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Multiple scales of memory in the brain
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Sensory
Information

Working Memory
Holding Information “In Mind”

•Decouples behavior from the world
•Necessary for complex behavior
•Requires effort to maintain
• SEVERELY Limited (~4 items)
•Closely guarded



Multiple scales of memory in the brain

Iconic Memory
Immediate Sensory Memory

•Unlimited (mostly)
•Brief (exponential decay)
•Related to Sensory Processing

Sensory
Information

Working Memory
Holding Information “In Mind”

•Decouples behavior from the world
•Necessary for complex behavior
•Requires effort to maintain
• SEVERELY Limited (~4 items)
•Closely guarded

Long-term Memory
•Unlimited (mostly)
•Requires effort to encode
•Stable (although not as 

much as once thought)



Neural Representations of 
Working Memory



Prefrontal Cortex is Densely Interconnected with 
Many Different Brain Regions

Prefrontal cortex is anatomically well situated 
to play a role in cognitive control.

It is reciprocally connected with many different 
brain regions, including sensory, motor, and 
associative brain regions.  It is also reciprocally 
connected with the hippocampus.

Prefrontal cortex is defined as the cortical 
region sending/receiving projections from 
the mediodorsal thalamus.  



Delay Activity is the Hallmark of PFC Neurons

Monkeys were ‘trained’ to remember the location 
of a food reward over an extended delay.

Delays ranged from 15 seconds to 60 seconds.

Fuster and Alexander, Science 1971

Prefrontal Cortex

Screen RaisedCue



Delay Activity is the Hallmark of PFC Neurons

PFC neurons sustained activity over long delays, including up to several seconds.  In 
this way, they could ‘bridge the gap’ between sensory stimulus and behavior.

Fuster and Alexander, Science 1971

Prefrontal Cortex

Screen RaisedCue



Delay activity is also seen in Mediodorsal 
Thalamus

MD neurons also show sustained activity over long delays.  This is the basis for 
suggestions that recurrent loops between the prefrontal cortex and thalamus support 
sustained representations

Fuster and Alexander, Science 1971

Prefrontal Cortex

Screen RaisedCue

Mediodorsal Thalamus



Working memory representations are distributed 
across the brain

Note: It is controversial the degree of distribution in working 
memory representations.  For example, Ranulfo Romo argues he 
sees no WM representations in S1.



Brief Overview of Models of 
Working Memory



Models of Sustained, Mnemonic Activity

Neural mechanisms of persistent activity:

1) Changes in the biophysics of PFC neurons leading to 
tonic activity.
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Models of Sustained, Mnemonic Activity

Neural mechanisms of persistent activity:

1) Changes in the biophysics of PFC neurons leading to 
tonic activity.

2) Reverberatory network mechanisms

Cortico-Cortical Loops Local Cortical Circuits
Cortical-

Thalamic Loops



Recurrent networks support mnemonic activity

Discrete mnemonic representations: Excitatory Connection

Inhibitory Connection



Recurrent networks support mnemonic activity

Discrete mnemonic representations: Excitatory Connection

Inhibitory Connection



Construction of ‘bump’ attractor networks in PFC 
for maintaining representations



Construction of ‘bump’ attractor networks in PFC 
for maintaining representations

Re-current excitatory drive 
sustains initial activity

Surround inhibition keeps 
the bump from wandering



Bump attractors fit neurophysiological data

Delayed Saccade Task Bump-Attractor Model



Flexibility of Working Memory



Working memory is incredibly flexible: you 

can hold anything in mind!
What animal was it?

What was it doing?

What color was the elephant?



A simple model of random, reciprocal connections between a ‘random 

network’ and ‘sensory network’ can capture many working memory effects

‘Sensory’ network with 

center-surround 

relationship.
Input



A simple model of random, reciprocal connections between a ‘random 

network’ and ‘sensory network’ can capture many working memory effects

‘Sensory’ network with 

center-surround 

relationship.
Input

‘Random’ network with random, bi-

directional connections with sensory cortex.

Sensory network cannot maintain 

representations alone; maintained 

only through interactions with 

random network.

Connection weight between 

sensory and random network is 

tuned such that 1 input spike 

results in 1 output spike (on 

average).  This is the only tuned 

parameter.1 spike in = 1 

spike out



A simple model of random, reciprocal connections between a ‘random 

network’ and ‘sensory network’ can capture many working memory effects

‘Sensory’ network with 

center-surround 

relationship.

