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Abstract To adapt to a changing world, we must be able to switch between rules already learned 
and, at other times, learn rules anew. Often we must do both at the same time, switching between 
known rules while also constantly re-estimating them. Here, we show these two processes, rule 
switching and rule learning, rely on distinct but intertwined computations, namely fast inference and 
slower incremental learning. To this end, we studied how monkeys switched between three rules. 
Each rule was compositional, requiring the animal to discriminate one of two features of a stimulus 
and then respond with an associated eye movement along one of two different response axes. By 
modeling behavior, we found the animals learned the axis of response using fast inference (rule 
switching) while continuously re-estimating the stimulus–response associations within an axis (rule 
learning). Our results shed light on the computational interactions between rule switching and rule 
learning, and make testable neural predictions for these interactions.

Editor's evaluation
This important study modeled monkeys' behavior in a stimulus-response rule-learning task to 
show that animals can adopt mixed strategies involving inference for learning latent states and 
incremental updating for learning action-outcome associations. The task is cleverly designed, the 
modeling is rigorous, and importantly there are clear distinctions in the behavior generated by 
different models, which makes the conclusions convincing.

Introduction
Intelligence requires learning from the environment, allowing one to modify their behavior in light 
of experience. A long tradition of research in areas like Pavlovian and instrumental conditioning has 
focused on elucidating general-purpose trial-and-error learning mechanisms – especially error-driven 
learning rules associated with dopamine and the basal ganglia (Daw and O’Doherty, 2014; Daw 
and Shohamy, 2008; Daw and Tobler, 2014; Dolan and Dayan, 2013; Doya, 2007; O’Doherty 
et al., 2004; O’Reilly and Frank, 2006; Rescorla, 1988; Schultz et al., 1997; Yin and Knowlton, 
2006; Day et al., 2007; Bayer and Glimcher, 2005; Lau and Glimcher, 2008; Samejima et al., 2005; 
Padoa-Schioppa and Assad, 2006). This type of learning works by incremental adjustment that can 
allow animals to gradually learn an arbitrary task – such as a new stimulus–response discrimination 
rule. However, in other circumstances, learning can also be quicker and more specialized: for instance, 
if two different stimulus–response rules are repeatedly reinforced in alternation, animals can come 
to switch between them more rapidly (Asaad et  al., 1998; Rougier et  al., 2005; Harlow, 1949). 
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These more task-specialized dynamics are often modeled by a distinct computational mechanism, 
such as Bayesian latent state inference, where animals accumulate evidence about which of several 
‘latent’ (i.e., not directly observable) rules currently applies (Sarafyazd and Jazayeri, 2019; Collins 
and Koechlin, 2012; Behrens et al., 2007; Gershman et al., 2014; Bartolo and Averbeck, 2020; Qi 
et al., 2022; Stoianov et al., 2016). Such inference is associated with activity in the prefrontal cortex 
(Durstewitz et al., 2010; Milner, 1963; Boettiger and D’Esposito, 2005; Nakahara et al., 2002; 
Genovesio et al., 2005; Boorman et al., 2009; Koechlin and Hyafil, 2007; Koechlin et al., 2003; 
Sakai and Passingham, 2003; Badre et al., 2010; Miller and Cohen, 2001; Antzoulatos and Miller, 
2011; Reinert et al., 2021; Mansouri et al., 2020), suggesting that its neural mechanisms are distinct 
from incremental learning. Lesioning prefrontal cortex impairs performance on tasks that require rule 
inference (Milner, 1963; Dias et al., 1996) and neurons in prefrontal cortex track the currently inferred 
rule (Mansouri et al., 2006).

In its simplest form, this type of latent state inference process presupposes that the animals have 
previously learned about the structure of the task. They must know the set of possible rules, how 
often they switch, etc. For this reason, latent state inference has typically been studied in well-trained 
animals (Sarafyazd and Jazayeri, 2019; Asaad et al., 2000; White and Wise, 1999). There has been 
increasing theoretical interest – but relatively little direct empirical evidence – in the mechanisms by 
which the brain learns the broader structure of the task in order to build task-specialized inference 
mechanisms for rapid rule switching. For Bayesian latent state inference models, this problem corre-
sponds to learning the generative model of the task, for example inferring a mixture model over latent 
states (rules or task conditions) and their properties (e.g., stimulus–response–reward contingencies) 
(Sarafyazd and Jazayeri, 2019; Collins and Koechlin, 2012; Collins and Frank, 2016; Schuck et al., 
2016; Chan et al., 2016; Hampton et al., 2006; Frank and Badre, 2012; Purcell and Kiani, 2016). 
In principle, this too could be accomplished by hierarchical Bayesian inference over which of several 
already specified rules currently applies and over the space of possible rules, as in Chinese restaurant 
process models. However, such hierarchical inference is less tractable and hard to connect to neural 
mechanisms.

Perhaps most intriguingly, one solution to the lack of a full process-level model of latent state 
learning is that rule learning and rule switching involve an interaction between both major classes of 
learning mechanisms – latent state inference and incremental trial-and-error learning. Thus, in Bayesian 
inference models, it is often hypothesized that an inferential process decides which latent state is in 
effect (e.g., in prefrontal cortex), while the properties of each state are learned, conditional on this, 
by downstream error-driven incremental learning (e.g, in the striatum) (Padoa-Schioppa and Assad, 
2006; Collins and Koechlin, 2012; Frank and Badre, 2012; Seo et al., 2012; Rushworth et al., 
2011; Balewski et al., 2022). However, these two learning mechanisms have mostly been studied in 
regimes where they operate in isolation (Sarafyazd and Jazayeri, 2019; Asaad et al., 2000; White 
and Wise, 1999; Lak et al., 2020; Busse et al., 2011; Fründ et al., 2014; Gold et al., 2008; Tsunada 
et al., 2019) and, apart from a few examples in human rule learning (Collins and Koechlin, 2012; 
Collins and Frank, 2016; Donoso et al., 2014; Badre and Frank, 2012; Bouchacourt et al., 2020; 
Franklin and Frank, 2018), their interaction has been limited to theoretical work.

To study rule switching and rule learning, we trained non-human primates to perform a rule-based 
category-response task. Depending on the rule in effect, the animals needed to attend to and cate-
gorize either the color or the shape of a stimulus, and then respond with a saccade along one of 
two different response axes. We observe a combination of both fast and slow learning during the 
task: monkeys rapidly switched into the correct response axis, consistent with inferential learning of 
the response state, while, within a state, the animals slowly learned category-response mappings, 
consistent with incremental (re)learning. This was true even though the animals were well trained 
on the task beforehand. To quantify the learning mechanisms underlying the animals’ behavior, we 
tested whether inference or incremental classes of models, separately, could explain the behavior. 
Both classes of models reproduced learning-like effects – that is dynamic, experience-driven changes 
in behavior. However, neither model could, by itself, explain the combination of both fast and slow 
learning. Importantly, the fact that a fully informed inferential learner could not explain the behavior 
also indicated that the observed fast and slow learning was not simply driven by informed adjustment 
to the task structure itself. Instead, we found that key features of behavior were well explained by a 
hybrid rule-switching and rule-learning model, which inferred which response axis was active while 
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continually performing slower, incremental relearning of the consequent stimulus–response mappings 
within an axis. These results support the hypothesis that there are multiple, interacting, mechanisms 
that guide behavior in a contextually appropriate manner.

Results
Task design and performance
Two rhesus macaques were trained to perform a rule-based category-response task. On each trial, 
the monkeys were presented with a stimulus that was composed of a color and shape (Figure 1a). 
The shape and color of each stimulus were drawn from a continuous space and, depending on the 
current rule in effect, the animals categorized the stimulus according to either its color (red vs. green) 
or its shape (‘bunny’ vs.‘tee’, Figure 1b). Then, as a function of the category of the stimulus and the 
current rule, the animals made one of four different responses (an upper-left, upper-right, lower-left, 
or lower-right saccade).

Animals were trained on three different category-response rules (Figure 1c). Rule 1 required the 
animal to categorize the shape of the stimulus, making a saccade to the upper-left location when the 
shape was categorized as a ‘bunny’ and a saccade to the lower-right location when the shape was 
categorized as a ‘tee’. These two locations – upper-left and lower-right – formed an ‘axis’ of response 
(Axis 1). Rule 2 was similar but required the animal to categorize the color of the stimulus and then 
respond on the opposite axis (Axis 2; red = upper-right, green = lower-left). Finally, Rule 3 required 
categorizing the color of the stimulus and responding on Axis 1 (red = lower-right, green = upper-left). 
Note that these rules are compositional in nature, with overlapping dimensions (Figure 1d). Rule 1 
required categorizing the shape of the stimulus, while Rules 2 and 3 required categorizing the color 
of the stimulus. Similarly, Rules 1 and 3 required responding on the same axis (Axis 1), while Rule 2 
required a different set of responses (Axis 2). In addition, the overlap in the response axis for Rules 1 
and 3 meant certain stimuli had congruent responses for both rules (e.g., red-tee and green-bunny 
stimuli) while other stimuli had incongruent responses between rules (e.g., red-bunny and green-tee). 
For all rules, when the animal made a correct response, it received a reward (an incorrect response led 
to a short ‘time-out’).

