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Abstract 

The striking constraints of some human cognitive processes stand in stark contrast to the near 
limitless capability of others. While we can acquire and flexibly use vast amounts of information, 
the amount we can process at any one time is often stiflingly limited. Here, we integrate ideas 
from information-theory, cognitive science, and neuroscience to offer a unified account of why 
processing is often so limited. We argue that this reflects a fundamental tradeoff between 
representational efficiency and processing efficiency. ‘Representational efficiency’ refers to how 
much and how compactly information is represented by an agent, that is directly related to its 
capacity for generalization. We distinguish this from ‘processing efficiency’, which refers to how 
many representations can be processed at the same time. We show that maximizing 
representational efficiency to optimize the capacity for generalization — a characteristically 
human cognitive strength — comes at the expense of surprisingly strict limits in processing 
capacity, an equally characteristic human weakness that has been observed in a variety of 
cognitive tasks.  We refer to this as the “curse of generalization,” and formulate this first in 
information theoretic form, and then demonstrate it in a neurally motivated model of a set of 
canonical cognitive tasks that have been used to demonstrate the strict limits in human 
processing capacity.  We suggest that the tension between representational efficiency and 
processing efficiency imposes a fundamental constraint on information processing, that may 
provide a unified explanation for a wide range of psychological phenomena, from performance 
in the tasks on which we focus to representational learning and skill acquisition more broadly, as 
well as the performance of modern machine learning architectures that exhibit generalization 
capabilities comparable to humans. 
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Introduction 

Although humans exhibit striking information processing capabilities, they can often also be 
strikingly limited. Most famously, humans can actively maintain only a handful of items in mind 
at one time, an observation familiar from both everyday experience and classic laboratory 
experiments. For example, it has long been recognized that we are limited to remembering only 
about 7 randomly presented digits at a given time (Miller, 1956) – and even fewer objects in a 
visual display (Luck & Vogel, 1997; Cowan, 2001). Remarkably, however, the causes of this limit 
remain poorly understood.  While the resources necessary to carry out human cognitive function 
are clearly finite — e.g., storage space (Amit, 1988), processing time (Cheyette & Piantadosi, 
2020), and the precision of neuronal signaling (Wilken & Ma, 2004; Bays, Husain, & Ma, 2017) 
— it is unclear why limits in these resources alone should impose such severe cognitive 
constraints, especially given the tremendous volume of information that we can store and 
retrieve from longer term forms of memory (Brady et al. 2008).  Furthermore, it is unclear why 
these constraints are so similar across diverse forms of representation and types of cognitive 
processes. This diversity was the focus of George Miller’s classic article (1956), in which he 
pointed out that the limit to the number of items — seven plus or minus two — that can be held 
in immediate memory (now more commonly referred to as “short term” or “working memory”) is 
remarkably similar to limits in the amount of information — about 2.5 bits — that can be 
processed in other tasks, such as the ability to match a tone to one of several reference tones 
(Pollack, 1952; Gravetter & Lockhead, 1973;  Nizami, 2010), or to reliably estimate the number 
of items in a visual display (Kaufman et al. 1948; Mandler & Shebo, 1984; Cheyette & 
Piantadosi, 2020). The similarity of these constraints intrigued Miller.  However, upon careful 
consideration, he was perplexed by several factors: the disparity of types of information and 
tasks involved; the fact that seven “items" could in some cases carry substantially more than 2.5 
bits of information; and the lack of any principles or processing mechanisms that could explain 
the relationship between these constraints.  Accordingly, he could not convince himself that the 
prevalence of the “magical number seven” was more than a coincidence.  Here, we reconsider 
Miller's conclusion, by identifying a fundamental principle of information processing that puts 
representational efficiency and processing efficiency in tension.  This tension, coupled with the 
value of representational efficiency for generalization, can explain the severe processing limits 
observed across disparate cognitive domains — limits that fall consistently in the range of 
Miller’s “magical number seven.” 
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Overview 

Guided by principles of information theory, and building on progress in understanding the 
cognitive processes and underlying neural mechanisms responsible for representational 
learning and memory, we assume that human cognition is optimized to maximize 
representational efficiency — that is, the number of possible states of the world that an agent 
can represent for a given set of representational resources (quantified, in information theoretic 
terms, as code length) — that undergirds our ability for flexible generalization.  However, the 
representational codes that best achieve this, by representing similar items with correspondingly 
similar codes, necessarily compromises accuracy, and this in turn imposes severe limits on 
processing efficiency — that is, the number of independent representations that an agent can 
process at one time (for a given code length).  Here, we argue that this tradeoff between 
generalization and accuracy can explain the severe constraints in cognitive capacities that are 
observed ubiquitously when humans are asked to process novel stimuli, including the tasks that 
Miller considered. Below, we provide a brief overview of these constructs, and their relationship 
to one another, followed by an illustrative example.  We then provide a formal information 
theoretic treatment that identifies the principles involved, followed by a set of mechanistic 
models that exemplify these principles in the tasks on which Miller focused. 