‘Random’ network with random, bi-

directional connections with sensory cortex.

Input

Roughly 35% of connections 

between sensory and random 

networks are excitatory.  

Remaining connections are 

inhibitory.

~35% 

Excitatory

1 spike in = 1 

spike out

E-I Balance Neurons receive balanced 

excitation and inhibition. Thus, 

every neuron, on average, 

receives zero net synaptic input.
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A simple model of random, reciprocal connections between a ‘random 

network’ and ‘sensory network’ can capture many working memory effects

‘Sensory’ network with 

center-surround 

relationship.

‘Random’ network with random, bi-

directional connections with sensory cortex.

Input

~35% 

Excitatory

1 spike in = 1 

spike out

E-I Balance

Multiple sensory inputs can be 

maintained simultaneously; all 

sensory networks project onto the 

same control networks.



Network is flexible; can maintain any input into the sensory network

1 input

No input



Projections through random network maintain information, allowing 

memories to be sustained
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Behavioral and Physiological Phenomena of Working 

memory 

Decades of research has yielded a diversity of behavioral and physiological 

phenomena of working memory:

1. Flexibility of working memory (you can hold anything in mind).

2. Working memory has a capacity limit.
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1. Flexibility of working memory (you can hold anything in mind).

2. Working memory has a capacity limit.

Luck and Vogel (1997)



Despite flexibility, the network has a strict capacity limit:

Network fails to maintain memory of all 6 items

Six inputs into sensory networks are not all maintained.



Behavioral and Physiological Phenomena of Working 

memory 

Decades of research has yielded a diversity of behavioral and physiological 

phenomena of working memory:

1. Flexibility of working memory (you can hold anything in mind).

2. Working memory has a capacity limit.

Luck and Vogel (1997)

Model



Behavioral and Physiological Phenomena of Working 

memory 

Decades of research has yielded a diversity of behavioral and physiological 

phenomena of working memory:

1. Flexibility of working memory (you can hold anything in mind).

2. Working memory has a capacity limit.

Wilken and Ma (2004)



Capacity of working memory arises from interference 

between memories in the ‘random’ network

The random connections between sensory networks and random network 

means representations in the sensory network overlap in the random network.

Given the excitation/inhibition balance, this results in 

a reduction in the response to a given input.

Information
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Stimulus

Response to Stimulus 

Non-preferred Stimulus
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Behavioral and Physiological Phenomena of Working 

memory 

Decades of research has yielded a diversity of behavioral and physiological 

phenomena of working memory:

1. Flexibility of working memory (you can hold anything in mind).

2. Working memory has a capacity limit; likely due to interference.

3. Neurons show divisive-normalization-like regularization of responses.

Buschman et al (2011)



Behavioral and Physiological Phenomena of Working 

memory 

Decades of research has yielded a diversity of behavioral and physiological 

phenomena of working memory:
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4. Working memory representations are distributed across the brain, 

including in sensory and control regions.

Christophel et al (2017)



Behavioral and Physiological Phenomena of Working 

memory 

Decades of research has yielded a diversity of behavioral and physiological 

phenomena of working memory:

1. Flexibility of working memory (you can hold anything in mind).

2. Working memory has a capacity limit; likely due to interference.

3. Neurons show divisive-normalization-like regularization of responses.

4. Working memory representations are distributed across the brain, 

including in sensory and control regions.

5. Representations in ‘control’ networks (i.e. PFC) are complex 

(nonlinear).

Warden and Miller (2007)



Model neurons in ‘control’ region show PFC like responses; ‘sensory’ 

network show stimulus tuning 

Neurons in the randomly connected ‘control’ network show tuning curves to 

stimuli. However, they also show significant preference changes across 

locations.  Both of these effects have been observed in monkey PFC.



Summary 2 – Random/Structured Network Captures Many 

Behavioral & Physiological Phenomena of Working Memory 

Decades of research has yielded a diversity of behavioral and physiological 

phenomena of working memory:

1. Flexibility of working memory (you can hold anything in mind).

2. Working memory has a capacity limit; likely due to interference.

3. Neurons show divisive-normalization-like regularization of responses.

4. Working memory representations are distributed across the brain, 

including in sensory and control regions.

5. Representations in ‘control’ networks (i.e. PFC) are complex 

(nonlinear).

6. Mnemonic activity is diverse; having both sustained and dynamic 

properties.

