, and it also reduces the overall
amount of competitor activation.
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Figure 30: Illustration of the structure of patterns used in Simulation 2.2. Gray bars indicate pairings
that were pretrained into semantic memory, black lines indicate pairings that were presented at study, and
numbers below the item-layer circles indicate the mean strength of that pattern in semantic memory. Target
strength was varied from .65 to .95 and competitor strength was held constant at .85.



Norman, Newman, & Detre 49

Simulation: Retrieval-Induced Forgetting 
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Figure 31: Graph of how target strength affects RIF. The gray bars indicate competitor recall, and black
bars indicate recall of the corresponding control items. The effect of target strength is nonmonotonic: Going
from target strength .65 to target strength .75, RIF increases. However, further increases in target strength
beyond this point start to reduce RIF.
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Results

Figure 31 plots the effect of target strength on
competitor recall. Crucially, the figure shows that
increasing target strength has a nonmonotonic ef-
fect on RIF. Increasing target strength from .65 to
.75 boosts RIF, but additional increases in target
strength reduce competitor punishment. This graph
reconciles the observed null effect of target strength
on RIF in our simulation of Anderson et al. (1994)
with our prediction that, asymptotically, increasing
target strength should reduce RIF.

The nonmonotonic pattern observed here can
be explained in terms of the two effects of tar-
get strength mentioned earlier: Increasing tar-
get strength causes competitor activation to occur
later (ensuring that it falls entirely within the low-
inhibition phase) and it also reduces the overall
amount of competitor activation.

These two competing influences are shown in
Figure 32, which plots competitor activation in cor-
tex at the onset of the low-inhibition phase (“pre-
mature activation”) and competitor activation at the
peak of the low-inhibition phase. Competitor pun-
ishment in the model is a function of how much
competitor activation changes during the low inhi-
bition phase. Thus, the difference between initial
competitor activation and peak competitor activa-
tion should be a good predictor of RIF. In keeping
with this view, the difference between initial and
peak activation shows the same nonmonotonic pat-
tern that was present in the RIF results (Figure 31).
At first, increasing target strength boosts the “peak -
initial” difference, by reducing the amount of com-
petitor activation that is present at the start of the
low-inhibition phase. Subsequent increases in tar-
get strength reduce the “peak - initial” difference by
reducing the peak level of competitor activation.

Simulation 2.3: Effects of relative competitor
strength

Our explanation of competitor strength effects
(e.g., in Figure 24) has, up to this point, focused
on the strength of competitors relative to targets as
a key determinant of competitor punishment. Here,
we show that (in addition to being affected by the
strength of competitors relative to targets), com-
petitor punishment also is affected by the strength
of competitors relative to each other. This occurs
because the k-winners-take-all inhibition rule fac-
tors in the level of excitatory support for both tar-
get and competitor units when computing inhibi-
tion. Specifically, as discussed in the Role of in-

hibition section and shown in Figure 3, k-winners-
take-all places the inhibitory threshold between the
kth most excited unit (typically, this is the weakest
target unit) and the k + 1st most excited unit (typi-
cally, this is the strongest competitor unit). As such,
any manipulation that increases the amount of exci-
tation received by the strongest competitor will have
the effect of boosting the inhibitory threshold com-
puted by kWTA, thereby making it less likely that
other (less well-supported) competitors will pop up
at practice.

We can demonstrate this point about relative
competitor strength by holding the strength of some
competitors constant and manipulating the strength
of other competitors.

Methods

The design of Simulation 2.3 is illustrated in Fig-
ure 33. Like Simulation 1.1, this simulation used
two categories with 4 items apiece (two targets,
two competitors). For the practiced category, the
two targets had a mean strength of .85; one com-
petitor (the fixed-strength competitor) had a fixed
mean strength of .85; for the other competitor (the
variable-strength competitor), mean strength was
varied from .65 to .95 in steps of .10. Strength
values for the control category were matched to
strength values for the practiced category. For items
in both the practiced and control categories, uniform
noise with mean 0 and half-range .10 was added to
items’ semantic strength values during pretraining.

Results

Figure 34 shows the results of the simulation:
As discussed above, raising the strength of the
variable-strength competitors reduces RIF for the
fixed-strength competitors.

Figure 35 provides further insight into the results
of the relative-competitor-strength simulations. The
figure plots the peak activation (during the low in-
hibition phase, in cortex) of the variable-strength
competitor and the fixed-strength competitor, as
a function of the strength of the variable-strength
competitor: As the variable-strength competitor is
strengthened, pop-up of this item increases, and
pop-up of the fixed-strength competitor decreases.
This decrease in pop-up for the fixed-strength com-
petitor explains the decrease in RIF shown in Fig-
ure 34.
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Competitor Activation in Cortex
During the Low-Inhibition Phase 
as a Function of Target Strength
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Figure 32: Plot of competitor activation in cortex during the low-inhibition phase, as a function of target
strength. The left-hand figure shows competitor activation as a function of time, for target strength values
.65, .75, .85, and .95. The right-hand figure re-plots this data, showing the activation of the competitor at
the onset of the low inhibition phase, and the peak activation of the competitor (at the middle of the low
inhibition phase), as a function of target strength. For weak target strength values, the competitor activates
strongly (its peak activation is high) but it also starts to activate early, before the onset of the low inhibition
phase. The primary effect of raising target strength from .65 to .75 is to make competitor activation occur
later (without much change in peak competitor activation). Further increases in target strength reduce peak
competitor activation.
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Figure 33: Illustration of the structure of the patterns used in Simulation 2.3. Gray bars indicate pairings
that were pretrained into semantic memory, black lines indicate pairings that were presented at study, and
numbers below the item-layer circles indicate the mean strength of that pattern in semantic memory. The
design is the same as the design used in Simulation 1.1, except we varied the semantic strength of one of the
competitors from .65 to .95 (the mean semantic strength of the other competitor was fixed at .85).
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Figure 34: Plot of how RIF for the fixed-strength competitor (strength .85) varies as a function of the strength
of the other (variable-strength) competitors. The target had strength .85; the variable-strength competitor’s
strength ranged from .65 to .95 (step .10). As the variable-strength competitor is strengthened, RIF for
fixed-strength competitor decreases. This illustrates how RIF is affected by the strength of the competitor
relative to other competitors (in addition to the strength of the competitor relative to the target).
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Simulation: Peak Activation of the Fixed-Strength Competitor 

(Strength .85) and the Variable-Strength Competitor 

as a Function of the Strength of the Variable-Strength Competitor
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Figure 35: Plot of the peak activation (“pop-up”) of the fixed-strength and variable-strength competitor in
cortex during the low-inhibition phase at practice, as a function of the strength of the variable-strength com-
petitor. As the variable-strength competitor is strengthened, pop-up for this competitor increases, and pop-up
for the fixed-strength competitor decreases (thereby explaining the decrease in RIF shown in Figure 34).

Effects of relative competitor strength in our simu-
lation of Anderson et al. (1994)

These ideas about relative competitor strength
might also help to explain the lack of RIF for weak
competitors in Simulation 2.1. Specifically, the idea
that strong competitors can occlude weaker com-
petitors suggests that, if we lowered the strength
of the “strong” competitors in Simulation 2.1, we
might start to see some cortical pop-up of weak
competitors.

To test this idea, we took the “weak target, weak
competitor” condition from Simulation 2.1 (where
the 4 weak category exemplars were presented at
study, and the 4 strong category exemplars were
nonstudied), and varied the strength of the 4 non-
studied category exemplars. The average strength
of these nonstudied items was varied from .90 (the
value used in Simulation 2.1) all the way down
to .60, in increments of .10. Based on the re-
sults shown in Figure 34, we expected that reduc-
ing the strength of these nonstudied, strong com-
petitors should boost pop-up (and RIF) for studied,
weak competitors.

Figure 36 shows the results of our simulation.
As expected, we found that reducing the strength of
the four nonstudied items boosts RIF for the studied,
weak competitors. When nonstudied-item strength
was set to .90 (the value we used for strong items
in Simulation 2.1), there was no RIF for the weak
(strength .65) competitors. When nonstudied-item
strength was reduced, a strong RIF effect emerged

for the weak competitors (driven by pop-up of these
items during the low-inhibition phase). This finding
underscores that, when trying to predict RIF effects,
the “weakness” of a particular competitor should
always be computed relative to other competitors:
Simulation 2.1 showed that “weak” competitors are
not strong enough to trigger pop-up and RIF in the
presence of other, much stronger category exem-
plars; however — as shown in this simulation — the
very same competitors are strong enough to trigger
pop-up and RIF, when other (nonstudied) category
exemplars are relatively weak.

Summary and discussion of Simulation 2

Competitor strength These simulations point
to the importance of evaluating both the strength
of the competitor relative to the target, and the
strength of the competitor relative to other competi-
tors, when predicting RIF effects. One clear pre-
diction from Figure 34 is that, if we held target
strength and competitor strength (for some competi-
tors) constant, and increased the strength of other
competitors, this should reduce the amount of RIF
that we observe for the competitors whose strength
is not being manipulated. The results shown in Fig-
ure 36 also suggest that it should be possible to
observe RIF for semantically weak competitors in
situations where these items are not occluded by
stronger competitors.

Target strength The target strength simula-
tion results presented here are consistent with the
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Simulation: Retrieval-Induced Forgetting for 
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Figure 36: Plot of how RIF in the “weak target, weak competitor” condition of Simulation 2.1 varies, as a
function of the strength of the four nonstudied category exemplars. When these nonstudied items have much
stronger semantic representations than the four studied items (studied strength .65, nonstudied strength .90),
the nonstudied, strong items occlude the studied, weak items, preventing them from popping up at practice,
and thus preventing RIF for these items. Weakening the four nonstudied items increases the odds that studied
competitors will pop up at practice, thereby boosting RIF for these items.

idea, expressed earlier, that RIF should asymptoti-
cally decrease as targets are strengthened (see Fig-
ure 25). Also, our simulation results add an impor-
tant boundary condition on this effect: In situations
where the target is particularly weak, the competi-
tor may start to pop up prematurely (before the start
of the low-inhibition phase), thereby reducing RIF.
When this happens, increasing target strength can
actually boost RIF, by causing competitor activation
to occur later (so it is fully confined to the low-
inhibition phase). Our analytic simulations sug-
gest that the true shape of the curve relating target
strength to RIF is nonmonotonic: Going from very
weak to slightly stronger targets reduces “premature
pop-up” of the competitor, boosting RIF. Further in-
creases in target strength reduce RIF by reducing
the overall amount of competitor pop-up. Thus, the
null effect of target strength on RIF observed by An-
derson et al. (1994) (and replicated in Simulation
2.1) may be a consequence of the particular points
on the target strength continuum that were sampled
in that experiment, rather than being a parameter-
independent property of RIF.

This account leads to the following prediction:
By selecting appropriate target strength values for
“weak” and “strong” targets, such that weak targets
are close to the peak of the curve shown in Fig-
ure 31, and strong targets are located on the right

side of the curve (i.e., extremely strong), it should
be possible to demonstrate a robust reduction in RIF
with increasing target strength.

One final point regarding target strength effects
relates to the issue of blocking. Anderson et al.
(1994) point out that target strength effects (less
competitor punishment for strong targets) could
arise for reasons other than competitor weakening
per se. For example, if weak targets undergo more
strengthening than strong targets at practice (due
to ceiling effects or other factors), this will dif-
ferentially increase weak targets’ ability to block
competitor recall at test. This differential increase
in blocking could, on its own, result in more RIF
given weak vs. strong targets. While we agree that
(logically) this is a possibility, we are sure that
blocking is not solely responsible for the simula-
tion finding (shown in Figure 31) that, as target
strength increases, competitor punishment asymp-
totically starts to decrease. If this finding were at-
tributable to indirect effects of target strengthening,
it should go away when we turn off learning during
the high-inhibition phase at practice (where target
strengthening takes place; see Figure 16). However,
we ran additional control simulations (not shown
here) and found that the same qualitative pattern of
target strength results is obtained when we turn off
learning during the high-inhibition phase.
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Simulation 3: Semantic generation can cause
episodic RIF

Background

The previous simulations focused on the effects
of episodic retrieval practice (i.e., actively trying to
find a studied completion for a partial cue) on sub-
sequent recall. Bauml (2002) asked a different, re-
lated question: How does semantic generation (i.e.,
generating a completion in semantic memory for a
partial cue) affect memory for related studied items?
The design that Bauml (2002) used was very similar
to the “standard RIF” paradigm used in Simulation
1.1: First, participants studied category-exemplar
pairs. Then, during the “practice” phase, partic-
ipants were given partial cues that could be com-
pleted using previously nonstudied exemplars from
studied categories, and they were asked to semanti-
cally generate those items. The practice phase was
framed as a separate task from the study phase. Par-
ticipants were not asked to think back to the study
phase at all (nor would it help if they did think back,
since none of the to-be-generated items were pre-
sented at study). At test, participants were asked to
retrieve pairs from the initial study phase using de-
pendent cues. Thus, the study phase and test phase
were identical to the standard RIF paradigm illus-
trated in Figure 1. The only difference was the
practice procedure. Bauml (2002) also included a
control condition where participants simply stud-
ied new exemplars from studied categories at prac-
tice (instead of semantically generating these exem-
plars).

Figure 37 shows the results from the Bauml
(2002) experiment. Semantic generation of new
exemplars from studied categories led to RIF for
previously studied items, but mere presentation of
those exemplars did not cause forgetting.23 The
goal of this simulation is to explore whether the
model can accommodate this finding.

23A recent study by Racsmany and Conway (2006) (Exper-
iment 6) also looked at effects of semantic generation on re-
call of previously studied category exemplars, and failed to find
an RIF effect. The studies used different materials, and there
were also several differences in the paradigms that were used.
For example, Racsmany and Conway (2006) asked participants
to respond as quickly as possible during the generation test,
whereas Bauml (2002) gave participants 7 seconds to reply.
Further research is needed to address which of these differences
was responsible for the observed difference in RIF.

Methods

Figure 38 illustrates the structure of the patterns
used in Simulation 3. The procedure that we used
for this simulation was very similar to the procedure
that we used in the Simulation 1.1: As in Simulation
1.1, we pretrained two categories with 4 exemplars
apiece; the semantic strength value for each of these
items was sampled from a uniform distribution with
mean .85 and half-range .15. However, unlike Sim-
ulation 1.1 (where all 4 items from each category
were presented at study), here we only presented 2/4
items from each category at study.

There were two practice conditions that were
manipulated in a “between-simulated-subjects”
fashion:

• In one condition (the semantic generation
condition), the model was given partial cues
matching the nonstudied items from one cat-
egory.

• In the other condition (the extra study condi-
tion), the model was given full cues matching
the nonstudied items from one category.

In both practice conditions, the model was given
three presentations of each of the two practice cues
(as per our usual procedure). The context scale pa-
rameter was set to zero for both practice conditions
(reflecting the fact that, in both conditions, partic-
ipants were not actively thinking back to the study
phase).

Also, we used a different context tag at practice
from the context tag that was present at study. This
mirrors the fact that (in the experiment) the prac-
tice phase was framed as a completely separate task
from the study phase.24

At test, we activated the “study context” tag in
the context layer, and we used our standard depen-
dent cues (4/4 associate units, 2/4 item units) to
probe for the studied items.

Results and discussion

Figure 39 shows the results of our simulation,
which match the Bauml (2002) results: RIF is
present after semantic generation but not after ex-
tra study.

24Because context scale is set to zero at practice, changing
the context tag between study and practice does not affect the
results of this simulation; the same pattern of results is observed
when identical context tags are used at study and practice.
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Effect of Semantic Retrieval Practice
on Competitor Recall

Data from Bauml (2002)
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Figure 37: Results from Bauml (2002) (adapted from Figure 1 of that paper). Semantically generating non-
studied exemplars from studied categories leads to RIF for studied category exemplars, but simply studying
these new exemplars (instead of semantically generating them) does not lead to RIF.
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Figure 38: Illustration of the structure of the patterns used in Simulation 3. Gray bars indicate pairings
that were pretrained into semantic memory, black lines indicate pairings that were presented at study, and
numbers below the item-layer circles indicate the mean strength of that pattern in semantic memory. The
pattern structure was the same as Simulation 1.1, except only the competitors were studied, not the targets.
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Simulation: Effect of Semantic Retrieval Practice
on Competitor Recall
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Figure 39: Simulation of Bauml (2002), exploring how semantic generation of items from a category affects
recall of previously studied items. As in the Bauml (2002) experiment, semantic generation of new category
exemplars causes RIF for previously studied category exemplars, but simply studying those new exemplars
does not cause forgetting.

The reason why RIF occurs after semantic gen-
eration is very similar to the reason why RIF occurs
after partial practice in Simulation 1 and Simulation
2: When inhibition is lowered, items that are se-
mantically associated with the category cue start to
become active in cortex. If one of these semantic
associates happens to be an item that was studied,
this triggers activation of the hippocampal trace of
that item (from the study phase). This pop-up of the
hippocampal trace during the low-inhibition phase
leads to RIF for the hippocampal trace.

Likewise, the reason why RIF does not occur af-
ter extra study in this simulation is identical to the
reason why RIF does not occur after extra study
in Simulation 1: When all 4 item units are exter-
nally cued (and the item’s representation is strong
in semantic memory), the practiced item’s represen-
tation in cortex is far enough above threshold (and
the competing items’ representations are far enough
below threshold) that no competitor pop-up occurs
during the low inhibition phase (see Figure 13).

Boundary conditions
Overall, the dynamics in this simulation are

quite similar to the dynamics observed in previous
simulations. As such, the points made above (in
Simulation 2) regarding effects of target and com-
petitor strength also apply here. For example, in
situations where a category includes both strong
and weak exemplars, semantic generation (of either

strong or weak exemplars) does not cause RIF for
weak category exemplars in the model.25

Simulation 4: RIF for novel episodic
associations

Background

Simulations 1, 2, and 3 used a paradigm
where participants were asked to remember pre-
experimentally associated pairs (e.g., Fruit-Apple).
However, as mentioned in the Introduction, RIF ef-
fects can also be observed when novel pairings are
used at study (forcing participants to rely entirely on
episodic memory).

For example, Anderson and Bell (2001) had par-
ticipants study sentences like “The teacher lifted the
violin”. The pairings of sentence frames (“teacher
lifted”) and objects (“violin”) were deliberately se-
lected to minimize obvious semantic relationships,
so participants could not rely on semantic memory
in this experiment. Later, participants were asked to
retrieve “violin” using cues like “The teacher lifted
the v ”.

