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Error-correcting dynamics in visual working
memory
Matthew F. Panichello 1, Brian DePasquale1, Jonathan W. Pillow1,2 & Timothy J. Buschman 1,2

Working memory is critical to cognition, decoupling behavior from the immediate world. Yet,

it is imperfect; internal noise introduces errors into memory representations. Such errors

have been shown to accumulate over time and increase with the number of items simulta-

neously held in working memory. Here, we show that discrete attractor dynamics mitigate the

impact of noise on working memory. These dynamics pull memories towards a few stable

representations in mnemonic space, inducing a bias in memory representations but reducing

the effect of random diffusion. Model-based and model-free analyses of human and monkey

behavior show that discrete attractor dynamics account for the distribution, bias, and pre-

cision of working memory reports. Furthermore, attractor dynamics are adaptive. They

increase in strength as noise increases with memory load and experiments in humans show

these dynamics adapt to the statistics of the environment, such that memories drift towards

contextually-predicted values. Together, our results suggest attractor dynamics mitigate

errors in working memory by counteracting noise and integrating contextual information into

memories.
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Working memory is our ability to maintain information
without direct sensory input. It allows us to decouple
behavior from the immediate world, serving as the

substrate for planning and problem solving1. Despite its funda-
mental role in cognition, information in working memory is not
stored with perfect fidelity. Errors accrue over time2–5 and with
the number of items simultaneously held in working memory6–11.

Errors in working memory are thought to be due, in part, to
noise in the neural representations underlying memories. Ran-
dom noise can cause memory representations to diffuse away
from their original state over time, leading to behavioral
errors12,13. This is consistent with theoretical work that suggest
memory representations are maintained in a continuum of stable
states (known as a ‘line’ or ‘ring’ attractor14–16). Such systems can
encode continuous variables with high precision and in an
unbiased manner. This is important for many domains, such as
visual working memory for color or orientation. However, a
disadvantage of such systems is that they integrate noise: per-
turbations of representations along the stable continuum are
maintained, resulting in a steady accrual of error over time.
Because of this, variability in spiking activity places a bound on
the accuracy of working memory representations15.

In contrast, theoretical work has suggested the impact of noise
can be mitigated if memories are stored using a finite set of stable
states known as discrete attractors17–21. In such systems, memory
representations drift towards the attractor states. Once there,
memories are stable and therefore resistant to diffusive noise.
However, this comes at the the cost of discretizing continuous
information, reducing precision and inducing bias into memory.

Here we test whether the brain uses discrete attractor dynamics
to mitigate the impact of noise on working memory. By fitting a
flexible dynamical systems model to data from individual

subjects, we estimate the forces governing the temporal evolution
of working memory representations in both humans and mon-
keys. We show that discrete attractor dynamics better explain
behavior than competing models of memory dynamics. Indeed,
discrete attractor dynamics account for the distribution, bias, and
precision of working memory reports and the accumulation of
error in memory over time. Furthermore, these dynamics adapt
to changes in context and memory load in a way that minimize
errors in working memory.

Results
Systematic error in memory increases with load and time. To
understand the dynamics governing working memory repre-
sentations, we examined the behavior of humans (N= 90) and
monkeys (N= 2) performing a delayed estimation task22

(Fig. 1a). Subjects were instructed to remember the color of 1 to 3
simultaneously-presented stimuli located at different positions on
the display (humans saw 1 or 3 items; monkeys saw 1 or 2). After
a variable memory delay, subjects reported the remembered color
at a cued target location using a continuous scale. Stimulus colors
were drawn uniformly from an isoluminant circular color space.
We quantified error as the angular deviation between the target
color and the subject’s report. As expected2–11, the average
absolute error increased as a function of delay and working
memory load in both humans and monkeys (Fig. 1b; humans (H):
load, F(1, 89)= 147.23, p < 1 × 10−15; delay, F(1, 89)= 85.44, p=
1.17 × 10−14; load x delay, F(1, 89)= 13.92, p= 3.36 × 10−4,
analysis of variance; monkey W (W): load, p < 0.001; delay, p=
0.006; load x delay, p= 0.495, bootstrap; monkey E (E): load, p <
0.001; delay, p= 0.009; load x delay, p= 0.303, bootstrap).

Despite the uniform distribution of target colors, the responses
of both human and monkey subjects were significantly non-
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Fig. 1 Memories cluster in a continuous working memory task. a Top: humans (N= 90) performed a color delayed-estimation task in which they reported
the color of a spatially-cued sample after a variable delay. Humans made their report by adjusting the hue of the response probe by rotating a response
wheel (black circle) using a mouse. We rotated the mapping between wheel angle and color on each trial to avoid spatial encoding of color memories.
Bottom: monkeys (N= 2) performed a similar task. A symbolic cue indicated which sample to report (top or bottom). Monkeys reported a specific color
value using an eye movement to a color wheel that was rotated on each trial. b Distribution of angular error for humans (top) and monkeys (bottom). Error
increased with load and delay time. Gray lines= low load, blue lines= high load, solid lines= short delay, dashed lines= long delay. Inset: Error is
calculated as the angular deviation between the color of the cued sample and the reported color in color space. c Non-uniform distribution of reported
colors for humans (top) and monkeys (bottom). Gray line shows the distribution of target colors. Source data are provided as a Source Data file
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uniform23–26 (Fig. 1c, humans and monkeys p < 0.001 against
uniformity, Hodges-Ajne test; p < 0.001 against target distribu-
tion, permuted Kuipers test). This was reflected in a significant
decrease in the entropy of the response distribution relative to the
target distribution (H: 2.54 vs. 2.61 bits, t(89)= 13.90, p < 1 × 10
−15, t test; W: 2.61 vs. 2.65 bits, p < 0.001, bootstrap; E: 2.58 vs.
2.65 bits, p < 0.001, bootstrap). Responses clustered around
specific colors, seen as peaks in the response histogram (Fig. 1c).
Clustering increased with delay time (F(1, 89)= 9.56, p= 0.003,
analysis of variance) and with memory load in humans (F(1, 89)
= 5.45, p= 0.022; Supplementary Figs 1 and 2), suggesting that
clustering is the result of a load-dependent dynamic process that
unfolds over the course of encoding and the memory delay.