Representational efficiency.  Broadly, we assume that agents seek to optimize 
representational capacity — that is, the number of states of the world that they can represent. In 
principle, this can be maximized by exhaustively representing every possible state of the world 
with a distinct code. However, in practice, this is of course impossible:  Agents have limited time 
for learning, limited resources for representation and computation, and even evolution cannot 
anticipate all possible eventualities. That is, agents face the famous curse of dimensionality 
(Bellman, 1957), that underlies the search for efficient learning algorithms in statistics and 
modern machine learning. Accordingly, we assume that, in the service of maximizing capacity, 
agents seek to maximize representational efficiency — that is, the number of states that can be 
represented with a fixed set of representational resources, closely related to classic work on 
efficient coding in psychology and neuroscience (e.g., Barlow, 1961; Linsker, 1988; Sims, 2016, 
2018; Stocker & Simoncelli, 2006; Tishby et al. 2000; Friston, 2011). 

Given that the world has structure, representational efficiency can be increased, and thus 
the curse of dimensionality mitigated, by acquiring representational codes that align with that 
structure. Cognitive scientists have long highlighted two ways in which natural systems exploit 
structure in the world to maximize representational efficiency:  (i) The use of semantic codes 
that preserve the similarity structure in the world; and (ii) compositionality, the representation of 
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novel states (i.e., ones not previously experienced) through the re-combination of existing codes 
(Fodor & Pylyshyn, 1988; Smolensky, 1990). Together, these support generalization: semantic 
codes allow states that are similar along perceptually and/or behaviorally-relevant dimensions to 
elicit similar interpretations and/or responses (e.g., Shepherd, 1987), while compositional codes 
allow the system to represent never-before seen states through the composition of familiar 
elements (Fodor & Pylyshyn, 1988).  Together, semantically and compositionally structured 
representations, acquired from states of the world that have been experienced, can be extended 
to represent the broader class of states that have not yet been experienced, and in this respect 
can be thought of as representationally efficient. This is a critical factor underlying the 
characteristic flexibility of human cognitive function and, most notably, the ability to generalize. 

Processing efficiency.  While the acquisition of structured codes helps maximize 
representational efficiency, we argue here that this comes at the cost of processing efficiency 
— that is, how many independent states can be represented and kept distinct at the same time.   1

This is because semantically and compositionally structured representations necessarily rely on 
similarity to support generalization, and the use of such codes to represent states that are 
otherwise independent of one another introduces correlations among them. That, in turn, makes 
them less distinguishable, and thus subject to potential confusion and interference, degrading 
performance when individual items must be kept distinct (e.g., identified), irrespective of their 
similarity. This tension, that we formalize further on in terms of decoding error versus 
generalization error, is fundamental to theories of memory, and most notably the theory of 
Complementary Learning Systems (McClelland et al., 1995). In this article, however, we focus 
on the consequences that it has for another closely related tension: between the value of 
generalization, that is afforded by representational efficiency, and the effectiveness with which 
representations of independent items can be processed at the same time — that is, processing 
efficiency.  

The tension between representational and processing efficiency can be mitigated in one of 
two ways:  by adjusting the representations themselves, or how they are processed.  The former 
can occur through forms of representational learning that transpire over longer time frames 
(e.g., consolidation, automatization or chunking — Anderson, 1983; Miller, 1956; McClelland, 

