Capacity Constraints In
Cognitive Function
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Cognitive Control

the radical constraint on its engagement




Cognitive Control

There are even laws prohibiting allocation of control
to more than one task at a time:

Talking on a cell phone and driving



The Capacity Constraint
on Cognitive Control




The Capacity Constraint
on Cognitive Control

¢ Central to the original theories of cognitive control
(e.g., Posner & Snyder, 1975; Shiffrin & Schneider, 1977)




The Capacity Constraint
on Cognitive Control

e Continues to define the methodology for studying the
engagement of cognitive control: dual task designs




The Capacity Constraint
on Cognitive Control

¢ Foundational assumption of most* current models
of cognitive control (e.g., ACT-R, SOAR, PDP models)
*though not all (e.g. EPIC)




The Capacity Constraint
on Cognitive Control

e Yet, an explanation for this constraint remains elusive



The Capacity Constraint
on Cognitive Control

What is its cause, and why is it so restrictive?
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Capacity Constraints

¢ “Explanations” commonly offered:
— metabolic (energetically costly) or

— structural (limited number of “slots”)
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— Metabolic?




Capacity Constraints

e Those explanations are silly

— Metabolic?

¢ \ast areas of cortex (e.g., visual) are “running” all the time
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Capacity Constraints

e Those explanations are silly

— Structural?

¢ PFC comprises ~30% of neocortex = ~30 billion neurons...
but only 1 control-demanding task at a time? Really?

Prefrontal
Cortex




Capacity Constraints

® The question begs a more rational explanation...
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Capacity Constraints

e Structural models:

— constraints of attractor systems
(Usher et al., 2001)
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Capacity Constraints

e Structural models:

— constraints of attractor systems
(Usher et al., 2001)

— capacity vs. precision
(e.g., Ma & Huang, 2009; Luck & Vogel, 2013, efc.)

¢ These accounts still beg the question of why so strict,
given ~30B neurons?




Capacity Constraints

¢ Functional (computational) accounts:

— Symbolic models (production system architectures)
(e.g., Meyer & Kieras, 1997; Salvucci & Taatgren, 2008)

¢ Scheduling constraints to avoid cross-talk
imposed by interacting processes

¢ Assume pre-specified processing architecture



Capacity Constraints

¢ Functional (computational) accounts:

— Symbolic models (production system architectures)
(e.g., Meyer & Kieras, 1997; Salvucci & Taatgren, 2008)

¢ Beg the question: why that architecture?



Shared Representation vs. Multitasking

eBasic idea:
— Pathway overlap (shared representations) introduces potential for cross-talk

“red”  “green”

Overlapping
Pathways

® o °
— RED GREEN

Stimulus:



Shared Representation vs. Multitasking

eBasic idea:

— The purpose of control is to manage this

N
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Shared Representation vs. Multitasking

eBasic idea:

— Can solve the problem without control...




Shared Representation vs. Multitasking

but that carries its own costs:

Two Mouthes

Pathways
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Stimulus:



Shared Representation vs. Multitasking

e Classic illustration:
(Shaffer et al., 1975)

— echoing a speech stream while copy-typing (easy)
VS.

— dictation while reading aloud (hard)




Shared Representation vs. Multitasking

Verbal Response Manual Response
Phonologic Orthographic
Representations Representations

Auditory Input Visual Input



Shared Representation vs. Multitasking

Verbal Response Manual Response

Representational
e Sharing .

Phonologic Orthographic
Representations Representations
Auditory Input Visual Input
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Rational Boundedness of Control




Rational Boundedness of Control

e Constraints on control-dependent processing reflect:

- the representational cost of shared representation
and the role of control in avoiding this cost




Rational Boundedness of Control

e Constraints on control-dependent processing reflect:

- not limitations in the control mechanism itself




Rational Boundedness of Control

¢ Inverts the standard interpretation:

Control reflects bound on rational processing



Rational Boundedness of Control

¢ Inverts the standard interpretation:

Control reflects rational bound on processing
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Shared Representation vs. Multitasking

e Descendant of the Multiple Resources theory of attention
Navon & Gopher (1979); Allport (1982); Meyer & Kieras, (1997)

— But that was a qualitative theory; also, what are resources?