Attractor dynamics influence memory representations. Moti-
vated by these results, we tested the hypothesis that discrete
attractor dynamics underlie the evolution of working memory
representations. Attractor states can be conceptualized as local
minima in an energy landscape over mnemonic (color) space,
such that memories drift towards nearby attractors over time
(Fig. 2a). These dynamics could provide a mechanistic explana-
tion for the observed clustering of memory reports.

To test for the existence of discrete attractors, we developed a
model to characterize the dynamics governing working memory
representations. The model describes memory error as a
combination of diffusion from noise in the neural
representation12,14,15 and drift towards attractor states. Diffusion
was quantified as a random walk from the current location in
mnemonic space with no bias (μ= 0) and a variance σ2L

� �
that

depended on the number of colors presented (L=memory load).
Discrete attractor dynamics were modeled by fitting a function G
(θ) that describes how a remembered color θ will drift as a
function of its current value (Fig. 2b). Positive drift values reflect a

clockwise drift (to the right in Fig. 2b) while negative values
reflect a counterclockwise drift (to the left). Thus, attractors are
points in mnemonic space that 1) are fixed, such that they have
no drift, and 2) pull nearby memories towards themselves,
indicated by a negative slope in the drift function (Fig. 2b, dashed
lines). Subjects displayed the same number and location of
clusters in their distribution of memory reports regardless of load
condition (Supplementary Fig. 2), so we assumed that the pattern
of drift did not vary with load (i.e., the shape of the function G(θ)
was the same across loads). However, as with diffusion, the
strength of the drift was allowed to vary across memory load (i.e.
G(θ) is scaled by βL).

Together, drift and diffusion define the temporal evolution of
memories during the delay (Fig. 2c, dθ ¼ βLGðθÞdt þ σLNð0; dtÞ).
Previous work has shown that reports of perceived colors are
clustered, although clustering is greater for colors held in working
memory24. To capture clustering and other sources of error27,28 that
emerge during encoding, inputs were first passed through an
encoding stage governed by a similar drift and diffusion process with
the same drift function G(θ). However, the strength of drift and
diffusion during encoding was set independently by two additional
parameters (β�L and σ�L; see “Methods” section for details). This
allowed us to test for discrete attractor dynamics during both
encoding and the memory delay (Fig. 3). Finally, three additional
terms in the model captured errors due to forgetting of memories7,
responses to non-targets8, and noise introduced at decoding (see
Methods for details). Model parameters were estimated by
maximizing the joint likelihood of the observed memory reports
across individual trials for each subject. Critically, the model did not
assume attractor dynamics (Fig. 3a); when βL and β�L are zero,
memories are only influenced by diffusion, forgetting, and responses
to non-targets, as in previous models.

Discrete attractor dynamics provide a better account of
behavior than models in which memories only diffuse randomly
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Source Data file
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(Fig. 3). To demonstrate this, we compared the full model with
drift and diffusion to reduced models without drift towards
attractor states during encoding or memory (β*= 0 or β= 0,
Fig. 3a). Three model comparison statistics (AIC, BIC, and cross-
validated likelihood) all indicated that the full model performed
best (Fig. 3b and Supplementary Tables 1 and 2; H: relative
likelihood of full model= 1.00 (AIC) and 0.98 (BIC); W: 1.00 and
0.80; E: 1.00 and 1.00). Thus, both the encoding and delay periods
are characterized by drift of memories towards attractor states.

As seen in previous work23,24, memory reports clustered at
certain points in color space, and the bias and precision of reports
vary systematically around points of peak clustering. Here, we
show that the discrete attractor dynamics explain these variations.
First, discrete attractor dynamics predict a clustered distribution
of memory reports because memories tend to accumulate at
attractor states. Accordingly, colors near attractor states identified
by each subject’s best-fit model were reported more frequently
than average (Fig. 4a, H: t(89)= 43.49, p= 9.54 × 10−62; W:
p < 0.001, bootstrap; E: p < 0.001, bootstrap). The distribution
of memory reports predicted by each subject’s best-fit model
provides an excellent fit of the empirically observed distribution
of memory reports (Model: Fig. 4b, H: r(70)= .909, p= 2.57 ×
10−28; W: r(70)= .741, p= 9.93 × 10−14; E: r(70)= .934, p=
4.21 × 10−33, Pearson’s r).

Second, discrete attractors explain bias in working memory
reports. Memories of a particular target color will consistently
drift towards the closest attractor state, inducing systematic bias

in subjects’ reports. This is evident in subjects’ behavior:
memories for target colors counter-clockwise to an attractor
location tended to drift clockwise, while targets clockwise to an
attractor tended to drift counter-clockwise (Fig. 4c, H: mean slope
−0.40 less than zero, t(89)=−12.60, p= 1.73 × 10−21, t test; W:
−0.59, p < 0.001, bootstrap; E: −0.73, p < 0.001, bootstrap).
Model-free analyses showed similar effects. The peaks in the
response histogram provide independent estimates of attractor
locations. Aligning the bias around peaks in the response
histogram reveals a similar pattern with a negative slope
(Supplementary Fig. 323,24). Furthermore, the model provides a
good qualitative fit to the pattern of bias across color space
(Fig. 4d). The model’s predicted pattern of biases for each target
color was highly correlated with the empirically observed pattern
of biases in both human and monkeys (H: r(88)= 0.939, p=
1.41 × 10−42; W: r(58)= 0.864, p= 6.95 × 10−19; E: r(58)=
.850, p= 8.13 × 10−18, Pearson’s r).

Third, discrete attractors explain the precision of working
memory reports. Memories near attractors are more stable: as
diffusive noise drives a memory representation away from an
attractor, drift will pull it back towards the attractor, resulting in a
narrow response distribution. For both humans and monkey
subjects, the standard deviation (SD) of memory reports was
lower for targets near attractors identified by each subject’s best-
fit model (Fig. 4e, H: ΔSD=−1.96, t(89)=−4.90, p= 4.20 ×
10−6, t test; W: −2.96, p < 0.001, bootstrap; E: −5.59, p < 0.001,
bootstrap). Model-free analyses again showed similar effects: SD
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was significantly reduced at the peaks in the response histogram
(Supplementary Fig. 3). As with bias, discrete attractor dynamics
predict the pattern of precision across color space (Fig. 4f). The
model’s predicted pattern of precision as a function of target color
was correlated with the empirically observed values in both
human and monkeys (Fig. 4f, H: r(88)= .370, p= 3.27 × 10−4;
W: r(58)= .377, p= 0.003; E: r(58)= .630, p= 6.88 × 10−8,
Pearson’s r).