Animals performed the same rule during a block of trials. Critically, the animals were not explicitly 
cued as to which rule was in effect for that block. Instead, they had to use information about the 
stimulus, their response, and reward feedback, to infer which rule was in effect. After the animals 
discovered the rule and were performing it at a high level (defined as >70%, see Methods) the rule 
would switch. Although unpredictable, the moment of switching rules was cued to the animals (with 
a flashing screen). Importantly, this switch cue did not indicate which rule was now in effect (just that 
a switch had occurred).

To facilitate learning and performance, the sequence of rules across blocks was semi-structured 
such that the axis of response always changed following a block switch. This means that the animals 
always alternated between a Rule 2 block and either a Rule 1 or 3 block (chosen pseudo randomly), 
and that Rule 2 thus occurred twice as frequently as the other rules. Note that the cue implied an 
axis switch but did not instruct which axis to use, thus the animals must learn and continually track on 
which axis to respond.

Overall, both monkeys performed the task well above chance (Figure 1e, f). When the rule switched 
to Rule 2, the animals quickly switched their behavior: Monkey S responded correctly on the first trial 
in 81%, confidence interval (CI) = [0.74,0.87] of Rule 2 blocks, and reached 91%, CI = [0.85,0.95] after 
only 20 trials (Monkey C being, respectively, at 78%, CI = [0.65,0.88]; and 85%, CI = [0.72,0.92]). In 
Rules 1 and 3, their performance also exceeded chance level quickly. In Rule 1, although the perfor-
mance of Monkey S was below chance on the first trial (0%, CI = [0,0.052]; 46%, CI = [0.28,0.65] for 
Monkey C), reflecting perseveration on the previous rule, performance quickly climbed above chance 
(77% after 50 trials, CI = [0.66,0.85]; 63%, CI = [0.43,0.79] for Monkey C). A similar pattern was seen 
for Rule 3 (initial performance of 1.5%, CI = [0.0026,0.079] and 78%, CI = [0.67,0.86] after 50 trials for 
Monkey S; 41%, CI = [0.25,0.59] and 67%, CI = [0.48,0.81] for Monkey C, respectively).

While the monkeys performed all three rules well, there were two interesting behavioral phenomena. 
First, the monkeys were slower to switch to Rules 1 and 3 than to switch to Rule 2. On the first 20 trials, 
the difference in average percent performance of Monkey S was Δ = 35 between Rules 2 and 1, and Δ 
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Figure 1. Task design and performance (including all trials). (a) Schematic of a trial. (b) Stimuli were drawn from a two-dimensional feature space, 
morphing both color (left) and shape (right). Stimulus categories are indicated by vertical lines and labels. (c) The stimulus–response mapping for the 
three rules, and an example of a block timeline. (d) Venn diagram showing the overlap between rules. Average performance (sample mean and standard 
error of the mean) for each rule, for (e) Monkey S and (f) Monkey C. Proportion of responses on the incorrect axis for the first 50 trials of each block for 
(g) Monkey S and (h) Monkey C. Insets: Trial number of the first response on the correct axis after a block switch, respectively, for Monkeys S and C.

https://doi.org/10.7554/eLife.82531
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= 22 between Rules 2 and 3 (significant Fisher’s test comparing Rule 2 to Rules 1 and 3, with p < 10−4 
in both conditions; respectively, Δ = 35, Δ = 24 and p < 10−4 for Monkey C).

Second, both monkeys learned the axis of response nearly instantaneously. After a switch cue, 
Monkey S almost always responded on Axis 2 (the response axis consistent with Rule 2; 97%, CI = 
[0.90,0.99] in Rule 1; 97%, CI = [0.92,0.98] in Rule 2; 97%, CI = [0.90,0.99] in Rule 3; see Figure 1g). 
Then, if this was incorrect, it switched to the correct axis within five trials on 97%, CI = [0.90,0.99] of 
blocks of Rule 1, and 94% CI = [0.86,0.98] of blocks of Rule 3. Monkey C instead tended to alternate 
the response axis on the first trial following a switch cue (it made a response on the correct axis on the 
first trial with a probability of 71%, CI = [0.51,0.85] in Rule 1; 85%, CI = [0.72,0.92] in Rule 2; and 84%, 
CI = [0.55,0.87] in Rule 3), implying an understanding of the pattern of axis changes with block switches 
(Figure 1h). Both monkeys maintained the correct axis with very few off-axis responses throughout the 
block (at trial 20, Monkey S: 1.4%, CI = [0.0025,0.077] in Rule 1; 2.1%, CI = [0.0072,0.060] in Rule 2; 
0%, CI = [0,0.053] in Rule 3; Monkey C: 0%, CI = [0,0.14] in Rule 1; 4.3%, CI = [0.012,0.15] in Rule 2; 
3.7%, CI = [0.0066,0.18] in Rule 3). These results suggest the animals were able to quickly identify the 
axis of response but took longer (particularly for Rules 1 and 3) to learn the correct mapping between 
stimulus features and responses within an axis.

Learning rules de novo cannot capture the behavior
To perform the task, the animals had to learn which rule was in effect during each block of trials. This 
required determining both the response axis and the relevant feature. As noted above, the monkeys’ 
behavior suggests learning was a mixture of fast switching, reminiscent of inference models, and 
slow refinement, as in error-driven incremental learning. Given this, we began by testing whether the 
inference or incremental classes of models could capture the animals’ behavior. As in previous work 
(Dayan and Daw, 2008; Pouget et al., 2016; Pouget et al., 2013; Gold and Shadlen, 2001; Bichot 
and Schall, 1999), all our models shared common noisy perceptual input and action selection stages 
(Figure 2—figure supplement 1, and Methods). As we detail next, the intervening mechanism for 
mapping stimulus to action value differed between models.

First, we fit an error-driven learning model, which gradually relearns the stimulus–response 
mappings de novo at the start of each block, to the monkeys’ behavior. This class of models works 
by learning the reward expected for different stimulus–response combinations, using incremental 
running averages to smooth out trial-to-trial stochasticity in reward realization – here, due to percep-
tual noise in the stimulus classification. In particular, we fit a variant of Q learning (model QL, see 

Figure 2. Incremental learner (QL) model fitted on Monkey S behavior (see Figure 2—figure supplement 2 for Monkey C). (a) Trial number of the first 
response of the model on the correct axis after a block switch (compare to Figure 1g, inset). (b) Proportion of responses of the model on the incorrect 
axis for the first 50 trials of each block (compare to Figure 1g). (c) Model performance for each rule (averaged over blocks, compare to Figure 1e).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The three models.

Figure supplement 2. Incremental learner (QL) model fitted on Monkey C behavior (see Figure 2 for Monkey S).

https://doi.org/10.7554/eLife.82531
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Figure 2—figure supplement 1 and Methods) that was elaborated to improve its performance in this 
task: for each action, model QL parameterized the mapping from stimulus to reward linearly using 
two basis functions over the feature space (one binary indicator each for color and shape), and used 
error-driven learning to estimate the appropriate weights on these for each block. This scheme effec-
tively builds-in the two relevant feature-classification rules (shape and color), making the generous 
assumption that the animals had already learned the categories. In addition, the model resets the 
weights to fixed initial values at each block switch, allowing the model to start afresh and avoiding the 
need to unlearn. Yet, even with these built-in advantages, the model was unable to match the animals’ 
ability to rapidly switch axes, but instead relearned the feature–response associations after each block 
switch (simulations under best-fitting parameters shown in Figure 2 for Monkey S, Figure 2—figure 
supplement 2 for Monkey C). Several tests verified the model learned more slowly than the animals 
(Figure 2a, b). For instance, the model fitted on Monkey S’s behavior responded on Axis 2 on the first 
trial of the block only 50% of the time in all three rules (Figure 2a, Fisher’s test of model simulations 
against data: p < 10−4 for the three rules). The model thus failed to capture the initial bias of Monkey 
S for Rule 2 discussed above. Importantly, the model switched to the correct axis within five trials on 
only 58% of blocks of Rule 1, and 57% of blocks of Rule 3 (Figure 2b, Fisher’s test against monkey 
behavior: p < 10−4). Finally, the model performed 24% of off-axis responses after 20 trials in Rule 1, 
21% in Rule 2, and 21% in Rule 3, all much higher than what was observed in the monkey’s behavior 
(Fisher’s test p < 10−4).