25To validate this point, we ran a variant of Simulation 2.1
where targets were not studied, context scale was set to zero at
practice (to simulate semantic generation), and different con-
text patterns were used at study and practice. As in Simulation
2.1, no RIF was observed for studied weak competitors.
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The Anderson and Bell (2001) study used a stan-
dard study-practice-test RIF design. The key differ-
ence between the Anderson and Bell (2001) study,
on the one hand, and the studies simulated in Simu-
lations 1, 2, and 3, on the other, relates to how the
“practiced” and “control” sets were defined at study.
In Simulations 1, 2, and 3, the “practiced” and “con-
trol” sets were defined by virtue of common seman-
tic associations (i.e., items from the practiced set
came from one semantic category, and items from
the control set came from another semantic cate-
gory). In contrast, in the Anderson and Bell (2001)
study, the “practiced” and “control” sets were de-
fined by virtue of common episodic associations.
For example, in Anderson and Bell (2001), some
words were paired at study with the sentence frame,
“The actor is looking at”, and other words were
paired at study with the sentence frame “The teacher
is lifting”. During the practice phase, participants
might practice retrieving some of the “teacher is lift-
ing” words but none of the the “actor is looking at”
words.

The basic question being addressed by Anderson
and Bell (2001) is the same as in previous simula-
tions: How does practicing retrieving some items
from the practiced set affect retrieval of other items
from the practiced set?

Figure 40 shows results from Anderson and Bell
(2001), Experiment 4b. This experiment is espe-
cially informative because it used independent cues
at test (e.g., study “actor looking at tulip”, “actor
looking at violin”, “teacher lifting violin”; practice
“actor looking at tu ”; test with “teaching lifting
v ”) and found a significant RIF effect.

Below, we demonstrate that we can replicate this
finding of independent-cue RIF for novel associ-
ations in the model. We also describe important
boundary conditions on this effect, relating to set-
tings of the context scale parameter.

Effects of context scale
In Simulation 2.1, we discussed how the context

scale parameter affects competitive dynamics dur-
ing practice: When context scale is set to 1.0, hip-
pocampal pop-up only occurs if the item pops up
first in semantic memory. However, when context
scale is set to 1.25, hippocampal traces can pop up
on their own, without pop-up occurring first in the
item layer. Put another way: With context scale 1.0,
only strong semantic associates are punished, but
with context scale 1.25, strong semantic links are
not necessary to trigger pop-up and punishment.

Taken together, these results have strong impli-

cations for our simulations of the Anderson and Bell
(2001) paradigm. Insofar as competitors are episod-
ically (but not semantically) related to the retrieval
cue in this paradigm, our previous explorations sug-
gest that competitor pop-up (and RIF) should be ob-
served given context scale 1.25, but not given con-
text scale 1.0.

To test this idea, we ran two sets of simulations:
one set where we used context scale 1.0 during prac-
tice and test and another set using context scale 1.25
during practice and test.

Methods

Figure 41 illustrates the structure of the patterns
used in this simulation. During semantic pretrain-
ing, 8 different associate-layer patterns were linked
in a 1-to-1 fashion to 8 different item-layer pat-
terns. At study, the model was given novel pairings
of these pretrained associates and items: The target
(1) and competitor (2) were paired with associate A,
and the target control (3) and competitor control (4)
were paired with associate B. The competitor and
the competitor control were also paired with other
associates (C and D, respectively) that could be used
as independent probes at test.

Note that, with this procedure, four of the
associate-layer patterns used during pretraining (E,
F, G, H) do not appear at study, and four of the item-
layer patterns used during pretraining (5, 6, 7, 8) do
not appear at study either. The purpose of pretrain-
ing semantic links between studied items and non-
studied associate patterns (E-1, F-2, G-3, and H-4)
was to mirror the procedure used by Anderson and
Bell (2001), Experiment 4b, whereby items used at
study all came from different semantic categories;
these four pairs were all pretrained using our “stan-
dard” semantic strength value of .85.26 The purpose
of pretraining semantic links between the “episodic
cues” used at study and nonstudied item patterns
(A-5, B-6, C-7, and D-8) was to capture the fact
that episodic cues used in experiments like Ander-
son and Bell (2001) have strong semantic links to
other, nonstudied items. These four pairs were pre-
trained using a semantic strength value of .95.27

26We also ran a version of the simulation where semantic
strength values for these pairs were sampled from a uniform
distribution with mean .85 and half-range .15. The results of
that simulation were qualitatively identical to the results pre-
sented here.

27Semantic associates of episodic cues play an important role
in network dynamics. In the model, if the “episodic cue” used
at practice (cue A) is not strongly linked to any items in seman-
tic memory, all of the units in the item layer tend to pop up at
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Retrieval-Induced Forgetting of
Novel Episodic Associations

Data from Anderson & Bell (2001), Experiment 4b
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Figure 40: Results from Anderson and Bell (2001) (Experiment 4b), showing RIF effects driven by novel
episodic associations. This study used verbal materials (sentences like “the actor is looking at the tulip”)
and independent cues at test.
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Figure 41: Illustration of the structure of the patterns used in Simulation 4. Gray bars indicate pairings
that were pretrained into semantic memory, black lines indicate pairings that were presented at study, and
numbers below the item-layer circles indicate the mean strength of that pattern in semantic memory. During
semantic pretraining, 8 different associate-layer patterns were linked in a 1-to-1 fashion with 8 different
item-layer patterns. At study, the model was given novel pairings of previously pretrained associates and
items.
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During the practice phase, we probed for the tar-
get three times using our standard partial practice
cue (associate A plus three item units). For compar-
ison purposes, we also included an extra study prac-
tice condition. During the test phase, we used our
standard “associate-plus-2-item-unit” cues to probe
recall for studied patterns.

Results

Figure 42 shows the effects of partial practice on
independent-cue competitor recall, as a function of
context scale. In the context scale 1.0 condition, the
model did not show any RIF for independent cues,
but the model showed a robust RIF effect in the con-
text scale 1.25 condition. The results for dependent
cues (not shown here) were the same as the results
for independent cues: RIF for context scale 1.25
but not context scale 1.0. Finally, the results of the
extra study simulations (not shown here) were con-
sistent with all of our previous extra study simula-
tions — no forgetting effect was observed for extra
study, regardless of context scale. Overall, these re-
sults are consistent with our expectation that higher
context scale values are needed in order to trigger
episodically-mediated RIF.

The finding that RIF occurs for both dependent
and independent cues in the model (for context scale
1.25) is, in large part, a consequence of the fact that
both the “dependent cue” hippocampal representa-
tion (A-2) and the “independent cue” hippocampal
representation (C-2) tend to pop up during the low-
inhibition phase at practice.

Dynamics The dynamics of competitor pop-up
at practice (given context scale 1.25) are illustrated
in Figure 43.28 In our previous simulations (with se-
mantically related competitors) cortical competitor
pop-up was responsible for triggering hippocampal

once during the low inhibition phase, because there is no input
from the associate layer to tip the balance in favor of one attrac-
tor or the other. Pretraining a semantic link between cue A and
item 5 helps to break the tie between item-layer units (such that
the initial wave of activation during the low-inhibition phase
consists of item 5 becoming active, instead of all of the item-
layer units becoming active). Note that this pop-up of item 5
causes weakening of the A-5 memory. Using a higher-than-
usual semantic strength value (.95) for associations like A-5
helps to ensure that A-5 association stays strong enough to in-
fluence model dynamics on later practice trials, even if this as-
sociation undergoes some weakening on earlier practice trials.

28Note that other items besides the competitor pop up at
practice. In particular, given the cue A-1, item 5 (which was
semantically linked to A at pretraining) tends to pop up during
the low inhibition phase. Since pop-up of item 5 is not directly
relevant to explaining cue-independent forgetting of the com-
petitor, we do not discuss it further.

competitor pop-up. This simulation shows the op-
posite pattern: During partial practice of A-1, the
hippocampal representation of A-2 (the “dependent
cue competitor”) pops up first; this triggers activa-
tion of the cortical representation of the competitor
(2). Once the cortical representation of item 2 pops
up, this activates the hippocampal representation of
C-2 (the “independent cue competitor”). This pro-
cess, whereby activation travels from cortex to hip-
pocampus to cortex, and then back to the hippocam-
pus, allows the model to “find” and then weaken
the hippocampal trace of the independent cue, even
though the independent cue (C-2) has zero cortical
overlap with the target (A-1).

Roles of hippocampal vs. cortical weakening
To explore how much of the independent-cue RIF
effect is attributable to weakening of hippocam-
pal vs. cortical traces, we ran the same analysis
that we ran in Simulation 1.2, where we measured
RIF with hippocampal vs. cortical learning turned
off at practice. The results of this analysis indi-
cated that, in this simulation, RIF was entirely at-
tributable to hippocampal weakening: The RIF ef-
fect for hippocampal-learning-only (.11) was virtu-
ally identical to the RIF effect with both hippocam-
pal and cortical learning enabled, and the RIF effect
for cortical-learning-only was not significantly dif-
ferent from zero. The fact that cortical weakening
made a small but reliable contribution to RIF in Sim-
ulation 1.2 but not here can be explained in terms of
the idea that semantic associations were contribut-
ing to recall in Simulation 1.2 but not here. The key
feature of the current simulation paradigm is that
episodic traces are both necessary and sufficient for
recall: If there is not an intact episodic trace, the
competitor will not be recalled properly, regardless
of the strength of the cortical representation. Like-
wise, if the model has an intact episodic trace for
the competitor, recall will be successful, regardless
of whether the competitor’s cortical representation
has been weakened.29

Higher context scale values As a final note,
we also ran simulations with context scale at prac-

29This latter claim depends on our use of a small cortical
learning rate. With our standard cortical learning rate (.05),
cortical learning at practice can incrementally weaken the cor-
tical representation of the competitor, but these changes are too
small to damage the overall viability of the representation (i.e.,
even after weakening, the competitor still exists as an attractor
state in the cortical network). If we use a much larger cortical
learning rate (.20), cortical pop-up at practice can catastrophi-
cally damage the cortical representation of the competitor, such
that recall is impaired even the presence of an intact episodic
trace.
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Simulation: Retrieval-Induced Forgetting 
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Figure 42: Simulation of independent-cue RIF effects after partial practice, when the practiced and control
categories are defined by episodic associations. The left-hand plot shows RIF when context scale (during
partial practice and test) is set to its default value (1.0) and the right-hand plot shows RIF when context scale
is set to a higher value (1.25). RIF is observed with context scale set to 1.25 but not with context scale set to
1.0.
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Figure 43: Plot of competitor pop-up in our episodic-memory RIF simulations, during the low inhibition
phase of the partial practice condition (on the first practice epoch). The black line plots pop-up of the cortical
representation of the competitor (item 2). The solid gray line plots pop-up of the episodic representation of
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of the “independent cue-competitor” pair (C-2). Unlike previous simulations, where competitor pop-up oc-
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See text for discussion.
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tice/test set to even higher values (1.5 and 1.75). Re-
sults for context scale 1.5 were similar to results for
context scale 1.25 (pop-up of competitors, but no
pop-up of control items at practice). When context
scale was raised to 1.75, control items started to pop
up at practice, in addition to competitors. Another
way of framing this point is that, if context scale is
set high enough, merely having been linked to the
study context becomes sufficient to trigger pop-up,
even if the item in question has no association what-
soever with the associate-layer and item-layer fea-
tures being used as a practice cue. Pop-up of control
items in this condition leads to forgetting of these
items. This result may help to explain why forget-
ting of control items has sometimes been observed
in the RIF literature (e.g., Tsukimoto & Kawaguchi,
2001).

Discussion

When comparing the results of this simulation to
the results of Simulation 2.1, we see an interesting
pattern:

• To simulate the finding of null RIF for seman-
tically weak competitors (e.g., Anderson et al.,
1994), context scale must be set to 1.0 (not
1.25) at practice. This parameter setting en-
sures that episodic links are not sufficient to
trigger competitor pop-up.

• To simulate the finding of RIF for novel as-
sociates of the practice cue (e.g., Anderson &
Bell, 2001), context scale must be set to 1.25
(not 1.0). This parameter setting ensures that
episodic links between the practice cue and the
competitor are sufficient to trigger competitor
pop-up.

Given that different context scale settings are
needed to simulate these findings, this raises the
question of why participants would cue more
strongly with context in Anderson and Bell (2001)
compared to Anderson et al. (1994). One possi-
ble explanation is that participants modulate their
(episodic) context scale value based on the contribu-
tion of semantic memory: Intuitively, episodic cu-
ing is less important on tests where participants can
“fall back” on semantic memory vs. on tests where
participants are forced to rely entirely on episodic
memory. According to this view, participants may
have used a lower context scale value in the Ander-
son et al. (1994) Fruit-Apple paradigm than in the
Anderson and Bell (2001) novel sentences paradigm

because they could draw upon semantic memory in
the former case but not the latter. We describe a way
of testing these ideas about context scale and RIF in
the next section.

Boundary conditions
The results of our context scale manipulations in

Simulation 2.1 and Simulation 4 suggest that RIF for
weak semantic associates and novel episodic asso-
ciates should be very sensitive to how strongly par-
ticipants cue with context at practice. Specifically:

• Increasing contextual cuing in RIF paradigms
that use semantically-related category-
exemplar pairs (e.g., Anderson et al., 1994)
should result in RIF occurring for both
strong category exemplars and weak category
exemplars (see Figure 28).

• Reducing contextual cuing in RIF paradigms
that use novel episodic associates (e.g., An-
derson & Bell, 2001) should eliminate RIF for
these items (see Figure 42).

One way to address these questions would be
to use a hybrid episodic-semantic paradigm where
a given cue (Fruit) is paired at study with some
semantically related items (Apple, Pear, Kiwi) as
well as some unrelated items (Shark, Helicopter,
Eraser). To manipulate the extent to which partic-
ipants cue with context at practice, one could ma-
nipulate (at practice) whether the practiced items
are all semantically related to the cue (e.g., Fruit-
Pear), or whether they are all semantically unrelated
to the cue (e.g., Fruit-Shark). If all of the practiced
items are semantically related to the retrieval cue,
we expect that participants will use a relatively low
context scale value at practice (akin to context scale
1.0 in our simulations). In this condition, as per
the results of Simulation 2.1 and Simulation 4 (con-
text scale 1.0 condition), we would expect to find
RIF for strong semantic competitors (Fruit-Apple)
but not for weak semantic competitors (Fruit-Kiwi)
or semantically unrelated competitors (Fruit-Shark).
Conversely, if all of the practiced items are semanti-
cally unrelated to the retrieval cue (thereby forcing
participants to rely entirely on episodic memory),
we expect that participants will use a relatively high
context scale value (akin to context scale 1.25 in our
simulations). In this condition, as per the results of
Simulation 2.1 and Simulation 4 (context scale 1.25
condition) we would expect to observe RIF for all
three types of studied competitors: strong semantic
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competitors, weak semantic competitors, and also
semantically unrelated competitors.

Simulation 5: Effects of context change on
independent-cue RIF

Background

As discussed above, Anderson has argued that
RIF is cue-independent, meaning that subsequent
retrieval of competitors is impaired no matter what
cue is used at test. Extant studies provide a clear
existence proof that RIF can be observed given in-
dependent cues that are unrelated to practiced items
(see Simulation 1.2 and Simulation 4). However, at
this point, it is unclear whether RIF extends to all
independent cues, or whether RIF is limited to spe-
cific subtypes of independent cues.

Recently, Perfect et al. (2004) challenged An-
derson’s notion of cue-independence, by showing
that some types of independent cues are (appar-
ently) insensitive to RIF. Specifically, Perfect et al.
(2004, Experiment 3) modified the standard Fruit-
Apple RIF procedure by including a novel associate
study phase, where each category exemplar was
paired with a unique, semantically unrelated word
cue (e.g., Zinc-Apple). Following this phase, partic-
ipants were given a standard study phase where they
studied category-exemplar pairs (Fruit-Pear, Fruit-
Apple). Next, participants were given partial prac-
tice using category-plus-fragment cues (e.g., cue for
Fruit-Pear using Fruit- e r). Finally, at test, Perfect
et al. (2004) compared recall using two different
types of cues:

• category-plus-fragment cues (e.g., test for Ap-
ple using Fruit- p ); we will call this the stan-
dard cue condition

• cues from the novel associate study phase (e.g.,
test for Apple using Zinc- ); we will call this
the external cue condition

Note that the first type of cue is a dependent cue.
The second type of cue is an independent cue be-
cause Zinc is unrelated to practiced stimulus pairs
(e.g., Fruit-Pear).

Perfect et al. (2004) found RIF using standard
category-plus-fragment cues but failed to find any
RIF when they tested using external cues from the
novel associate study phase (Zinc). Figure 44 shows
the results from Perfect et al. (2004), Experiment 3.

The goal of this simulation is to explore why
Perfect et al. (2004) did not obtain an RIF effect

when they used cues from the novel associate study
phase. Given that (as discussed above) other stud-
ies have found RIF with independent cues, the use
of independent cues per se can not be the cause of
their failure to obtain an RIF effect. Furthermore,
since other studies have found RIF using novel as-
sociates as cues (see Simulation 4 above) the use of
novel associates as cues per se can not be used to
explain the null RIF effect either.

Having accounted for these factors, there is one
highly salient difference between the Perfect et al.
(2004) experiment and other studies that succeeded
in finding RIF effects with novel-associate cues: In
the studies that found RIF effects, the novel asso-
ciation was learned during the main study phase,
whereas in Perfect et al. (2004) (Experiment 3) the
novel association was learned outside of the main
study phase. As such, one of the main goals of this
simulation was to address the role of contextual in-
formation in modulating RIF.

Below, we show that — in keeping with the Per-
fect et al. (2004) data — the model shows RIF for
standard cues but no RIF for external cues. At a high
level, our explanation for the null external-cue RIF
effect is as follows. Consider the competitor word
Apple:

• During the novel associate study phase, partic-
ipants form an episodic trace linking Zinc, Ap-
ple, and a “novel associate context” tag.

• During the standard study phase, participants
form an episodic trace linking Fruit, Apple,
and a “standard study context” tag.

• At practice, participants are given a cue like
Fruit- e r (if Pear is a target). Also, they
are explicitly asked to think back to the stan-
dard study phase, which should lead to rein-
statement of the “standard study context” tag.
When inhibition is lowered at practice, Ap-
ple pops up in cortex as a semantic competi-
tor. The combination of Fruit, Apple and “stan-
dard study context” being active is an excellent
match to the “Fruit + Apple + standard study
context” episodic trace, and a relatively poor
match to the “Zinc + Apple + novel associate
context” episodic trace. As such, the Fruit-
Apple episodic trace tends to pop up strongly
in the hippocampus, but the Zinc-Apple trace
does not. Because the Zinc-Apple episodic
trace does not pop up as a competitor, it is not
punished.



64 A Neural Network Model of Retrieval-Induced Forgetting

Retrieval-Induced Forgetting as a 
Function of Test Cue Type

Data from Perfect et al. (2004), Experiment 3
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Figure 44: Graph of data from Perfect et al. (2004), Experiment 3, showing RIF when memory for the
competitor (Apple) is tested with a category-plus-fragment cue (the Standard condition) vs. when memory
is tested with a semantically unrelated word (e.g., Zinc) that was associated with Apple during the novel
associate study phase (the External condition). RIF is present in the Standard cue condition but not the
External cue condition. Data were taken from the analysis shown in Perfect et al. (2004), Table 4, where
participants were selected to ensure matched recall of control items.