We can exclude several other possible explanations for the
non-uniform distribution of memory reports. One alternative
explanation is that clustering is driven by subjects guessing with a
biased distribution on a subset of trials. However, if true, then
bias would not display an ‘attractive’ positive-to-negative
transition at cluster peaks and precision would not depend on
the identity of the item in memory (Supplementary Fig. 4). A
second alternative is that clustering could be driven by a
nonlinear mapping between the stimulus space chosen by the
experimenter and the subject’s true perceptual space. However,
such a model predicts the opposite pattern of bias across color
space (Supplementary Fig. 5; see “Methods” section for details).

The discrete attractor model also predicts how errors in
working memory evolve over time. First, the discrete attractor
model accurately recapitulates the increase in error over the delay.
To measure the change in mean error over the delay, we
measured error for memory delays ranging from 1 to 7 s
(Experiment 1b; Supplementary Fig. 6a; 120 new human
subjects). The discrete attractor model provided a good fit to
the increase in error with memory delay (Supplementary Fig. 6b).

Second, the discrete attractor model makes the specific
prediction that memories of different target colors are expected
to accumulate error at different rates. Attractors are ‘stable fixed
points’ because they counteract perturbations of memory due to
random noise. Perturbations are corrected by drift back towards
the stable fixed point. Because this process occurs continuously
over time, memories of target colors near stable fixed points are
not only more precise overall (i.e., as in Fig. 4e), but also
accumulate error at a relatively slow rate over time (Fig. 5a). In
contrast, target colors near ‘unstable fixed points’ accumulate
error relatively quickly over time because random perturbations
away from these points are exacerbated by drift away from the
unstable fixed point (Fig. 5a). To test this prediction, we first
identified stable and unstable fixed points for each subject by
identifying target colors with attractive bias (zero with a negative
slope) or repulsive bias (zero with a positive slope). We then
calculated how much error increased on long delay trials relative
to short delay trials for target colors near stable and unstable fixed
points. For both humans (p= 0.036, bootstrap) and monkeys (W:
p < 0.0001, E: p= 0.024, bootstrap), error increased more over
time for target colors near putative unstable fixed points (Fig. 5b).

Attractor dynamics strengthen with load. The error-correcting
properties of attractors may be especially critical when memory
load is high. High memory load decreases the magnitude of
neural responses27, which is thought to render memories more
susceptible to noise and, therefore, increase diffusion15,29. Indeed,
as estimated by the model fits to experiment 1a, diffusion during
the memory delay increased with memory load (Fig. 6a, σ2L, H: p
= 0.001; W: p= 0.021, E: p= 0.010, bootstrap) although changes
during encoding were mixed (Fig. 6b, σ2�L , H: p < 0.001; W: p=
0.459, E: p= 0.100, bootstrap). Consistent with the theory that
attractor dynamics compensate for diffusion, we saw a com-
mensurate increase in drift during the memory delay (Fig. 6c, βL,
H: p= 0.002; W: p= 0.026, E: p= 0.026, bootstrap) and during
encoding (Fig. 6d, β�L, H: p= 0.001; W: p= 0.024, E: p= 0.009,
bootstrap). Similarly, two model-free measures of drift, clustering

of responses and mean absolute bias, increased with load (Sup-
plementary Fig. 1). Note that although the rate of drift and dif-
fusion during memory is less than that during encoding, their
effects accumulate over the course of the memory delay.

Experience modifies the location of attractor states. While
discrete attractors compensate for diffusion, they also induce
systematic error into working memory. Thus, there is a trade-off
between the finite error caused by drifting toward an attractor
and the ever-increasing error associated with diffusion. To test
whether discrete attractors improved overall performance, we
simulated memory dynamics for the full discrete attractor model
(‘drift+ diffusion’) and from the same model with encoding and
memory drift set to zero (‘diffusion’, β= β*= 0). Thus, we can
ask how memory accuracy would change if diffusion were held
constant and we manipulated only the presence or absence of
discrete attractor states. As shown in Fig. 7a, the two models
accumulate error at different rates over time. Initially, the mean
absolute error is greater in the drift+ diffusion model due to
memory corruption by drift towards attractor states during
encoding and the early delay period (p < 0.05 for t < 11 s, boot-
strap). However, discrete attractors also counteract diffusive noise
and so, as the delay increases, the drift+ diffusion model per-
forms significantly better than the diffusion model (p < 0.05 for
t >= 33 s, bootstrap), with the crossover in performance occur-
ring at t ~ 17 s. Thus, attractor dynamics have a greater impact
the longer information is held in working memory.

Discrete attractor dynamics are most beneficial when they
adapt to the current context. For example, the statistics of many
visual features in the real world are not uniform across perceptual
space (including color30). In this case, errors can be reduced if
attractor states reflect the statistics of the environment, such that
attractors occur at the location of common stimuli. To
demonstrate this, we tested the performance of the full discrete
attractor model in different environments. Environments varied
in the proportion of target colors drawn from within 10 degrees
of an attractor. For example, when 50% of targets were drawn
from nearby an attractor, the ‘drift+ diffusion’ model signifi-
cantly reduced working memory error for all t (Fig. 7a, red trace).
Parametrically varying the proportion of biased colors revealed
that discrete attractor states tuned to the statistics of the
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environment reduced memory error, even with modest biases in
the color distribution (Fig. 7b). These results suggest that, in
order to minimize working memory errors, attractor dynamics
should adapt to the statistics of the current environment.

To test whether memory dynamics adapt to context, we
collected data from 120 additional human subjects in a
continuous working memory task with a biased stimulus
distribution (Experiment 2, Fig. 7c). During this task, the
statistics of the environment were such that half of all stimuli
were drawn from one of four common colors (randomly chosen
for each subject) while the other half were drawn from a uniform
distribution.