Shared Representation vs. Multitasking

e Question:

— How does the maximum number of processes (multitasking) scale
with potential crosstalk (shared representations) in networks?




Shared Representation vs. Multitasking

e Anhswer:

— It scales badly!
- Modest amounts of overlap (sharing) dramatically limits multitasking
- Constraints on multitasking reflect this tradeoff



Shared Representation vs. Multitasking

¢ Formal treatment:
— Numerical analysis (simulations in a variety of network architectures)
— Mathematical analysis (graph theoretic analyses)
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Pathway Overlap (Shared Representation)
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Why Shared Representations?




Why Shared Representations?

¢ Learning benefits by shared representations




Why Shared Representations?

e But this costs us in the ability to multitask
(i.e., do two control-demanding tasks at once)




Why Shared Representations?

® To see this, let’s do a little demonstration...




Color Naming + Location Pointing

Name the color of the stimulus and
at the same time point to where it is...










Word Mapping

Point left if the written word is

4= RED

Point right if the written word is

GREEN =



GREEN







Color Naming + Word Mapping

Name the color of the following stimulus
and, at the same time:

Point left if the written word is

4= RED

Point right if the written word is

GREEN =









Learning and Multitasking
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Color Naming

Control Signals

Color

@ ®

Responses “red” “green”

7y

. 4

RED GREEN
Colors Words
Stimulus Features




Color Naming + Location Pointing

Control Signals

Manual Color Location

Multitasking is possible ® ® 0 - ®

Manual
Responses “red” “green” left right
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Word Mapping

Control Signals

Manual Color Pointing

New task easily learned - ® @ o 9

Manual
Responses “red” “green” left right

/— Generalization

T4
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Stimulus Features



Color Naming + Word Mapping

Control Signals

Manual Color Pointing

...but can’t multitask ® 6 0 » o

Manual
Responses “red” “green” left right
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Control Signals

Pointing

Manual
Responses “red” ‘“green” left right

7
RED GREEN LEFT RIGHT

Colors Words Location
Stimulus Features




Control Signals

Pointing

Manual
Responses “red” ‘“green” left right

7z 7/
RED GREEN LEFT RIGHT
Colors Words Location
Stimulus Features



Network Representation of Multiple Tasks
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Network Representation of Multiple Tasks

Verbal Manual Facial

Outputs (@& e e o e o “Minimal Basis Set”

Representation

e Only 3 sets of
mapping units

® But no multitasking
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Network Representation of Multiple Tasks
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Network Representation of Multiple Tasks

Verbal WERDE] Facial “Tensor Product”
Outputs & @ ® @ & @ Representation

® 9 sets of mapping units
® But multitasking possible
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Single + Multitask Training

MSE

Dimension 1
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JANUARY, 1923 SCIENTIFIC AMERICAN

Doing Two Things at Once

Multiple Consciousness, or Reflex Action of Unaccustomed Range?
By Dr. Alfred Gradenwitz

Thea Alba
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Empirical Implications

Multipurpose Multitasking
but serial and parallel




Empirical Study

Shared Representation
(can’t multitask with color naming)
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Empirical Study

Shared Representation
(can’t multitask with color naming)
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Empirical Study

Shared Representation
(can’t multitask with color naming)
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Predicted
results

Empirical Study

Separated Representation
(can multitask with color naming)

g

Multitaskin
Performance
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Summary




Summary

® Modest amounts of cross-talk produce a
radical constraint on parallelism:

— Need to go “serial” with even modest pathway overlap

= constraints on multitasking capacity




Summary

e Control architecture is adapted to this constraint:

— reflects optimization of tradeoff between
shared of representations and processing efficiency



Learning vs. Performance




Learning vs. Performance

¢ Fundamental tradeoff:

SHARED representations SEPARATED representations
generalization & flexibility: v multitasking:

learning efficiency performance efficiency
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Learning vs. Performance

¢ Fundamental tradeoff: / BIAS
SHARED representations representations
generalization & flexibility: = multitasking:
learning efficiency efficiency
e Explains:

— Capacity constraints in cognitive control:
» purpose of cognitive control rather than a limitation




Learning vs. Performance

¢ Fundamental tradeoff:

SHARED representations SEPARATED representations
generalization & flexibility: V5 multitasking:
learning efficiency performance efficiency
e Explains:

— Continuum of serial vs. parallel processing in distributed systems



Learning vs. Performance

¢ Fundamental tradeoff: AUTOMA{lZAT’ON
SEPARATED representations
representations . . :
generalization & flexibility: multitasking:
efficiency performance efficiency

e Explains:

— Trajectory from controlled to automatic processing (e.g., in skill acquisition)



Learning vs. Performance

e Explains:

— Other fundamental psychological phenomena:
 attention & “binding”



Learning vs. Performance

e Explains:

— Defines an intertemporal choice between “getting by” and “getting trained”
* how does the system decide this?
* how can this be formalized?



Fundamental Tension

e Interactive Parallelism

® Independent Parallelism




Fundamental Tension

e Interactive Parallelism

— many small interacting computations in the service of some
single coherent higher level process




Fundamental Tension

e Interactive Parallelism

— at the core of PDP (and now deep learning)




Fundamental Tension

e Interactive Parallelism

— relies on shared representations (learning efficiency)




Fundamental Tension

e Interactive Parallelism

— requires “protection” from interference = control-dependent




Fundamental Tension

® Independent Parallelism

— many separate unrelated computations



Fundamental Tension

® Independent Parallelism

— at the core of traditional “embarrassing” parallelism (e.q., MPI)



Fundamental Tension

® Independent Parallelism

— relies on separated representations



Fundamental Tension

® Independent Parallelism

— allows “multitasking” = automaticity (processing efficiency)



Outline

= ® Miller’s Law




Classics in the History of Psychology

Vov. 63, No. 2 i "7 Marcy, 1956

O[fing b
" THE PSYCHOLOGICAL REVIEW

 THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO:
' SOME LIMITS ON OUR CAPACITY FOR
PROCESSING INFORMATION*

— "

GEORGE A. MILLER

IHarvard University

My problem is that I have been perse-
. cuted by an integer. For:seven years
this number has followed me around, has
intruded in my most private data, and
has assaulted me from the pages of our
* most public journals. This number as-
sumes a variety of disguises, being some-
times a little larger and sometimes a
little smaller than usual, but never
. changing so much as to be unrecogniz-
able. The persistence with which this
number plagues me is far more than
a.random accident. There is, to quote
a famous senator, a design behind it,
some pattern governing its appearances.
- Either there really is something unusual
" about the number or else I am suffering
~ from delusions of persecutions«-
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3 Tasks

¢ Visual Working Memory Task

Luck & Vogel, 1997
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PITCHES
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3 Tasks

¢ Visual Working Memory Task

Luck & Vogel, 1997

100

-
g

90

80

Percent correct

70
60

50
12345678 10 12
Number of items

e Absolute Perceptual Judgement

Pollack, 1952

7 +/-2
(~2.5 bits)

PITCHES
100-8000 CPS

¢ Numerosity Estimation (“subtilizing”)

Revkin et al., 2008
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# items




Classics in the History of Psychology

Vov. 63, No. 2 i "7 Marcy, 1956

O[fing b
" THE PSYCHOLOGICAL REVIEW

 THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO:
' SOME LIMITS ON OUR CAPACITY FOR
PROCESSING INFORMATION*

GEORGE A. MILLER

IHarvard University

««« For the present 1 propose to
withhold judgment. Perhaps there is
something deep and profound behind all
these sevens, something just calling out
for us to discover it. But I suspect
that it is only a pernicious, Pythagorean
coincidence. ' :




And the list goes on...

e Classic verbal short-term memory task
(Sternberg, 1966)

e Classic working memory tasks
(Baddeley, 1990, Cowan, 1999; Luck & Vogel, 1997)

e Attention / visual search tasks
(Shiffrin & Schneider, 1977; Treisman & Gelade, 1980)

e Control-dependent processing
(Posner & Snyder,1975; Pashler, 1994)




And the list goes on...

e All exhibit < 2% bit capacity limit



And the list goes on...

e But for the same reason?