 By “same time,” we mean the period during which a given set of representations are in use.  In information theoretic terms, this is 1

often referred to simply as a “use” and, in the psychological literature, variously as an “episode,” “trial,” or “context.”  From an 
implementational perspective, this corresponds to the period during which a given set of representations are simultaneously 
processed (e.g., over which a probability distribution is defined in a mathematical model, or is co-activated in a neural network 
model).  Optimizing this quantity corresponds to the one addressed by multiplexing in communication systems, which seeks to 
maximize the rate of communication (i.e., number of independent messages that can be communicated at the same time). To our 
knowledge, however, there is no general formal treatment, in information theoretic terms, of the tradeoff between coding 
(representational) efficiency and multiplexing (processing) efficiency, or at least no such treatment that addresses this issue within 
the context of cognitive science and/or neuroscience.
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McNaughton & O’Reilly 1995; Musslick et al., 2023; Shiffrin & Schneider, 1977). However, these 
forms of learning cannot account for the rapid, flexible, and effective processing of novel states 
of which people are often capable, and that require the use of structured representations that 
generalize.  We assume that other mechanisms must be engaged to overcome the potential for 
interference that the use of such structured, generalizable representations introduces, and 
argue that these impose strict constraints on how many representations can be processed at 
once — that is, they extract an inexorable cost in processing efficiency.  We refer to this as “the 
curse of generalization”, that complements the familiar curse of dimensionality. Mitigating one 
invokes the other. While information theory has been used extensively in cognitive science and 
neuroscience to study the efficiency of coding, it has not generally taken account of 
representational structure (i.e., compositionality or semanticity), nor has it been used to address 
processing efficiency (though see Musslick et al., 2023; Petri et al., 2024).   

Here we consider how the tension between representational efficiency and processing 
efficiency — that is, between the curse of dimensionality and the curse of generalization — can 
be cast in information theoretic terms, and in so doing help explain the pattern of constraints in 
human cognitive function that so perplexed George Miller.  Accordingly, we focus primarily on 
the tasks that Miller considered, involving perceptual processing and immediate memory. 
However, in the Discussion, we suggest that this tension may provide a unifying explanation that 
extends to similarly restrictive constraints observed in other domains of cognitive function, such 
as the organization of long-term memory, as well as multitasking capability and cognitive 
control. That is, we suggest the tension between representational efficiency and processing 
efficiency reflects a fundamental tradeoff that can explain the capacity limits of human cognitive 
function and, more generally, shapes the envelope of information processing performance within 
which any system (whether biological or artificial) must operate — a relationship that we 
suggest might be dubbed “Miller’s Law.” 

Illustrative example 

To make the problem concrete, consider the visual short term (or working) memory task 
diagrammed in Figure 1A, that is used paradigmatically to study capacity limits in human 
information processing.  In this task, colored squares appear at various positions in a display, 
followed by a delay, and the participant’s task is to determine whether the color of an item at a 
particular location has changed. Performance on this task degrades precipitously when the 
display contains more than 4 or 5 items (see Figure 7C)  — that is, within the constraints of the 
magical number 7 (in this case, minus two).   

6



Figure 1B shows one possible scheme for how such a task might be performed.  Each 
node corresponds to a coding element (comparable to a bit in a binary code), with a pattern of 
these used to represent a feature value along one of the task-relevant dimensions.  Critically, 2

there are no nodes (i.e., codes) for combinations of feature values across dimensions (i.e, no 
code is uniquely assigned to the specific combination of color and location associated with a 
particular item). That is, the representations are compositional: there are codes for every 
feature value along each dimension, each object is represented as a combination of these by 
associating (“binding”) the codes corresponding to the particular feature values of that object 
along each dimension (e.g., its color and its location), and the display is represented as the set 
of associations representing each of the objects in the display. As suggested above, this 
provides considerable flexibility: by representing each object as a combination of codes along 
different dimension, any possible combination of feature values along those dimensions can be 
represented; and, similarly, representing scenes through the combination of objects allows any 
possible combination of objects to be represented. This scheme can also be acquired much 
more efficiently, since it involves acquiring only the codes for feature values along each 
dimension (which scales multiplicatively), rather than a code for every possible combination 
(which scales exponentially), thus mitigating the curse of dimensionality noted above. 


Importantly, however, compositional coding introduces the risk of interference and confusion 
(for example, the ability to identify an object by its color if its color is shared by another object).  
This is exacerbated by the use of semantically structured representations, in which similar 
feature values are represented similarly along a given dimension (for example, the ability to 

  In this example, the nodes for feature values along a given dimension are independent of one another; however, as suggested 2

above, nodes representing values close to one another may be more similar than ones representing values more distant from one 
another (that is, they may capture semantic structure along a given dimension, the consequences of which are discussed below). 
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Figure	1.	Illustrative	example:	visual	working	memory.	(A)	Participant	observes	a	visual	display	with	colored	squares	
and,	following	a	delay,	is	shown	the	same	display	or	one	in	which	one	of	the	feature	values	has	been	changed	at	a	probed	
location,	and	asked	to	respond	whether	that	item	is	the	same	or	different	from	the	original	display.	(B)	Representation	of	
the	information	in	the	display	in	the	form	of	a	compositional	code.	Each	item	in	the	display	is	represented	through	the	
rapid	formation	of	associations	between	feature	values,	and	the	display	is	represented	through	the	full	set	of	associations.