7. Recency-effect; more recent stimuli are better maintained.

8. Retro-cueing improves working memory accuracy.

Predicts:

1. Multiple items should increase noise in sensory cortex representations.

2. Forgotten items should be completely lost in sensory cortex.

3. Reduced interference should increase working memory capacity.



Working memory isn’t just for remembering stimuli…

Working

Memory

Working memory is your ability to hold things ‘in mind’.  It provides the 

workspace for higher cognitive functions, such as decision making, 

goal-directed behavior, and attention.

Task

Goal

Long-term

memory



Working Memory for Cognitive 
Control



Cognition is remarkably flexible – humans and animals are excellent multi-

task agents, able to perform a multitude of behaviors.

Cognitive control is the ability to select a goal-relevant, situationally-

appropriate, behavior. 

Visual Search

Categorization

Decision Making



Learning attentional templates – a form of cognitive 

control

How does the brain learn to control cognition? Caroline 

Jahn

Feature-based attention 

allows us to focus on the 

stimuli with task-relevant 

features (e.g., color, shape, 

motion).

An attentional template 

encapsulates the set of 

stimulus features that are 

relevant for the current 

situation.

Jahn et al, Cell, 2024
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How does the brain learn to control cognition? Caroline 

JahnWhen the situation (or your goals) changes, you must adapt by learning a new 

contextually-appropriate template.

Learning attentional templates – a form of cognitive 

control

New York City Costa Rica Berlin

Jahn et al, Cell, 2024



Caroline 

Jahn

Monkeys performed a visual search task while 

learning new attentional templates 

Reward was 

proportional to the 

distance in color space 

between the chosen 

target and the 

template.

Trial N

Trial N+1

Trial N+2 New

Template

(uncued)

?

Monkeys performed a typical visual search task: find the 

stimulus that was closest to the attentional template.

Jahn et al, Cell, 2024
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Trial N+2 New
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(uncued)

?

The reward function changes 

with the attentional template.

To study learning, the template changed multiple 

times during each day:
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Caroline 

Jahn

Monkeys performed a typical visual search task: find the 

stimulus that was closest to the attentional template.

Monkeys performed a visual search task while 

learning new attentional templates 

Trial N+2 New

Template

(uncued)

?

The reward function changes 

with the attentional template.

To study learning, the template changed multiple 

times during each day:

Behavior was modeled by a Q-

learning with function approximation 

model.

Learning Curve

Jahn et al, Cell, 2024



Caroline 

Jahn

Neural recordings were performed across 

prefrontal and parietal cortex – regions 

known to be involved in directing attention.

Neural recordings were performed in frontal and 

parietal cortex

We were interested in answering three questions:

1. How are attentional templates 

represented?

2. How are new attentional templates 

learned?

3. How does the animal make decisions 

across multiple templates?

Jahn et al, Cell, 2024



Caroline 

Jahn

Attentional templates are represented in a 

structured manner

How are templates represented?

Hypothesis #2: Control representations 

are high-dimensional and unique to 

each task.

Hypothesis #1: Control representations are 

structured, with semantically similar templates 

represented in similar ways in the neural 

population.

Advantages: 

+ Interpolation/Generalization

+ Match sensory representations

Advantages: 

+ Linearly separable

+ Reduced interference

Jahn et al, Cell, 2024



Caroline 

Jahn

Attentional templates are represented in a 

structured manner

Multi-Dimensional Scaling

Of Neural Population Response

Jahn et al, Cell, 2024

How are templates represented?

Hypothesis #1: Control representations are 

structured, with semantically similar templates 

represented in similar ways in the neural 

population.



Caroline 

Jahn

Attentional templates are maintained throughout 

the task

Jahn et al, Cell, 2024

Template representations can be decoded from 

the neural population in LPFC:

These template representations are stably maintained 

across the entire task.



Caroline 

Jahn

Summary of Learning to Control Attention

+RPE

Learning



Cognitive Control of Working 
Memory



Control of Working Memory Compensates for Limited 

Capacity

To compensate for the limited capacity of working memory, the brain has 

developed mechanisms to tightly control the contents of working memory.

Gating

Working

Memory

Selection

Working memory is your ability to hold things ‘in mind’.  It provides the 

workspace for higher cognitive functions, such as decision making, 

goal-directed behavior, and attention.