An Information Theoretic Perspective
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An Information Theoretic Perspective

Empirical State Internal Representation
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An Information Theoretic Perspective

Empirical State Internal Representation
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An Information Theoretic Perspective

Empirical State Internal Representation
Stimulus “Noumenal” “Phenomenal” code
features code Conjunctive Compositional
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An Information Theoretic Perspective

Empirical State Internal Representation
“Noumenal” “Phenomenal” code

code Conjunctive Compositional
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Semanticity of Codes

Conjunctive Code
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Semanticity of Codes

Conjunctive Code Semantic + Compositional Code
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e |dentification error:

- Traditional information theoretic construct
(e.g, Optimal Coding, Rate Distortion Theory, etc.)

- Loss: transmitted code is not same as source code
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- Probed by accuracy tasks




Two Types of Error

e |dentification error:

Traditional information theoretic construct
(e.g, Optimal Coding, Rate Distortion Theory, etc.)

Loss: transmitted code is not same as source code

Minimized by maximizing distance between codes:
=» conjunctive codes

Probed by accuracy tasks

e Generalization error:

- Traditional cognitive / modern ML construct
(e.q, Shepherd’s Universal Principle of Generalization)

- Loss: transmitted code is not close fo source code




Two Types of Error

e |dentification error:

- Traditional information theoretic construct
(e.g, Optimal Coding, Rate Distortion Theory, etc.)

- Loss: transmitted code is not same as source code

- Minimized by maximizing distance between codes:
=» conjunctive codes

- Probed by accuracy tasks

e Generalization error:

—a
=
*
[
- Minimized by matching codes to structure of data: ?
= semantic / compositional codes B
[



Two Types of Error

e |dentification error:

- Traditional information theoretic construct
(e.g, Optimal Coding, Rate Distortion Theory, etc.)

- Loss: transmitted code is not same as source code

- Minimized by maximizing distance between codes:
=» conjunctive codes

- Probed by accuracy tasks

e Generalization error:

Fl wEEee

- Probed by similarity tasks



Information Bottleneck

Tishby, Naftali, Pereira & William Bialek (2000)

Zaslavskya, Kemp, Regier & Tishby (2018)
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Information Bottleneck

Tishby, Naftali, Pereira & William Bialek (2000)

Zaslavskya, Kemp, Regier & Tishby (2018)
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Abstract (Numerical) Model




Abstract (Numerical) Model

e Assume some covariance matrix over features of codes

- implement similarity structure as exponentially decaying
distance between features within a dimension (Shepherd, 1987)




Abstract (Numerical) Model

¢ Model two tasks:
- Similarity task:

Indicate stimulus in a set most similar to randomly selected probe

indexes representational capacity (as a function of coding structure)




Abstract (Numerical) Model

e Model two tasks:

- ldentification task:

identify probed item (based on one of its features)
indexes processing capacity (as a function of # items = set size)




Miller’s Law

Frankland, Webb, Lewis & Cohen (2025)

Identification Error ~1/< Generalization Error
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Miller’s Law

Frankland, Webb, Lewis & Cohen (2025)

Identification Error ~1/< Generalization Error

Pareié*o-satisficing optimum
< 2.5bits

Set Size

Mutual information (bits)

=
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2 3 4
Mutual information (bits)

Similarity task




Ubiquitous Effect

1 4l 4 & o
Generalization Gradient




Ubiquitous Effect

Inference
(Frankland et al., 2024)

Identification
Accuracy

Conjunctive vs. Conjunctive
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Affordance
(Musslick et al., 2023)

Network Size

—#— N =20
N =40
N =60

—#— N =100

—#— N = 1000

# Simultaneous Tasks

0.2 0.4 0.6 0.8

% Shared Representations

Conjunctive vs. Conjunctive




Fundamental Principle




Fundamental Principle

e Inescapable tradeoff between:
- accuracy (identification error)

- demands as much precision as possible
(Shannon’s Rate-Distortion Theory)




Fundamental Principle

e Inescapable tradeoff between:

- similarity and abstraction (generalization error)

- demands that similar things be represented similarly
(Shepherd’s Universal Law of Generalization)




Fundamental Principle

e Inescapable tradeoff between:

Miller’s Law:

[Representational efficiency]x « [Processing efficiency] << c¢




Fundamental Principle

e Inescapable tradeoff between:

Miller’s Law:
[Representational efficiencyk < [Processing efficiency] < ¢

e—%Errorid +o0 1

Errory,, - o
e~ 3Error 4 & 2



Fundamental Principle

e Inescapable tradeoff between:

Miller’s Law:

e Optimum for generalization
dramatically constrains identification:



Fundamental Principle

Miller’s Law:

e Case study: “Miller’s tasks”



Mechanistic Process Model s

Steven Frankland
Dartmouth University

Gtid-code of 2d location in display

- ﬂ ﬁ

Grid-code of 1D location in color space




Mechanistic Process Model

@

Steven Frankland
Dartmouth University

e Encoding

- semantic, compositional codes (grid cells)
- informed by available neural / psychophysical data:




Mechanistic Process Model

s

Steven Frankland
Dartmouth University

e Memory

- rapid Hebbian associative learning in Hopfield network

Response




Mechanistic Process Model

s

Steven Frankland
Dartmouth University

® Processing
- embed items
- encode in associative memory
- clamp probe
- settle to convergence (accuracy = cross-entropy; cycles = reaction time)
- evaluate as a function of set size



Miller’s Tasks

e Visual Working Memory Task Data

Luck & Vogel, 1997

(b) 100
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Percent correct
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Number of items

e Absolute Perceptual Judgement

Pollack, 1952

PITCHES
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¢ Numerosity Estimation (“subtilizing”)
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Miller’s Tasks

e Visual Working Memory Task Data Model

Luck & Vogel, 1997
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Pollack, 1952
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Capacity Constraints




Capacity Constraints

e Tasks that exhibit capacity constraints
working/short term memory, novice performance

involve novel/arbitrary stimuli




Capacity Constraints

e Tasks that exhibit capacity constraints
working/short term memory, novice performance

involve novel/arbitrary stimuli
= demand generalization




Capacity Constraints

but performance is evaluated with respect to identification error




Capacity Constraints

e Capacity constraints in these tasks:

are not fundamentally due to resource limitations,
but rather




Capacity Constraints

e Capacity constraints in these tasks:

optimization of a fundamental tradeoff
between representational efficiency (generalization)
and processing efficiency



Capacity Constraints

Miller’s Law



Natural Minds




Natural Minds

Fundamental principle underlying cognitive function:




Natural Minds

Fundamental principle underlying cognitive function:

® Memory: Complementary Learning Systems (McClelland et al., 1995) [k R
Pattern separation (episodic memory: individuation & identification) BT

Pattern completion (semantic memory: generalization)




Natural Minds

Fundamental principle underlying cognitive function:

e Attention: Feature Integration Theory (Treisman & Gelade, 1980) e
Serial search (compositional coding & the “Binding problem”) o

ok

Parallel search (conjunctive codes)




Natural Minds

Fundamental principle underlying cognitive function:

e Performance: Automaticity and Control Musslick et al, 2024)
Control-dependent, serial processing (shared, compositional reps)
Automatic, parallel multitasking (separated conjunctive reps)




Cognitive Function




Cognitive Function

e If this is truly a general principle...
it should be true not just for humans...




Cognitive Function

e Same should be true massively large models, irrespective of size...
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such as (V/IL)LM’s:

training exerts heavy pressure for generalization




Cognitive Function

such as (V/IL)LM’s:

= encoding of similarity structure in representations




Cognitive Function

such as (V/IL)LM’s:

= should impose consfraint on capacity in same tasks as humans...
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e | LMs appear to be bound by the same constraints:

- binding errors (illusory conjunctions) in visual working memory tasks
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e | LMs appear to be bound by the same constraints:

- subitizing limits and inference:
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e | LMs appear to be bound by the same constraints:

- subitizing limits and inference:

Prompt: Count the number of boats in the image:

Response: There are 6 boats in the image
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e | LMs appear to be bound by the same constraints:

- visual search:

Prompt: Where’s Waldo?

GPT-4v: | found Waldo! He’s in the
bottom left corner of the image,
standing behind a woman in yellow
clothing. You can spot him by his
signature red and white striped shirt,
blue pants, glasses, and beanie.
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Miller’s Law

¢ 7?7 Fundamental principle of information processing:
that defines the envelope of cognitive function
in natural and artificial minds:

Representational Capacity * Processing Capacity o< R