In addition, because of the need to relearn feature–response associations after each block switch, 
the incremental QL model was unable to capture the dichotomy between the monkeys’ slower 
learning in Rules 1 and 3 (which share Axis 1) and the faster learning of Rule 2 (using Axis 2). As noted 
above, the monkeys performed Rule 2 at near asymptotic performance from the beginning of the 
block but were slower to learn which feature to attend to on blocks of Rules 1 and 3 (Figure 1g, h). 
In contrast, because the model learned each rule in the same way, the incremental learner performed 
similarly on all three rules (Figure 2c for Monkey S, Figure 2—figure supplement 2c for Monkey C). 
In particular, it performed correctly on the first trial in only 25% of Rule 2 blocks (Fisher’s test against 
behavior: p < 10−4), and reached only 62% after 20 trials (p < 10−4). As a result, on the first 20 trials, 
the difference in average percent performances was only Δ = 4.0 between Rules 2 and 1, and was only 
Δ = 0.76 between Rules 2 and 3 (similar results were seen when fitting the model to Monkey C, see 
Figure 2—figure supplement 2). The same pattern of results was seen when the initial weights were 
free parameters (see Methods).

Altogether, these results argue simple incremental relearning of the axes and features de novo 
cannot reproduce the animals’ ability to instantaneously relearn the correct axis after a block switch or 
the observed differences in learning speed between the rules.

Pure inference of previously learned rules cannot capture the behavior
The results above suggest that incremental learning is too slow to explain the quick switch between 
response axes displayed by the monkeys. So, we tested whether a model that leverages Bayesian 
inference can capture the animals’ behavior. A fully informed Bayesian ideal observer model (IO, see 
Figure 2—figure supplement 1 and Methods) uses statistical inference to continually estimate which 
of the three rules is in effect, accumulating evidence (‘beliefs’) for each rule based on the history of 
previous stimuli, actions, and rewards. The IO model chooses the optimal action for any given stim-
ulus, by averaging the associated actions’ values under each rule, weighted by the estimated likeli-
hood that each rule is in effect. Like incremental learning, the IO model learns and changes behavior 
depending on experience. However, unlike incremental models, this model leverages perfect knowl-
edge of the rules to learn rapidly, limited only by stochasticity in the evidence. Here, noisy stimulus 
perception is the source of such stochasticity, limiting both the speed of learning and asymptotic 
performance. Indeed, the IO model predicts the speed of initial (re)learning after a block switch 
should be coupled to the asymptotic level of performance. Furthermore, given that perceptual noise 
is shared across rules, the IO model also predicts the speed of learning will be the same for rules that 
use the same features.

As expected, when fit to the animal’s behavior, the IO model reproduced the animals’ ability to 
rapidly infer the correct axis (Figure 3—figure supplement 1a, b, d, e). For example, when fitted 
to Monkey S behavior, the model initially responded on Axis 2 almost always immediately after each 

https://doi.org/10.7554/eLife.82531
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block switch cue (96% in all rules, Fisher’s test against monkey’s behavior p > 0.4). Then, if this was 
incorrect, the model typically switched to the correct axis within five trials on 89% of blocks of Rule 1, 
and 95% of blocks of Rule 3 (Fisher’s test against monkey behavior: p > 0.2 in both rules). The model 
maintained the correct axis with very few off-axis responses throughout the block (after trial 20, 1.3% 
in Rule 1; 1.1% in Rule 2; 1.2% in Rule 3; Fisher’s test against monkey’s behavior: p > 0.6 in all rules).

However, the IO model could not capture the observed differences in learning speed for the 
different rules (Figure 3—figure supplement 1c, f). To understand why, we looked at performance as 
a function of stimulus difficulty. As expected, the monkey’s performance depended on how difficult 
it was to categorize the stimulus (i.e., the morph level; psychometric curves shown in Figure 3a–c for 
Monkey S, Figure 3—figure supplement 2a–c for Monkey C). For example, in color blocks (Rules 
2 and 3), the monkeys performed better for a ‘prototype’ red stimulus than for a ‘morphed’ orange 
stimulus (Figure 3a–c). Indeed, on ‘early trials’ (first 50 trials) of Rule 2, Monkey S correctly responded 
to 96% (CI = [0.95,0.97]) of prototype stimuli, and only to 91%, CI = [0.90,0.92] of ‘morphed’ stimuli (p 
< 10−4; similar results for Monkey C in Figure 3—figure supplement 2). Rule 3 had a similar ordering: 
Monkey S correctly responded to 80% (CI = [0.77,0.82]) of prototype stimuli, and only 62%, CI = 
[0.60,0.64] of ‘morphed’ stimuli (p < 10−4). This trend continued as the animal learned Rule 3 (trials 
50–200; 89%, CI = [0.88,0.90] and 74%, CI = [0.73,0.75], respectively, for prototype and morphed 
stimuli, p < 10−4).

Importantly, there was a discrepancy between the performance on ‘morphed’ stimuli in Rule 2 
versus Rule 3, with a difference in average percent performance of Δ = 28 for the first 50 trials in both 
rules (p < 10−4). This was still true, even if we considered Rule 2 against the last trials of Rule 3 (Δ = 
17, p < 10−4). The same discrepancy was observed between the performance on ‘prototype’ stimuli in 
Rule 2 versus Rule 3, with a difference in average percent performance on Δ = 16 for the first 50 trials 
in both rules (p < 10−4), and Δ = 6.8 if comparing to the last trials of Rule 3 (p < 10−4).

The IO model captured the performance ordering on morphed and prototype stimuli for each rule 
(Figure 3d–i, similar results for the model reproducing Monkey C, Figure 3—figure supplement 2). 
However, the model performed similarly for morphed stimuli on Rules 2 and 3. This is because both 
rules involve categorizing color and so they shared the same perceptual noise, leading to the same 
likelihood of errors. Furthermore, because perceptual noise limits learning and asymptotic perfor-
mance in the IO model, it predicts the speed of learning should be shared across Rules 2 and 3, and 
initial learning in both rules on the first 50 trials should be coupled to the asymptotic performance. 
Given this, the model had to trade-off between behavioral performance in Rules 2 and 3. Using 
best-fit parameters, the model reproduced the animals’ lower asymptotic performance in Rule 3 by 
increasing color noise, and so it failed to capture the high performance on Rule 2 early on (Figure 3e, 
f, Figure 3—figure supplement 2e, f). The resulting difference in average percent performance for 
‘morphed’ stimuli was only Δ = 4.0 for the first 50 trials and Δ = 0.0044 if we considered the last trials 
of Rule 3 (respectively, Δ = 4.2 and Δ = 0.032 for ‘prototype’). Conversely, if we forced the model to 
improve color perception (by reducing perceptual noise, Figure 3h, i, and Figure 3—figure supple-
ment 2h, i), then it was able to account for the monkeys’ performance on Rule 2, but failed to match 
the animals’ behavior on Rule 3. The resulting difference in average percent performance was again 
only Δ = 3.4 for the first 50 trials, and Δ = −0.17 if we considered the last trials of Rule 3 (respectively, 
Δ = 3.2 and Δ = −0.16 for ‘prototype’).

One might be concerned that including a correct generative prior on the transition between axes 
given by the specific task structure would solve this issue, as a Rule 2 block is always following a Rule 
1 or 3 block, hence possibly creating an inherent discrepancy in learning Rule 2 versus Rules 1 and 
3. However, the limiting factor was not the speed for axis discovery (which was nearly instantaneous, 
cf above), but the shared perceptual color noise between Rules 2 and 3, coupling initial learning to 
asymptotic performance. Such a modified IO could not account for the behavior (Figure 3—figure 
supplement 3).

The key features of monkeys’ behavior are reproduced by a hybrid 
model composing inference over axes and incremental relearning over 
features
To summarize, the main characteristics of the animals’ behavior were (1) rapid learning of the axis of 
response after a block switch, (2) immediately high behavioral performance of Rule 2, the only rule 

https://doi.org/10.7554/eLife.82531
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Figure 3. The ideal observer (IO), slow or fast, but not both. Fitted on Monkey S behavior (see Figure 3—figure supplement 1 for Monkey C). Note 
that data were collapsed across 50%/150%; 30%/70%/130%/170%; and 0%/100% (non-collapsed psychometric functions can be seen in Figure 5). (a–c) 
Performance for Rules 1, 2, and 3, as a function of the morphed version of the relevant feature. (d–f) Performance for Rules 1, 2, and 3, for IO model with 
high color noise. This parameter regime corresponds to the case where the model is fitted to the monkey’s behavior (see Methods). (g–i) Performance 
for Rules 1, 2, and 3, for IO model with low color noise. Here, we fixed κC = 6.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Ideal observer (IO) model fitted on Monkeys S and C.

Figure supplement 2. The ideal observer (IO), slow or fast, but not both.