Both model-free and model-based analyses suggest that
participants developed attractor states at the common color
locations. First, attractor states, as identified by fitting the
dynamical model, were significantly more likely to occur at the
location of common colors than expected by chance (Fig. 7d, p <
0.001, randomization test, model fits were limited to trials in
which the target color was drawn from a uniform distribution).
Second, consistent with the accumulation of memories at
attractor states, subjects were significantly more likely than
chance to report common colors, even on the half of trials when
the target was drawn from a uniform distribution (Supplementary
Fig. 7a, p < 0.001, randomization test). Third, over the course of
the experiment, the pattern of bias around common colors
became more consistent with attractor states. As shown in Fig. 4c,
attractors pull in nearby memories, resulting in a positive-to-
negative transition in bias. The more negative the slope, the
stronger the attractor. Attraction towards common colors
increased with experience: the slope of bias around common
colors was significantly more negative during the last third of
trials than during the first third (Fig. 7e, p= 0.0138, bootstrap).

To determine if changes in bias were driven by differences in
encoding or memory dynamics, we analyzed short memory delay
and long memory delay trials separately. If learned biases toward
common colors manifest during encoding, then the bias slope
should become more negative for both short and long trials. In
contrast, if biases manifest during memory, then the change in

bias should be especially strong for long delay trials because the
biases in memory dynamics have more time to accumulate. Non-
parametric regression revealed a main effect of delay length on
bias slope (p= 0.026) modulated by a delay x epoch (first or last
third of trials) interaction (p= 0.039). The bias slope around
common colors on short delay trials did not differ between the
first third and last third of trials (Fig. 7f, p= 0.384, bootstrap) but
became significantly more negative for long-delay trials (p=
0.006, bootstrap). Directly comparing the two delay conditions,
bias slope was more negative for long-delay trials than short delay
trials in the last third of trials (p= 0.0411, bootstrap). These
results suggest that learning modified dynamics during memory
rather than encoding.

To ensure that these results were not due to subjects
strategically reporting common colors based on explicit knowl-
edge of the stimulus distribution, we analyzed debriefing data
collected from the participants in Experiment 2 and 1b. Subjects
were not better than chance at identifying whether they were
exposed to a biased or uniform stimulus distribution (see
Methods for details). Furthermore, participants in Experiment 2
displayed the same pattern of results regardless of whether or not
they correctly reported that the stimulus distribution was biased
during debriefing (Supplementary Fig. 8).

Finally, if attractors emerge at common color locations, then
this should alter the distribution of reported colors over the
course of the experiment. Indeed, we found the clustering of
memory reports across subjects decreased from the first third to
the last third of trials (2.62 to 2.63 bits, p < 0.001, randomization
test; Supplementary Fig. 7b). This is consistent with a
strengthening of attractors at the contextually-predicted loca-
tions, which were uncorrelated across subjects. However, it is
important to note that, although weaker, clustering is still
partially evident at baseline locations in the last third of trials
(Supplementary Fig. 7b), and the slope of bias around these
baseline locations did not change in strength between the first and
last third of the experiment (p= 0.5701, bootstrap). This suggests
that the learning rate governing changes in the dynamics is low,
ideal for extracting statistical regularities31.

a Humanb

c d

Monkey W Monkey E

0

20

40

60

M
em

or
y 

dr
ift

 (
�)

 

*

*

Load

Human Monkey W Monkey E

**

E
nc

od
in

g 
dr

ift
 (
�*

) 

1 3 1 2 1 2 1 3 1 2 1 2
0

50

100 *

Load

10

Prop. bootstrap iterations 

0

40

80

E
nc

od
in

g 
di

ffu
si

on
 (

σ2
*)

 

Load

Load Load

20

40

60

0
1 3 1 2 1 21 3 1 2 1 2

M
em

or
y 

di
ffu

si
on

 (
σ2 ) 

*
*

Load

LoadLoad

0

1

2

3

0

2

4

6

8

10

0

5

10

15

20

0

20

40

60

***
***

** ***

Fig. 6 Drift and diffusion increase with memory load. Experiment 1a maximum likelihood parameter fits for the diffusion (a, b) and drift (c, d) scaling
parameters during memory and encoding. Color intensity reflects normalized proportion of bootstrap iterations. As detailed in the Methods, all parameters
are rates (change per second); dynamics during encoding evolve over a fixed period of time (simulated as 1 s), while memory dynamics evolve over the
memory delay, which varied from trial to trial. *p < 0.05, **p < 0.01, ***p < 0.001, bootstrap. Source data are provided as a Source Data file

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11298-3

6 NATURE COMMUNICATIONS |         (2019) 10:3366 | https://doi.org/10.1038/s41467-019-11298-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Discussion
Our results highlight the dynamic nature of working memory
representations. Using both model-based and model-free ana-
lyses, we show that two forces drive the evolution of visual
representations during encoding and maintenance: (1) random
diffusion and (2) drift towards discrete attractor states. Together,
these forces provide a parsimonious explanation of the distribu-
tion, bias, and precision of memory reports and the accumulation
of error in memory over time. These results build on previous
models that do not explain why errors in working memory differ
as a function of the content (e.g., refs. 9,10,14) or how memory
representations dynamically evolve (e.g., ref. 24).

Previous psychophysical, theoretical, and neurophysiological
work has shown noise in neural activity can cause memories to
diffuse away from their original representation, leading to errors
in working memory12–15. Our results suggest attractor dynamics
within mnemonic space can counteract this noise by pulling
memories towards a few stable representations. Consistent with
previous theoretical work17–21, we provide experimental evidence
that the stability of representations at attractors limits the effect of
random diffusion. Furthermore, the fact that discrete attractors
are evolutionarily conserved across monkeys and humans

emphasizes the benefits of error-correction. Indeed, this may be a
general phenomenon in the brain: attractor dynamics are thought
to minimize the impact of noise in long-term, associative
memory32,33 and in decision making34,35.