Baddeley’s Multicomponent Model of WM

Baddeley (2003)

• Central executive regulates limited 
attentional resources and limited 
storage capacity

• Items move “in” or “out” of visual or 
verbal buffers (analogous to RAM)

•Active maintenance/ rehearsal of 
items in buffers 

Gating the Contents of Working Memory



Retrospective selection from working memory; prospective 

attention to visual stimuli

Monkeys performed the continuous working memory task in both a 

selection condition (with a retro-cue) and an attention condition (cue before 

stimulus).

Retrospective (Selection) Prospective (Attention)

Panichello and Buschman, Nature 2021



Selection a single item from working memory improves 

memory performance

Holding two items in memory impairs working memory accuracy.

Panichello and Buschman, Nature 2021



Large-scale electrophysiological recordings across multiple 

brain regions involved in working memory

Recordings in two monkeys performing continuous working memory task.  

Simultaneous recordings across visual, parietal and frontal cortex:

Over 1500 electrodes across 

two animals, yielded:

• 682 neurons in LPFC

• 187 neurons in FEF

• 331 neurons in 7a/b

• 341 neurons in V4/PIT

• 163 neurons in STG/TPoT

• 351 neurons in PMC

Representation 

Control

Panichello and Buschman, Nature 2021



Neural Mechanisms of Selection

We are interested in addressing two questions:

1) What are the neural mechanisms controlling the selection of 

items in working memory?

2) How does selection act on working memory representations?



Selection is directed from frontal cortex

Previous work has shown frontal 

and parietal cortex are the source 

of internal control of attention.

Do these brain regions also direct 

selection?

Down

Up

Time

Stimulus Cue Response

PFC neurons encode the 

direction of selection.

Panichello and Buschman, Nature 2021



Selection is directed from frontal cortex

Control of Attention
Control of Selection 

from Working Memory

Down

Up

Time

Stimulus Cue Response

Panichello and Buschman, Nature 2021



Selection is directed from frontal cortex; PFC has 

generalized control representation

Can the same classifier 

generalize to attention?

Down

Up

Time

Stimulus Cue Response Stimulus Cue Response
Time



Summary: Selection from Working Memory Relies on Similar 

Neural Mechanisms that Control Attention

1) What are the neural mechanisms controlling the selection 
of items in working memory?
• Selective control of working memory originates in 

prefrontal cortex and flows back to parietal cortex.
• Selection overlaps with attention in LPFC, suggesting 

PFC may be a domain general controller.

2) How does selection alter working memory 
representations?



Summary: Selection from Working Memory Relies on Similar 

Neural Mechanisms that Control Attention

Our results suggest that:

1) Selective control of working memory originates in 

prefrontal cortex and overlaps with control of attention, 

suggesting PFC may be a domain general controller.

Working memory has a severe capacity limitation.  Control of working 

memory helps to compensate for this capacity limitation.

2) Selection amplifies neural 

response of selected 

memory representation, 

similar to attention.
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How items in working memory are going to be used changes 

during the task

Before the cue: maintain the 

color and location of the 

stimuli in working memory.

After the cue: maintain the color of 

the selected item and prepare to do 

visual search.



Before selection, items are maintained in independent 

subspaces in working memory.

Projecting high-dimensional ‘pseudo-

population’ representations into low-

dimensional PC space.

Panichello and Buschman, Nature 2021
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subspaces in working memory.
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Projecting high-dimensional ‘pseudo-

population’ representations into low-

dimensional PC space.

Before selection, items are maintained in independent 

subspaces in working memory.
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What happens 

after selection?

Panichello and Buschman, Nature 2021



Projecting high-dimensional ‘pseudo-

population’ representations into low-

dimensional PC space.

Before selection, items are in independent subspaces.

After selection, representations are aligned.
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Projecting high-dimensional ‘pseudo-

population’ representations into low-

dimensional PC space.

Before selection, items are in independent subspaces.

After selection, representations are aligned.

cue onset (s)
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Selection rotates representation of selected item into an 

actionable subspace.

These subspaces have been 

defined independently for 

each time period.

Are pre-cue and post-cue 

representations in the same 

or different subspace?

Use these PCs!

To test, we can use the post-cue 

subspace to try to decode pre-cue 

representations.

Panichello and Buschman, Nature 2021



Summary: Selection from Working Memory Dynamically 

Changes the Geometry of Neural Representations

• Selection dynamically transforms memory representations, 

facilitating ‘read-out’ of task-relevant information.

• This may be a mechanism of cognitive control, allowing the brain to 

control how information is read-out by task-specific networks.

Panichello and Buschman, Nature 2021
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