• At test, when participants are cued with Zinc
and asked to think back to the novel associate
study phase (i.e., to reinstate the “novel asso-
ciate context” tag), they can use their fully in-
tact Zinc-Apple episodic trace to retrieve the
missing associate (Apple).

In summary: This paradigm resembles Simula-
tion 1.2 insofar as semantically categorized items
are used at study, and it resembles Simulation 4 in-
sofar as the independent cue is a novel episodic as-
sociate. The key difference is that, here, the inde-
pendent cue is studied outside of the standard study
phase. At practice, when participants cue with the
“standard study context” tag, the independent-cue
hippocampal trace is at a competitive disadvantage,
relative to traces of items that were presented during
the standard study phase. As such, the independent-
cue hippocampal trace does not pop up (and is not
punished).

Methods

Figure 45 illustrates the structure of the patterns
that we used in Simulation 5. In this simulation,
we semantically pretrained two categories (A and

B) with two items apiece (using semantic strength
.85).30 In addition to pretraining these two cat-
egories, we also semantically pretrained two ad-
ditional associate-layer patterns (C and D). These
associate-layer patterns were used as “external as-
sociates” (analogous to Zinc) during the novel asso-
ciate study phase, described below.31

For this simulation, the study phase was broken
into two parts:

• First, the model was given a “novel associate
study phase” in which it was given novel pair-
ings of semantically unrelated items (analo-
gous to Zinc-Apple): Associate C was paired

30We also ran a variant of this simulation where semantic
strength values were sampled from a uniform distribution with
mean .85 and half-range .15. The results of this simulation were
qualitatively identical to the results reported here.

31As per the procedure used in Simulation 4, the two “ex-
ternal associate” patterns (C and D) were each paired during
semantic pretraining with items (5 and 6, respectively) that did
not appear elsewhere in the simulation. We included items 5
and 6 at pretraining to simulate the fact that external associates
like Zinc have strong semantic links to other, nonstudied items
(e.g., Tungsten). The C-5 and D-6 pairings both used seman-
tic strength .95 (but note that strength .85 yields qualitatively
identical results).
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Figure 45: Illustration of the structure of the patterns used in Simulation 5. Gray bars indicate semantically
pretrained pairings, dotted lines indicate pairings presented during the novel associate study phase, and
black lines indicate pairings presented during the standard study phase. Numbers below the item-layer
circles indicate the mean strength of that pattern in semantic memory. During the novel associate study
phase, the model studied pairings of semantically unrelated items and associates: Associate C was paired
with the competitor item (2), and associate D was paired with the competitor control item (4). During
the standard study phase, the model studied semantically related category-item pairs from category A and
category B.

with the competitor item (2) and associate D
was paired with the competitor control item
(4). A fixed “novel associate context” pat-
tern was active in the context layer during this
phase.

• Next, the model was given a “standard study
phase” (corresponding to the study phase of the
simulated RIF experiment), in which the model
was given semantically related category-item
pairs: A-1, A-2, B-3, and B-4. A “stan-
dard study context” pattern (completely dis-
tinct from the “novel associate context” pat-
tern) was active in the context layer during this
phase.

The practice phase followed our standard partial
practice procedure (with semantic-category-plus-
three-unit cues). The “standard study context” pat-
tern was presented to the context layer during this
phase (since participants were asked in the experi-
ment to think back to the study phase). As in Simu-
lation 1.2 and Simulation 4, the model was given 3
trials of partial practice with the target (A-1). Con-
text scale was set to 1.0 at practice (since recall
on this test can be supported by both semantic and
episodic memory).

Finally, the model was given two tests:

• First, we tested recall for the A-1, A-2, B-
3, and B-4 pairings, using our standard test
cues (4/4 associate-layer units, 2/4 item-layer
units). Context scale was set to 1.0 (because
both episodic and semantic memory can con-
tribute to recall on this test), and the “stan-
dard study context” pattern was presented to
the context layer.

• Second, we tested recall of the competitor
and the competitor control using external as-
sociates. For this test, “the novel associate
context” pattern was presented to the con-
text layer (since participants were instructed to
think back to the novel associate study phase).
In keeping with the procedure used by Perfect
et al. (2004), we cued with the associate on its
own (Zinc- ). Also, in keeping with the prin-
ciples for context-scale-setting outlined in Sim-
ulation 4, we set context scale to 1.25 for this
test (insofar as this is a pure test of episodic
memory — semantic memory can not be used
to support performance).32

32The same pattern of results was obtained when we used
context scale 1.0.
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Simulation: Retrieval-Induced Forgetting

as a Function of Test Cue Type
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Figure 46: Simulation of Perfect et al. (2004) Experiment 3. Memory was tested using a standard dependent
cue, or with an external cue (i.e., a semantically unrelated item that was paired with the target during the
novel associate study phase, and was not presented during the standard study phase). RIF is observed in the
model (after partial practice) in the standard-cue condition but not the external-cue condition.

Results and discussion

The results of the simulation are shown in Fig-
ure 46: In keeping with the results of Perfect et al.
(2004), robust RIF was observed for the standard
cue but not the external cue.33

These results are consistent with the claim made
by Perfect et al. (2004) that different cues can elicit
different degrees of RIF. Specifically, our simula-
tion results match the Perfect et al. (2004) finding
that external cues from the novel associate study
phase do not yield RIF, even in situations where
more standard types of cues yield robust RIF effects.
The model’s explanation for this finding is that hip-
pocampal traces corresponding to external associ-
ations do not activate at practice, because they do

33Overall levels of recall were higher for standard cues than
external cues because the model can fall back on semantic re-
call for standard cues, but not for external cues. Recall in the
external-cue condition closely tracks the probability of success-
ful episodic encoding (which defaults to 50% in our model). To
better match recall in the standard vs. external cue conditions,
we ran additional simulations where we increased the encoding
success rate for external associations from 50% all the way up
to 100%. This manipulation boosted the overall level of recall
for external cues (so it was similar to the level of recall for stan-
dard cues) but the overall pattern of RIF effects was unchanged
— the RIF effect for external cues was close to zero in all of
these simulations.

not match the contextual cue that is active at prac-
tice. Since these hippocampal traces do not activate,
they are not punished, so they retain their efficacy in
supporting recall at test. We ran additional analyses
of network dynamics during the first practice trial
to confirm this explanation of the model’s behav-
ior. As expected, the cortical representation of the
competitor showed robust pop-up during the low-
inhibition phase (peak activation = .59 on average,
SEM = .01). Crucially, while the hippocampal rep-
resentation of the standard cue-competitor pair (A-
2) also showed robust pop-up (peak activation = .60,
SEM = .01), the hippocampal representation of the
external cue-competitor pair (C-2) did not pop up at
all (peak activation = .00, SEM = .00).

These results match our finding from Simulation
4 that cortical pop-up (on its own) is not sufficient
to cause forgetting on tests of memory for novel as-
sociations — success or failure on these tests is en-
tirely a function of whether the episodic memory
trace is intact. A useful way of summarizing the
results of Simulation 1.2, Simulation 4, and Simu-
lation 5 is that the effect of cortical weakening on
recall is an (increasing) function of how much the
model is relying on semantic (vs. episodic) memory
at test: When semantic memory and episodic mem-
ory are both contributing (as in Simulation 1.2),
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the effect of cortical weakening will be small (but
nonzero). When semantic memory is making no
contribution, the effect of cortical weakening will
be null. This view suggests that the most sensitive
way to measure cortical weakening effects would
be to set up a paradigm where participants do not
episodically encode the to-be-retrieved item at all
(so there is no episodic trace to get in the way, and
participants are forced to rely entirely on semantic
memory). This point is addressed in more detail in
Simulation 6.

We should also point out that other factors might
contribute to the null external-cue RIF effect, be-
sides the contextual factors outlined above. For ex-
ample, it is possible that participants encode Ap-
ple using different semantic features in the presence
of Zinc vs. the presence of Fruit (M. C. Anderson,
personal communication; see also the discussion of
“transfer-inappropriate testing” effects in Anderson,
2003). At a high level, this idea has a lot in common
with the explanation that we provided above. In our
account and Anderson’s account, the pattern of neu-
ral activity is different when participants study Zinc-
Apple vs. when Apple pops up as a semantic com-
petitor at practice. Our account posits that different
“contextual tags” are active whereas the Anderson
account posits that different Apple features are ac-
tive. In both cases, the difference (be it contextual or
semantic) creates a mismatch between features that
are active at practice and features that were encoded
during the novel associate study phase, and this dif-
ference prevents the Zinc-Apple episodic trace from
being damaged at practice. These two accounts are
not mutually exclusive, although it should be possi-
ble to tease them apart experimentally (see discus-
sion below).

Boundary conditions
We have argued that the key factor driving the

null RIF effect in Perfect et al. (2004) is that the
“Zinc + Apple + novel associate context” episodic
trace is a poor match for the retrieval cues that were
present at practice. As such, the Zinc-Apple trace
does not pop up as a competitor at practice and (con-
sequently) it is not punished.

One prediction that comes out of this view is
that, if the external associate is studied in the same
context as the standard associate (i.e., Zinc-Apple
and Fruit-Apple are studied as part of the same
study list), this will remove the “contextual mis-
match” factor that was blocking retrieval of Zinc-
Apple at practice — when participants cue with the
study-phase context, it will now be pulling in the

Zinc-Apple trace, instead of blocking it out. As a
result, Zinc-Apple pop-up should increase, leading
to external-cue RIF. 34

This prediction differentiates our context-
centered view from the view that different Apple
features are active for Zinc-Apple vs. Fruit-Apple.
According to the latter view, the null RIF effect
should persist even when Zinc-Apple and Fruit-
Apple are studied in the same context (insofar as
there will still be semantic feature mismatch be-
tween the Apple representation that pops up in re-
sponse to Fruit- e r at practice, and the Apple rep-
resentation that was active when studying Zinc-
Apple; this mismatch should prevent pop-up of the
Zinc-Apple trace and thus prevent RIF).

To test the viability of our prediction that remov-
ing contextual mismatch will boost Zinc-Apple RIF,
we ran a simulation that was identical to our previ-
ous simulation of Perfect et al. (2004), except the
same context tag was used throughout the simula-
tion.

The results of this simulation are shown in Fig-
ure 47. In keeping with our expectations, there was
a large RIF effect for external associates (as well as
standard associates) in this simulation. This RIF ef-
fect is driven by the fact that Zinc-Apple now shows
robust pop-up during the low inhibition phase (peak
activation = .19, SEM = .01).

Simulation 6: RIF in semantic memory

Background

In most RIF studies, participants are explicitly
asked to retrieve studied items on the final test; all
of the paradigms that we have simulated up to this
point fall into this category. In this simulation, we
address the finding that RIF can also be observed on
semantic generation tests (Carter, 2004; Johnson &
Anderson, 2004).

Experiment 2 from Carter (2004) provides a
clear illustration of semantic RIF. The paradigm
used in this study was briefly described in the In-
troduction, and is summarized in Figure 48. Carter

34It is worth noting that the Perfect et al. (2004) paper also
includes experiments where the external cue was presented dur-
ing the main study phase (Experiments 1 and 2), and these stud-
ies still failed to find RIF for the external cue. However, cru-
cially, these studies used faces as the “external cues” and words
as the retrieval targets. Given that participants were trying to
retrieve words (but not faces) at practice, it is unlikely that the
“face” episodic traces would have activated at practice, thus
their efficacy as retrieval cues should be relatively preserved.
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Simulation: Retrieval-Induced Forgetting

as a Function of Test Cue Type
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Figure 47: Results from a variant of our Perfect et al. (2004) simulation, in which the same context tag was
used throughout the simulation. In this situation (where Zinc-Apple and Fruit-Apple are studied in the same
context), we observe a robust RIF effect for both standard and external cues.
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Figure 48: Illustration of the stimuli used by Carter (2004) (Experiment 2). Gray bars indicate pre-existing
semantic relationships and black lines indicate pairings that appear at study. The key question addressed
by the Carter (2004) study is whether practicing retrieval of studied pairs like Clinic-Sick will impair recall
of nonstudied associates of Clinic (e.g., Doctor), when recall is tested using an independent cue that is also
nonstudied (Lawyer).
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(2004) used words like Clinic that have multiple
strong associates (e.g., Sick and Doctor). Partici-
pants studied one of these associate pairs (Clinic-
Sick) but not the other (Clinic-Doctor). At prac-
tice, participants were asked to retrieve Sick, using
Clinic-Si as a cue. During this retrieval attempt,
nonstudied associates of Clinic (Doctor) compete
with recall of the studied associate. At test, mem-
ory for Doctor was probed by giving participants
the independent cue Lawyer (which, like Clinic, is
semantically linked to Doctor) and asking them to
generate a semantic associate.

Figure 49 shows the data from Carter (2004),
Experiment 2. The results show a clear RIF ef-
fect: Practicing retrieval of one semantic associate
to Clinic (Sick) leads to forgetting of other, nonstud-
ied semantic associates of Clinic (e.g., Doctor). We
set out to simulate this finding of robust semantic
RIF here.

Methods

Figure 50 illustrates the structure of the patterns
used in this simulation. We used the same semantic
pretraining structure that we used in Simulation 1.2
(our previous simulation using semantically-related
independent cues). The key property of this struc-
ture is that the competitor item (2) is semantically
linked with two separate associates (A and C). This
mirrors the property of the Carter (2004) experiment
whereby Doctor (the competitor) is an associate of
both Clinic and Lawyer. All items were semanti-
cally pretrained with mean strength .85.

The target (A-1) and target control (B-4) were
presented at study; in keeping with Carter (2004),
the model was never given a chance to study the
competitor. During the practice phase, the model
was given 3 trials of partial practice for the target
pattern (A-1).

At test, we probed for recall of the competi-
tor and the competitor control using associate-only
cues (i.e., no item-layer units were cued). Associate
C was used to probe for the competitor and asso-
ciate D was used to probe for the competitor control.
These are independent cues insofar as C and D are
unrelated to stimuli that were presented at practice.
Our use of associate-only cues at test mirrors Carter
(2004)’s use of single-word test cues (like Lawyer).
Context scale was set to zero at test to reflect the
fact that participants were doing semantic genera-
tion (not episodic retrieval).

In the absence of any practice, the model is
roughly equally likely to recall the two items (2 and

3) that were paired with associate C during semantic
pretraining. The same is true for the control items
(the model is equally likely to recall the two items,
5 and 6, that were paired with associate D during
semantic pretraining). The key question is whether
cortical pop-up of the competitor (2) during practice
will weaken its semantic representation enough to
“tip the balance” away from the competitor, toward
the other item (3) associated with cue C.

One parameter that is important in this simu-
lation is the variability (across items) of semantic
strength values that are assigned at pretraining. If
item strength variance is set to 0 (i.e., all items have
weights set to .85 exactly), this constitutes a best-
case scenario for detecting subtle changes to corti-
cal weights. In this situation, the model is poised
on a “knife edge” where items 2 and 3 are precisely
balanced in association strength (given cue C) at the
outset of the experiment, and any weakening of item
2’s weights will cause the model to favor item 3 at
test. A more realistic scenario is to use a small but
nonzero item strength variance value (such as .05).
This captures the idea that the competitor is simi-
lar in strength to other associates of cue C, but the
strength values of these items are not identical. In
this situation, RIF should be smaller than the zero-
variance condition: On some trials, the competitor
might start out weaker than the other associate (in
which case it will not be recalled before or after
practice); on other trials, the competitor might start
out substantially stronger than the other associate,
such that (even after weakening) it is still stronger
and thus is not forgotten. To explore the robustness
of the RIF effect in this simulation, we decided to
run some simulations with item strength variance 0
and some simulations with item strength variance
.05.

Results and discussion

Figure 51 shows the results of our simulation. In
keeping with the results of Carter (2004), robust RIF
is observed after partial practice. This RIF effect is
observed because the competitor pops up in seman-
tic memory at practice. This incrementally weak-
ens the cortical representation of the competitor and
makes it less likely that the competitor will be gen-
erated in response to an independent semantic cue
at test.35

35In keeping with the idea that RIF is driven by cortical
weakening in this simulation, follow-up simulations showed
that turning off cortical learning at practice completely elimi-
nates RIF, whereas turning off hippocampal learning at practice
has no effect on RIF.
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Figure 49: Results of Experiment 2 from Carter (2004), showing how practicing retrieval of studied pairs
like Clinic-Sick affects the semantic representations of other (nonstudied) semantic associates of Clinic
such as Doctor. Semantic memory for Doctor was tested by taking another item associated to Doctor (e.g.,
Lawyer) and then asking participants to semantically generate an associate to this cue. The results show
a robust RIF effect for semantic memory: Practicing retrieval of Clinic-Sick leads to decreased semantic
generation of Doctor.
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Figure 50: Illustration of the structure of the patterns used in Simulation 6. Gray bars indicate pairings
that were pretrained into semantic memory, black lines indicate pairings that were presented at study, and
numbers below the item-layer circles indicate the mean strength of that pattern in semantic memory. The
patterns used during semantic pretraining in this simulation were identical the patterns used in Simulation
1.2 (our previous simulation using semantically-related independent cues). A key difference between this
simulation and Simulation 1.2 is that — in this simulation — only the target (and target control) were
presented at study; the model was never given a chance to study the competitor.
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Figure 51: Simulation of Carter (2004), showing cue-independent RIF effects in semantic memory. Partial
practice of the target leads to cue-independent RIF of a nonstudied competitor. The size of the RIF effect
is modulated by the amount of variance that is present in the strength of the items. With zero item strength
variance (such that all items start out equivalently strong), the two associates of the independent cue (the
competitor and the other associate) are precisely balanced in strength and any weakening of the competitor’s
weights tips the balance away from the competitor. With item strength variance .05, the RIF effect is smaller
but still highly reliable.

As expected, the size of the partial-practice RIF
effect is modulated by the amount of item strength
variance that is built into the model. When all items
start out matched in strength (i.e., no item strength
variance), tweaking the competitor reliably “tips the
balance” of recall away from the competitor and
causes a massive RIF effect. Adding .05 noise to
the item strength values reduces RIF. However, even
with .05 noise, the RIF effect is still highly reliable.

The main contribution of this simulation is to il-
lustrate how relatively subtle cortical weakening ef-
fects can have a large effect on behavioral recall per-
formance. Taken together with the results of Simu-
lation 1.2, the results of this simulation also show
how the effects of cortical weakening on recall are
modulated by the structure of the final recall test. In
Simulation 1.2, we showed that cortical weakening
has a relatively minor effect on recall performance
when the model can rely on both episodic and se-
mantic memory at test. The results of the present
simulation show that, when we force the model to
rely entirely on semantic memory at test (by set-
ting context scale to zero, and by testing recall of
nonstudied competitors), the same level of cortical
weakening has a much larger effect on recall perfor-
mance.

