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This concerns a feature of cognitive control that is its…
     simplest...

    most basic...
               most general...
                    most influential...
                         most striking...
                              and most embarrassing one:

the radical constraint on its engagement

There are even laws prohibiting allocation of control 
to more than one task at a time:

Talking on a cell phone and driving

Cognitive Control
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•Central to the original theories of cognitive control 
(e.g., Posner & Snyder, 1975;  Shiffrin & Schneider, 1977)

• Continues to define the methodology for studying the 
engagement of cognitive control:  dual task designs

•Foundational assumption of most* current models     
  of cognitive control (e.g., ACT-R, SOAR, PDP models) 
                   *though not all (e.g. EPIC)

• Yet, an explanation for this constraint remains elusive

      What is its cause, and why is it so restrictive?

The Capacity Constraint 
on Cognitive Control
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•“Explanations” commonly offered:
– metabolic (energetically costly) or
– structural (limited number of “slots”)

•Those explanations are silly
– Metabolic?

♦ Vast areas of cortex (e.g., visual) are “running” all the time

– Structural?
♦ PFC comprises ~30% of neocortex = ~30 billion neurons... 

 but only 1 control-demanding task at a time?  Really?

•The question begs a more rational explanation...

Capacity Constraints

Prefrontal 
Cortex
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•Structural models:
– constraints of attractor systems 

(Usher et al., 2001) 

– capacity vs. precision 
(e.g., Ma & Huang, 2009; Luck & Vogel, 2013, etc.)

♦ These accounts still beg the question of why so strict,  
given ~30B neurons?

•Functional (computational) accounts:
– Symbolic models (production system architectures) 

(e.g., Meyer & Kieras, 1997; Salvucci & Taatgren, 2008)

♦ Scheduling constraints  to avoid cross-talk 
imposed by interacting processes

♦ Assume pre-specified processing architecture
♦ Beg the question: why that architecture?
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RED GREEN

“red”

Overlapping 
Pathways

Stimulus: GREEN

WordsColors
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One Mouth

Overlapping 
Pathways

“green”

RED GREEN

“red”

Stimulus: GREEN

•Basic idea: 
– Pathway overlap (shared representations) introduces potential for cross-talk 
– The purpose of control is to manage this 
– Can solve the problem without control… but that carries its own costs:

“green”

RED GREEN

“red”

Stimulus: GREEN

“green”“red”

Parallel 
Pathways

Two Mouthes

Shared Representation vs. Multitasking



•Classic illustration: 
(Shaffer et al., 1975) 

– echoing a speech stream while copy-typing (easy) 
vs. 

– dictation while reading aloud (hard)
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Verbal Response

Phonologic 
Representations

Auditory Input

Manual Response

Orthographic 
Representations

Visual Input

Echoing Copy-Typing
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Dictation Reading

Representational 
Sharing

Shared Representation vs. Multitasking
Verbal Response

Phonologic 
Representations

Auditory Input

Manual Response

Orthographic 
Representations

Visual Input
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•Descendant of the Multiple Resources theory of attention 
Navon & Gopher (1979);  Allport (1982); Meyer & Kieras, (1997) 

– But that was a qualitative theory;  also, what are resources?

•Question: 
– How does the maximum number of processes (multitasking) scale  

with potential crosstalk (shared representations) in networks?

•Answer: 
– It scales badly! 

– Modest amounts of overlap (sharing) dramatically limits multitasking 
– Constraints on multitasking reflect this tradeoff

•Formal treatment: 
– Numerical analysis (simulations in a variety of network architectures) 
– Mathematical analysis (graph theoretic analyses)

Shared Representation vs. Multitasking
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• Learning benefits by shared representations

• But this costs us in the ability to multitask 
(i.e., do two control-demanding tasks at once)

• To see this, let’s do a little demonstration…

Why Shared Representations?