Figure supplement 3. The ideal observer model including a correct generative prior on the transition between axes given by the specific task structure.

https://doi.org/10.7554/eLife.82531
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on Axis 2, and (3) slower relearning of Rules 1 and 3, which mapped different features onto Axis 1. 
Altogether, these results suggest that the animals learned axes and features separately, with fast 
learning of the axes and slower learning of the features. One way to conceive this is as a Bayesian 
inference model (similar to IO), but relaxing the assumption that the animal had perfect knowledge 
of the underlying rules (i.e., all of the stimulus–action–reward contingencies). We propose that the 
animals maintained two latent states (e.g., one corresponding to each axis of response) instead of 
the three rules we designed. Assuming each state had its own stimulus–action–reward mappings, 
the mappings would be stable for Rule 2 (Axis 2) but continually re-estimated for Rules 1 and 3 (Axis 
1). To test this hypothesis, we implemented a hybrid model that inferred the axis of response while 
incrementally learning which features to attend for that response axis (Hybrid Q Learner, ‘HQL’ in the 
Methods, Figure 2—figure supplement 1). In the model, the current axis of response was inferred 
through Bayesian evidence accumulation (as in the IO model), while feature–response weights were 
incrementally learned for each axis of response.

Intuitively, this model could explain all three core behavioral observations. First, inference allows 
for rapid switching between axes. Second, because only Rule 2 mapped to Axis 2, the weights for Axis 
2 did not change and so the model was able to perform well on Rule 2 immediately. Third, because 
Rules 1 and 3 shared an axis of response, and, thus, a single set of feature–response association 

Figure 4. The hybrid learner (HQL) accounts both for fast switching to the correct axis, and slow relearning of Rules 1 and 3. Model fit on Monkey S, see 
Figure 4—figure supplement 1 for Monkey C. (a) Trial number for the first response on the correct axis after a block switch, for the model (compare 
to Figure 1e inset). (b) Proportion of responses on the incorrect axis for the first 50 trials of each block, for the model (compare to Figure 1e). (c) 
Performance of the model for the three rules (compare to Figure 1g). (d–f) Performance for Rules 1, 2, and 3, as a function of the morphed version of 
the relevant feature.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The hybrid learner (HQL) accounts both for fast switching to the correct axis, and slow relearning of Rules 1 and 3.

Figure supplement 2. The hybrid learner, beliefs, and weights.

https://doi.org/10.7554/eLife.82531
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weights, this necessitated relearning associations for each block, reflected in the animal’s slower 
learning for these rules.

Consistent with this intuition, the HQL model provided an accurate account of the animals’ behavior. 
First, unlike the QL model, the HQL model reproduced the fast switch to the correct axis (Figure 4a, 
b, Figure 4—figure supplement 1a, bCited, and Figure 4—figure supplement 2a–c and g–i). Fitted 
to Monkey S behavior, the model initially responded on Axis 2 immediately after each block switch cue 
(91% in Rule 1, 89% in Rules 2 and 3, Fisher’s test against monkey’s behavior p > 0.05). Then, if this was 
incorrect, the model switched to the correct axis within five trials on 91% of blocks of Rules 1 and 3 
(Fisher’s test against behavior: p > 0.2 in both rules). Similar to the animals, the model maintained the 
correct axis with very few off-axis responses throughout the block (on trial 20, 1.4% in Rule 1; 1.3%, in 
Rule 2; 1.5% in Rule 3, Fisher’s test against monkey’s behavior: p > 0.7 in all rules).

Second, contrary to the IO model, the HQL model captured the animals’ fast performance on Rule 
2 and slower performance on Rules 1 and 3 (Figure 4c and Figure 4—figure supplement 1c). As 
detailed above, animals were significantly better on Rule 2 than Rules 1 and 3 on the first 20 trials. 
The model captured this difference: fitted on Monkey S’s behavior, the difference in average percent 
performance on the first 20 trials was Δ = 31 between Rules 2 and 1, and Δ = 29 between Rules 2 and 
3 (a Fisher’s test against monkey’s behavior gave p > 0.05 for the first trial, p > 0.1 for trial 20).

Third, the HQL model captured the trade-off between the animals’ initial learning rate and asymp-
totic behavioral performance in Rules 2 and 3 (Figure 4d–f and Figure 4—figure supplement 1d–f). 
Similar to the animals, the resulting difference in average percent performance for ‘morphed’ stimuli 
was Δ = 26 for the first 50 trials (Δ = 16 if we considered the last trials of Rule 3; Δ = 19 and Δ = 9.9 
for early and late ‘prototype’ stimuli, respectively). The model was able to match the animals’ perfor-
mance because the weights for Axis 2 did not change from one Rule 2 block to another (Figure 4—
figure supplement 2e, k), and the estimated perceptual noise of color was low in order to account 
for the high performance of both morphed and prototype stimuli (Figure 4e and Figure 4—figure 
supplement 1e). To account for the slow re-learning observed for Rules 1 and 3, the best-fitting 
learning rate for feature–response associations was relatively low (Figure 4d, f and Figure 4—figure 
supplement 1d, f, Figure 4—figure supplement 2d, f, j, l, Table 1).

Table 1. Models parameters.

Monkey S

Noise perception Learning rate
Initial belief 
R1

Initial belief 
R3

Initial belief 
Axis 1 Weight decay Initial weights

κ (color) κ (shape) α b1 b3 bax η w0

QL model Mean = 2.2
std = 0.44

Mean = 1.3
std = 0.27

Mean = 0.23
std = 0.039

IO model Mean = 2.4
std = 0.46

Mean = 1.3
std = 0.31

Mean = 0.091
std = 0.089

Mean = 0.14
std = 0.10

HQL model Mean = 11
std = 1.2

Mean = 5.1
std = 2.2

Mean = 0.23
std = 0.10

Mean = 0.29
std = 0.076

Mean = 0.046
std = 0.022

Mean = 
[−0.61,0.79,0.77,−0.64,
−0.83,0.035,0.74,0.040]

std = [0.23,0.089,0.13,0.17,
0.053,0.59,0.19,0.57]

Monkey C

Noise perception Learning rate
Initial belief 
R1

Initial belief 
R3

Initial belief 
Axis 1 Weight decay Initial weights

κ (color) κ (shape) α b1 b3 bax η w0

QL model Mean = 1.2
std = 0.13

Mean = 0.71
std = 0.090

Mean = 0.18
std = 0.010

IO model Mean = 1.3
std = 0.21

Mean = 0.71
std = 0.18

Mean = 0.35
std = 0.16

Mean = 0.32
std = 0.16

HQL model Mean = 12
std = 2.4

Mean = 7.0
std = 3.4

Mean = 0.12
std = 0.10 Fixed to 0.5 Mean = 0.067

std = 0.060

Mean = 
[−0.45,0.56,0.60,−0.56,
−0.83,−0.12,0.70,−0.19]

std = [0.16,0.12,0.093,0.16,
0.051,0.45,0.25,0.41]

https://doi.org/10.7554/eLife.82531
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The effect of stimulus congruency (and incongruency) provides further 
evidence for the hybrid model
To further understand how the HQL model outperforms the QL and IO models, we examined the 
animal’s behavioral performance as a function of the relevant and irrelevant stimulus features. The 
orthogonal nature of the features and rules meant that stimuli could fall into two general groups: 
congruent stimuli had features that required the same response for both Rules 1 and 3 (e.g., a 
green bunny, Figure  1) while incongruent stimuli had features that required opposite responses 
between the two rules (e.g., a red bunny). Consistent with previous work (Noppeney et al., 2010; 
Venkatraman et  al., 2009; Bugg et  al., 2008; Carter et  al., 1995; Musslick and Cohen, 2021), 
the animals performed better on congruent stimuli than incongruent stimuli (Figure 5a for Monkey 
S, Figure 5—figure supplement 1a for Monkey C). This effect was strongest during learning, but 
persisted throughout the block (Figure 5—figure supplement 2a, e): during early trials of Rules 1 
and 3, the monkeys’ performance was significantly higher for congruent stimuli than for incongruent 
stimuli (gray vs. red squares in Figure 5b; 94%, CI = [0.93,0.95] vs. 57%, CI = [0.55,0.58], respectively; 
Δ = 37, Fisher’s test p < 10−4; see Figure 5—figure supplement 1b for Monkey C). Similarly, the 
animals were slower to respond to incongruent stimuli (Figure 5—figure supplement 3, Δ = 25 ms 
in reaction time for incongruent and congruent stimuli, t-test, p < 10−4). In contrast, the congruency 
of stimuli had no effect during Rule 2 – behavior depended only on the stimulus color, suggesting the 
monkeys ignored the shape of the stimulus during Rule 2, even when the morph level of the color was 
more difficult (gray vs. red squares in Figure 5c; performance was 92%, CI = [0.90,0.93], and 93%, CI = 
[0.92,0.93] for congruent and incongruent stimuli, respectively; with Δ = −0.73; Fisher’s test, p = 0.40; 
see Figure 5—figure supplement 1c for Monkey C).