Simulation 7: False recall and RIF

Background

There is an enormous psychological literature
showing that studying items can cause false re-
call of other, semantically related items. Much
of this evidence was obtained using variants of
the Deese-Roediger-McDermott (DRM) paradigm
(Roediger & McDermott, 1995), in which partici-
pants study lists of items that are all associated with
a nonpresented “critical lure” word (we will refer to
these lists as “DRM lists”). The finding that study-
ing a list of items can boost recall of semantic as-
sociates poses a challenge for theories (like ours)
that posit that semantic competitors are punished.
The goal of this simulation is to explore false re-
call effects in the context of our model. Specifically,
we want to show that the model can generate these
false recall effects, and we also want to explore
how false recall effects interact with the competitor-
punishment mechanisms described in this paper.

In recent years, several behavioral studies have
started to explore this intersection between false re-
call and memory weakening (e.g., Kimball & Bjork,
2002). The most relevant of these studies is Ex-
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periment 2 from Starns and Hicks (2004). In this
study, items from DRM lists were studied in the
form of paired associates, where the list item that
most strongly cues the critical lure was used as
the first item in the pair, and other list items were
paired with this item. For example, in the DRM
list corresponding to Shirt, the strongest associate
is Blouse, followed (later in the list) by Sleeves
and Buttons; for this list, participants might study
Blouse-Sleeves and Blouse-Buttons. After study-
ing these pairs, participants were given a retrieval
practice phase where they had to retrieve items from
some of the studied lists using partial fragment cues
(e.g., Blouse-S e v s). Finally, participants were
given a category-cued recall test (“name all of the
studied words that were paired with Blouse”). Thus,
apart from the fact that category cues were used
at test (instead of category-plus-partial-item cues),
the paradigm used by Starns and Hicks (2004) was
the same as the “standard RIF” paradigm that we
used in Simulation 1.1. Based on their use of well-
established DRM lists, Starns and Hicks (2004) ex-
pected to see robust false recall of the critical non-
studied item (Shirt) on the final test. Furthermore,
based on their use of a standard RIF design, they
expected to see RIF effects for studied competi-
tors (i.e., studied, non-practiced items from prac-
ticed categories). The key question is whether the
retrieval practice manipulation would result in RIF
of critical lures (just like it results in RIF of studied
competitors).

Figure 52 shows the results of Starns and Hicks
(2004), Experiment 2: There is a robust false recall
effect for critical lures, and (more importantly) RIF
is present for both studied competitors and nonstud-
ied critical lures.

Below, we present our simulation of Starns and
Hicks (2004). To anticipate our results, we can ex-
plain the key findings from Starns and Hicks (2004)
(false recall of critical lures, and RIF for these
items) in the following manner:

• The most important assumption built into our
simulation is that, on some trials during the
study phase, participants “free associate” to the
cue word (Blouse). We simulate this by cuing
with Blouse only (i.e., no accompanying item
information). On some proportion of these tri-
als, the critical lure wins the competition to
be retrieved (i.e., it behaves like a target on a
normal study trial) — it appears at the start of
the trial, disappears during the high inhibition
phase, and reappears at the end of the high in-

hibition phase. These dynamics lead to the crit-
ical lure getting linked to the study context in
the hippocampus (just as if it had been actually
studied). This contextual link boosts the odds
that the critical lure will be recalled at test.36

• These “free association” trials are intermixed
with trials where the model studies actual list
pairs (e.g., Blouse-Sleeves). These study tri-
als behave just like study trials in our other
simulations: Because the item representation
is receiving strong support from the exter-
nal cue, no competitor pop-up occurs. This
lack of competitor pop-up ensures that newly-
formed associations between critical lures and
the study context are not damaged.

• During partial practice (unlike study trials) se-
mantic competitors activate when inhibition is
lowered. Since the critical lure is the strongest
of these competitors, it has a high likelihood
of activating in cortex during the low inhibi-
tion phase, which (in turn) causes the critical
lure’s hippocampal representation to activate
as well. This cortical and hippocampal pop-
up of the critical lure during partial practice re-
sults in RIF for the critical lure. In particular,
hippocampal pop-up — if it occurs — dam-
ages the critical lure-study context association
formed during the study phase, which reduces
the odds that the critical lure will activate on
the category-cued recall test.

Methods

Figure 53 illustrates the structure of the patterns
used in this simulation. As in Simulation 1.1, we
pretrained two 4-item categories. In each category,
three items were pretrained with mean strength .85.
Also, one item per category (the critical lure) was
pretrained with mean strength .95. For items in both
the practiced and control categories, uniform noise
with mean 0 and half-range .15 was added to items’
semantic strength values during pretraining.37

In keeping with Figure 53, we use A-1, A-2, A-
3, B-5, B-6, and B-7 to refer to the normal-strength

36The idea that generation of associates at study contributes
to false recall can be traced back to the Implicit Associative
Response theory developed by Underwood (1965). For addi-
tional discussion of this theory and related theories, see Roedi-
ger, McDermott, and Robinson (1998).

37We also ran simulations using lower levels of noise, and
the results were qualitatively identical to the results presented
here.
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Retrieval-Induced Forgetting for Competitors
and Non-Studied Critical Lures

Data from Starns & Hicks (2004), Experiment 2
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Figure 52: Results from Starns and Hicks (2004), Experiment 2, which explored the effects of retrieval
practice on recall of studied competitors (i.e., studied, non-practiced items from practiced categories) and
also nonstudied “critical lures” that are semantically related to studied items. The study found that partial
retrieval practice results in RIF for both studied competitors and nonstudied critical lures.
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Figure 53: Illustration of the structure of the patterns used in Simulation 7. Gray bars indicate pairings
that were pretrained into semantic memory, black lines indicate pairings that were presented at study, and
numbers below the item-layer circles indicate the mean strength of that pattern in semantic memory. As in
Simulation 1.1, the model was pretrained with two 4-item semantic categories. In this simulation, one item
in each category (the critical lure) was semantically stronger than the others (strength .95 vs. strength .85).
At study, the model was presented with the three “normal strength” items from each category, but not the
critical lure or its control.
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(.85) items, and we use A-4 and B-8 to refer to the
critical lures.

During the study phase, we included one “gen-
eration trial” per category where we presented the
category cue by itself, without any item-layer fea-
tures. As discussed above, the model tends to recall
the critical lure from the cued category on these gen-
eration trials (causing it to become associated with
the study context).

For each category, the generation trial was fol-
lowed by study of the 3 weaker items from each cat-
egory, so the ordering of items at study was A- (gen-
eration trial), A-1, A-2, A-3, B- (generation trial),
B-1, B-2, B-3.38

During the practice phase, the model was given
our standard partial practice procedure for the two
target items from category A (A-1 and A-2).

At test, to mirror the category-cued-recall pro-
cedure used by Starns and Hicks (2004), we cued
recall with the category pattern (4/4 units) but no
item units.39

Results

Figure 54 shows the results of our simulation of
Starns and Hicks (2004). As per the results of Starns
and Hicks (2004), Experiment 2, we found a robust
false recall effect for critical lures, and we observed
RIF for both nonstudied critical lures and studied
competitors.40

38The results of the simulation were qualitatively identical
regardless of the location of the generation trial in the study
list.

39Note that fully simulating category-cued recall data would
entail specifying a mechanism for generating multiple items,
based on a single category cue (which would, in turn, entail
simulating strategic recall-organization processes that are not
the main focus of this paper). As things stand, our model gen-
erates a single response to the category cue, and we use the
probability of recalling a given item (on that one recall attempt)
as our index of recall performance. Thus, our category-cued-
recall procedure should not be viewed as an exact simulation
of category cued recall as it occurs in real life, but rather as a
simple index of the likelihood that an item will come to mind,
when participants cue with the study context plus the category
cue.

40In comparing the Starns and Hicks (2004) results (Fig-
ure 52) to our simulation results (Figure 54), it is apparent that
the RIF effect observed in this simulation is larger than the RIF
effect observed in Starns and Hicks (2004). This difference is a
consequence of the way that we simulated category-cued recall
— specifically, the fact that we only used a single retrieval at-
tempt per category cue at test. Learning at practice might result
in a situation where a particular competitor is no longer receiv-
ing the most net input at practice (and hence is not retrieved
on the first attempt), but the competitor might still be receiving
enough support to be recalled on subsequent retrieval attempts.

To test the idea that “generation trials” at study
play a key role in engendering false recall, we
also ran another condition that was identical to the
above simulation, except it did not include gener-
ation trials at study. In the absence of generation
trials, the false recall rate for critical lures (after
study, but without practice) was .13, compared to
.28 when generation trials were included. As dis-
cussed above, generation trials foster false recall
by providing an opportunity for critical lures to get
linked to the study context.

Blocking effects Our use of category-only cues
in this simulation provides an opportunity to re-
visit the issue of blocking effects (i.e., whether
strengthening targets, in and of itself, causes forget-
ting of competitors). Anderson et al. (1994) argue
that blocking effects should be larger with category
cues than with category-plus-item-feature cues. The
gist of their argument is that category cues match
strengthened and non-strengthened items equally
well; as such, there is nothing to prevent strength-
ened targets from coming to mind at test and block-
ing recall of non-strengthened items.41 To explore
whether blocking was contributing to RIF in this
simulation, we ran follow-up simulations where we
limited learning to the high-inhibition phase or the
low-inhibition phase at practice. In keeping with
the idea that blocking occurs on category-cued re-
call tests, we observed a significant RIF effect when
we limited learning to the high-inhibition (target-
strengthening) phase at practice. However, in sup-
port of the idea that competitor weakening also con-
tributes to RIF, we observed a significant RIF ef-
fect when we limited learning to the low-inhibition
(competitor-weakening) phase at practice. The con-
tributions of blocking and competitor weakening
were roughly equal in this simulation (e.g., for stud-
ied competitors, high-inhibition-phase practice re-
duced recall by .13, SEM = .01, and low-inhibition-
phase practice reduced recall by .12, SEM = .01).

Discussion

Importantly, this simulation is not meant to be
a definitive account of false recall in the DRM

The real memory system’s ability to cast about for additional
items at test (which is lacking in the current model) should act
to soften RIF effects by scooping up extra items (i.e., items re-
ceiving the second-most and third-most net input, and so on) in
addition to the item receiving the most net input.

41Anderson et al. (1994) use this idea to explain why they
observed RIF for weak competitors in Experiment 1 (which
used category cues) but not Experiments 2 and 3 (which used
category-plus-letter-stem cues).
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Simulation: Retrieval-Induced Forgetting 

for Competitors and Non-Studied Critical Lures
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Figure 54: Plot showing how partial practice affects retrieval of studied competitors and nonstudied critical
lures in the model. A large RIF effect is observed for both types of items.

paradigm. There are numerous important factors
that are not yet incorporated in the model (for exam-
ple, the model does not have the ability to integrate
across items at study and “notice” common themes
among those items). Rather, the goal of this simula-
tion is to make two simple points:

• First, the model shows false recall in a DRM-
like paradigm despite its tendency to punish
related items. This occurs because genera-
tion (“free-association”) trials at study cause
the critical lure to become episodically as-
sociated with the study context (Underwood,
1965). Study of actual list items does not dam-
age these context-to-critical-lure connections
because (as discussed in Simulation 1.1) com-
petitor pop-up does not occur on study trials.

• Second, the model shows RIF effects for non-
presented critical lures, for the same reason
that it shows RIF effects for studied com-
petitors: During the practice phase, activa-
tion spreads to semantically associated items
in cortex, including the critical lure. This trig-
gers pop-up of the critical lure’s hippocampal
representation, which weakens the context-to-
critical-lure association formed at study and
(through this) causes forgetting of the critical
lure at test.

At this point, it is useful to consider similarities
and differences between Simulation 6 and Simula-
tion 7. Both simulations looked at RIF for non-

studied semantic associates of the practice cue. The
most important difference between the simulations
is that the final recall test was an episodic retrieval
test (context scale = 1) in Simulation 7, whereas it
was a semantic generation test (context scale = 0) in
Simulation 6. The fact that context scale was set to 1
on the final test in Simulation 7 means that episodic
memory traces will exert a strong influence on re-
call performance on the final test; these episodic in-
fluences will work to mask the more subtle kinds of
semantic weakening that we focused on in our dis-
cussion of Simulation 6. Conversely, the fact that
context scale was set to 0 on the final test in Simu-
lation 6 means that any kind of contextual/episodic
learning that occurs at study is largely irrelevant to
performance on the final test.42

42Importantly, although we framed Simulation 6 as a simula-
tion of Carter (2004), and we framed Simulation 7 as a simula-
tion of Starns and Hicks (2004), we are open to the possibility
that the mechanisms described in Simulation 6 might contribute
to RIF in Starns and Hicks (2004), if participants adopt a se-
mantic generation strategy at test. Likewise, we are open to
the possibility that the mechanisms described in Simulation 7
might contribute to RIF in Carter (2004), if participants gen-
erate semantic associates (e.g., Doctor) at study and adopt an
episodic retrieval strategy at test.
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Simulation 8: Extra study can cause forgetting
given high pattern overlap

Background

As discussed above, several experiments have
found that extra study (during the practice phase)
does not cause forgetting of competitors on cued-
recall tests (e.g., Blaxton & Neely, 1983; Bauml,
1996, 1997; Ciranni & Shimamura, 1999; Ander-
son et al., 2000a; Shivde & Anderson, 2001; Bauml,
2002). However, contrary to these findings, some
experiments have found that of extra study of some
list items does impair cued recall of other list items.
For example, Ratcliff, Clark, and Shiffrin (1990),
Experiment 6 found that extra study of some pairs
of unrelated words impairs cued recall of other pairs
of unrelated words; for a similar result, see Kahana,
Rizzuto, and Schneider (2005).

Other relevant evidence comes from Norman
(2002), who found that extra study of some items
impairs recognition sensitivity for other items on a
plurality recognition test; this test requires partici-
pants to remember whether they studied words in
singular or plural form (Hintzman, Curran, & Oppy,
1992). Also, Verde and Rotello (2004) found that
extra study of some items impairs recognition sen-
sitivity for other items on an associative recogni-
tion test. Both plurality recognition and associative
recognition load very heavily on retrieval of spe-
cific details (e.g., Hintzman & Curran, 1994; Cur-
ran, 2000; Yonelinas, 1997; Hockley, 1999). As
such, the fact that extra study led to forgetting on
plurality and associative recognition tests suggests
that extra study can impair cued recall.

Finally, Anderson and Bell (2001), Experiment
5 used the sentence stimuli described in Simulation
4 (“the actor is looking at the tulip”) and found that
extra study caused forgetting of competitors (see
also Shivde & Anderson, 2001).

It is possible that some of these findings might
be attributable to experimental confounds or other,
strategic factors. For example, Bauml (1997) ar-
gued that the Ratcliff et al. (1990) cued-recall for-
getting effect might be attributable to output-order
confounds. Also, Kahana et al. (2005) point out
that their experiment did not control for study-test
lag. Finally, Anderson and Bell (2001) argue that
the extra study forgetting effect that they observed
might be attributable to participants covertly enact-
ing retrieval practice during the extra study phase.
When participants’ results were binned according
to their self-reported use of a covert retrieval strat-

egy, participants who reported using covert retrieval
during the “extra study” phase showed a significant
forgetting effect, and participants who did not re-
port using covert retrieval showed a smaller, non-
significant forgetting effect.

All of the above points indicate that it is ap-
propriate to be skeptical of findings of forgetting
after extra study. Nonetheless, some of the stud-
ies reviewed above (in particular, the Norman, 2002
study and the Verde & Rotello, 2004 study) are free
of obvious confounds, and both studies used de-
manding encoding tasks that should minimize par-
ticipants’ ability to covertly rehearse during extra
study trials.

As such, it seems to be worth exploring (us-
ing the model) whether there are boundary con-
ditions on the null extra-study interference effect
for cued recall. In particular, we decided to focus
on the issue of pattern overlap: How many fea-
tures (on average) do participants’ representations
of studied items have in common with one another?
One of the most salient features of the Norman
(2002) and Verde and Rotello (2004) studies men-
tioned above is that both studies intentionally used
stimulus/encoding task combinations that were de-
signed to create highly overlapping traces: Norman
(2002) asked participants to try to picture whether
each object could fit inside a small box (so partic-
ipants ended up picturing the box on almost every
trial). Verde and Rotello (2004) gave participants
unrelated word pairs and asked participants to form
integrative images; crucially, individual words ap-
peared in more than one pair, so (for example) if two
studied pairs were Ostrich-Umbrella and Ostrich-
Computer, participants would end up picturing an
ostrich on both trials. The Anderson and Bell (2001)
study also asked participants to form images and
rate them for vividness. Overall, these results sug-
gest that having participants form representations
that overlap strongly across stimuli might be impor-
tant for triggering forgetting.

In the simulations below, we vary overlap by
varying the number of cortical (item-layer) units
shared by stimuli in the experiment. Also, Norman
and O’Reilly (2003) discussed how the hippocam-
pus’ ability to assign distinct conjunctive codes to
overlapping stimuli can break down under condi-
tions of high cortical overlap. Thus, in addition to
manipulating cortical pattern overlap, we also ma-
nipulate the degree of overlap between hippocampal
traces.
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Methods

The methods for this simulation were the same
as the methods that we used in Simulation 1.1 (see
Figure 9), except for the changes noted below.

The major difference between this simulation
and Simulation 1.1 is that we manipulated the level
of cortical and hippocampal overlap within a given
stimulus category. Specifically, the level of overlap
within a category was manipulated in the cortical
“item” layer and the hippocampal layer. As in previ-
ous simulations, the level of overlap between same-
category items in the associate layer was 100%. We
included the following overlap conditions:

• 0% item-layer overlap, 0% hippocampal over-
lap (this matches our previous simulations)

• 25% item-layer overlap (1/4 units), 0% hip-
pocampal overlap

• 50% cortical overlap (2/4 units), 0% hip-
pocampal overlap

• 50% cortical overlap, 25% hippocampal over-
lap (1/4 units)

• 50% cortical overlap, 50% hippocampal over-
lap (2/4 units)

Another difference between these simulations
and Simulation 1.1 is that we used 3/4 item units
to cue recall at test (instead of 2/4 units). The third
unit ensured that each pattern in the 50% overlap
condition would be cued with at least one unit that
was unique to that pattern.

For these simulations, we only looked at the ef-
fects of extra study at practice (i.e., we did not run
partial practice or reversed practice simulations).
Also, we took the opportunity to add another condi-
tion (crossed with the overlap manipulation) where
we used context scale 1.0 during the study phase
and during extra study practice trials (instead of our
usual study context scale value of 0.0). Previously
(in Simulation 1.1) we showed that increasing con-
text scale at study did not have a large effect on per-
formance given low overlap. Here, we show that in-
creasing context scale has a very large effect given
higher levels of pattern overlap.

Results and discussion

Figure 55 shows the effects of extra study on
competitor recall, as a function of cortical and hip-
pocampal pattern overlap. The left-hand side of the

figure shows results when context scale at study —
and during extra study practice trials — is set to our
default value of 0.0. The right-hand side of the fig-
ure shows results when context scale at study — and
during extra study practice trials — is set to 1.0 (the
same value that we normally use for partial practice
and test trials).