From an information-theoretic perspective, working memory
can be conceptualized as a band-limited information channel36.
In this framework, discrete attractors compress working memory
representations by discretizing the continuous mnemonic (color)
space. Discretization reduces the information needed to encode a
memory, allowing it to be more accurately stored in a noisy,
band-limited system36,37. This is particularly important when
storing multiple items in working memory. Increasing the
number of items in working memory leads to interference
between items, reducing memory accuracy4,27,38. Consistent with
this, we observed an increase in diffusive noise as more items are
held in working memory. However, drift also increased in
strength, compensating for the increase in noise. In other words,
strengthening discrete attractor dynamics increases compression
of memories; this reduces the fidelity of memories as they are
further discretized, but also makes them more robust to noise and
interference. Note that this increase in attractor strength with
load cannot be explained by interference among items because
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item identity is random and so any such interactions would lead
to random, not systematic, biases in memory. Several neural
mechanisms might account for the increase in attractor strength
with load, including increased drive into the network39,40 or
changes in f-I gain via neuromodulation41,42.

Finally, our results suggest attractor dynamics adapt to context:
attractors emerged at the position of commonly occurring stimuli.
The relatively slow rate of change in dynamics (over hundreds of
trials) is consistent with theoretical work that suggests such
learning could be driven by synaptic plasticity43. Indeed, such a
mechanism with a slow learning rate is ideal for extracting the
statistical regularities of the environment. Intriguingly, we found
encoding dynamics adapted to changes in the environment more
slowly than memory dynamics. This raises the possibility that
encoding and memory dynamics may rely on different neural
mechanisms.

By moving to reflect the statistics of the environment, attrac-
tors will pull memories towards likely stimuli. In this way,
attractor dynamics act to integrate prior beliefs with noisy sti-
mulus information. This process is analogous to Bayesian infer-
ence applied over time. At each timestep in memory, drift applies
the prior (embedded in the attractors) to each item in memory,
which reflects the posterior of the previous timestep plus random
noise. Thus, as time in working memory increases (and stimulus
information diffuses), memory representations drift towards prior
expectations. Such a process could constitute the mechanism by
which sensory history influences working memory44–46. Beyond
working memory, attractor dynamics could be a neurally-
plausible mechanism for integrating prior beliefs with sensory
information in other cognitive behaviors, such as decision making
and perception.

Methods
Participants. Thirty-three human subjects participated in Experiment 1a at
Princeton University. Seventy-three additional subjects participated in an online
version of Experiment 1a via Amazon Mechanical Turk (https://www.mturk.com).
One-hundred twenty-five subjects participated in Experiment 1b via Amazon
Mechanical Turk. One-hundred fifty-five subjects participated in Experiment 2 via
Amazon Mechanical Turk. We screened subjects for a minimum of engagement in
the task by estimating their probability of random guessing in the task using 3-
component mixture model8. Subjects with an estimated guess rate greater than 20%
across all trials were excluded from further analysis, yielding thirty laboratory
subjects and sixty online subjects for Experiment 1a, one-hundred twenty online
subjects for Experiment 1b, and one-hundred twenty online subjects for Experi-
ment 2. This threshold of 20% was set independently based on analysis of a
separate pilot cohort of online subjects (N= 57). Subjects recruited online via
Mechanical Turk have previously been used to study working memory and have
performance comparable to lab subjects47,48. We observe similar qualitative
behavior between online and lab subjects (Supplementary Fig. 9) and report their
behavior together in the main text. All subjects attested that they had normal or
corrected-to-normal vision. We confirmed that subjects had normal color vision
using the Ishihara Color Blindness Test. Subjects provided informed consent in
accordance with the Princeton University Institutional Review Board.

Two adult male rhesus macaques (8.9 and 12.1 kg) performed the Experiment
1a in accordance with the policies and procedures of the Princeton University
Institutional Animal Care and Use Committee.

Experiment 1a - humans. For the laboratory version of Experiment 1a we pre-
sented stimuli on a CRT monitor positioned at a viewing distance of 60 cm. We
calibrated the monitor using an X-Rite i1Display Pro colorimeter to ensure
accurate color rendering. During the experiment, participants were asked to
remember the color and spatial location of either 1 or 3 square sample stimuli. The
color of each sample was drawn from 360 evenly spaced points along an iso-
luminant circle in CIELAB color space. This circle was centered at (L= 60, a= 22,
b= 14) and the radius was 52 units. Colors were drawn pseudorandomly, with the
caveat that colors presented on the same trial had to be at least 22° apart in color
space. The samples measured 2° of visual angle (DVA) on each side. Each sample
could appear at one of eight possible spatial locations. All possible locations had an
eccentricity of 4.5 DVA and were positioned at equally spaced angles relative to
central fixation (0, 45, 90, 135, and 180° clockwise and counterclockwise relative to
the vertical meridian). The dimensions of the stimuli for the online experiment
were defined by pixels rather than degrees of of visual angle. The samples had an
edge length of 30 pixels and were presented at an eccentricity of 170 pixels.

Participants initiated each trial by clicking the mouse and by fixating a cross at
the center of the screen (Fig. 1a). After 500 ms of fixation, one or three samples (the
load) appeared on the screen. The samples were displayed for 200 ms and then
were removed from the screen. Participants then experienced a memory delay of 1
or 7 s, after which a response screen appeared. The response screen consisted of the
outline of a square at one of the previous sample locations (the probe sample) and a
response interface consisting of a circle on a ring. Participants used the mouse to
drag the circle around the ring, which changed the color of the probe sample. The
angular position of the circle on the ring corresponded to a particular angle in color
space. The mapping between circle position and color space was randomly rotated
on each trial to exclude the use of spatial memory. We instructed participants to
adjust the color of the probe sample to match the color of the sample that had
previously appeared at that location as closely as possible. We told participants that
accuracy was more important than speed but that they should respond within a few
seconds. There was no time limit on the response. All human participants
completed 200 trials.

We monitored the eye position of the lab participants using an Eyelink 1000
Plus eyetracking system (SR Research). Participants had to maintain their gaze
within a 2° circle around the central cross during initial fixation and sample
presentation, or else the trial was aborted and excluded from analysis.