Name the color of the stimulus and 
at the same time point to where it is…

Color Naming + Location Pointing



BLUE



YELLOW



Point left if the written word is 
 

⬅︎ RED 

Point right if the written word is 
 

  GREEN ➡︎ 

Word Mapping



GREEN



RED



Name the color of the following stimulus 
and, at the same time: 

 
Point left if the written word is 

 
⬅︎ RED 

Point right if the written word is 
 

  GREEN ➡︎ 

Color Naming + Word Mapping



GREEN



RED



Learning and Multitasking
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Control Signals

Motor Perceptual

Responses

Colors Words
Stimulus Features

RED GREEN

“red” “green”
Verbal

Verbal WordColor

Color Naming



Stimulus Features

Colors Words

Responses
Verbal Manual

left right

Control Signals

Manual

Motor Perceptual

Location

LEFT RIGHT
Location

Verbal Color

Multitasking is possible

Color Naming + Location Pointing

“red” “green”

RED GREEN

Word



Stimulus Features

Verbal

Colors Words

Verbal
left right

Control Signals

Word

Motor Perceptual

LocationPointingManual

Word Mapping

New task easily learned

Generalization

Verbal Manual
Responses

Color

“red” “green”

LEFT RIGHT
Location

RED GREEN



Stimulus Features

Colors Words
RED

Verbal
left right

Motor Perceptual

ManualVerbal Color

Color Naming + Word Mapping

…but can’t multitask

Control Signals

Manual
Responses

Word LocationPointing

“red” “green”

LEFT RIGHT
Location

GREEN



Stimulus Features

Colors Words
RED

Verbal
left right

Motor Perceptual

ManualVerbal Color

Color Naming + Word Mapping

Could multitask…

Control Signals

Manual
Responses

Word LocationPointing

“red” “green”

LEFT RIGHT
Location

GREEN



Stimulus Features

Colors Words
RED

Verbal
left right

Motor Perceptual

ManualVerbal Color

Color Naming + Word Mapping

or even…

Control Signals

Manual
Responses

Word LocationPointing

“red” “green”

LEFT RIGHT
Location

GREEN
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Stimulus
Dimensions

Response
Dimensions

ControlVisual Auditory Tactile

ManualVerbal Facial

Associations

Outputs

Inputs

Network Representation of Multiple Tasks

“Minimal Basis Set” 
Representation

• Only 3 sets of  
   mapping units

• But no multitasking



Visual Auditory Tactile

ManualVerbal Facial

Associations

Outputs
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Control

Network Representation of Multiple Tasks



Visual Auditory Tactile

ManualVerbal Facial

Associations

Outputs

Inputs
Control

“Tensor Product”
Representation

• 9 sets of mapping units
• But multitasking possible

Network Representation of Multiple Tasks
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Empirical Implications

Multipurpose 
 but serial

Multitasking 
and parallel

Learning
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GREEN

“green” ☜

Shared Representation 
(can’t multitask with color naming)

GREEN

“green” ☜

Separated Representation 
(can multitask with color naming)

Empirical Study

Training Session

M
ul

tit
as

ki
ng

 
Pe

rf
or

m
an

ce

Predicted 
results

Learning



Summary



• Modest amounts of cross-talk produce a 
radical constraint on parallelism: 

– Need to go “serial” with even modest pathway overlap 
⇒constraints on multitasking capacity

Summary



• Modest amounts of cross-talk produce a 
radical constraint on parallelism: 

– Need to go “serial” with even modest pathway overlap 
⇒constraints on multitasking capacity

• Control architecture is adapted to this constraint: 
– reflects optimization of tradeoff between 

shared of representations and processing efficiency

Summary
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•Fundamental tradeoff:

•Explains:
– Capacity constraints in cognitive control:

• purpose of cognitive control rather than a limitation
– Continuum of serial vs. parallel processing in distributed systems
– Trajectory from controlled to automatic processing (e.g., in skill acquisition)
– Other fundamental psychological phenomena:

• attention & “binding”
– Defines an intertemporal choice between “getting by”  and “getting trained”

• how does the system decide this?
• how can this be formalized?