The simulation results show that, when context
scale is set to zero, the null extra-study forgetting
effect is reasonably robust to cortical overlap. For-
getting effects were either null (for 25% cortical
overlap) or modest (for 50% cortical overlap, and
0% or 25% hippocampal overlap) until we reached
50% cortical overlap and 50% hippocampal overlap,
at which point we observed catastrophic forgetting.
When context scale is set to 1.0, the results are very
different: There is a small but significant forgetting
effect with 25% overlap, and increasing overlap be-
yond this point leads to catastrophic forgetting.

The extra-study forgetting effects observed in
this simulation are driven by hippocampal pop-up
of competitors. In the 0% overlap condition, there
is an enormous gap in the level of excitatory input
received by target vs. competitor representations on
extra study trials; given the large size of this gap
in excitatory input, there is no competitor pop-up
(and no RIF) in this condition. Increasing target-
competitor overlap boosts the level of excitatory in-
put that the competitor receives when the target is
active. Once the level of support for the hippocam-
pal competitor representation is sufficiently high,
this representation starts to pop up when inhibition
is lowered, which (in turn) leads to forgetting of the
competitor. Using context scale 1.0 on extra study
trials boosts competitor pop-up even further, by pro-
viding additional excitatory input to the hippocam-
pal representations of previously studied items (in-
cluding competitor items).

There are several important conclusions to be
gleaned from this simulation:

• For our default parameters (i.e., context scale 0
at study), the null extra-study forgetting effect
is robust to the presence of some cortical over-
lap between patterns. This is important insofar
as, in real experiments, it is likely that there
will be overlap between patterns of cortical ac-
tivity elicited by different items.

• If overlap is high enough, and especially if
there is a high level of overlap in the hippocam-
pus (indicating that the level of cortical over-
lap is overwhelming the hippocampus’ ability
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Simulation: Effect of Extra Study on Competitor Recall, as a 

Function of Cortical and Hippocampal Pattern Overlap
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Figure 55: Plot showing the effects of extra study on competitor recall, as a function of representational
overlap between items within the same category. The left-hand plot shows results for when context scale is
set to its default value (0) during study; the right-hand plot shows results for when context scale at study is
set to a higher value (1.0). X-axis labels indicate the degree of cortical (item-layer) overlap and hippocampal
overlap (e.g., “C25 H0” = 25% item-layer overlap, 0% hippocampal overlap). When context scale is set to
0, no forgetting is observed for 0% and 25% item-layer overlap; a very small forgetting effect is observed
for 50% item-layer overlap; a somewhat larger forgetting effect is observed for 50% item-layer overlap and
25% hippocampal overlap, and a massive forgetting effect is observed with 50% item-layer overlap and 50%
hippocampal overlap. When context scale is set to 1.0, a small, significant forgetting effect is observed with
25% item-layer overlap. Higher levels of overlap yield massive forgetting.
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to keep patterns separate), the model predicts
that forgetting effects will start to emerge in
the extra-study condition. This is consistent
with findings, e.g., from Norman (2002), in-
dicating that extra study can cause forgetting
in situations where participants are encouraged
to encode stimuli in a rich, highly overlapping
fashion.

• The results from the context scale 1.0 condition
illustrate the benefits of using a context scale
value lower than 1.0 on study trials (instead of
keeping it at 1.0 throughout all of the phases
of the simulation). When context scale is set
to 1.0 at study, we observe unrealistically high
levels of interference: A significant forgetting
effect is observed even for relatively modest
levels of overlap (25% in cortex), and higher
levels of overlap lead to catastrophic forget-
ting.

We should emphasize that our explanation of
forgetting after extra study (i.e., that it is driven by
high representational overlap) is not mutually ex-
clusive with the “covert retrieval practice” explana-
tion set forth by Anderson and Bell (2001). The
main contribution of our simulation is to specify
conditions where extra study might lead to forget-
ting, even if subjects do not deliberately try to re-
hearse items from the study phase. One way to get at
the “image overlap” idea in a more controlled fash-
ion would be to run a variant of Anderson and Bell
(2001) where we present pictures to go along with
the sentences (e.g., we could show a picture of a
teacher lifting a violin) and then vary the similarity
of the pictures.

Finally, we should note that some studies using
a standard RIF paradigm have manipulated target-
competitor similarity; all of these studies have
found that increasing target-competitor similarity
reduces RIF (e.g., Anderson et al., 2000b; Bauml &
Hartinger, 2002). Importantly, these studies all used
a partial practice procedure, whereas our pattern-
overlap simulations (described above) used an extra
study procedure. In the General discussion, we re-
visit this issue and discuss how increasing similarity
can have different effects depending on whether the
practice phase uses partial practice or extra study.

Simulation 9: Competition-dependent target
strengthening

Background

In Simulation 1.1, we argued that the equivalent
strengthening observed for partial practice vs. extra
study was due to two countervailing forces:

• When the target is recalled successfully during
partial practice, strengthening effects should
be larger in the partial practice condition than
in the extra study condition (because there is
more competition in the former condition than
the latter).

• However, recall is not always successful dur-
ing partial practice; when the target is not re-
called successfully, it is not strengthened (and
can even be punished, if it pops up during the
low-inhibition phase).

This view implies that equivalent strengthen-
ing for partial practice vs. extra study is not a
parameter-independent regularity of memory, and
that we should be able to unmask a competition-
dependent target strengthening advantage for par-
tial practice vs. extra study by boosting recall suc-
cess during partial practice. To address this predic-
tion, we manipulated recall success at practice in
two ways:

• The first way that we manipulated recall suc-
cess at practice was to vary the semantic
strength of target items. Strengthening the tar-
get’s semantic trace increases the odds that the
model will be able to “fill in” based on se-
mantic memory, in situations where the target’s
episodic trace is weak.

• The second way that we manipulated recall
success was to vary the “partiality” of the
retrieval cue at practice — holding target
strength constant, the model was cued with all
4 associate-layer units and either 1, 2, 3, or 4
item-units. Using a sparser retrieval cue should
lead to worse target recall.

For both of these manipulations, we expected
that conditions associated with relatively poor target
recall would show greater strengthening after extra
study than partial practice, and conditions associ-
ated with relatively good target recall would show
greater strengthening after partial practice than ex-
tra study.
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Methods

In this simulation, we used the exact same
paradigm that we used to parametrically assess how
target strength interacts with RIF in Simulation 2.2
(see Figure 30). The only difference is that, in ad-
dition to looking at partial practice effects, we also
included an extra study condition. Target strength
(set during pretraining) was varied from .65 to .80
in steps of .05.

During partial practice, the default was to use
cues comprised of all 4 associate-layer units and
3/4 item-layer units. We also ran additional simu-
lations (given target strength .75) where we manip-
ulated the number of item-layer units that were used
to cue recall at practice (from 1/4 units all the way
up to 4/4 units).

Results

Effects of target strength Figure 56 shows the
results of our target strength manipulation. These
results confirm our assertion that (in the model) the
relative amount of strengthening for partial practice
vs. extra study depends on target strength. For weak
targets (where misrecall at practice is more preva-
lent), more strengthening occurs for extra study vs.
partial practice. For stronger targets (which are
more likely to be recalled accurately at practice),
more strengthening occurs for partial practice vs.
extra study.43

Effects of cue partiality Figure 57 shows the
results of simulations where we held target strength
constant at .75 and manipulated the number of item
units that were included in the practice cue (from 1
unit all the way up to 4 units). Context scale was
held constant at 1.0 across all of the practice condi-
tions. The data show an interesting nonmonotonic
pattern whereby moving from a 4-unit (full) prac-
tice cue to a 3-unit partial practice cue boosts tar-
get strengthening, but moving from 3-unit cues to
2-unit cues and 1-unit cues leads to a decrease in
target strengthening. These results can be explained
as follows:

• 3-unit partial practice results in the highest
amount of strengthening because the 3-unit cue
is just barely strong enough to support accu-
rate target recall. In this situation, the target
comes on at the start of the trial but dips down

43To give a rough idea of how target strength affects recall
accuracy at practice, moving from target strength .65 to target
strength .75 boosts percent correct recall at practice from .52
(SEM .01) to .80 (SEM .01).

extensively (in both cortex and hippocampus)
when inhibition is raised, resulting in robust
strengthening (see Figure 12, top).

• Using a full (4-unit) cue reduces strengthening
because the target is too well-specified (so it
does not dip down as much during the high in-
hibition phase; see Figure 12, middle).

• Using a sparser partial practice cue (with 1 or
2 item units) reduces strengthening by reduc-
ing the odds that the target will be recalled cor-
rectly in the first place.44

General discussion

The research presented here shows how a small
number of simple learning principles can be used to
account for a wide range of RIF findings. Specifi-
cally, we described a learning algorithm incorporat-
ing the principles that:

• Lowering inhibition can be used to identify
competing memories so they can be punished

• Raising inhibition can be used to identify weak
parts of memories so they can be strengthened

Using these principles, the model can simulate
RIF results ranging from cue-independent forget-
ting, to effects of competitor and target strength, to
effects of partial practice vs. extra study, to RIF
for novel episodic associations (see the Precis of
Simulations section in the Introduction for a more
complete list of results). Furthermore, the model
leads to several novel predictions regarding bound-
ary conditions on these effects.

The discussion section is divided into four parts:

• First, we discuss how our model relates to
other theories of RIF. This section covers the
role of competitive dynamics in driving learn-
ing; how blocking vs. weakening contribute
to forgetting in our model; how “associative
unlearning” theories of RIF can be reconciled
with theories that posit weakening of the com-
petitor itself; the contributions of episodic vs.
semantic learning to RIF in our model; the
context-dependence of RIF; the role of pre-
frontal cortex and top-down executive control

44To give a rough idea of how cue partiality affects recall
accuracy at practice, moving from a cue with 3 item units to a
cue with 1 item unit reduces % correct recall at practice from
.80 (SEM .01) to .56 (SEM .01).
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Figure 56: Simulation results showing the effects of partial practice vs. extra study on target recall, as a
function of the strength of the target representation in semantic memory. For weak target strength values
(.65 and .70) extra study leads to more strengthening than partial practice. For higher target strength values
(.75 and .80) partial practice leads to more strengthening than extra study.
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Figure 57: Simulation results showing how “cue partiality” during practice (i.e., the number of item-layer
units included in the practice cue) interacts with target strengthening. Moving from a full cue (4 out of 4
units) to a partial cue (3 out of 4 units) boosts strengthening, but further reductions in the number of cued
units reduce strengthening.

in modulating RIF; how our model relates to
other neural network models of learning and
memory; and how our model relates to abstract
computational models of memory.

• Second, we provide an overview of novel be-
havioral predictions generated by the model.

• Third, we discuss some challenges for the
model: how to account for the effects of target-
competitor similarity and integration on RIF;
and how to account for data on the (possibly
transient) time-course of RIF. We also discuss
various ways in which the model could be im-
proved (e.g., by adding on a “prefrontal cortex”
layer and exploring how it interacts with other
structures during memory retrieval).

• Fourth, we discuss other applications of the
model (besides modeling RIF data). Specif-
ically, we discuss our attempts to character-
ize the functional properties of the oscillating
learning algorithm (e.g., how many patterns it
can store, compared to other algorithms; Nor-
man et al., 2006b). We also discuss other psy-
chological domains that could be addressed by
the model.

Theoretical implications

How competitive dynamics drive learning
One of the most important ideas presented here

is that the amount of learning that occurs (on a given
trial) is a function of the net input differential be-
tween the target memory and competing memories.
Assuming that the target memory wins the compe-
tition (i.e., target units receive more net input than
competitor units), then more learning occurs when
the margin of victory for the target memory is small
vs. when the margin of victory is large. In the paper,
we showed that this simple framework can explain
several important data points, including:

• The finding that more competitor punishment
occurs given partial practice vs. reversed prac-
tice or extra study (e.g., Anderson et al., 2000a;
Ciranni & Shimamura, 1999; see Simulation
1.1, Figure 13 and Figure 15).

• The finding that strong competitors are pun-
ished more than weak competitors (e.g., An-
derson et al., 1994; see Simulation 2.1, Fig-
ure 24 and Figure 27).

We also discussed two data points that appear
to be inconsistent with the simple competitive-
learning framework outlined here:

• The finding from Anderson et al. (1994) that
increasing target strength did not reduce RIF.
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• The finding that extra study and partial practice
can lead to equivalent levels of target strength-
ening, even though there is more competition
in the partial practice condition (for an exam-
ple, see Ciranni & Shimamura, 1999).

In both cases, we were able to reconcile these
findings with the competitive-learning framework
by carefully analyzing network dynamics during the
practice phase.

• With regard to the effect of target strength on
RIF: We observed that, when the target’s se-
mantic memory representation is very weak,
the competitor starts to pop up early (before
the start of the low inhibition phase); this “pre-
mature pop-up” reduces RIF. In this situation,
increasing target strength boosts RIF by mak-
ing competitor pop-up occur later. Once the
target is strong enough to eliminate premature
pop-up of the competitor, the model behaves in
full accordance with the competitive learning
framework: Further increases in target strength
reduce RIF, by reducing the overall amount of
competitor pop-up (see Simulation 2.2, Fig-
ure 31 and Figure 32).

• With regard to effects of partial practice on tar-
get recall: We observed that increased com-
petition in the partial practice phase (which
boosts target strengthening) was being offset
by inaccurate recall of target items (which re-
duces target strengthening). We manipulated
recall accuracy during partial practice (by ad-
justing target strength and cue specificity) and
showed that — when recall accuracy at prac-
tice is high — the model behaves in accor-
dance with the competitive learning frame-
work: Partial practice leads to more strength-
ening than extra study (see Simulation 9, Fig-
ure 56 and Figure 57). This simulation result
might help to explain empirical findings (from
outside of the RIF literature) showing better
learning when participants generate the to-be-
learned stimuli based on partial cues, as op-
posed to merely viewing the stimuli (the gen-
eration effect; for discussion of this effect see
Slamecka & Graf, 1978).

Perhaps the most important contribution of this
competitive-learning framework is that it provides
a straightforward way of characterizing boundary
conditions on RIF. These predictions are reviewed
in the Summary of predictions section below.

Forgetting via weakening of attractor states
Blocking vs. weakening As discussed in the In-

troduction, theories such as Anderson’s posit that
forgetting is driven — at least in part — by actual
weakening of stored memory traces. In contrast,
ratio-rule theories (also referred to in this paper as
blocking theories) posit that impaired competitor re-
call is an indirect consequence of target strengthen-
ing, and that no actual weakening of the competitor
takes place.

In accordance with Anderson’s theory, our
model posits that weakening of stored memory
traces contributes to RIF. In simulations using
“category-plus-item-feature” cues at test, RIF in the
model appears to be driven entirely by weakening
of stored traces, and not at all by blocking. To il-
lustrate this point, we ran simulations showing that
RIF is present when we limit learning at practice to
the “low inhibition” (competitor weakening) phase,
but not when we limit learning at practice to the
“high inhibition” (target strengthening) phase (see
Simulation 1.1, Figure 16). We also showed in Sim-
ulation 7 that, when we use category-only cues at
test, both blocking and trace weakening contribute
to RIF in the model.

The total lack of observed blocking in Simula-
tion 1.1 merits further explanation: Insofar as recall
is a competitive process in our model, how is it pos-
sible to strengthen target items without impairing
recall of other (non-strengthened) items? The fact
that target strengthening is not sufficient to cause
forgetting in our model (given category-plus-item-
feature cues) can be explained in terms of the fol-
lowing ideas:

• If we rank memories according to the amount
of excitatory support (net input) they receive,
recall success is a function of whether the net
input received by the sought-after memory ex-
ceeds the maximum of all of the other net in-
put values. Blocking occurs when learning at
practice boosts the maximum net input value
associated with other items, to the point where
it “leapfrogs” over the net input value for the
sought-after item.

• Because of the very high learning rate that we
are using in the hippocampal model, episodic
memory strength can come close to its maxi-
mal value after a single study presentation.

• If we assume that some members of the prac-
ticed category were encoded into episodic
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memory at study, then additional learning at
practice might result in practiced target items
matching or slightly exceeding these already-
encoded items in strength. However, because
of ceiling effects on episodic memory strength,
it is unlikely that practiced targets will sub-
stantially exceed these other items in memory
strength.45

• Since the practice phase does not substantially
affect the maximum strength of other items
from the practiced category, blocking effects
should be small or nonexistent.

Given these points, why did we observe block-
ing on the category-cued recall test in Simulation
7? The key point here is that category cues (taken
by themselves) match strengthened targets and non-
strengthened competitors equally well. In this situa-
tion, both targets and competitors receive very sim-
ilar levels of net input from the cue — the system is
effectively balanced on a knife edge between multi-
ple memory states. When the system is in this un-
stable state, very small changes in target strength (at
practice) can tip the balance in favor of recalling the
strengthened target at test.

Associative unlearning vs. inhibition Within
the realm of models that posit actual weaken-
ing, Anderson distinguishes between associative un-
learning models and “truly inhibitory” models of
weakening (see, e.g., Anderson, 2003 and Ander-
son & Bjork, 1994). As illustrated in Figure 2, as-
sociative unlearning involves decrementing the con-
nection between the cue (Fruit) and the competitor
(Apple). In contrast, “true inhibition” (using An-
derson’s terminology) involves weakening the Ap-
ple representation itself.

As discussed in the Introduction, the simple as-
sociative unlearning hypothesis depicted in Figure 2
is falsified by the presence of RIF for cues other than
Fruit. However, we think that it is possible to rec-
oncile the idea of associative unlearning with An-
derson’s “inhibitory” theory by moving away from
unitary concept nodes, toward a distributed-pattern
approach to representing concepts. Specifically, in
our model, memories are represented as attractor
states comprised of multiple, interconnected micro-
features. At practice, the learning algorithm acts to

45It is important to note that episodic memory traces do
not completely saturate after one learning trial, and seman-
tic memory strength can increase at practice also. However,
these effects are relatively subtle compared to the basic effect
of whether or not an item was encoded into episodic memory.

weaken associations coming in to competitor fea-
tures that “pop up” during the low-inhibition phase
(see Figure 5). The net effect of this associative
weakening is to make the competitor a weaker at-
tractor overall, leading to generalized forgetting.
Thus, at a functional level, the competitor acts as
if it has been inhibited (it is generally less prone to
become active), but the mechanism of this inhibi-
tion is associative weakening, operating at the level
of microfeatures.46

Contributions of episodic vs. semantic memory to
RIF

One of the central claims of our model is that
both hippocampal (episodic) and cortical (seman-
tic) learning can contribute to independent-cue RIF.
In the model, the precise contributions of these
two types of learning depend on the details of
the paradigm being simulated. In paradigms that
tap only episodic memory (e.g., Simulation 4),
independent-cue RIF is driven entirely by weak-
ening of hippocampal traces. In paradigms that
tap only semantic memory (e.g., Simulation 6),
independent-cue RIF is driven entirely by weak-
ening of cortical traces. In paradigms where both
episodic and semantic memory contribute (e.g.,
Simulation 1.2), independent-cue RIF is driven by
a combination of hippocampal and cortical weak-
ening, but (proportionally) hippocampal weakening
contributes more to RIF than cortical weakening.
This is a consequence of the fact that the learning
rate is larger in the hippocampal network than the
cortical network.