reliably and specifically identify the color of an object as red, if this is coded similarly to orange).  
This is because similarity of representation introduces, by construction, correlations among 
representations, which makes them less distinguishable (i.e., more likely to be confused), so 
that even items with different feature values (e.g., red vs. orange) may now be confused.  That 3

is, the efficiency and flexibility of using structured representations for generalization invokes the 
curse of generalization, limiting the reliability with which items can be distinguished from one 
another and, consequently, how many can be represented at the same time.  Here we consider 
how the tension between representational efficiency and processing efficiency — that is, 
between the curse of dimensionality and the curse of generalization — can be cast in 
information theoretic terms, and used to explain the pattern of constraints in human cognitive 
function that so perplexed George Miller.   

Argument Summary 

We make the argument in three steps.  First, we formalize the tradeoff between accuracy 
and generalization. This aligns closely with the bias-variance tradeoff widely discussed in 
machine learning, and the tension between pattern separation and pattern completion in 
theories of learning in cognitive science and neuroscience. Here, we draw upon information 
theory to formulate this in terms of a tradeoff between decoding error and generalization error. 
We provide an analysis of this tradeoff, showing that increases in representational efficiency, 
that minimize generalization error, come at the expense of decoding error (i.e., diminished 
accuracy in identifying a specific item).  Second, we show that this effect on decoding error is 
amplified as the number of items that must be actively represented grows, radically restricting 
processing efficiency (i.e., the number of items that can be accurately decoded at the same 
time).  Finally, we point out that these are exactly the conditions elicited by tasks in which strict 
limits to processing capacity are observed (such as the tasks considered by Miller):  On the one 
hand, they invariably use novel stimuli (i.e., involving arbitrary combinations of features), and 
thus demand the use of codes that can support generalization.  On the other hand, they 
evaluate performance in terms of accuracy of identification — a capacity that, as demonstrated.  4

 This is sometimes discussed as the tension between “pattern separation” and “pattern completion” faced by any form of 3

content-addressable memory (e.g., McClelland et al., 2005), and can be formalized in terms of Bayesian inference as a process of 
latent cause inference (e.g., Gershman et al., 2017), in which it must be decided whether an item that does not fully match the 
existing contents of memory should be treated as a partial cue to retrieve the closest entry (i.e., used for generalization), and/or 
treated as a new item to be encoded (or used to modify existing memories;  that is, used for identification).

 The interest in these tasks is precisely because they probe mechanisms, such as working memory, thought to be important for 4

the processing of novel stimuli. Although such stimuli are individually infrequent (at least in the agent’s experience), they are 
common as a class in realistically rich environments. Generalization makes it possible to process such stimuli, though at the cost of 
being able to process only a small number at a time. Here, we focus on this tradeoff in the context of the tasks that Miller 
considered, involving immediate memory and perceptual processing. However, in the Discussion, we suggest that this tradeoff 
extends to a much wider range of tasks, including ones involving long-term memory, as well as multitasking and cognitive control. 
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Information Theoretic Formulation 

To cast the problem in information-theoretic terms, we assume that the knowledge required 
to perform a task is represented by codes for the relevant information. That is, observed states 
of the world are converted to internal representations (encoded), that are accessed for 
processing (in channels) to generate (transmit) a task-relevant inference and/or action 
(decoded) in response.  Here, we are interested in how the structure of the internal 
representational codes impact how much information from the original source can be 
transmitted to generate the task-relevant response(s) at a given time.  We use code length (in 
bits) to quantify the representational resources that the agent has available, and we focus on 
two critical factors:  how many states of the world can be represented with those resources (that 
we refer to as representational efficiency), and how many distinct items within such states can 
be processed at a given time (that we refer to as processing efficiency)?  To formalize these 
questions, we first outline our assumptions about the structure of the world, and define different 
forms of coding structure that can be used to represent states of the world.  We then formalize 
what we mean by representational and processing efficiency, in turn, and consider how coding 
structure impacts these.  More specifically, we show how semantic and compositional codes 
that support generalization dramatically increase code overlap (i.e., decrease minimum code 
distance), which leads to a dramatic increase in decoding error and a concomitant decrease in 
processing efficiency. 