This incongruency effect provided further evidence for the HQL model. First, pure incremental 
learning by the QL model did not capture this result, but instead predicted an opposite effect. This 
is because incongruent trials were four times more likely than congruent trials (see Methods). As 
the QL model encodes the statistics of the task through error-driven updating of action values, the 
proportion of congruent versus incongruent trials led to an anti-incongruency effect – the QL model 
fit to Monkey S predicted worse performance on congruent than incongruent trials (Figure 5d, e; 45% 
and 62%, respectively; Δ = −16; Fisher’s test p < 10−4; see Figure 5—figure supplement 1d, e for 
Monkey C). Furthermore, for the same reason, the QL model produced a difference in performance 
during Rule 2 (Figure 5f; 54% for congruent vs. 64% for incongruent; Δ = −10; Fisher’s test p < 10−4; 
see Figure 5—figure supplement 1f for Monkey C, see also Figure 5—figure supplement 2b, f for 
this effect throughout the block).

Second, the IO model also did not capture the incongruency effect. In principle, incongruency 
effects can be seen in this type of model when perceptual noise is large, because incongruent stimuli 
are more ambiguous when the correct rule is not yet known. However, given the statistics of the task, 
learning in the IO model quickly reached asymptotic performance, for both congruent and incon-
gruent trials (Figure 5g, h; 75% and 72%, respectively; Δ = 3.8 only; Figure 5—figure supplement 
1g, h for Monkey C), hence not reproducing the incongruency effect.

In contrast to the QL and IO models, the hybrid HQL model captured the incongruency effect. In 
the HQL model, the weights for mapping congruent stimuli to responses were the same for Rules 
1 and 3. In contrast, the weights for incongruent stimuli must change for Rules 1 and 3. There-
fore, the animals’ performance was immediately high on congruent stimuli, while the associations 
for incongruent stimuli had to be relearned on each block (Figure 5—figure supplement 4). The 
model fitted to Monkey S behavior reproduced the greater performance on congruent than incon-
gruent stimuli (Figure 5g, h; 92% and 61%, respectively, Δ = 31; see Figure 5—figure supplement 
1g, h for Monkey C). As with the monkey’s behavior, this effect persisted throughout the block 
(Figure 5—figure supplement 2d, h). Finally, the HQL model captured the absence of incongru-
ency effect in Rule 2 (Figure 5i, green vs. red squares; 92% and 93%, respectively; Δ = −1.0; see 
Figure 5—figure supplement 1i for Monkey C), as there was no competing rule, there was no need 
to update the Axes 2 weights between blocks. As a result, only a hybrid model performing both rule 
switching of axis and rule learning of features could account for the incongruency effect observed 
in the behavior.

https://doi.org/10.7554/eLife.82531
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Figure 5. Comparison of incongruency effects in Monkey S and behavioral models (QL, IO, and HQL models). (a) 
Performance as a function of trial number for Rules 1 and 3 (combined), for congruent and incongruent trials. (b) 
Performance for Rules 1 and 3 (combined, first 50 trials), as a function of the morph level for both color (relevant) 
and shape (irrelevant) features. Gray boxes highlight congruent stimuli, red boxes highlight incongruent stimuli. 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.82531
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Discussion
In the present study, we investigated rule learning in two monkeys trained to switch between three 
category-response rules. Critically, the animals were not instructed as to which rule was in effect (only 
that the rule had changed). We compared two classes of models that were able to perform the task: 
incremental learning and inferential rule switching. Our results suggested that neither model fit the 
animals’ performance well. Incremental learning was too slow to capture the monkeys’ rapid learning 
of the response axis after a block switch. It was also unable to explain the high behavioral performance 
on Rule 2, which was the only rule requiring responses along the second axis. On the other hand, 
inferential learning was unable to reproduce the difference in performance for the two rules that 
required attending to the same feature of the stimulus (color), but responding on different axes (Rules 
2 and 3). Finally, when considered separately, neither of these two classes of models could explain the 
monkeys’ difficulty in responding to stimuli that had incongruent responses on the same axes (Rules 1 
and 3). Instead, we found that a hybrid model that inferred axes quickly and relearned features slowly 
was able to capture the monkeys’ behavior. This suggests the animals were learning the current axis 
of response using fast inference while continuously re-estimating the stimulus–response mappings 
within an axis.

We assessed the generative performance of the hybrid model and falsified (Palminteri et al., 2017) 
incremental learning and inferential rule switching considered separately. The superior explanatory 
power of the hybrid model suggests that the animals performed both rule switching and rule learning 
– even in a well-trained regime in which they could, in principle, have discovered perfect rule knowl-
edge. The model suggests that the monkeys discovered only two latent states (corresponding to the 
two axes of response) instead of the three rules we designed, forcing them to perpetually relearn 
Rules 1 and 3. These two latent states effectively encode Rule 2 (alone on its response axis) on the one 
hand, and a combination of Rules 1 and 3 (sharing a response axis) on the other hand. The combina-
tion of rules in the second latent state caused the monkeys to continuously update their knowledge of 
the rules’ contingencies (mapping different stimulus features to actions). At first glance, one might be 
concerned that our major empirical finding about the discrepancy between fast switching and the slow 
updating of rules was inherent to the task structure. Indeed, a block switch predictably corresponds to 
a switch of axis, but does not always switch the relevant stimulus feature. Moreover, the features were 
themselves morphed, creating ambiguity when trying to categorize them and use past rewards for 
feature discovery. We can thus expect inherently the slower learning of the relevant feature. However, 
our experiments with IO models demonstrate that an inference process reflecting the different noise 
properties of axes and features cannot by itself explain the two timescales of learning. The key insight 
is that, if slow learning about features is simply driven by their inherent noisiness, then the asymptotic 
performance level with these features should reflect the same degree of ambiguity. However, these 
do not match. This indicates that the observed fast and slow learning was not a mere representation 
of the generative model of the task. One caveat about this interpretation is that it assumes that other 
factors governing asymptotic performance (e.g., motivation or attention, which we do not explicitly 
control) are comparable between Rule 2 versus Rules 1 and 3 blocks.

The particular noise properties of the task may, however, shed light on a related question raised by 
our account: why the animals failed to discover the correct three-rule structure, which would clearly 

(c) Performance for Rule 2, as a function of the morph level for both color (relevant) and shape (irrelevant) features. 
Note the lack of an incongruency effect. (d–f) Same as a–c but for the QL model. (g–i) Same as a–c for the IO 
model. (j–l) Same as a–c but for the HQL model.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Comparison of incongruency effects in Monkey C and behavioral models (QL, IO, and HQL 
models).

Figure supplement 2. Incongruency effect.

Figure supplement 3. Reaction times.

Figure supplement 4. Choice probabilities for the three models fitted on Monkey S. 

Figure supplement 5. Behavior across days.

Figure 5 continued

https://doi.org/10.7554/eLife.82531
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support better performance in Rule 1 and 3 blocks. We believe their failure to do so was not merely 
a function of insufficient training but would have remained stable even with more practice, as we 
trained the monkeys until their behavior was stable (and we verified the lack of significant trends in the 
behavior across days, Figure 5—figure supplement 5). Their failure to do so could shed light on the 
brain’s mechanisms for representing task properties and for discovering, splitting, or differentiating 
different latent states on the basis of their differing stimulus–action–response contingencies. One 
possible explanation is that the overlap between Rules 1 and 3 (sharing an axis of response) makes 
them harder to differentiate than Rule 2. In particular, the axis is the most discriminatory feature (being 
discrete and also under the monkey’s own explicit control), whereas the stimulus–reward mappings 
are noisier and continuous. Alternatively, a two-latent state regime may be rational given the cognitive 
demands of this task, including the cost of control or constraints on working memory when routinely 
switching between latent states (stability–flexibility trade-off) (Musslick and Cohen, 2021; Nassar 
and Troiani, 2021; Musslick et al., 2018).

Thus, all this suggests that the particulars of the behavior may well depend on the details of the 
task or training protocol. For instance, the monkeys may have encoded each rule as a separate latent 
state (and shown only fast learning asymptotically) with a different task (e.g., including the missing 
fourth rule so as to counterbalance axes with stimuli) or training protocol (e.g., longer training, 
random presentation of the three rules with equal probability of occurrence instead of Rule 2 being 
interleaved and occurring twice more often, a higher ratio of incongruent versus congruent trials, 
or less morphed and more prototyped stimuli). Another interesting possibility, which requires future 
experiments to rule out, is that the disadvantage for Rules 1 and 3 arises not because their sharing 
response axis necessitates continual relearning, but instead because this sharing per se causes some 
sort of interference. This alternative view suggests that the relative disadvantage would persist even in 
a modified design in which the rule was explicitly signaled at each trial, making inference unnecessary.