Another important point to take away from these
simulations is that relatively subtle changes in the
structure of the retrieval cue can have a large ef-
fect on whether episodic associates of the cue are
punished (for additional discussion of this point,
see Anderson, 2003). In particular, we showed that
small changes to the context scale parameter at prac-
tice can change the observed pattern of RIF results:
With context scale set to 1.0, episodic competitor
pop-up occurs only if the competitor pops up first
in semantic memory. This dynamic limits competi-

46The idea of relating RIF to “distributed feature” models is
not new: Many of Anderson’s papers use distributed feature di-
agrams to illustrate RIF effects (e.g., Anderson et al., 2000b;
Anderson & Spellman, 1995). The main difference between
our “attractor weakening” idea and the Anderson distributed-
feature theory is that our model focuses on strengthening and
weakening of connections between features (and the effect of
these changes on attractor dynamics), whereas the Anderson’s
distributed-feature diagrams focus on inhibition and strength-
ening of the features themselves.
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tor punishment to strong semantic associates of the
cue, thereby helping to explain why Anderson et al.
(1994) and Bauml (1998) found a null RIF effect
for weak semantic associates of the cue (see Simu-
lation 2.1). However, with context scale set to 1.25,
episodic associates of the cue can pop up on their
own. This dynamic is important for explaining how
RIF can occur in purely episodic paradigms (see
Simulation 4).

Context-dependence of RIF
Several recent discussions of RIF have argued

that RIF is “context-dependent” (e.g., Perfect et al.,
2004; Racsmany & Conway, 2006). Different au-
thors use this term in slightly different ways. The
key unifying claim is that RIF involves weakening
or inhibition of context-sensitive episodic memories
from the study phase. As such, changing context
between the initial learning phase and subsequent
phases of the experiment should reduce RIF.

Our model shows context-dependent RIF ef-
fects because the oscillating algorithm weakens
context-dependent hippocampal memories. Simula-
tion 5 provides a useful illustration of the context-
dependent nature of RIF in our model: Changing the
context representation between the novel associate
study phase and the practice phase effectively pre-
vents episodic traces from the novel associate study
phase from popping up at practice, thereby protect-
ing them from punishment.

However, it is also important to emphasize that
RIF is not completely context-dependent in the
model. As discussed throughout the paper, the os-
cillating algorithm weakens traces that pop up in the
hippocampal network and also in the cortical net-
work (i.e., the associate and item layers). Insofar
as the cortical network is not directly connected to
the context layer, the model predicts that cortically-
mediated RIF effects (like the semantic RIF effect
that we showed in Simulation 6) should still be ob-
served when context is changed between study and
test. Another point is that, while recall in the hip-
pocampal component of our model is modulated by
context, contextual match is not a strict prerequi-
site for hippocampal recall. To the extent that it is
possible to access hippocampal traces outside of the
original context, weakening the hippocampal trace
should result in some degree of generalized (i.e.,
context-independent) impairment.

How prefrontal cortex contributes to RIF
Anderson’s recent writings on RIF have empha-

sized the role of top-down executive control (imple-

mented by prefrontal cortex) in RIF (e.g., Levy &
Anderson, 2002; Anderson, 2003). According to
this view, prefrontal cortex (PFC) acts to suppress
competing memory traces during retrieval; these
suppression effects linger after the trial is over, re-
sulting in RIF. We agree with the idea that prefrontal
cortex plays a large role in RIF. However, we do
not think that PFC plays a necessary role in com-
petitor weakening. According to our theory, RIF
is a consequence of competition between memo-
ries (e.g., in the medial temporal lobes), and local
learning processes that operate based on these com-
petitive dynamics. So long as there is competition,
there will be competitor weakening. PFC can in-
fluence which memories are weakened and to what
extent these memories are weakened by biasing the
retrieval competition in favor of one of the memo-
ries. There is a large neuropsychological literature
(e.g., Schacter, 1987) and neuroimaging literature
(e.g., Fletcher & Henson, 2001) showing that PFC
helps to “target” memories from particular temporal
contexts. As such, we would expect PFC to play a
key role in focusing retrieval on study-phase mem-
ories in RIF experiments (a process that is captured
in our model in a very crude way with the “context
scale” parameter). More generally, we think that
PFC plays a critical role in minimizing blocking at
test, by helping to focus attention on features of the
retrieval cue that are especially diagnostic (i.e., fea-
tures that match the sought-after item but not other,
competing items). We discuss PFC contributions to
RIF in more detail in the Model improvements sec-
tion below.

Comparison to other neural network models
Our model is the first to address the full con-

stellation of RIF phenomena discussed here. To
our knowledge, the only other published neural net-
work model that has specifically tried to address
RIF data is a recently developed model by Oram
and MacLeod (2001). Below, we provide a brief
overview of the Oram and MacLeod (2001) model.
We argue that, although their model can explain the
basic finding that practice helps recall of the prac-
ticed item, and hurts recall of related non-practiced
items, it lacks the requisite mechanisms that would
allow it to model the “competition-dependence” of
RIF (as exemplified, e.g., by the finding that RIF ef-
fects are larger after partial practice vs. extra study).
After discussing the Oram and MacLeod (2001)
model, we discuss (in broader terms) the proper-
ties that neural network models must have in order
to selectively punish strong vs. weak competitors.
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Finally, we discuss the possibility that the BCM
learning algorithm (Bienenstock, Cooper, & Munro,
1982) might be able to account for competition-
dependent learning.

The Oram & MacLeod (2001) model of RIF
This model consists of a two-layer network, where
input nodes (each corresponding to a specific item)
are connected in a feedforward, diffuse fashion to a
set of “memory nodes” that serve as an internal rep-
resentation of the inputs. Connections in the model
are modified according to simple Hebbian learn-
ing principles, whereby connections between active
input units and active memory nodes are strength-
ened, and connections between inactive input units
and active memory nodes are weakened (for addi-
tional background on this kind of learning rule, see
O’Reilly & Munakata, 2000 and Grossberg, 1976).
In the Oram and MacLeod (2001) model, items that
are grouped together at study end up getting linked
to a shared set of memory nodes. Subsequently,
when one item from the group is practiced, this has
two effects:

• Connections between the practiced item’s (ac-
tive) input node and the shared memory nodes
are strengthened.

• Connections between the non-practiced items’
(inactive) input nodes and the shared memory
nodes are weakened.

This fact allows Oram and MacLeod (2001)
to explain facilitated recall of the practiced item,
and impaired recall of non-practiced items from
the same group. Oram and MacLeod (2001) do
not try to address the more complex RIF phenom-
ena described in this paper (e.g., data indicating
competition-dependence). A possible problem with
the Oram and MacLeod (2001) model in this regard
is that the Hebbian learning rule used in the model
weakens (in a non-selective fashion) connections
from all inactive input units, instead of specifically
targeting strong competitors. In light of this fact, it
seems unlikely to us that the Oram and MacLeod
(2001) model will be able to provide a comprehen-
sive account of the learning phenomena that we ex-
plain in terms of competition-dependent learning.

How to get competition-dependent learning
Rather than limit ourselves to models that specifi-
cally have mentioned RIF, it is worth considering
more broadly whether there are other neural net-
work learning principles that could account for the
“competition-dependence” of RIF.

Most learning algorithms for rate-coded neural
networks (i.e., networks that represent unit activ-
ity in terms of a scalar output value, rather than
simulating actual spiking neurons) learn based on
the final settled state of the network, without fac-
toring in the patterns of activation that are present
(possibly transiently) during the settling process.
This is true of the Hebbian rule used by Oram and
MacLeod (2001), and O’Reilly’s Leabra algorithm
(O’Reilly & Munakata, 2000). The problem with
this approach is that the final settled state of the net-
work can be very similar for high-competition and
low-competition trials (making it difficult to enact
differential learning in these situations). For ex-
ample, consider the finding that RIF is larger after
partial practice (Fruit-Pe ) than after extra study
(Fruit-Pear) (e.g., Anderson & Shivde, in prepara-
tion). If we assume that the final state of the network
is the same in both cases (Fruit-Pear) then there is no
way for algorithms like Leabra to enact more pun-
ishment in the partial-cue condition than the full-cue
condition.

There are two possible responses to this prob-
lem: One solution is to allow competitors to be ac-
tive in the final settled state of the network. For ex-
ample, in the extra study vs. partial practice exam-
ple, one could tune the network to allow competi-
tors (Apple) to remain weakly active in the Fruit-
Pe condition, but not in the Fruit-Pear condition;
this adjustment could be coupled with a learning
rule that selectively weakens representations that
are weakly (vs. strongly) active; this is the tac-
tic taken by the BCM algorithm (described below).
Another solution (which we chose) is to use a learn-
ing algorithm that is sensitive to states of network
activation that occur prior to the final settled state.
Algorithms that have this property can learn based
on competitor activation, even if this activation is
transient.

Another key challenge for models of RIF is how
to weaken the competitor without also weakening
the target item. The mere fact that the competitor
is active can not be sufficient to trigger punishment
of that item (or else all active representations will
be punished, not just the competitor). The oscillat-
ing algorithm solves this problem by changing the
sign of the learning rule based on the phase of the
inhibitory oscillation (see Equation 4). Because of
these phase-dependent changes in the sign of the
learning rule, increased activation that occurs during
the start of low-inhibition phase (when the network
is “peeking” below threshold) has a different effect
on synaptic weights than increased activation that
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occurs during the end of the high-inhibition phase
(when the target representation is coming back on).

The BCM algorithm and competitor punishment
Another algorithm besides ours that could, in prin-
ciple, solve the problem of competitor punishment
is the BCM algorithm (Bienenstock et al., 1982).
Like the simple Hebbian learning algorithm used by
Oram and MacLeod (2001), BCM strengthens con-
nections between active sending units and strongly
active receiving units. The critical property of
BCM, with respect to competitor punishment, is
that it reduces synaptic weights from active sending
units when the receiving unit’s activation is above
zero but below its average level of activation. Put
simply: When an input pattern elicits weak acti-
vation in a receiving unit, the connections between
the input pattern and the (weakly activated) receiv-
ing unit are weakened. So, in the “partial prac-
tice” example, if we posit that Fruit-Pe elicits
strong activation of Pear, weak activation of Ap-
ple, and no activation of Shoe, the BCM algorithm
will strengthen connections to Pear, weaken connec-
tions to Apple, and it will not affect connections to
Shoe. This property suggests that it is worth ex-
ploring whether BCM can account for the full range
of RIF findings discussed in this paper.47 One po-
tential issue is that previous applications of BCM
have focused on feedforward self-organizing net-
works (e.g., models of the development of receptive
fields in visual cortex; Bienenstock et al., 1982) and
it is unclear whether BCM is up to the basic task of
memorizing large numbers of overlapping patterns
(so they can be completed based on partial cues) in
a recurrently connected network.48 It is also worth
noting that BCM’s form of competitor punishment
and the oscillating algorithm’s form of competitor
punishment are not mutually exclusive: It is possi-
ble that combining the algorithms would result in
better performance than either algorithm taken in

47While (to our knowledge) no one has used BCM to address
RIF data, some studies have used BCM to address competi-
tive learning phenomena in other domains. For example, Gotts
and Plaut (2005) show that BCM can account for data from a
perceptual negative priming paradigm, where participants are
asked to attend to a visual stimulus and ignore another (simul-
taneously presented) visual stimulus. Negative priming refers
to the effect of ignoring a stimulus on participants’ ability to
(subsequently) respond to that stimulus; see Fox (1995) for a
review.

48By way of comparison, we have demonstrated (in work
published elsewhere: Norman et al., 2006b) that the oscillat-
ing algorithm is capable of memorizing large numbers of over-
lapping patterns in a multi-layer cortical network; this work is
discussed briefly in the Functional properties of the learning
algorithm section, below.

isolation. We will explore ways of integrating BCM
with the oscillating learning algorithm in future re-
search.

Comparison to abstract computational models of
memory

Abstract memory models like SAM (Search
of Associative Memory; Raaijmakers & Shiffrin,
1981) and REM (Retrieving Efficiently from Mem-
ory; Shiffrin & Steyvers, 1997) have proved to be
very useful in understanding interference effects
in memory (for a recent review, see Raaijmakers,
2005; see also Reder, Nhouyvanisvong, Schunn,
Ayers, Angstadt, & Hiraki, 2000 for description of
another relevant model). These models posit that
memory traces are placed in a long-term store at
study, without any sort of structural interference be-
tween memory traces. At test, cues activate stored
traces to varying degrees, and these activated traces
compete to be the one that gets retrieved. Although
no published papers have specifically addressed the
RIF phenomena described here using models like
SAM and REM, we can discuss (in a general sense)
the relationship between the kinds of explanations
that are offered by these models, and the explana-
tions that are provided in this paper.

The hallmark of the abstract-modeling approach,
as applied to forgetting data, has been to show that
phenomena that were previously attributed to un-
learning (e.g., retroactive interference in the AB-
AC interference paradigm; Barnes & Underwood,
1959) can actually be explained by ratio-rule mod-
els (Mensink & Raaijmakers, 1988). This work is
very important — in addition to giving the field a
more robust appreciation for the power of ratio-rule
models, it has also led researchers to think more
carefully about the role of retrieval cues (in particu-
lar, the role of contextual cues) in determining for-
getting effects (e.g., Mensink & Raaijmakers, 1988;
Howard & Kahana, 2002).

Our model deviates sharply from the approach
taken by abstract models, insofar as our model in-
corporates a synaptic-level unlearning process, and
it posits that synaptic weakening is a major cause
of forgetting (although blocking can also contribute,
in situations where retrieval cues are relatively am-
biguous; see Simulation 7). While we appreciate
the analytic utility of trying to explain as much
data as possible without positing any kind of trace
weakening, there is abundant evidence for activity-
dependent synaptic weakening in the brain (e.g.,
Malenka & Bear, 2004), and it stands to reason
that this synaptic weakening has functional conse-
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quences. Our work can be construed as an attempt
to better understand when memory-weakening oc-
curs, and how it affects performance on seman-
tic and episodic memory tests. In future work, it
will be valuable to assess whether ratio-rule models
can account for the findings described in this paper
without positing any kind of competition-dependent
synaptic weakening mechanism.

Summary of predictions

This section provides a brief overview of the
novel model predictions discussed in the main part
of the paper. Each prediction is linked back to the
section of the paper where it was first discussed.

Target strength effects
• Target strength should have a nonmonotonic

effect on RIF: When targets are very weak, in-
creasing target strength should boost RIF (by
delaying the onset of competitor activation so
it lines up better with the low-inhibition phase
of the oscillation). Further increases in target
strength should reduce RIF, by reducing the
overall amount of competitor activation (see
Simulation 2.2, Figure 31). As discussed in
Simulation 2.2 one explanation for the null tar-
get strength effect observed by Anderson et al.
(1994) is that their “weak target” and “strong
target” conditions happened to fall on the ris-
ing and falling sides (respectively) of this non-
monotonic curve.

Competitor strength effects
• In the model, competitor punishment is a func-

tion of the strength of the competitor rela-
tive to the target, and also the strength of
the competitor relative to other competitors.
As such, strengthening some competitors can
reduce RIF for non-strengthened competitors
(see Simulation 2.3, Figure 34). When testing
this prediction, it is important to recognize that
the competitive space encompasses both stud-
ied and nonstudied semantic associates of the
cue. For example, in Figure 36 we showed that
increasing the semantic strength of nonstudied
competitors can reduce RIF for studied com-
petitors.

RIF using external cues
• In Simulation 5, we explained Perfect et al.

(2004) finding of null RIF given novel-
associate cues (e.g., null RIF when cuing for

Apple using Zinc) in terms of contextual fo-
cusing at practice. Specifically, we argued that
participants use contextual information at prac-
tice to focus retrieval on the standard study
phase. Insofar as the Zinc-Apple trace was
formed outside of the standard study phase, fo-
cusing retrieval on the standard study phase ef-
fectively blocks pop-up (and weakening) of the
Zinc-Apple trace. This view implies that ma-
nipulations that make it more difficult to con-
textually “block out” the Zinc-Apple trace at
practice (e.g., having participants study Zinc-
Apple and Fruit-Apple as part of the same list)
should boost the amount of RIF elicited by
Zinc (see Figure 46 and Figure 47).

Forgetting after extra study
• In Simulation 8, we showed that extra study

can lead to forgetting of other studied items
if the level of pattern overlap between tar-
gets and competitors (in cortex and in the hip-
pocampus) is high (see Figure 55). One way
to test this would be to present pictures along
with sentences in the Anderson and Bell (2001)
paradigm (e.g., a picture of the teacher lifting
the violin) and then vary the similarity of the
pictures.

Effects of partial practice vs. extra study on target
recall
• In Simulation 9, we showed that it should be

possible to observe more target strengthening
after partial practice vs. extra study, if we engi-
neer a situation where the target is just barely
strong enough to be retrieved correctly during
partial practice. We showed how it is possible
to manipulate the semantic strength of the tar-
get and the specificity of the retrieval cue in or-
der to generate optimal dynamics for strength-
ening. If the target is too weak (and/or the
cue is too vague) to support accurate recall at
practice, this diminishes strengthening. Con-
versely, if the target is retrieved too easily (as in
the extra study condition) this also diminishes
strengthening, by reducing the overall amount
of competitor pop-up that occurs at practice
(see Figure 56 and Figure 57).

Effects of context cue strength on episodic RIF and
semantic RIF
• To reconcile the finding of RIF for novel

episodic associations in Anderson and Bell
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(2001) with the null RIF effect for weak se-
mantic associates in Anderson et al. (1994),
we had to posit that participants cue more
strongly with context when trying to recall
novel episodic associations, vs. when trying to
recall studied items that are semantically re-
lated to the cue. In the Boundary conditions
section of Simulation 4, we highlighted two
novel implications of this view: Participants
who try to retrieve novel episodic associates of
a cue will also show RIF for studied weak se-
mantic associates of the cue. Also, participants
who try to retrieve semantic associates of a cue
will not show RIF for episodic associates of the
cue.