Experiment 1a - monkeys. We presented stimuli on a Dell U2413 LCD monitor
optimized for color rendering. The monitor was positioned at a viewing distance of
58 cm. We calibrated the monitor using an X-Rite i1Display Pro colorimeter to
ensure accurate color rendering. Sample colors were drawn from 64 evenly spaced
points along an isoluminant circle in CIELAB color space. This circle was centered
at (L= 60, a= 6, b= 14) and the radius was 57 units. Slightly different color
wheels were used for the humans and the monkeys to accommodate the gamut of
the different monitors used in each experiment. Nevertheless, colors corresponding
to the same angle in each color wheel are extremely similar in appearance. The
edges of the samples measured 2° of visual angle. Each sample could appear at one
of two possible spatial locations: at 5 DVA eccentricity from fixation and 45°
clockwise and counterclockwise from the horizontal meridian.

We adapted Experiment 1a so that it could be performed by non-human
primates. The animals initiated each trial by fixating a cross at the center of the
screen. After 500 ms of fixation, one or two samples appeared on the screen. The
samples were displayed for 500 ms, followed by a memory delay of 500 or 1,500 ms.
Next, a symbolic cue was presented at fixation for 300 ms. This cue indicated which
sample (top or bottom) the animal should report in order to get juice reward. The
response screen consisted of a ring 2° thick with an outer radius of 5°. The animals
made their response by breaking fixation and saccading to the section of the color
wheel corresponding to their report. This ring was randomly rotated on each trial
to prevent motor planning or spatial encoding of memories. The animals received a
graded juice reward that depended on the accuracy of their response. The number
of drops of juice awarded for a response was determined according a circular
normal (von mises) distribution centered at 0° error with a standard deviation of
22°. This distribution was scaled to have a peak amplitude of 12, and non-integer
values were rounded up. When response error was greater than 60°, no juice was
awarded and the animal experienced a short time-out of 1 to 2 s. Responses had to
be made within 8 s; in practice, this restriction was unnecessary as response times
were on the order of 200–300 ms. We analyzed all completed trials (trials on which
the animal successfully maintained fixation and saccaded to the color wheel,
regardless of accuracy). Monkey W completed 15,787 trials over 26 sessions and
Monkey E completed 16,601 trials over 17 sessions.

We monitored the eye position of the animals using an Eyelink 1000 Plus
eyetracking system (SR Research). The animals had to maintain their gaze within a
2° circle around the central cross during the entire trial until the response, or else
the trial was aborted and the animal received a brief timeout. Trials during which
the animal broke fixation were excluded from analysis.

Experiment 1b. The stimuli and procedures were similar to those for the online
version of Experiment 1a, except that participants were presented with two samples
on every trial and the delay varied continuously between 1 and 7 s. Model pre-
dictions (Supplementary Fig. 6) were generated from the best-fitting model. As in
Experiment 1a, the full model provided the best fit to the data (mean increase in
cross-validated log-likelihood over worst-fitting model, full: 7.45, β= 0: 7.41, β*=
0: 0.20).

Experiment 2. The stimuli and procedures for Experiment 2 (Fig. 7c) were similar
to those for the online version of Experiment 1a. We shortened the memory delays
to 500 ms and 4000 ms to reduce the length of the experiment. Participants saw
2 samples on each trial. Critically, the color of the samples were no longer always
drawn uniformly from the circular color space. Rather, for each sample, there was a
50% chance that the color of that sample would be drawn from a biased dis-
tribution (Fig. 7c). This biased distribution consisted of four equally spaced clusters
of common colors. Each cluster was 20° in width. Each participant was exposed to a
unique set of common colors as the cluster means were shifted by a single random
phase for each subject.
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Subject Debriefing. Participants in Experiments 1b and 2 were presented with
following debriefing question: “During this experiment, some participants are
shown target colors at random. Others are shown some colors more often than
others. Which group do you think you are in?”. The response options were “I was
shown all colors about equally often” or “I was shown some colors more often than
others”. When presented with this two-alternative forced choice at the end of the
experiment, 49.2% of participants in Experiment 2 correctly reported that the
distribution of targets was biased, while 48.3% incorrectly reported a uniform
distribution of targets (3 participants abstained). We estimated the false alarm rate
for this question by analyzing responses of participants in Experiment 1b to the
same question: 49.2% incorrectly reported a biased distribution, 50.0% reported a
uniform distribution, 1 abstained. The proportion of subjects reporting a biased
distribution was not significantly different between Experiments 1b and 2 (χ2(1)=
0.015, p= 0.902, χ2).

Effects of load and time on mean error. Throughout the text, all t-tests are two-
tailed and all randomization tests are one-tailed, unless otherwise indicated.

We analyzed mean absolute error for human subjects using a 2 × 2 repeated
measures ANOVA with factors load, delay time, and their interaction. We analyzed
each monkey’s data by fitting the equivalent regression model to their mean error
in each condition. We obtained bootstrapped confidence intervals for each
regression coefficient by resampling trials with replacement from each monkey’s
dataset and refitting the regression model on each iteration (1,000 iterations). We
also used this method to analyze the effect of load and time on clustering and mean
bias (Supplementary Fig. 1), and the effect of task epoch and time on bias slope
(Fig. 7e-f).

Clustering Metric. We observed that the distribution of reported hues θ̂ are
clustered relative to the distribution of target hues Θ. To quantify this phenom-
enon, we developed a simple clustering metric. This metric relies on the fact that
entropy is maximized for uniform probability distributions. In contrast, probability
distributions with prominent peaks will have lower entropy. Because the target
hues are drawn from a circular uniform distribution, the entropy of the targets H
(Θ) will be relatively high. If a subject’s responses are clustered, their entropy Hðθ̂Þ
will be relatively low. Taking the difference of these two values yields a clustering
metric C. Negative values of C suggest greater clustering:

C ¼ Hðθ̂Þ � HðΘÞ; ð1Þ
where:

HðxÞ ¼ �
X360
x¼1

f ðxÞlog2f ðxÞdx̂: ð2Þ

To account for the fact that this estimate of entropy is biased, we subsampled
the data such that there was an equal number of trials in each condition. We
estimated the pdf of the responses f ðθ̂Þ and the targets f(Θ) using kernel density
estimation (Matlab CircStat toolbox, kernel width= 10°). Note that our goal was to
quantify the clustering of reports for items in memory; random guesses7,8

confound this analysis by contributing a uniform component to the response
distribution that varies systematically as a function of load and time. To address
this, we estimated the proportion of responses due to guessing using mixture
models7,8 and removed a uniform component from the response distribution f ðθ̂Þ
and the target distribution f(θ) equal in area to the guess rate and then
renormalized each.