Understanding how the brain discovers and manipulates latent states would give insight into how 
the brain avoids catastrophic interference. In artificial neural networks, sequentially learning tasks 
causes catastrophic interference, such that the new task interferes (overwrites) the representation 
of the previously learned task (McCloskey and Cohen, 1989). In our task, animals partially avoided 
catastrophic interference by creating two latent states where learning was independent. For example, 
learning stimulus–response mappings for Rules 1 and 3 did not interfere with the representation 
of Rule 2. In contrast, Rules 1 and 3 did interfere – behavior was re-learned on each block. Several 
solutions to this problem have been proposed in machine learning literature such as orthogonal 
subspaces (Duncker et al., 2020) and generative replay (van de Ven and Tolias, 2019). Similarly, 
recent advances in deep reinforcement learning have started to elucidate the importance of incorpo-
rating metalearning in order to speed up learning and to avoid catastrophic interference (Botvinick 
et al., 2019; Hadsell et al., 2020). Our results suggest the brain might solve this problem by creating 
separate latent states where learning is possible within each latent state. How these latent states are 
instantiated in the brain is an open question, and discovering those computations promises exciting 
new insights for algorithms of learning.

Finally, our characterization of the computational contributions of rule switching and rule 
learning, and the fortuitous ability to observe both interacting in a single task, leads to a number 
of testable predictions about their neural interactions. First, our results make the strong predic-
tion that there should be two latent states represented in the brain – the representation for the 
two rules competing on one axis (Rules 1 and 3) should be more similar to one another than to 
the neural representation of the rule alone on the other axis (Rule 2). This would not be the case 
if the neural activity was instead representing three latent causes. Furthermore, our hybrid model 
suggests there may be a functional dissociation for rule switching and rule learning, such that they 
are represented in distinct networks. One hypothesis is that this dissociation is between cortical 
and subcortical regions. Prefrontal cortex may carry information about the animal’s trial beliefs (i.e., 
over the two latent states) in a similar manner as perceptual decision making when accumulating 
evidence from noisy stimuli (Gold and Shadlen, 2007; Shadlen and Kiani, 2013; Rao, 2010; Beck 
et al., 2008). Basal ganglia may, in turn, be engaged in the learning of rule-specific associations 
(Daw and O’Doherty, 2014; Daw and Shohamy, 2008; Daw and Tobler, 2014; Dolan and Dayan, 
2013; Doya, 2007; O’Doherty et al., 2004; O’Reilly and Frank, 2006; Rescorla, 1988; Schultz 
et al., 1997; Yin and Knowlton, 2006). Alternatively, despite their functional dissociation, future 

https://doi.org/10.7554/eLife.82531
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work may find both rule switching and rule learning are represented in the same brain regions (e.g., 
prefrontal cortex).

Materials and methods
Experimental design and model notation
Two adult (8- to 11-year-old) male rhesus macaques (Macaca mulatta) participated in a category-
response task. Monkeys S and C weighed 12.7 and 10.7 kg, respectively. All experimental procedures 
were approved by Princeton University Institutional Animal Care and Use Committee (protocol #3055) 
and were in accordance with the policies and procedures of the National Institutes of Health.

Stimuli were rendering of three dimensional models that were built using POV-Ray and MATLAB 
(Mathworks). They were presented on a Dell U2413 LCD monitor positioned at a viewing distance of 
58 cm. Each stimulus was generated with a morph-level drawn from a circular continuum between two 
prototype colors C (red and green) and two prototype shapes S (‘bunny’ and ‘tee’; Figure 1b).

	﻿‍ X2
1 + X2

2 + X2
3 = P2

‍�

where X is the parameter value in a feature dimension for example L, a, b values in CIELAB color 
space. Radius (P) was chosen such that there was enough visual discriminability between morph levels. 
Morph levels in shape dimension were built by circular interpolation of the parameters defining the 
lobes of the first prototype with the parameters defining the corresponding lobes of the second 
prototype. Morph levels in the color dimension were built by selecting points along photometrically 
isoluminant circle in CIELAB color space that connected red and green prototype colors. We used 
percentage to quantify the deviation of each morph level from prototypes (0% and 100%) on the 
circular space. Morph levels between 0% and 100% correspond to −π to 0, and morph levels 100% 
and 200% correspond to 0 to π on the circular space. Morph levels for color and shape dimension 
were generated at eight levels: 0%, 30%, 50%, 70%, 100%, 130%, 150%, and 170%. 50% morph levels 
for one feature (color or shape) were only generated for prototypes for the other feature (shape or 
color, respectively). The total stimulus set consisted of 48 images. By creating a continuum of morphed 
stimuli, we could independently manipulate stimulus difficulty along each dimension.

Monkeys were trained to perform three different rules R = {R1, R2, R3} (Figure 1c, d). All of the rules 
had the same general structure: the monkeys categorized a visual stimulus according to its shape 
or color, and then responded with a saccade, ‍a ∈ Actions‍, to one of four locations Actions = {Upper-
Left,Upper-Right,Lower-Left,Lower-Right} (Figure 1a). Each rule required the monkeys to attend-to 
and categorize either the color or shape feature of the stimulus, and then respond with a saccade 
along an axis (A = {Axis 1,Axis 2}). Axis 1 corresponded to Upper-Left, Lower-Right locations and Axis 
2 corresponded to Upper-Right, Lower-Left locations. As such, the correct response depended on the 
rule in effect and stimulus presented during the trial. Rule 1 (R1) required a response on Axis 1, to the 
Upper-Left or Lower-Right locations when the stimulus was categorized as ‘bunny’ or ‘tee’, respec-
tively. Rule 2 (R2) required a response on Axis 2, to the Upper-Right or Lower-Left locations when the 
stimulus was categorized as red or green, respectively. Rule 3 (R3) required a response on Axis 1, to the 
Upper-Left or Lower-Right locations when the stimulus was categorized as green or red, respectively. 
In this way, the three rules were compositional: Rules 2 and 3 shared the response to the same feature 
of the stimulus (color) but different axes. Similarly, Rules 1 and 3 shared the response to same axis 
(Axis 1), but to different features.

The monkeys initiated each trials by fixating a dot on the center of the screen. During a fixation 
period (lasting 500–700 ms), the monkeys were required to maintain their gaze within a circle with 
radius of 3.25 degrees of visual angle around the fixation dot. After the fixation period, the stimulus 
and all four response locations were displayed simultaneously. The monkeys made their response by 
breaking fixation and saccading to one of the four response locations. Each response location was 6 
degrees of visual angle from the fixation point, located at 45°, 135°, 225°, and 315° degrees relative 
to vertical. The stimulus diameter was 2.5 degrees of visual angle. The animal’s reaction time was 
taken as the moment of leaving the fixation window, relative to the onset of the stimulus. Trials with 
a reaction time lower than 150 ms were aborted, and the monkey received a brief timeout. Following 
a correct response, monkeys were provided with a small reward, while incorrect responses led to a 
brief timeout (‍r ∈

{
0, 1

}
‍). Following all trials, there was an inter-trial interval of 2–2.5 s before the next 

https://doi.org/10.7554/eLife.82531
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trial began. The time distributions were adjusted according to task demands and previous literature 
(Buschman et al., 2012).

Note that both Rules 1 and 3 required a response along the same axis (Axis 1). Half of the stimuli 
were ‘congruent’, such that they led to the same response for both rules (e.g., a green bunny is asso-
ciated with an Upper-Left response for both rules). The other half of stimuli were ‘incongruent’, such 
that they led to different responses for both rules (e.g., a red bunny is associated with a Upper-Left 
and Lower-Right response, for Rules 1 and 3, respectively). To ensure the animals were performing the 
rule, incongruent stimuli were presented on 80% of the trials.

Animals followed a single rule for a ‘block’ of trials. After the animal’s behavioral performance on 
that rule reached a threshold, the task would switch to a new block with a different rule. The switch 
between blocks was triggered when the monkeys’ performance was greater than or equal to 70% on 
the last 102 trials of Rules 1 and 3 or the last 51 trials of Rule 2. For Monkey S, each performance, 
for ‘morphed’ and ‘prototype’ stimuli independently, had to be above threshold. Monkey C’s perfor-
mance was weaker, and a block switch occurred when the average performance for all stimuli was 
above threshold. Also, to avoid that Monkey C perseverated on one rule for an extended period on 
a subset of days, the threshold was reduced to 65% over the last 75 trials for Rules 1 and 3, after 200 
or 300 trials. Switches between blocks of trials were cued by a flashing screen, a few drops of juice, 
and a long time out (50 s). Importantly, the rule switch cue did not indicate the identity of the rule in 
effect or the upcoming rule. Therefore, the animal still had to infer the current rule based on its history.

Given the limited number of trials performed each day and to simplify the task structure for the 
monkeys, the axis of response always changed following a block switch. During Axis 1 blocks, whether 
Rule 1 or 3 was in effect was pseudo-randomly selected. These blocks were interleaved by Axis 2 
blocks, which were always Rule 2. Pseudo-random selection of Rules 1 and 3 within Axis 1 blocks was 
done to ensure the animal performed at least one block of each rule during each session (accom-
plished by never allowing for three consecutive blocks of the same rule).