Neurophysiological predictions
If the link between the oscillating algorithm and

theta oscillations (as described in the Theta oscil-
lations section above) is valid, the model can be
used to make predictions regarding the fine-grained
activation dynamics of target and competitor rep-
resentations. According to the model, the activa-
tion of competitor representations should increase
at a fixed phase of theta (corresponding to the “low
inhibition” phase), and the activation of the target
representation should dip at a fixed phase of theta
(corresponding to the “high inhibition” phase) that
is 180 degrees out of phase with the “competitor
bump”. The idea that activation dynamics (with re-
spect to theta) should vary for items receiving high
levels of net input (targets) vs. items receiving less
net input (competitors) receives some support from
the rat navigation electrophysiology literature: Sev-
eral studies have found that a place cell will fire dur-
ing a specific theta phase when the rat is in the pre-
ferred place of the cell, and that the firing will shift
phases as the rat moves from this preferred loca-
tion (see, e.g., O’Keefe & Recce, 1993; Yamaguchi,
Aota, McNaughton, & Lipa, 2002; see also Mehta,
Lee, & Wilson, 2002).

The model predicts that the theta-locked “com-
petitor bump” and “target dip” for a given stimulus
should both decrease in size as a function of expe-
rience with that stimulus (see Figure 14). Impor-
tantly, the model also predicts that the size of the
competitor bump can be used to predict RIF — a
large “competitor bump” should result in extensive
punishment of that competitor, and a smaller bump
should lead to less punishment.

Testing the above predictions will require
methodological advances in neural recording:
Specifically, we will need a means of reading out

the instantaneous activation of the target and com-
petitor representations, and relating these activation
dynamics to theta. One way to accomplish this
goal is to use pattern classification algorithms, ap-
plied to thin time slices of electrophysiology data
(on the order of milliseconds) to isolate the “neu-
ral signatures” of the target and competitor repre-
sentations. Once the pattern classifier is trained, it
can be used to track the activity of these representa-
tions over time (and across phases of theta). Pattern-
classification studies meeting these desiderata are
underway now in our laboratory (for preliminary re-
sults, see Newman & Norman, 2006).

Challenges for the model

In this section, we discuss important challenges
for the model, and ways that the model could be
modified to address these challenges.

Effects of target-competitor integration and similar-
ity

As reviewed by Anderson (2003), several ex-
tant studies have explored how target-competitor
integration (i.e., how strongly the target’s features
are linked to the competitor’s features) and target-
competitor similarity (i.e., how many features target
and competitor have in common) interact with RIF.
These studies have generally found that increasing
target-competitor integration or similarity reduces
RIF. For example, Anderson et al. (2000b) had par-
ticipants study two exemplars from a category at
the same time (e.g., Red-Tomato and Red-Brick),
where one category exemplar (e.g., Tomato) was a
target and the other was a competitor (e.g., Brick);
participants were asked to either find similarities or
differences between the two items. RIF (after par-
tial practice) was observed in the “find differences”
condition but not in the “find similarities” condition.
More recently, Goodmon (2005) took the materials
from a study that had failed to obtain RIF (Butler,
Williams, & Zacks, 2001), and showed that RIF ef-
fects emerge after partial practice when the mate-
rials are re-arranged to minimize target-competitor
association strength (for other examples of how
target-competitor similarity/integration can reduce
RIF, see, e.g., Anderson & McCulloch, 1999; An-
derson & Bell, 2001; Bauml & Hartinger, 2002).

Simulating these findings is an important chal-
lenge for our model. In particular, we need to rec-
oncile the above findings (showing that increasing
similarity/integration reduces the amount of forget-
ting caused by partial practice) with the results of
Simulation 8, which showed that — in the model —



90 A Neural Network Model of Retrieval-Induced Forgetting

boosting pattern similarity increases the amount of
forgetting caused by extra study. Below, we discuss
how (in terms of our modeling framework) boosting
target-competitor similarity could have opposite ef-
fects in extra-study and partial-practice paradigms,
boosting forgetting in the former case, and reduc-
ing forgetting in the latter case. Then, we discuss
how issues with k-winners-take-all inhibition make
it difficult to simulate these results in our model (as
it currently stands), and we discuss ways of reme-
dying this problem

A competitive-learning account of integration
and similarity effects As with other manipulations
discussed in this paper, seemingly contradictory re-
sults can be sorted out when one carefully consid-
ers how similarity/integration manipulations affect
the level of excitatory support received by competi-
tors (relative to targets) in the model. Increasing
target-competitor integration (association strength)
and target-competitor similarity (feature overlap)
should both increase the amount of excitatory input
received by competitor units when the target is ac-
tive, thereby “narrowing the gap” in excitatory sup-
port between the target and the competitor. The
key difference between the extra study condition
and the partial practice condition is the size of the
target-competitor gap, prior to increasing similar-
ity/integration.

Extra study condition As discussed in Simula-
tion 8, competitors do not receive enough support to
pop up on extra study trials when target-competitor
overlap is low. Increasing target-competitor over-
lap boosts excitatory support for competitors, to the
point where competitors start to pop up (and show
RIF).

Partial practice condition The situation is very
different for partial practice. On partial practice tri-
als, the “net input gap” between targets and com-
petitors in the model is small enough to trigger
competitor pop-up (see Figure 13), even if there
is absolutely no feature overlap or integration be-
tween targets and competitors in the item layer.
In this situation, boosting target-competitor simi-
larity or integration will narrow the net input gap
between target and competitor representations even
more. If the competitor receives a sufficiently high
level of support (relative to the target) we should
observe a situation like we observed in the “weak
target, strong competitor” condition of Simulation
2.1, where the competitor starts to pop up before
the onset of the low inhibition phase. As discussed
in Simulation 2.1 and Simulation 2.2, this prema-

ture pop-up should reduce RIF. In the limiting case,
if the competitor and target are receiving nearly
equal levels of support (e.g., due to extremely strong
target-competitor integration), one might imagine
that the competitor and the target would act as a
single “functional unit” — coming on together at
the start of the trial, dipping down together during
the high inhibition phase, and then staying on to-
gether during the low inhibition phase. In this case
(where the competitor’s activation dynamics match
the target’s activation dynamics), we might expect
the competitor to show strengthening, not weaken-
ing, in the high-integration condition. This pattern
was observed by Anderson et al. (2000b).

In summary, our learning framework predicts
that increasing similarity/integration when excita-
tory support for the competitor is relatively low
can boost forgetting by triggering pop-up of the
competitor (this is what happened in Simulation 8).
However, increasing similarity/integration when ex-
citatory support for the competitor is already high
can reduce forgetting by increasing the odds that the
competitor will activate before the start of the low
inhibition phase. This latter fact may help explain
why Anderson et al. (2000b) and others have found
less RIF with increasing target-competitor integra-
tion.

Problems with k-winners-take-all inhibition
Importantly, while our learning framework can (in
principle) account for reduced RIF with increased
target-competitor similarity/integration, there are
ways in which the behavior of the actually-
implemented model diverges from the idealized ac-
count described above. We mentioned above that
— with sufficiently high levels of target-competitor
integration — the competitor and target should act
as a single functional unit. However, it is not pos-
sible to simulate this dynamic using the k-winners-
take-all (kWTA) inhibitory algorithm. As discussed
earlier, the kWTA algorithm enforces a rigid limit
on the number of units that can be strongly active
at once, when inhibition is set to its normal (“base-
line”) value. In our simulations, kWTA is parame-
terized to allow 4 units (i.e., a single item) to be ac-
tive given normal inhibition, and there is no way to
adaptively expand this limit to allow the target and
competitor to be active at the same time (regardless
of how much mutual support there is between the
target and the competitor).

The most straightforward way to remedy this
problem is to replace the kWTA inhibitory algo-
rithm with explicitly simulated inhibitory interneu-
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rons. While this will increase the complexity of
the model (and the complexity of the activation dy-
namics generated by the model), neural network re-
searchers have made great strides in recent years to-
ward understanding how to generate stable activa-
tion dynamics using a mixture of excitatory and in-
hibitory neurons (e.g., Wang, 2002). In networks
with explicitly simulated inhibitory interneurons,
the amount of activation elicited by a given input is
an emergent property of interactions between exci-
tatory and inhibitory interneurons (instead of being
directly legislated by the inhibitory algorithm, as is
the case with kWTA). As such, we expect that this
architecture will have sufficient flexibility (in terms
of the number of neurons that are allowed to be ac-
tive) to allow the target and competitor to act as a
single “functional unit” if the target and competitor
representations are strongly interconnected.

Time-course of RIF
Another challenge for the model is simulating

data on the time-course of RIF. In the model, target
strengthening and competitor punishment are both
enacted through the same mechanism: modification
of synaptic weights. This implies that, in princi-
ple, it should be possible to observe competitor-
punishment effects that are as long-lasting as target-
strengthening effects.

This view is challenged by a study conducted
by MacLeod and Macrae (2001). In that study,
MacLeod and Macrae (2001) manipulated the
length of the interval between the end of the prac-
tice phase and the beginning of the test phase: In
the “short delay” condition, this interval lasted 5
minutes; in the “long delay” condition, this interval
lasted 24 hours. MacLeod and Macrae (2001) found
robust competitor punishment and target strength-
ening after a 5-minute delay; after the 24 hour de-
lay, target strengthening was largely intact but the
RIF effect was gone (for a similar result, see Saun-
ders & MacLeod, 2002). As things stand, these two
studies are the only ones (that we know of) that have
used delays lasting longer than a few hours to exam-
ine RIF, so it is unclear whether the “no RIF after
24 hours” reflects a general principle that applies
across all RIF paradigms (not just the paradigms
used in the studies cited above).

One way to account for decreased RIF after a de-
lay is to appeal to the context-dependence of RIF:
To the extent that RIF is context-dependent, and
elapsed time is correlated with change in the partic-
ipant’s “mental context”, this implies that elapsed
time should reduce RIF. As discussed above, our

model predicts that it should be possible to observe
some RIF after a context change, but these effects
might be small and thus hard to detect.

Another possible explanation of null RIF after a
24-hour delay relates to the effects of sleep on mem-
ory representations. Recently, Norman, Newman,
and Perotte (2005) presented simulations showing
how the oscillating learning algorithm can be used
to autonomously repair damaged attractor states: If
noise is injected into a trained network (with no
other external input), that noise will coalesce into
stored attractor states. Norman et al. (2005) showed
that, if an attractor has been weakened (but still
exists in the network), this process is capable of
activating the damaged attractor and then fixing it
(by oscillating inhibition to locate weak parts of the
memory, and then strengthening these weak parts).
Furthermore, Norman et al. (2005) argued that this
autonomous attractor-repair process occurs during
REM sleep.49 If this theory is correct, it is possi-
ble that participants in the 24-hour delay condition
of the MacLeod and Macrae (2001) and Saunders
and MacLeod (2002) studies fail to show RIF be-
cause REM sleep (during the 24-hour retention in-
terval) repaired the attractor damage that occurred
during the (pre-sleep) practice session. This view
implies that if we un-confound the effects of time
and REM sleep, we should find that REM sleep
sharply reduces RIF, but time per se does not dif-
ferentially interact with competitor-punishment vs.
target-strengthening effects.

Model improvements

Above, we described how kWTA inhibition im-
pedes the model’s ability to fully account for target-
competitor similarity and integration effects, and
how kWTA could be replaced by more realistic
forms of inhibition. In this section, we evaluate
other simplifications built into the model and dis-
cuss ways in which we can move beyond these sim-
plifications.

Cortical network In our current model, each
item has a single, unified cortical representation.
However, in the actual brain, cortex represents items
in a hierarchical fashion, with low-level perceptual
features represented at the bottom of the hierarchy,
and more abstract concepts represented at the top
of the hierarchy; each layer of the hierarchy works

49For discussion of how this REM-sleep attractor-repair pro-
cess can help to protect stored knowledge (so it is not catas-
trophically “swept away” by new learning) see Norman et al.
(2005).
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to extract statistical regularities in the layer(s) be-
low it. In light of this fact, we have started to ex-
plore how the oscillating algorithm works in hierar-
chical networks. One advantage of this approach is
that it allows us to make more principled predictions
about where in the hierarchy competition (and RIF)
should occur. For example, if competition is taking
place between conceptual representations (but not
perceptual representations), we might expect RIF to
be observed when memory is probed using concep-
tual implicit memory tests but not perceptual im-
plicit memory tests (see, e.g., Perfect, Moulin, Con-
way, & Perry, 2002; for more discussion of this
point see Anderson, 2003).

Another important difference between hierarchi-
cal models of cortex and our current cortical net-
work is that — in hierarchical networks — only
some of the layers (at the bottom of the hierarchy)
receive external input. The other layers are free to
develop their own representations of input patterns.
Norman et al. (2006b) describe how the oscillating-
inhibition learning algorithm works in a multi-layer
network (consisting of an input/output layer that is
bidirectionally connected to a hidden layer). Specif-
ically, they describe how — in addition to strength-
ening and weakening representations — the learn-
ing algorithm also changes the structure of hidden
representations elicited by input patterns, in order
to facilitate subsequent recall of these input patterns.
For example, consider the case of two similar input
patterns (A and B) that are repeatedly presented in
an interleaved fashion. Initially, A will pop up as
a competitor when B is studied, and B will pop up
as a competitor when A is studied. When A acti-
vates as a competitor (on B trials), the competitor-
punishment mechanism will dissociate the unique
features of A from the hidden representation elicited
by B (likewise, the competitor-punishment mecha-
nism will dissociate the unique features of B from
the hidden representation elicited by A). The net
result of these changes is differentiation (Shiffrin
et al., 1990; McClelland & Chappell, 1998; Nor-
man & O’Reilly, 2003): As training progresses, the
hidden representations of A and B will move farther
and farther apart, until they are sufficiently distant
that A no longer pops up as a competitor on B trials,
and vice-versa. This differentiation process should
have testable consequences (e.g., stimulus A should
be less effective in priming stimulus B).

Hippocampal network The hippocampal
model used in this paper is also highly simplified,
relative to other published hippocampal models:
It only consists of one layer (instead of multiple

layers, corresponding to different hippocampal
subregions), it restricts learning to a relatively
small number of projections, and it externally
enforces pattern separation (rather than having
pattern separation be an emergent property of the
model). These simplifications were necessary in
order to keep the speed and complexity of the
model within acceptable bounds. However, with
the advent of faster computers, and given our
improved understanding of how the model works,
we can start to consider ways of bridging the gap
between our simplified hippocampal model and
more complex, biologically realistic models (e.g.,
Hasselmo et al., 2002; Norman & O’Reilly, 2003;
Becker, 2005). Using a hippocampal model that
maps more closely onto the actual neurobiology of
the hippocampus would have several benefits: It
would make it easier to use the model to address
the vast empirical literature on hippocampal theta
oscillations and learning (e.g., Hyman et al.,
2003). It would also make it easier to relate our
model to other theoretical accounts of hippocampal
theta (e.g., Hasselmo’s idea that theta oscillations
optimize hippocampal dynamics for encoding vs.
retrieval; see Norman et al., 2005 for discussion of
how our theory relates to the Hasselmo et al., 2002
model).

Modeling the dynamics of top-down control
At present, the model does not include a means

of simulating top-down control (via PFC). As dis-
cussed above, we believe that PFC plays a major
role in shaping competitive dynamics and (through
this) shaping which memories are punished and
which memories are strengthened. PFC should be
especially important in situations where the target
is much weaker than the competitor. In these situa-
tions, PFC can ensure that the (weaker) target wins
by sending extra activation to the target representa-
tion (Miller & Cohen, 2001).

The simplest way to simulate PFC involvement
at retrieval is to include an additional input projec-
tion that provides support to features of the target
memory; see Norman, Newman, and Detre (2006a)
for some preliminary simulations of PFC contribu-
tions to RIF using this method. This method allows
us to vary the degree of PFC involvement on a par-
ticular trial. However, it does not allow us simu-
late the fine-grained temporal dynamics of PFC in-
volvement. To address this problem, we plan to
implement a simple network architecture for con-
flict detection and cognitive control, as proposed by
Botvinick, Braver, Barch, Carter, and Cohen (2001).
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In that paper, Botvinick et al. (2001) propose that
the function of anterior cingulate cortex (ACC) is to
detect conflict between representations (where con-
flict is operationalized as “co-activity of incompati-
ble representations”).50 When ACC detects conflict,
this causes PFC to activate, which (in turn) serves
to resolve the conflict. For example, in a recent
study by Johnson and Anderson (2004), participants
were given homographs like Prune with dominant
noun meanings (the fruit “prune”) and subordinate
verb meanings (“trim”), and were asked to complete
word fragments that matched the subordinate verb
meaning. In this situation, ACC would be set up
to detect co-activity of the noun and verb represen-
tations. When co-activity is detected, this would
trigger PFC activity, which would selectively boost
activation of the verb representation (resolving the
conflict). We expect that this model will allow us
to generate detailed predictions about the dynamics
of PFC intervention in memory retrieval, and how
these dynamics influence learning.

Other applications of the model

The work presented here constitutes a first
step toward understanding the neural basis of
competitor-punishment, and we are currently work-
ing to further our understanding of the learning al-
gorithm (and its relation to neural and behavioral
data) in several different ways. One approach has
been to assess the functional properties of the algo-
rithm: Do the same features of the algorithm that
help us explain RIF (in particular, its ability to pun-
ish competitors) also help the algorithm do a better
job of memorizing patterns? Another approach has
been to apply the model to psychological domains
other than RIF. These two approaches are briefly re-
viewed below.

Functional properties of the learning algorithm
Norman et al. (2006b) showed that, apart from

its useful psychological properties, the oscillating
algorithm also has desirable functional properties:
Using the hierarchical cortical network described
above (i.e., with a hidden layer that is bidirection-
ally connected to the input/output layer) Norman
et al. (2006b) found that the oscillating algorithm
outperforms several other algorithms (e.g., back-
propagation and Leabra) at storing and retrieving
correlated input patterns. For example, when given
200 patterns to memorize (with average between-
pattern feature overlap of 57%, and noisy retrieval

50For a model of how ACC learns to detect conflict, see
Brown and Braver (2005).

cues), a version of the oscillating algorithm with 40
hidden units can correctly recall approximately 100
of these patterns (based on partial cues), whereas
a comparably-sized Leabra network recalls fewer
than 10 patterns. As discussed by Norman et al.
(2006b), the oscillating algorithm’s good perfor-
mance on these pattern memorization tasks is di-
rectly attributable to its ability to punish compet-
ing memories. Whenever the hidden-layer repre-
sentations of different patterns blend together, they
start to compete with one another at retrieval, and
the competitor-punishment mechanism pushes them
apart. In this manner, the oscillating algorithm
manages to keep representations from completely
merging into one another in the hidden layer, even
when inputs overlap strongly. The key point to be
gleaned from this discussion is that the exact same
attribute (selective weakening of close competitors)
that helps the model account for RIF data also helps
the model do a better job according to purely func-
tional criteria.

Other psychological data
In this paper, we focused on a particular set

of RIF results because we thought they were es-
pecially constraining, and also illustrative of the
model’s unique properties. However, the RIF find-
ings discussed here constitute only a small fraction
of the space of findings from memory paradigms
(and other types of paradigms) that could — in prin-
ciple — be addressed by the model.