Bias and standard deviation of memory reports. To dissociate systematic and
unsystematic sources of error in memory, we calculated the bias and standard
deviation of memory reports across color space. We used 4° bins for humans and
6° bins for monkeys to accommodate their coarser sampling of color space (64
target colors). Bias refers to the distance between the the target color and the mean
reported color. We calculated the slope of bias around negative-slope zero-cross-
ings in each subject’s fit drift function (Experiment 1a), around significant peaks in
each subject’s response histograms (Experiment 1a), and around commonly pre-
sented presented colors (Experiment 2) by fitting a line to the bias +/−15° around
the point of interest. Mean standard deviation around these points was calculated
around these points using the same window (+/−15°). For monkey subjects, we
boostrapped confidence intervals for slope and standard deviation by resampling
trials with replacement.

To compute the bias and SD for the non-uniform guessing strategy
(Supplementary Fig. 4), we performed 1,000 iterations of a randomization test
where memory reports were shuffled with respect to the target colors and report
the mean bias and SD for each target color across iterations.

To identify significant peaks in subjects’ response histograms (Experiment 1a),
we first estimated the PDF of subjects’ responses using kernel density estimation.
We identified possible peaks as samples larger than their two neighboring samples
and recorded their amplitude. We then repeated this analysis on the distribution of
targets, resampling with replacement to create a null distribution of peak
amplitudes. Peaks in the original response distribution with an amplitude greater
than the 95th percentile relative to the null were deemed significant. We identified

negative-slope zero-crossings in the fit drift function of each subject by identifying
peaks in the numerical integral of the drift function. Peaks with a prominence in
the 20th percentile or lower across subjects were excluded from analysis.

Finally, to generate model predictions for bias and standard deviation, we fit the
discrete attractor model to each subject’s data and generated synthetic datasets
(1,000 trials for each human subject and 20,000 trials for each monkey) by
simulating responses from each subject’s best-fit model. We then analyzed the bias
and standard deviation of these simulated reports as above. Model performance
was assessed by correlating model predictions with empirical results across target
colors.

Dynamical Model. We developed a quantitative model to describe how items in
memory change over time. We assume that two distinct influences may make
memory dynamic. First, systematic biases may cause memories to drift towards
stable attractor states over time. Second, memories may be perturbed by unsyste-
matic random noise. We model memory using a stochastic ordinary differential
equation that captures both of these influences:

dθ ¼ βLGðθÞdt þ σLdW: ð3Þ
This equation describes the time evolution of a color memory θ (a circular

variable corresponding to an angle in our circular color space) under the influence
of some deterministic dynamics defined by G (the drift) as well as an additive white
noise process W with variance σ2. βL sets the gain of the drift. Thus, βLG(θ)dt
describes influence of drift and σLdW the influence of random noise on memory.
To test the hypothesis that memory load influences these dynamics we fit a separate
β and σ for each load L.

Based on the clustering we observe in the data, it seems likely that G(θ) is a
nonlinear function. We needed a relatively parsimonious way of describing G(θ)
that still gave us enough flexibility to describe this nonlinearity. So, for each subject,
we defined G(θ) using a basis set consisting of twelve first derivatives of the von
mises distribution separated by 1 standard deviation on the interval (0, 2π):

GðθÞ ¼
X12
j¼1

wj
d
dθ

ϕ
2π
12

j;
2π
12

� �
; ð4Þ

where Φ is a von mises distribution parameterized by a mean and standard
deviation. We then divided G(θ) by its maximum absolute value. This
normalization procedure aids the interpretation of β: it is the maximum
instantaneous drift rate. Our choice of 12 basis functions was to minimize AIC in
comparison to function estimates with a higher or lower number of basis functions.

To fit the model described in Eq. (3) to subject data, we needed to describe the
time evolution of θ probabilistically. So, we rewrote Eq. (3) as a Fokker-Planck
equation, a partial differential equation that tracks the probability density function
of θ over time:

∂

∂t
pðθ; tÞ ¼ � ∂

∂θ
βLGðθÞpðθ; tÞ þ

σ2L
2

∂2

∂θ2
pðθ; tÞ: ð5Þ

In order to track probability mass, we discretized our 1-dimensional state space
(the value of θ) into 100 evenly spaced bins from 1° to 360°. Once discretized, the
change in p(θ, t) over a given timestep dt can be described by a Markov transition
matrix ML:

∂

∂t
pðθ; tÞ ¼ MLpðθ; tÞ: ð6Þ

This discretized approximation can be solved analytically in time, yielding:

pðθ; tÞ ¼ eML tpðθ; 0Þ; ð7Þ
where p(θ, 0) is the initial state of memory after encoding.

We wanted to dissociate load-driven changes in the dynamics of memory and
encoding. To capture differences in encoding, we allowed the state of a memory at
the start of the delay, p(θ, 0), to vary as a function of load. To simulate the encoding
process, we first initialized a narrow probability density P0(Θ) that reflects the color
of the target stimulus. P0 is a von mises distribution with mean equal to the target
color Θ and a standard deviation of 0.1 radians:

P0ðΘÞ ¼ ϕ Θ; 0:1ð Þ: ð8Þ
We then allowed P0 to propagate for a 1 s encoding period according to the

following differential equation:

dθ ¼ β�LGðθÞdt þ σ�LdW; ð9Þ
where β�L and σ�L interact to set the bias and variance of the encoded memory.
Therefore, p(θ, 0) is calculated as:

pðθ; 0Þ ¼ eM
�
LP0ðΘÞ ð10Þ

and the final probability distribution describing the memory of the target hue after
a memory delay of t seconds on a trial with load L is:

pðθ; tÞ ¼ eML t eM
�
LP0ðΘÞ: ð11Þ

All drift and diffusion parameters (βL, σL, β
�
L and σ�L) are rates; they measure the

change in memory over time (either due to drift or diffusion). However, care must
be taken when directly comparing the value of these parameters across the
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encoding and memory periods. This is because encoding is modeled as occurring
over a fixed period (1 s), while the length of the memory delay can change from
trial to trial. Therefore, the degree to which memory dynamics influence reports
depends on the length of the memory delay. Drift and diffusion can be compared
more directly within the encoding or memory periods.