As expected, given their behavioral performance, the average block length varied across monkeys: 
50–300 trials for Monkey S, and 50–435 trials for Monkey C. Rule 1 and 3 blocks were on average 
199 trials for Monkey S and 222 trials for Monkey C. Rule 2 blocks were shorter because they were 
performed more frequently and were easier given the task structure. They were on average 56 trials 
for Monkey S and 52 trials for Monkey C. Overall, the behavioral data include 20 days of behavior 
from Monkey S, with an average of 14 blocks per day, and 15 days for Monkey C, with an average of 
6.5 blocks per day.

Statistical details on the study design
The sample size is two animals, determined by what is typical in the field. All animals were assigned to 
the same group, with no blinding necessary.

Additional details on training
Given the complex structure of the task, monkeys were trained for months until they fully learned 
the structure of the task and they could consistently perform at least five blocks each day. Monkeys 
learned the structure of the task in multiple steps. They were first trained to hold fixation and to asso-
ciate stimuli with reward by making saccades to target locations. To begin with shape categorization 
(Rule 1), monkeys learned to associate monochrome versions of prototype stimuli with two response 
locations on Axis 1. Stimuli were then gradually colored by using an adaptive staircase procedure. To 
begin training on color categorization (Rule 2), monkeys learned to associate red and green squares 
with two response locations on Axis 2. Prototype stimuli gradually appeared on the square and finally 
replaced the square using an adaptive staircase procedure. After this stage, monkeys were trained 
to generalize across morph levels in 5% morph-level steps using an adaptive staircase method until 
they could generalize up to 20% morph level away from the prototypes, for color and shape features. 
Rule 3 was added at this stage with a cue (purple screen background). Once the monkey was able 
to switch between Rules 1 and 3, the cue was gradually faded and finally removed. After monkeys 
learned to switch between three rules, the morph levels 30% and 40% were introduced. Monkeys S 
and C were trained for 36 and 60 months, respectively. Behavioral data reported here are part of data 
acquisition during electrophysiological recording sessions. From this point, only behavioral sessions in 
which monkeys performed at least five blocks were included for further analysis. In order to encourage 

https://doi.org/10.7554/eLife.82531
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generalization for shape and color features, during non-recording days, monkeys were trained on the 
larger number of morph levels (0%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 100%, 120%, 130%, 140%, 
150%, 160%, 170%, and 180%).

Modeling noisy perception of color and shape
All the models studied below model stimulus perception in the same way (Figure 2—figure supple-
ment 1), via a signal-detection-theory like account by which objective stimulus features are modeled 
as magnitudes corrupted by continuously distributed perceptual noise. In particular, the color and 
shape of each stimulus presented to the animals are either the prototype features ‍sTc ∈

{
red, green

}
‍ 

and ‍sTs ∈
{

bunny, tee
}
‍, or a morphed version of them. The feature continuous spaces are projected 

onto the unit circle from −π to π, such that each stimulus feature has a unique radius angle, with 
prototype angles being 0 and π. The presented stimulus is denoted ‍sM =

(
sMc, sMs

)
‍. We hypothesize 

that the monkeys perceive a noisy version of it, denoted ‍sK =
(
sKc, sKs

)
‍. We model it by drawing two 

independent samples, one from each of two Von Mises distributions, centered around each feature 
(‍sMc‍ and ‍sMs‍ , for color and shape), and parameterized by the concentrations ‍κC‍ and ‍κS‍, respectively. 
The models estimate each initial feature presented by computing its posterior distribution, given the 
perceived stimulus, that is by Von Mises distributions centered on ‍sKc‍ and ‍sKs‍ , with same concentra-
tions ‍κC‍ and ‍κS‍ .

	﻿‍ ∀i ∈
{

c, s
}
‍�

	﻿‍ Pr(sKi | sMi ) = VonMises(sMi ,κi)‍�

and so

	﻿‍ Pr(sMi | sKi ) = VonMises(sKi ,κi)‍�

with

	﻿‍ VonMises(µ,κ) ∝ exp(κ(cos(x − µ)))‍�

Modeling action selection
All the models studied below use the same action-selection stage. Given the perceived stimulus at each 
trial ‍sK =

(
sKc, sKs

)
‍, an action is chosen so as to maximize the expected reward ‍E(r | sK)‍ by computing 

‍maxa Pr(r = 1 | sK, a)‍ which corresponds to maximizing the probability of getting a reward, given the 
perceived stimulus. We use the notation ‍Q(sK, a) = E(r(a) | sK)‍ as in previous work (Dayan and Daw, 
2008; Daw et al., 2006) and refer to these values as Q values. Note that even a deterministic ‘max’ 
choice rule at this stage does not, in practice, imply noiseless choices, since Q depends on ‍sK‍ , and 
the perceptual noise in this quantity gives rise to variability in the maximizing action that is graded in 
action value, analogous to a softmax rule. For that reason, we do not include a separate choice-stage 
softmax noise parameter (which would be unidentifiable relative to perceptual noise κ), though we do 
nevertheless approximate the max choice rule with a softmax (but using a fixed temperature param-
eter), for implementational purposes (specifically, to make the choice model differentiable). To control 
the asymptotic error rate, we also include an additional probability of lapse (equivalently, adding 
‘epsilon-greedy’ choice). Altogether, two fixed parameters implement an epsilon-greedy softmax 
action-selection rule: the lapse rate ε and the inverse temperature β.
The action-selection rule is:

	﻿‍ ∀a ∈ Actions‍�

	﻿‍ Pr(a | sK) = ϵ
4 + (1 − ϵ) · softmax[Q(sK, a)]‍�

The lapse rate ε is directly estimated from the data, by computing the proportion of trials where the 
incorrect axis of response is chosen, asymptotically. It is evaluated to 0.02 for both Monkeys S and C. 
The inverse temperature of the softmax β is also fixed (β = 10), to allow the algorithm to approximate 
the max while remaining differentiable (cf. use of Stan below).

https://doi.org/10.7554/eLife.82531
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Fit with Stan
All our models shared common noisy perceptual input and action selection stages (Figure 2—figure 
supplement 1, and Methods). The models however differed in the intervening mechanism for dynami-
cally mapping stimulus to action value (see Figure 2—figure supplement 1). Because of noise percep-
tion at each trial, and because the cumulative distribution function of a Von Mises is not analytic, the 
models are fitted with Monte Carlo Markov chains (MCMC) using Stan (Carpenter, 2017). Each day of 
recording is fitted separately, and the mean and standard deviation reported in Table 1 are between 
days. We validated convergence by monitoring the potential scale reduction factor R-hat (which was 
<1.05 for all simulations) and an estimate of the effective sample size (all effective sample sizes >100) 
of the models’ fits (Gelman and Rubin, 1992).

Models’ plots correspond to an average of 1000 simulations of each day of the dataset (with the 
same order of stimuli presentation). Statistics reported in the article were done with Fisher’s exact test 
(except a t-test for reaction times, Figure 5—figure supplement 3).

Incremental learner: QL model
In this model, the agent is relearning each rule after a block as a mapping between stimuli and 
actions, by computing a stimulus-action value function as a linear combination of binary feature–
response functions ‍ϕ

(
sK, a

)
‍ with feature–response weights w. This implements incremental learning 

while allowing for some generalization across actions. The weights are updated by the delta rule (Q 
learning with linear function approximation; Sutton and Barto, 2018). The weights are reset from one 
block to the other, and the initial values for each reset are set to zero. Fitting them does not change 
the results (see Parameter values’).

Computation of the feature–response matrix
Given a morph perception ‍sK =

(
sKc, sKs

)
at trial t,‍ a feature–response matrix is defined as:

	﻿‍

ϕ(sK) =




xC 0 0 0

xS 0 0 0

0 xC 0 0

0 xS 0 0

0 0 xC 0

0 0 xS 0

0 0 0 xC

0 0 0 xS




‍�

where ‍xC ∈
{
−1, 1

}
‍ depends on whether the perceived morph for color ‍sKc‍ is classified as green 

or red, and ‍xS ∈
{
−1, 1

}
‍ whether the perceived morph for shape ‍sKs‍ is classified as tee or bunny 

(see ‘Modeling noisy perception of color and shape’). For the algorithm to remain differentiable, we 
approximate {−1,1} with a sum of sigmoids. Each column of the matrix ‍ϕ

(
sK
)
‍ is written ‍ϕ

(
sK, a

)
‍ below 

and corresponds to an action ‍a ∈ Actions‍.

Linear computation of Q values and action selection
In order to compute Q values, the feature–response functions ‍ϕ

(
sK, a

)
‍ are weighted by the feature–

response weight vector ‍w =
(
w1, .., w8

)
‍ :

	﻿‍ ∀a ∈ Actions‍�

	﻿‍ Q
(
sK, a

)
= w · ϕ

(
sK, a

)
‍�

Action selection is done through the epsilon-greedy softmax rule above.
Thus asymptotic learning of Rule 1 would require ‍w =

[
0, 1, 0,−1, 0, 0, 0, 0

]
‍. Learning Rule 2 would 

require ‍w =
[
0, 0, 0, 0,−1, 0, 1, 0

]
‍. Learning Rule 3 would require ‍w =

[
−1, 0, 1, 0, 0, 0, 0, 0

]
‍.

https://doi.org/10.7554/eLife.82531
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Weight vector update
Once an action ‍at‍ is chosen and a reward ‍rt‍ is received at trial ‍t,‍ the weights are updated by the delta 
rule (Sutton and Barto, 2018) with learning rate α.