Structure of the World


We assume that there is dimensional structure in the world that our perceptual and 
representational apparatus have evolved to exploit, and that states of the world can be 
described in terms of this structure.  That is, we assume that this structure in the world can be 
captured by describing the world as points in a multidimensional vector space, with each point 
described by a set of vectors, each of which represents a single feature value along one of the 
dimensions (including location and time),  and with dimensions that are orthogonal to one 5

another so that, over the entire space, the feature values along any given dimension vary 
independently of those along any other. The dimensions comprise a basis set for the space, and 
any point in the space can be compositionally coded as a set of the feature values along each 
dimension.  Furthermore, we define two types of hierarchically-related subspaces that are 

 In principle, features might be represented at any level of precision (or, in information theoretic terms, code length) along any 5

given dimension.  Although precision will impact representational and/or processing efficiency individually (we consider this in the 
Discussion) importantly, the tension between them obtains for any given level of precision.  In the abstract formulations we 
consider here, we fix precision (i.e., code length) both within and across dimensions, while in the simulations of human behavioral 
performance we draw empirical empirical evidence concerning the resolution of features along different dimensions. 
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relevant to the information processing demands of physical agents: states, that are, for every 
point in physical space (i.e., along the three dimensions of position) and a given point (or set of 
points) in time, the features values along all other dimensions; and items within a state (e.g., 
objects within a display, or a display within the broader scope of the state), that are comprised of 
a subset of points in physical space and/or time that share covariance structure across other 
feature dimensions (e.g., color, shape, etc.) that is independent of any other such subset.  For 
example, an item in Figure 1 (i.e., one of the colored shapes) can be defined as the locations in 
the display that all comprise the same shape (square) and share a given color (e.g., yellow), as 
shown in Figure 2B.   Critically, we assume that all of the feature values of each item, and all the 6

items in a state are represented using the same set of codes. 

Compositional structure.  Given the hierarchical structure outlined above, we can consider 
two levels of compositionality within the representation of a given state:  compositionality of the 
representation of each item in terms of its feature values, that amounts to the concatenation of 
its features along each dimension (i.e., for each of the points comprising its location), and 

 The level of resolution (or precision) at which items are represented is of course an important consideration that, in information 6

theoretic terms, can be considered in terms of code length (for example, each item (colored square) in Figure 2B could be 
represented, at a lower level of resolution, as occupying a single shared position, such as “upper left”).  As explained further below, 
we hold code length constant in our analyses, in order to isolate the effects of correlations in the code, and show that these are 
qualitatively preserved over reasonable assumptions about code length. In the Discussion we consider how these may interact 
with code length, and how this may relate to work that links capacity limits to a tradeoff between precision and load  (Wilken & Ma, 
2004; Ma, Hussain & Bays, 2014) 
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Figure	2.	Types	of	codes.	(A)	Semantic	codes	represent	feature	values	that	are	similar	along	a	given	dimension	(e.g.,	red	
x	and	orange	y)	with	codes	that	are	themselves	more	similar	(i.e.,	comparably	close	to	one	another,	such	as	x*	and	y*)	
than	they	are	to	others	(e.g.,	blue	z).		This	supports	generalization	(Shepard,	1987),	by	allowing	similar	feature	values	
(e.g.,	red	and	orange)	to	be	processed	in	similar	ways	(e.g.,	if	it	is	known	that	red	berries	are	poisonous,	then	it	might	be	
advisable	to	avoid	eating	orange	ones,	but	perhaps	less	so	for	blue	ones).	However,	for	the	same	reason,	if	there	is	any	
noise	in	processing,	it	makes	distinguishing	items	less	reliable	if	they	have	feature	values	that	are	similar	(e.g.,	x	and	y)	
than	more	different	(e.g.,	x	and	z).	(B)	Compositional	codes	represent	states	of	the	world	as	compositions	of	feature	
values	along	each	dimension	(e.g.,	shape:	square,	color:	red,	x-position:	3,	y-position:	3,	etc.).		This	supports	the	flexibility	
to	process	novel	stimuli,	by	allowing	any	state	to	be	represented	whether	or	not	it	has	previously	been	experienced	
(Fodor	&	Pylyshyn,	1988).		However,		if	there	is	no	additional	mechanism	that	independently	binds	the	feature	values	of	
distinct	items	(shown	here	as	lines	connecting	feature	values	across	dimensions),	then	it	is	impossible	to	determine	
which	feature	values	belong	to	which	items.			(C)	Conjunctive	codes	assign	a	distinct	code	to	each	distinct	item	that,	in	
the	limit,	is	equidistant	from	all	other	codes.		While	this	preserves	the	unique	identify	of	each	item,	it	is	an	inefficient	
form	of	coding	(see	text).