In one line of work, we have started to simu-
late familiarity-based recognition using a hierarchi-
cal version of the cortical network, operationalizing
familiarity in terms of the size of the “dip” in tar-
get activation during the high inhibition phase. As
stimuli are presented repeatedly (making them more
familiar), the dip in target activation during the high
inhibition phase gets smaller. Norman et al. (2005)
presented simulations showing that the model’s ca-
pacity for supporting familiarity-based discrimina-
tion (operationalized in terms of the number of fa-
miliar and unfamiliar patterns that can be discrimi-
nated) is much higher than the capacity of the Nor-
man and O’Reilly (2003) cortical familiarity model
(which does not oscillate inhibition, and uses a sim-
ple Hebbian learning rule to adjust weights). Future
work will explore whether the oscillating-algorithm
familiarity model can account for the full range
of list-learning interference results that were pre-
viously addressed using the Norman and O’Reilly
(2003) familiarity model (e.g., the null recognition
list strength effect observed by Ratcliff et al., 1990).
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Another important future direction for the model
is to simulate results from the classical paired-
associate-learning literature. As mentioned above,
abstract mathematical models have successfully
simulated data from the AB-AC paired-associate
learning paradigm (e.g., Barnes & Underwood,
1959) without positing any kind of trace weakening
process (Mensink & Raaijmakers, 1988). Further-
more, there are certain facets of this data space that
appear to directly contradict the predictions of un-
learning models. For example, associative unlearn-
ing theory (Melton & Irwin, 1940) predicts that, in
AB-AC learning paradigms, learning a new associ-
ation (e.g., soldier-army) should directly cause for-
getting of previously learned associations involving
that cue (e.g., soldier-gun). However, several anal-
yses have found that — across stimuli — learning
of the second association is statistically independent
from forgetting of the first association (for discus-
sion of this point, see Martin, 1971; Greeno, James,
DaPolito, & Polson, 1978; Mensink & Raaijmak-
ers, 1988; Chappell & Humphreys, 1994; Kahana,
2000). It will be very informative to see how well
our model can account for this “AB-AC indepen-
dence” finding, and others like it.51

Finally, we also plan to use the model to ad-
dress other psychological phenomena (outside of
the domain of declarative memory) that may involve
competitor-weakening, including negative priming
effects in object perception (e.g., DeSchepper &
Treisman, 1996), and backward inhibition effects in
task switching (e.g., Mayr & Keele, 2000).

Conclusions

In the simulations presented in this paper, we
showed that the oscillating-inhibition model can ac-
count for key qualitative regularities in the RIF data
space (e.g., more RIF for strong vs. weak competi-
tors). The model also provides a principled ac-
count of boundary conditions on these regularities.
To our knowledge, this is the first computational
model to address the full set of RIF phenomena
discussed here. However, we also realize that the

51Prior simulation results from Mensink and Raaijmakers
(1988) and others suggest that gradual drift in contextual rep-
resentations is a major cause of forgetting in classical paired-
associate-learning paradigms. As such, properly simulating re-
sults from these paradigms may require us to replace our “static
tag” contextual representations with contextual representations
that evolve over time. For discussion of mechanisms of con-
textual drift see Howard and Kahana (2002), and for discussion
of how these mechanisms could be implemented in neural net-
work models see Norman et al. (in press).

model has a long way to go before it provides a
comprehensive account of how the brain gives rise
to RIF. As discussed in the Challenges for the model
section above, we need to incorporate significantly
more neurobiological detail in the model (e.g., we
need to explicitly simulate inhibitory interneurons
to account for target-competitor integration effects).
Also, in addition to testing behavioral predictions
of the model, we need to start testing neural pre-
dictions (e.g., regarding how target and competitor
activation should be linked to theta phase). Over-
all, we believe that a convergent approach using be-
havioral constraints, neural constraints, and func-
tional constraints (showing that our model learns
efficiently, relative to other algorithms) will result
in the most progress toward solving the puzzle of
retrieval-induced forgetting.
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Appendix A: Algorithm details

This appendix provides details of how the os-
cillating learning algorithm was instantiated in the
simulations reported here. For more information on
the oscillating algorithm and its functional proper-
ties, see Norman et al. (2006b).

Our oscillating-algorithm simulations were im-
plemented using a modified version of O’Reilly’s
Leabra algorithm (O’Reilly & Munakata, 2000).
Apart from a small number of changes listed be-
low (most importantly, relating to the weight update
algorithm, and how we added an oscillating com-
ponent to inhibition) all other aspects of the algo-
rithm used here were identical to Leabra. For a
more detailed description of the Leabra algorithm,
see O’Reilly and Munakata (2000). Parts of this Ap-
pendix were adapted from Appendix A of Norman
and O’Reilly (2003).

Pseudocode

The pseudocode for the algorithm that we used is
given here, showing how the pieces of the algorithm
(described in more detail in subsequent sections) fit
together. Parts of the learning algorithm that differ
from the standard Leabra procedure are marked in
boldface.

Outer loop: Iterate over events (trials) within an
epoch. For each event, settle over time steps of up-
dating:

1. At start of settling, for all units:

(a) Initialize all state variables (activation,
Vm, etc).

(b) Apply external patterns.

2. During each time step of settling:

(a) Compute excitatory net input (ge, eq 7).

(b) Compute kWTA inhibition gkWTA
i for

each layer, based on gΘ
i (eq 10):

i. Sort the n units into two groups
based on gΘ

i : top k and remaining
k + 1 to n.

ii. Set inhibitory conductance gkWTA
i

between gΘ
k and gΘ

k+1 (eq 9).

(c) Compute overall inhibition by combin-
ing kWTA inhibition with an oscillat-
ing component (eq 11 and eq 13).

(d) Compute point-neuron activation com-
bining excitatory input and inhibition
(eq 5).

3. Update the weights (based on linear current
weight values), for all connections:

(a) Compute weight changes according to
the oscillating algorithm (eq 4).

(b) Increment the weights and apply
contrast-enhancement (eq 13).

Point neuron activation function

As per the Leabra algorithm, we only explic-
itly simulated excitatory units and excitatory con-
nections between these units; we did not explicitly
simulate inhibitory interneurons. As described in
the main text (and detailed below) inhibition was
controlled by means of a k-winners-take-all (kWTA)
inhibitory mechanism (O’Reilly & Munakata, 2000;
Minai & Levy, 1994), which was modified by an
oscillating-inhibition component.

To simulate excitatory neurons, Leabra uses
a point neuron activation function that models
the electrophysiological properties of real neurons,
while simplifying their geometry to a single point.

The membrane potential Vm is updated as a
function of ionic conductances g with reversal (driv-
ing) potentials E as follows:

dVm(t)
dt

= τ
∑

c

gc(t)gc(Ec − Vm(t)) (5)

with 3 channels (c) corresponding to: e excitatory
input; l leak current; and i inhibitory input. Fol-
lowing electrophysiological convention, the over-
all conductance is decomposed into a time-varying
component gc(t) computed as a function of the dy-
namic state of the network, and a constant gc that
controls the relative influence of the different con-
ductances. The equilibrium potential can be written
in a simplified form by setting the excitatory driv-
ing potential (Ee) to 1 and the leak and inhibitory
driving potentials (El and Ei) of 0:

V ∞
m =

gege

gege + glgl + gigi
(6)

which shows that the neuron is computing a balance
between excitation and the opposing forces of leak
and inhibition. This equilibrium form of the equa-
tion can be understood in terms of a Bayesian de-
cision making framework (O’Reilly & Munakata,
2000).
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The excitatory net input/conductance ge(t) is
computed as a function of sending activations times
the weight values. This value is computed sep-
arately for each projection k coming into a unit
(where a “projection” is the set of connections com-
ing from a particular layer):

gek
(t) =

1
αk

rk∑
p rp

〈xiwij〉k (7)

In the above equation, 1
αk

is a normalizing term
based on the expected activity level of the sending
projection, and rk is a projection scaling factor that
determines the influence of this particular projec-
tion, relative to all of the other projections. We dis-
cuss these projection scaling factors and their signif-
icance in the Projection scaling parameters section
below. The overall excitatory net input value for a
unit ge(t) is computed by summing together all of
the projection-specific gek

(t) terms.
Cue-related inputs (i.e., inputs from the stimulus

pattern that are directly applied to the network) are
factored into the computation of ge(t) just like any
other projection. These inputs are applied starting
on the first time step of the trial and stay on (at a
constant value) throughout the trial.

The inhibitory conductance is computed by
combining the level of inhibition computed by
kWTA with an oscillating component, as described
in the next two sections. Leak is a constant.

Activation communicated to other cells (yj) is
a thresholded (Θ) sigmoidal function of the mem-
brane potential with gain parameter γ:

yj(t) =
1(

1 + 1
γ[Vm(t)−Θ]+

) (8)

where [x]+ is a threshold function that returns 0 if
x < 0 and x if x > 0. This sharply-thresholded
function is convolved with a Gaussian noise kernel
(σ = .005), which reflects the intrinsic processing
noise of biological neurons.

k-Winners-Take-All inhibition

Leabra uses a kWTA function to achieve sparse
distributed representations (c.f., Minai & Levy,
1994). kWTA is applied separate to each layer. A
uniform level of inhibitory current for all units in
the layer is computed as follows:

gkWTA
i (t) = gΘ

k+1 + q(gΘ
k − gΘ

k+1) (9)

where 0 < q < 1 is a parameter for setting the inhi-
bition between the upper bound of gΘ

k and the lower

bound of gΘ
k+1. These boundary inhibition values

are computed as a function of the level of inhibition
necessary to keep a unit right at threshold:

gΘ
i =

g∗e ḡe(Ee −Θ) + glḡl(El −Θ)
Θ− Ei

(10)

where g∗e is the excitatory net input.
In the basic version of the kWTA function used

here, gΘ
k and gΘ

k+1 are set to the threshold inhibi-
tion value for the kth and k+1st most excited units,
respectively. Thus, the inhibition is placed exactly
to allow k units to be above threshold, and the re-
mainder below threshold. In our simulations, the
q parameter is set to .325, allowing the kth unit to
be sufficiently above the inhibitory threshold. We
should emphasize that, when membrane potential
is at threshold, unit activation in the model = .25.
As such, the kWTA algorithm places a firm upper
bound on the number of units showing activation >
.25, but it does not set an upper bound on the num-
ber of weakly active units (i.e., units showing acti-
vation between 0 and .25).

The k parameter in cortex was set to match the
number of active units per layer in the input patterns
(k = 4) and the k parameter in hippocampus was set
to match the number of active units in the pretrained
“conjunctive representations” (k = 4 also).

Inhibitory oscillation

The overall inhibitory current gi(t) is com-
puted by combining the level of inhibition computed
by kWTA gkWTA

i (t) with an oscillating inhibitory
component gO

i (t):

gi(t) = gkWTA
i (t) + gO

i (t) (11)

The oscillating inhibitory current, gO
i (t), is set

to zero for the initial part of the trial, in order to
give the network time to settle. A parameter Oonset

determines the number of time steps to wait before
starting the inhibitory oscillation, such that if t <=
Oonset, then gO

i (t) = 0, and if t > Oonset then
gO
i (t) is set according to the following equation:

gO
i (t) =

Omax −Omin

2
sin

(
2π

OT
t +

2π

360
Oθ

)
(12)

+
Omax + Omin

2

In the above equation, OT , Oθ, Omax, and Omin,
are the period (in time steps), phase offset (in de-



102 A Neural Network Model of Retrieval-Induced Forgetting

Layer Omax Omin Oθ OT Oonset

Hippocampus 2.1 -2.7 -200 80 47
Associate/Item 1.8 -1.2 -180 80 39

Table 2: Parameters defining the hippocampal and cor-
tical inhibitory oscillations.

grees), maximum magnitude, and minimum mag-
nitude of the oscillating inhibitory current respec-
tively.

We used different parameters for the hippocam-
pal inhibitory oscillation and the cortical (i.e.,
associate-layer and item-layer) inhibitory oscilla-
tion. Omax, Omin, and Oθ for hippocampus and
cortex were iteratively adjusted (by hand) to maxi-
mize qualitative fit to existing RIF data. These pa-
rameters are listed in Table 2, and the oscillations
are plotted in Figure 58. Note that the hippocampal
and cortical oscillations have the same period but
the cortical oscillation is slightly offset in phase rel-
ative to the hippocampal oscillation (it starts earlier
and peaks earlier).

The total length of each trial was 127 time steps.
Factoring in the delay in the start of the oscillation,
and the 80-time-step period of the oscillation, 127
item steps is enough time for inhibition to be oscil-
lated once from its normal value up to the high inhi-
bition value, then down to the low inhibition value,
then back to normal.

Weight adjustment

At each time step (starting at the onset of the
hippocampal inhibitory oscillation) weight updates
were calculated using Equation 4:

dWij = lrate (Xi(t + 1)Yj(t + 1)−Xi(t)Yj(t))

where lrate takes on a positive value (ε) when the
inhibitory oscillation is moving toward its midpoint
value, and lrate takes on a negative value (−ε)
when the inhibitory oscillation is moving away from
its midpoint value. Figure 58 illustrates these lrate
changes.52 The ε learning rate parameter was set
to .05 for connections within the cortical network
(i.e., item-item, item-associate, associate-item, and
associate-associate); ε was set to 2.0 for connections
between the cortical network and the hippocampal
network.

52Note that lrate changes are aligned with the peak and
trough of the hippocampal inhibitory oscillation instead of the
cortical inhibitory oscillation. We experimented with several
different ways of aligning lrate changes, and this was the con-
figuration that worked best.

From To Scale
Item Hippo 2.00
Assoc Hippo 0.75
Hippo Hippo 1.50
Context Hippo variable
Hippo Item 0.50
Assoc Item 0.66
Item Item 1.25
Hippo Assoc 0.50
Item Assoc 0.66
Assoc Assoc 1.25
Hippo Context 1.00

Table 3: Projection scaling parameters for the model.
These scaling factors determine the relative influence of
the different projections coming into a layer.

Note that, while weight updates were calculated
at each time step during the trial, these weight up-
dates were not applied until the end of the trial.53

Weight contrast enhancement

Leabra includes a weight contrast enhancement
function that magnifies the stronger weights and
shrinks the smaller ones in a parametric, continu-
ous fashion. This contrast enhancement is achieved
by passing the linear weight values computed by the
learning algorithm through a sigmoidal nonlinearity
of the following form:

ŵij =
1

1 +
(
θ

wij

1−wij

)−γ (13)

where ŵij is the contrast-enhanced weight value,
and the sigmoidal function is parameterized by an
offset θ and a gain γ (standard defaults of 1.25 and
6, respectively, used here).

Projection scaling parameters

Table 3 lists the scaling parameters that deter-
mine the relative influence of different projections
within the model (see Equation 7 for a precise de-
scription of how these projection scaling parame-
ters influence excitatory net input values). Although
the complexity of the model makes it impossible to
exhaustively search the space of scaling-parameter
settings, we did manage to search through a very
wide range of scaling parameter configurations be-
fore settling on this particular set of parameters. The
most important aspects of this particular parameter

53Another difference between our algorithm and the standard
implementation of Leabra is that our algorithm does not include
adjustable bias weights, whereas the standard version of Leabra
does include these weights.
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Figure 58: Illustration of how inhibition was oscillated on each trial. At each time step, the hippocampal
“inhibitory oscillation” value was added to the inhibition value computed by the kWTA algorithm for the
hippocampal layer. Likewise, the cortical “inhibitory oscillation” value was added to the inhibition values
computed by the kWTA algorithm for the associate and item layers. The graph also shows how the sign of
the learning rate was varied over the course of the inhibitory oscillation.

set, with regard to generating the dynamics outlined
in the main part of the paper, were our use of high
projection scaling values for recurrent projections
(in both hippocampus and cortex), and our use of a
high scaling value for the item-to-hippocampus pro-
jection.

With regard to recurrent projections: Using a
high projection scaling value for recurrents helps to
ensure well-delineated pop-up of competitors dur-
ing the low-inhibition phase — a limited number of
units pop up strongly, and most units do not pop up
at all. When a lower projection scaling value is used
for recurrents, competitor pop-up is much more dif-
fuse (i.e., we tend to observe weak pop-up of a large
number of units). In the limiting case, if the recur-
rents are too weak, lowering inhibition causes all of
the units in the layer to start to activate; this diffuse
wave of activation can trigger a seizure in the net-
work.

With regard to item-to-hippocampus projection:
Using a large scaling value on this projection (rel-
ative to the associate-to-hippocampus projection) is
important for getting robust pop-up of hippocam-
pal traces corresponding to independent cues. For
example, consider what occurs in Simulation 1.2:
In this simulation, the competitor item (2) is paired
with two associates (A-2 and C-2) at study. When
the model is cued with a partial version of the target
(A-1) at practice, item 2 pops up as a semantic com-
petitor. Using a strong item-to-hippocampus projec-
tion scaling factor ensures that semantic pop-up of

item 2 will trigger pop-up of all of the hippocampal
traces from the study phase that contain item 2 (i.e.,
both A-2 and C-2). Without this strong item-to-
hippocampus scaling factor, the hippocampal rep-
resentation of A-2 pops up (because it receives sup-
port from both the associate layer and the item layer
at practice) but the hippocampal representation of
C-2 does not.

Other parameters

All of the parameters (governing underlying
model dynamics) shared by the oscillating algo-
rithm and Leabra were set to their Leabra default
values, except for stm gain (which determines the
overall influence of external inputs that are applied
to the network, relative to the influence of collat-
eral connections between units), q (the parameter in
Equation 9 that determines whether kWTA places
the inhibitory threshold relatively close to the tar-
get units, or relatively close to competing units),
and τ (the time constant parameter in Equation 5
that governs updating of the membrane potential).
stm gain was set to 0.6, q was set to 0.325, and τ
was set to .15.
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Appendix B: Details of semantic pretraining

This appendix contains pseudocode describing
how weights in the cortical and network were pre-
trained (for each simulated participant) prior to the
start of the simulated RIF experiment. The goal of
this process was to implant a set of associate-item
pairings into the cortical network (to simulate pre-
experimental experience with the stimuli used in the
RIF experiment).

1. Pretraining representations in the associate
layer

(a) Initialize all associate-layer recurrent
connections by setting them to .5.

(b) For each associate-layer pattern that is
used in the simulation, set weights be-
tween co-active units in the associate
layer to .95.

2. Pretraining representations in the item layer

(a) Initialize all item-layer recurrent connec-
tions by setting them to .5.

(b) For each item-layer pattern that is used in
the simulation (e.g., Apple):

i. Sample a semantic strength value for
that item from a uniform distribu-
tion with mean µ and half-range σ.
These µ and σ parameters can vary
across simulations, and µ can also
vary across conditions within a sim-
ulation (e.g., in Simulation 2).

ii. Set weights between co-active units
in the item layer to that item’s se-
mantic strength value.

3. Pretraining associate-item and item-associate
connections

(a) Initialize all item-associate and associate-
item connections by setting them to .5.

(b) For each associate-item pairing in the
pretraining set, set weights between co-
active pairs of item-layer and associate-
layer units (i.e., pairs comprised of one
active item unit and one active associate-
layer unit) to the item’s semantic strength
value.