Learning vs. Performance

SHARED representations 
generalization & flexibility: 

learning efficiency 

SEPARATED representations 
multitasking: 

performance efficiency 

AUTOMATIZATION
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•Interactive Parallelism  

•Independent Parallelism

Fundamental Tension

– many small interacting computations in the service of some 
single coherent higher level process

– at the core of PDP (and now deep learning)
– relies on shared representations (learning efficiency)
– requires “protection” from interference ⇒ control-dependent

– many separate unrelated computations
– at the core of traditional “embarrassing” parallelism (e.g., MPI)
– relies on separated representations
– allows “multitasking” ⇒ automaticity (processing efficiency)
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Classics in the History of Psychology
An internet resource developed by

Christopher D. Green
York University, Toronto, Ontario

(Return to Classics index)

[Classics Editor's Note: Footnotes are in square brackets; references in round brackets]

The Magical Number Seven, Plus or Minus Two: Some Limits on our Capacity for
Processing Information[1]

George A. Miller (1956)
Harvard University

First published in Psychological Review, 63, 81-97.

My problem is that I have been persecuted by an integer. For seven years this number has followed me
around, has intruded in my most private data, and has assaulted me from the pages of our most public
journals. This number assumes a variety of disguises, being sometimes a little larger and sometimes a little
smaller than usual, but never changing so much as to be unrecognizable. The persistence with which this
number plagues me is far more than a random accident. There is, to quote a famous senator, a design behind
it, some pattern governing its appearances. Either there really is something unusual about the number or else I
am suffering from delusions of persecution.

I shall begin my case history by telling you about some experiments that tested how accurately people can
assign numbers to the magnitudes of various aspects of a stimulus. In the traditional language of psychology
these would be called experiments in absolute judgment. Historical accident, however, has decreed that they
should have another name. We now call them experiments on the capacity of people to transmit information.
Since these experiments would not have been done without the appearance of information theory on the
psychological scene, and since the results are analyzed in terms of the concepts of information theory, I shall
have to preface my discussion with a few remarks about this theory. 

Information Measurement

The "amount of information" is exactly the same concept that we have talked about for years under the name
of "variance." The equations are different, but if we hold tight to the idea that anything that increases the
variance also increases the amount of information we cannot go far astray.

The advantages of this new way of talking about variance are simple enough. Variance is always stated in
terms of the unit of measurement - inches, pounds, volts, etc. - whereas the amount of information is a
dimensionless quantity. Since the information in a discrete statistical distribution does not depend upon the
unit of measurement, we can extend the concept to situations where we have no metric and we would not
ordinarily think of using [p. 82] the variance. And it also enables us to compare results obtained in quite
different experimental situations where it would be meaningless to compare variances based on different
metrics. So there are some good reasons for adopting the newer concept.

Classics in the History of Psychology -- Miller (1956) http://psychclassics.asu.edu/Miller/

1 de 15 03/09/2010 12:40 a.m.
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• Visual Working Memory Task 

• Absolute Perceptual Judgement 

• Numerosity Estimation (“subtilizing”)

3 Tasks

“3”
1 2 3 4

+
Yes No

“4” “many”

L

Luck & Vogel, 1997

Revkin et al., 2008

Pollack, 1952
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Classics in the History of Psychology
An internet resource developed by

Christopher D. Green
York University, Toronto, Ontario

(Return to Classics index)

[Classics Editor's Note: Footnotes are in square brackets; references in round brackets]

The Magical Number Seven, Plus or Minus Two: Some Limits on our Capacity for
Processing Information[1]

George A. Miller (1956)
Harvard University

First published in Psychological Review, 63, 81-97.

My problem is that I have been persecuted by an integer. For seven years this number has followed me
around, has intruded in my most private data, and has assaulted me from the pages of our most public
journals. This number assumes a variety of disguises, being sometimes a little larger and sometimes a little
smaller than usual, but never changing so much as to be unrecognizable. The persistence with which this
number plagues me is far more than a random accident. There is, to quote a famous senator, a design behind
it, some pattern governing its appearances. Either there really is something unusual about the number or else I
am suffering from delusions of persecution.