	﻿‍ w ← w + α(rt − Q(sK, at))ϕ(sK, at)‍�

Parameter values
β and ε are fixed to, respectively, 10 and 0.02.

Parameters values are reported in Table 1. As predicted from the behavior, noise perception is 
higher for shape than for color (‍κC > κS‍). The initial weight vector ‍w0‍ is set to zero at the beginning of 
each block day. Fitting these weights instead gives the same results (as then ‍w0‍ has a mean of [−0.07
0,0.031,0.093,−0.054,−0.081,−0.022,0.062,−0.0048] for Monkey S and ‍w0‍ has a mean of [−0.099,0.0
70,0.069,−0.089,−0.053,−0.011,0.030,−0.0098] for Monkey C).

Optimal Bayesian inference over rules: IO model
In this model, we assume a perfect knowledge of combination mappings between prototype stimuli 
and actions as rules. Learning is discovering which rule is in effect by Bayesian inference. This is done 
through learning, over the trials, the probability for each rule to be in effect in a block (or belief) 
from the history of stimuli, actions, and rewards. At each trial, this belief is linearly combined to the 
likelihood of a positive reward given the stimulus to compute a value for each action. This likelihood 
encapsulates knowledge of the three experimental rules. An action is chosen as per described above 
(see ‘Modeling action selection’). The beliefs over rules are then updated through Bayes rule using 
the likelihood of the reward received, given the chosen action and the stimulus perception. Once the 
rule is discovered, potential errors thus only depend on the possible miscategorization of the stim-
ulus features (see ‘Modeling noisy perception of color and shape’), or eventually on exploration (see 
‘Modeling action selection’).

Belief over rules
The posterior probability of rule ‍R ∈ R‍ to be in effect in the block is called the belief over the rule 

‍b
(
R
)

= Pr
(
R|sK, a, r

)
‍ given the perceived stimulus ‍sK‍ , the action ‍a‍ and the reward ‍r‍. The beliefs ‍b

(
R
)
‍ 

at the beginning of each block are initialized to ‍b0 =
[
b1, 1 − b1 − b3, b3

]
‍ where ‍b1‍ and ‍b3‍ are fitted, to 

test for a systematic initial bias toward one rule.

Computation of values
The beliefs are used to compute the Q values for the trial:

	﻿‍ ∀a ∈ Actions‍�

	﻿‍ Pr(r = 1 | sK, a) =
∑

R∈R Pr(r = 1, R | sK, a) =
∑

R∈R Pr(r = 1 | sK, a, R) · b(R)‍�

with (marginalization over the possible morph stimuli presented):

	﻿‍ ∀ R ∈ R‍�

	﻿‍ Pr(r | sK, a, R) =
∑

sM
Pr(r, sM | sK, a, R) =

∑
sM

Pr(r | sM, a, R)Pr(sM | sK)‍�

Noting ‍pC = p
(
sMc = red | sKc

)
‍ and ‍pS = p

(
sMs = bunny | sKs

)
‍ gives:

	﻿‍ Q(sK, a = Upper − Left) = pS · b(R1) + (1 − pC) · b(R3)‍�
	﻿‍ Q(sK, a = Upper − Right) = (1 − pS) · b(R1) + pC · b(R3)‍�
	﻿‍ Q(sK, a = Lower − Left) = (1 − pC) · b(R2)‍�
	﻿‍ Q(sK, a = Lower − Right) = pC · b(R2)‍�

Belief update
From making an action ‍at ∈ Actions‍, the agent receives a reward ‍rt ∈

{
0, 1

}
‍, and the beliefs over rules 

are updated:

	﻿‍ ∀ R ∈ R‍�

https://doi.org/10.7554/eLife.82531
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	﻿‍ b(R) ← Pr(rt | sK, at, R) · b(R)‍�

with ‍Pr(rt | sK, at, R)‍ the likelihood of observing reward ‍rt‍ for the chosen action ‍at‍.
Note that because of the symmetry of the task, ‍Pr(¬rt | sK, at, R) = 1 − Pr(rt | sK, at, R)‍ .

Parameter values
β and ε are, respectively, fixed to 10 and 0.02.

Parameter values are reported in Table 1. As predicted from the behavior, there is an initial bias for 
Rule 2 for the model fitted on Monkey S behavior (‍b2 > b3 > b1‍). Also, noise perception is higher for 
shape than for color for both monkeys (‍κC > κS‍). In the version of the model with low perceptual color 
noise (Figure 3 and Figure 3—figure supplement 1), all the parameters remain the same, except that 
we fix ‍κC = 6‍ for all simulated days.

Hybrid incremental learner: HQL model
The hybrid incremental learner combines inference over axes with incremental learning, using a Q 
learning with function approximation to relearn the likelihood of rewards given stimuli per axis of 
response.

Belief over axes
The posterior probability of an axis ‍A ∈ A‍ to be the correct axis of response in a block is called the 
belief over axis ‍b(A) = Pr(A | sK, a, r)‍, given the perceived stimulus ‍sK‍ , the action ‍a‍ and the reward ‍r‍.

The beliefs over axes are initialized at the beginning of each block to ‍b0 =
(
bax, 1 − bax

)
.‍

Computation of the feature–response matrix
As for the incremental learner above, given a morph perception ‍sK =

(
sKc, sKs

)
‍ at trial ‍t‍, a feature–

response matrix is defined as:

	﻿‍

ϕ(sK) =




xC 0 0 0

xS 0 0 0

0 xC 0 0

0 xS 0 0

0 0 xC 0

0 0 xS 0

0 0 0 xC

0 0 0 xS




‍�

where ‍xC ∈
{
−1, 1

}
‍ depends on whether the perceived morph for color ‍sKc‍ is classified as green or 

red, and ‍xS ∈
{
−1, 1

}
‍ whether the perceived morph for shape ‍sKs‍ is classified as tee or bunny (see 

‘Modeling noisy perception of color and shape’). Each column of the matrix ‍ϕ
(
sK
)
‍ is written ‍ϕ

(
sK, a

)
‍ 

below and corresponds to an action ‍a ∈ Actions‍.

Computation of values
The beliefs are used to compute the Q values for the trial:

	﻿‍ ∀a ∈ Actions‍�

	﻿‍ Q(sK, a) = Pr(r = 1 | sK, a) =
∑

A∈A Pr(r = 1, A | sK, a) =
∑

A∈A Pr(r = 1 | sK, a, A) · b(A)‍�

Contrary to the ideal observer, here the likelihood of reward per action ‍Pr(r = 1 | sK, a, A)‍ is learned 
through function approximation.

	﻿‍ Pr(r = 1 | sK, a, A) = sigmoid(w · ϕ(sK, a))‍�

Action selection is done through the epsilon-greedy softmax rule.

https://doi.org/10.7554/eLife.82531
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Weight vector update
Once an action ‍at‍ is chosen and a reward ‍rt‍ is received at trial ‍t‍, the weights are updated through 
gradient descent with learning rate α.

	﻿‍ pt = Pr(r = 1 | sK, at, At)‍�

	﻿‍ w ←− w + α
(
rt − pt

)
ϕ
(
sK, a

)
pt
(
1 − pt

)
‍�

As learning improved steadily in this model contrary to the asymptotic behavior of monkeys, we 
implemented a weight decay to asymptotic values ‍w0‍:

	﻿‍ w ←−
(
1 − η

)
w + ηw0‍�

Note that resetting the weights at the beginning of each block and adding a weight decay (or a 
learning rate decay) provide similar fits to the dataset. Also, this decay can be included in the previous 
two models without any change of our results and conclusions.

Belief update
From making an action ‍at ∈ Actions‍, the agent receives a reward ‍rt ∈

{
0, 1

}
‍ and the beliefs over axes 

are updated:

	﻿‍ ∀ A ∈ A‍�

	﻿‍ b(A) ← Pr(rt | sK, at, A) · b(A)‍�

Parameter values
β and ε are fixed to, respectively, 10 and 0.02. As predicted from the behavior, noise perception 
is higher for shape than for color for both monkeys (‍κC > κS‍). Also, the model fitted on Monkey S 
behavior has an initial bias for Axis 2 (‍bax < 0.5‍). For fitting the model on Monkey C behavior, we fix 
‍bax = 0.5‍. Finally, the fitted values of ‍w0‍ correspond to an encoding of an average between Rules 1 and 
3 on Axis 1, and an encoding of Rule 2 on Axis 2, for both monkeys (see Table 1).
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