reflecting the covariation of its feature values along those dimensions; and the compositionality 
of items within a given state (e.g., objects in a display), that amounts to the simultaneous 
representation of (i.e., superposition of the codes for) feature values along each dimension 
belonging to the different items in that state, and reflecting the covariation of those items in 
physical space (i.e., the locations spanned by the display) and/or in time (i.e., their co-
occurrence during the duration of the display).  Accordingly, to the extent that the identities of 
individual items need to be kept distinct within a state and/or different states need to be kept 
distinct, then there needs to be some mechanism of associating (binding) the feature values 
belonging to each particular item and/or the items within a state. This is because compositional 
representations reflect only the first order statistics of the codes involved (i.e., their marginal 
frequencies), and not higher order statistics need to represent correlations. For items, this 
means only the (frequency with which) feature values are present in the state are represented. 
This is sufficient to identify the coherent covariation of feature values that defines an individual 
item, but insufficient to keep these distinct for different co-occurring items;  the latter requires 
some associative mechanism for encoding higher order statistics among feature values.  The 
same applies to higher level conjunctions, such as among items within an display.  

Semantic structure.  We assume that the world also exhibits semantic structure (see Figure 
2A).  In the abstract model presented in the next section, we operationalize this as the extent to 
which there is metric structure along each feature dimension, such that feature values can be 
more or less similar to (i.e., distant from) other feature values along the same dimension. In the 
subsequent, neurally-inspired simulations, we use empirical estimates of similarity structure 
among feature values along a dimension to implement semantic structure.   

The work we present points out that tasks used to study constraints in human information 
processing capacity are usually designed to probe item identification in settings that demand 
compositional representation — that is, the encoding of states that are novel compositions of 
items, which may themselves be novel compositions of feature values. This demand reflects the 
representational efficiency of compositional and semantic coding, that we consider next;  
however, it comes at the cost of processing efficiency, that we consider further below. 

Representational Efficiency


We define this as the representational capacity of an agent relative to its representational 
resources. Capacity is defined as the maximum of the mutual information between the agent's 
representations and those of all potential states of the word it may encounter. Representational 
resources are quantified as the average code length (in bits) used to achieve a given level of 
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representational capacity.  That is, representational efficiency is the representational capacity 
(mutual information) for a given level of representational resources (code length). 

If the world had no structure, then the only way to represent it would be by pairing each 
state with a unique code.  That is, there would be no opportunity for increasing efficiency, and 
the agent would obligately face the curse of dimensionality, manifest in the number of samples 
(and hence time) required to learn such a code.   Fortunately, however, the world has structure, 7

and thus the curse of dimensionality can be mitigated through more efficient coding. 

Probabilistic vs. similarity structure.  Traditional work on efficient coding in information theory 
(e.g., Barlow, 1961; Stocker & Simoncelli, 2006), and its application to learning and 
representation (Friston , 2011; Linsker, 1988; Tishby et al., 2001), addresses one particular form 
of structure:  the probability distribution over different states of the world.  Accordingly, a 
fundamental tenet of information theory is that efficiency of coding can be maximized by 
optimizing code length to reflect probabilistic structure: the length of a code assigned to a state 
should be proportional to its surprisal (the negative log probability of its occurrence), so that 
shorter codes are used to represent more frequent states. This minimizes the average code 
length for a given level of mutual information between the codes and potential states of the 
world; that is, it maximizes representational efficiency, by minimizing the representational 
resources needed for a given representational capacity. 

The idea that the frequency of a state should impact how it is represented also plays a 
central role in theories of representation based on statistical learning. While these do not 
formulate the relationship specifically in terms of code length, they do address how factors such 
as passive experience, replay, and practice — mediated by psychological processes such as 
consolidation (e.g., McClelland et al. 1995, 2016) and automatization (Anderson, 1983; Shiffrin 
& Schneider, 1977; Musslick et al., 2023) — can lead information that is needed more frequently 
to be represented more compactly. The same may be true for longer term processes, such as 
evolution and/or early development. In the Discussion we consider how this relationship 
between frequency and representational structure might be considered within an information 
theoretic framework.  However, our primary focus in this article is on how infrequent states are 
processed. 