I shall begin my case history by telling you about some experiments that tested how accurately people can
assign numbers to the magnitudes of various aspects of a stimulus. In the traditional language of psychology
these would be called experiments in absolute judgment. Historical accident, however, has decreed that they
should have another name. We now call them experiments on the capacity of people to transmit information.
Since these experiments would not have been done without the appearance of information theory on the
psychological scene, and since the results are analyzed in terms of the concepts of information theory, I shall
have to preface my discussion with a few remarks about this theory. 

Information Measurement

The "amount of information" is exactly the same concept that we have talked about for years under the name
of "variance." The equations are different, but if we hold tight to the idea that anything that increases the
variance also increases the amount of information we cannot go far astray.

The advantages of this new way of talking about variance are simple enough. Variance is always stated in
terms of the unit of measurement - inches, pounds, volts, etc. - whereas the amount of information is a
dimensionless quantity. Since the information in a discrete statistical distribution does not depend upon the
unit of measurement, we can extend the concept to situations where we have no metric and we would not
ordinarily think of using [p. 82] the variance. And it also enables us to compare results obtained in quite
different experimental situations where it would be meaningless to compare variances based on different
metrics. So there are some good reasons for adopting the newer concept.

Classics in the History of Psychology -- Miller (1956) http://psychclassics.asu.edu/Miller/

1 de 15 03/09/2010 12:40 a.m.

 …

 …



.

And the list goes on…

• Classic verbal short-term memory task 
(Sternberg, 1966) 

• Classic working memory tasks 
(Baddeley, 1990; Cowan, 1999; Luck & Vogel, 1997) 

• Attention / visual search tasks 
(Shiffrin & Schneider, 1977; Treisman & Gelade, 1980) 

• Control-dependent processing 
(Posner & Snyder,1975; Pashler, 1994)



.

And the list goes on…

• Classic verbal short-term memory task 
(Sternberg, 1966) 

• Classic working memory tasks 
(Baddeley, 1990; Cowan, 1999; Luck & Vogel, 1997) 

• Attention / visual search tasks 
(Shiffrin & Schneider, 1977; Treisman & Gelade, 1980) 

• Control-dependent processing 
(Posner & Snyder,1975; Pashler, 1994)

• All exhibit ≤ 2½ bit capacity limit



.

And the list goes on…

• Classic verbal short-term memory task 
(Sternberg, 1966) 

• Classic working memory tasks 
(Baddeley, 1990; Cowan, 1999; Luck & Vogel, 1997) 

• Attention / visual search tasks 
(Shiffrin & Schneider, 1977; Treisman & Gelade, 1980) 

• Control-dependent processing 
(Posner & Snyder,1975; Pashler, 1994)

• All exhibit ≤ 2½ bit capacity limit

• But for the same reason?
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Conjunctive Code

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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Conjunctive Code

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Semantic + Compositional Code

1 .3 .1 0 0 .1 0 0 0 0 0 0 0 0 0 0

.3 1 .3 .1 0 0 0 0 0 0 0 0 0 0 0 0

.1 .3 1 .3 .1 0 0 0 0 0 0 0 0 0 0 0
0 .1 .3 1 .3 .1 0 0 0 0 0 0 0 0 0 0
0 0 .1 .3 1 .3 0 0 0 0 0 0 0 0 0 0
.1 0 0 .1 .3 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 .1 0 .2 0 0 0 0 0 0
0 0 0 0 0 0 .1 1 .8 .4 .3 0 0 0 0 0
0 0 0 0 0 0 0 .8 1 .1 .1 0 0 0 0 0
0 0 0 0 0 0 .2 .4 .1 1 .9 0 0 0 0 0
0 0 0 0 0 0 0 .3 .1 .9 1 0 0 0 0 0
0 0 0 0 0 0 0 0 .4 .6 0 1 .8 .6 .4 .2
0 0 0 0 0 0 0 0 0 .4 0 .8 1 .8 .6 .4
0 0 0 0 0 0 0 0 0 0 0 .6 .8 1 .8 .6
0 0 0 0 0 0 0 0 0 0 0 .4 .6 .8 1 .8
0 0 0 0 0 0 0 0 0 0 0 .2 .4 .6 .8 1