Equation 11 describes the probability distribution for the memory of the target
color Θ at time t. However, our goal is to predict the subject’s report on a particular
trial, pðθ̂; tÞ, which does not just depend on the color of the target7,8. On some
trials, subjects may experience complete failures of memory, resulting in random
guessing. On other trials, subjects may commit a ‘swap’ error and report their
memory of one of the non-target colors, θ�i (note that the memory of non-target
colors also evolved according to Eq. 11). Finally, random error may be introduced
at decoding. To account for these additional influences, we estimated each subject’s
probability of committing swap errors and guessing, and, for each trial, computed a
mixture of the target memory distribution, the non-target memory distributions,
and a uniform component:

pðθ̂; tÞ ¼ ð1� λ� αÞpðθ; tÞ þ α
1
m

Xm
i¼1

pðθ�i ; tÞ þ λ
1
2π

; ð12Þ

where m is the number of non-target colors (0 or 2 for humans, 0 or 1 for
monkeys). α and λ represent the probability of swap errors and guesses,
respectively. They are linear functions of t parameterized by a slope a and intercept
b. We estimated a unique λ and α function for each load (note that α takes on a
value of zero when load is 1). To capture decoding error, we circularly convolved
the final response distribution with a von mises distribution with a standard
deviation σ†. As noted below, we found the model with response error fit well to
human behavior. However, monkey behavior was best explained without this term.

We found the maximum likelihood estimate (joint likelihood across trials) of
the free parameters βL; β

�
L; σL; σ

�
L; aλL ; bλL ; aα; bα;wj , and σ† (humans only) using

gradient descent. To obtained boostrapped distributions of the parameter
distributions for human subjects, we repeatedly resampled the parameters fit to
each subject with replacement and took the mean of these values. To obtain
bootstrapped distributions for monkey subjects, we repeatedly resampled each
monkey’s pool of trials with replacement and repeated the fitting process. Model
comparison was performed on data pooled across sessions (monkeys) or subjects
(humans).

Model fits indicated that random guessing increased with time for human
subjects (Supplementary Fig. 10), consistent with previous reports2–4. Guessing
decreased with delay, however, for the two monkeys. We wanted to ensure that
trade-offs between guessing and other parameters, such as the rate of diffusion,
were not driving the effects of increased drift and diffusion with load. So, we fit
different versions of the model in which we systematically simplified our
parameterization of guess rate. Across the two monkeys, model comparison using
AIC and BIC indicated that the full model was the best fit to the data. Regardless,
for all models, drift and diffusion increased with load, indicating that this is a stable
feature (Table S2).

Model comparison indicated that the full model including decoding error was
clearly better than the model without decoding error in humans. However, the model
with decoding error was not clearly better than a model without decoding error across
monkeys and so we defaulted to the simpler model (monkey E: wBIC= 0.01; monkey
W: wBIC= 1.00; compared to wBIC= 1.00 in humans). Furthermore, in exploratory
tests we found decoding error substantially disrupted the ability of the model to
predict the clustering and precision of responses in monkey W; with decoding error
the correlation between the predicted and observed response distribution in monkey
W dropped from .741 to .393 and the correlation between the predicted and observed
pattern of precision across colorspace dropped from .377 to .120. Based on this, we
concluded that models with decoding error best described the human behavior but
that the simpler model without decoding error best described the monkey behavior.
Differences in decoding error could reflect different response modalities (moving a
mouse for humans, saccade for monkeys) or reflect the fact that monkeys saw the
entire color wheel while humans did not.

Simulated error of models over time. We wanted to identify if attractor dynamics
might be normative and enhance the fidelity of memory. To do this, we computed
the expected mean error for the memory of a target color as a function of delay
time for the full dynamic model with attractor dynamics (drift+ diffusion) and a
model without attractor dynamics (diffusion). The drift and diffusion parameters
of the drift+ diffusion model were set to the mean fit parameters for the human
subjects in Experiment 1a. The parameters of the diffusion model were identical
except that βL and β�L were set to zero. To isolate error in the representation of the
target color, the probabilities of guessing and swaps were set to zero. To create a
representative drift function, we fit our basis set to the numerical derivative of the
PDF of the response distribution for human subjects (normalized to have a
maximum absolute value of one), which yields attractors at locations in color space
where they are most frequently observed (i.e., at commonly reported colors). To
create biased target distributions, we parametrically took a weighted average of a
distribution that was entirely uniform over color space and a biased distribution
that was uniformly distributed within 10 degrees of attractor states and zero
elsewhere.

Nonlinear mapping between stimulus and perceptual space. The color space
used to parameterize stimuli in these experiments (CIELAB) is designed to be
perceptually uniform, but we sought to demonstrate that inhomogeneties in this
space cannot explain our results. To demonstrate this, we analyzed an alternative
model (Supplementary Fig. 5a) which assumes a nonlinear mapping between our
stimulus parameterization (a circle in CIELAB space) and a hypothetical true
perceptual space (a square, although the results generalize to other shapes). The
continuous CIELAB and perceptual spaces were discretized into 1,024 points. We
simulated memory reports by first generating 100,000 angles randomly distributed
around our stimulus space (representing the target stimuli) and projecting these
points onto the true perceptual space (representing encoding). Memory was
simulated as a purely diffusive process of the encoded target colors around the true
perceptual space (i.e., there were no discrete attractor dynamics). Simulations were
run for 1,000 timesteps (arbitrary units). Diffusive noise at each timestep was
modeled as random step between 0 and 4 points in either direction in the dis-
cretized perceptual space. Report was simulated by projecting the diffused memory
representations back into stimulus space. This model predicts clustering of memory
reports (Supplementary Fig. 5a) but does not predict attractive bias around cluster
peaks (Supplementary Fig. 5b) as observed empirically. We thank and anonymous
reviewer for proposing and implementing this alternative model.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data Availability
All data that support the findings of this study are available from the corresponding
author upon request. The source data underlying all figures and Supplemental Tables 1
and 2 are provided as a Source Data file.

Code Availability
Code for fitting the discrete attractor model to behavioral data from delayed continuous
report tasks is available at https://github.com/buschman-lab.
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