Given our assumptions about the structure of the world outlined above, infrequent states are 
ones comprised of novel or unfamiliar combinations of items, and/or items made up of similarly 
unpredictable combinations of feature values.  However, while individual instances of such 

 This amounts to the Coupon Collector’s problem, which requires, in expectation,  samples to solve.7 n * l og (n)
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states are infrequent, as a class they can be frequent, especially in high dimensional, non-
stationary environments, and the effectiveness with which they can be processed is critical to 
adaptation. Furthermore, these are precisely the kinds of states used in tasks that showcase 
limits to human information processing (e.g., displays containing novel combinations of colors, 
shapes and positions, such as in Figure 1A).  At the same time, they also showcase the 
flexibility of human information processing — the ability to rely on existing codes to represent 
novel or unfamiliar states. 

Theories of optimal coding do not generally address this capacity for generalization:  they 
prescribe how to assign codes to newly encountered states, but not how to best represent them 
in terms of existing codes.  As noted above, Shepard’s (1978) Universal Law of Generalization 
prescribes the use of structured codes, that reflect the similarity structure of the world, and not 
just their probabilistic structure. To isolate the effects of such structure, independent of 
probabilistic structure, the work we report here makes the simplifying, but focusing assumption 
that the states of interest are equiprobable and represented with codes of equal length.  We 
then ask:  What forms of structure in the code maximize representational efficiency — that is, 
maximize representational capacity for a given fixed representational resource (code length)?  
We refer to this as representational efficiency to distinguish it from coding efficiency, which in 
standard analyses is tied to frequency of occurrence. 

One possible coding scheme is to pair each unique state of the world with its own code.  We 
refer to these as conjunctive codes, because they are arbitrary mappings to states that reflect 
only the conjunction of feature values or items that comprise states, and bear no systematic 
relation to their constituent parts or to one another.  However, under the assumption that the 
world has compositional and/or semantic structure, it is inefficient to represent the world in this 
way.  As noted above, the samples required to learn to represent every possible state of the 
world grows exponentially with the number of feature values and dimensions in the world. In 
contrast, the number of samples needed to acquire a strictly compositional code grows linearly 
with the number of feature values and dimensions.  Thus, for a given world, compositional 
representations of its states can be acquired and represented more efficiently than conjunctive 
ones; and, once acquired, they can be used more flexibly to represent any possible —  but as 
yet unexperienced — state. Similarly, semanticity allows responses to novel states to be similar 
to those that share similar feature values along the relevant dimensions.  Together, these 
maximize generalization — the ability to accurately represent and/or respond appropriately to 
states that have not previously been encountered, based on existing representations of ones 
that are similar (Shepard, 1987).  However, they come at the cost of the ability to reliably identify 
a specific state, which is the criterion for performance in standard information theoretical 
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analyses (e.g., the mutual information between the transmitted and received code).  This is 
because introducing similarity structure increases overlap among codes, making them harder to 
distinguish when that is required.   We formalize this tension between accuracy and 8

generalization in information theoretic terms below. 

Decoding vs. generalization error.  The effects of representational structure on accuracy 
versus generalization can be quantified by evaluating performance with respect to decoding 
error versus generalization error. The former corresponds to the standard construct in 
information theory: an error occurs whenever the code received is not exactly the one 
transmitted. To reduce decoding error, codes should be as far apart from one another as 
possible. The Singleton Bound (Singleton, 1964)  places a lower bound on the best (largest) 9

minimum distance achievable between codes given a fixed code length and desired number of 
unique codes in the “codebook;” in our setting the codebook size is a measure of 
representational capacity (at some point in the agent’s learning history).  Codes that achieve the 
Singleton Bound are referred to as maximum distance separable (MDS) codes, and are 
approximately equidistant from each other (MacWilliams & Sloan, 1977).   

In standard treatments, where similarity structure is not considered, MDS codes are optimal. 
However, codes that have similarity structure — such as those that preserve the structure in the 
world —  will fall short of the Singleton Bound, since some codes will be closer to each other 
than others, by construction. This, in turn, should increase decoding error. Critically, however, 
this can be contrasted with generalization error, for which cost is measured as some function of 
the distance between the transmitted and received codes (unlike standard coding theory, in 
which code distance has no impact on error cost). Below, we use a simple distance-dependent 
error function based on Shepard’s (1987) analysis of generalization to examine the tradeoff 
between decoding error and generalization error. However, since coding distance is the 
mediating factor, first we consider the impact that semantic and compositional structure have on 
the minimum distance between codes with respect to the Singleton Bound. 