Semanticity of Codes
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• Assume some covariance matrix over features of codes
- implement similarity structure as exponentially decaying 

distance between features within a dimension (Shepherd, 1987)

• Model two tasks:
- Similarity task:

indicate stimulus in a set most similar to randomly selected probe
indexes representational capacity (as a function of coding structure)

- Identification task:
identify probed item (based on one of its features)
indexes processing capacity (as a function of # items = set size)

Abstract (Numerical) Model
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Affordance
(Musslick et al., 2023)
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• Inescapable tradeoff between:
- accuracy  (identification error)

- demands as much precision as possible 
(Shannon’s Rate-Distortion Theory)

- similarity and abstraction (generalization error)
- demands that similar things be represented similarly  

(Shepherd’s Universal Law of Generalization)

Miller’s Law:

[Representational efficiency]k • [Processing efficiency] ∝ c

Errorgen ⋅
e− 1

2 Errorid + σ

e− 2
3 Errorid + σ

=
1
2

• Optimum for generalization 
                dramatically constrains identification: 

• Case study:  “Miller’s tasks”

Fundamental Principle
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• Encoding
- semantic, compositional codes (grid cells)
- informed by available neural / psychophysical data:

• Memory
- rapid Hebbian associative learning in Hopfield network

• Processing
- embed items
- encode in associative memory
- clamp probe
- settle to convergence (accuracy ≈ cross-entropy; cycles ≈ reaction time)
- evaluate as a function of set size

Mechanistic Process Model
Steven Frankland 
Dartmouth University
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• Visual Working Memory Task 

• Absolute Perceptual Judgement 

• Numerosity Estimation (“subtilizing”)

Miller’s Tasks
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+
Yes No

“4” “many”

L

Luck & Vogel, 1997

Pollack, 1952
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involve novel/arbitrary stimuli

Capacity Constraints

• Capacity constraints in these tasks:
are not fundamentally due to resource limitations,                
                               but rather 
optimization of a fundamental tradeoff 
between representational efficiency (generalization) 
            and processing efficiency

Miller’s Law



Natural Minds



Fundamental principle underlying cognitive function:

Natural Minds



Fundamental principle underlying cognitive function:

• Memory: Complementary Learning Systems (McClelland et al., 1995)

Pattern separation (episodic memory: individuation & identification)
Pattern completion (semantic memory: generalization)

Natural Minds



Fundamental principle underlying cognitive function:

• Memory: Complementary Learning Systems (McClelland et al., 1995)

Pattern separation (episodic memory: individuation & identification)
Pattern completion (semantic memory: generalization)

• Attention: Feature Integration Theory (Treisman & Gelade, 1980)

Serial search (compositional coding & the “Binding problem”)
Parallel search (conjunctive codes)

Natural Minds



Fundamental principle underlying cognitive function:

• Memory: Complementary Learning Systems (McClelland et al., 1995)

Pattern separation (episodic memory: individuation & identification)
Pattern completion (semantic memory: generalization)

• Attention: Feature Integration Theory (Treisman & Gelade, 1980)

Serial search (compositional coding & the “Binding problem”)
Parallel search (conjunctive codes)

• Performance: Automaticity and Control (Musslick et al, 2024)

Control-dependent, serial processing (shared, compositional reps)
Automatic, parallel multitasking (separated conjunctive reps)

Natural Minds
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• If this is truly a general principle…  
                       it should be true not just for humans…

Cognitive Function

• Same should be true massively large models, irrespective of size…

training exerts heavy pressure for  generalization
⇒ encoding of similarity structure in representations
⇒ should impose constraint on capacity in same tasks as humans…

        such as (V/L)LM’s:
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Prompt:  Count the number of boats in the image: 
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•LLMs appear to be bound by the same constraints: 
- binding errors (illusory conjunctions) in visual working memory tasks 

- subitizing limits in generation and inference 

- visual search  

•? Fundamental principle of information processing: 
   that defines the envelope of cognitive function 
   in natural and artificial minds:

Miller’s Law

Representational Capacity * Processing Capacity ∝ 𝓀