Structure and minimum coding distance.  Critically, even modest amounts of structure 
precipitously reduce the minimum code distance, driving it well below the Singleton Bound. This 
can be seen in Figure 3, which shows the effect of compositional and semantic structure on the 
minimum distance between codes (using Hamming distance, a standard metric used in 

 In machine learning, this tension is often discussed in terms of the bias-variance tradeoff, or V-C theory (Vapnik & Chervonenkis, 8

1968; Vapnik 2000), which refers to the tension between use of structure in the data to bias learning and inference in order to make 
them more efficient, but that can impair accuracy and make learning less efficient if the bias is misaligned with the structure of new 
data (i.e., there is variance in the data not accounted for by the previously learned structure).

 This also known as the Joshibound (Joshi, 1958).9
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information theory) compared to MDS codes (i.e., that implement the Singleton Bound), as a 
function of number of states represented in the code book (i.e., representational capacity) for a 
fixed code length (i.e., representational resource) of 1000 bits. Note that the maximum possible 
distance between any pair of codes is the length of the code (i.e., for codes that are 
complements of one another), but this can be achieved with only two codes. As representational 
capacity increases, the minimal distance possible between codes necessarily decreases, 
reaching the limit of 1 bit at full representational capacity (i.e., all possible codes are used to 
represent states), in which case any single-bit error will produce a decoding error. The Singleton 
Bound identifies the furthest apart that two codes can be for a given representational capacity: 

  (1) 

where K is the size of the code (here in bits) and N is the number of codes in the codebook.


The logarithmic nature of this relationship means that, for the low end of representational 
capacities (i.e., number of codes used to represent states), increasing this should have 
negligible impact on minimum coding distance. This is evident in Figure 3, which focuses on the 

K − log2(N ) + 1
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Figure	3.	Coding	structure,	distance	and	error.	(A)	Effect	of	representational	capacity	on	minimum	coding	distance	for	
different	forms		structure.	For	simplicity,	we	assume	distributed	binary	codes.	Plots	show	minimum	code	distance	
computed	analytically	(see	equations	in	text)	over	all	codes	for	a	given	coding	scheme	and	different	numbers	of	items	using	
a	fixed	code	length	(1000	bits).		MDS	codes	(red	line):	codes	given	the	maximum	possible	distance	from	one	another	
(corresponding	to	conjunctive	codes),	that	implement	the	Singleton	bound.		Note	that	the	minimum	distance	drops	
numerically	but	slowly	as	the	number	of	items	increases.		Compositional	codes	(blue	lines):		codes	formed	by	assigning	
each	item	a	single	feature	value	along	each	of	the	specified	number	of	dimensions	(d),	each	of	which	has	 	feature	values	
(where	N	is	the	number	of	items)	that	are	equidistant	from	one	another	along	dimensions	and	orthogonal	across	
dimensions.		Note	that	only	the	number	of	dimensions	matters:		since	feature	values	are	orthogonal	to	one	another,	the	
only	correlations	come	from	shared	feature	values	across	items,	and	the	minimum	distance	is	determined	by	the	maximum	
number	of	shared	feature	values	which	grows	with	the	number	of	dimensions	(see	text).	Compositional	and	semantic	
codes	(black	lines):	same	as	compositional,	but	with	feature	values	that	are	evenly	spaced	along	each	dimension	(see	text),	
but	remain	orthogonal	across	dimensions).	(B)	Probability	of	decoding	error	as	a	function	of	noise	(p)	for	one-dimensional	
semantic	(black)	vs.	MDS	(red)	codes		at	different	representational	capacities	(note:	there	are	no	differences	for	MDS	codes,	
so	all	lines	are	superimposed).
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range of 1 to 1000 states (out of the 21000 possible for a code length of 1000):  there is a 
negligible reduction in minimum coding distance for MDS codes over this range (red line).  In 
contrast, the structured codes (blue and black lines) impose a much sharper drop in minimum 
coding distance, even for this range in which representational capacity is a small fraction of the 
full space of states that could be represented. Both compositional and semantic structure exhibit 
qualitatively similar effects. 

Compositional structure.  To consider the effect of compositionality separately from semantic 
structure (blue lines in Figure 3), we factored the code into D dimensions, and divided the code 

length (K 1000) evenly among dimensions (with  feature values per dimension, where N is 

the number of items), without assigning any semantic (metric) structure to the values along each 
dimensions (that is, all codes were equidistant from one another along each dimension). The 
case of a single dimension (solid blue line) is identical to the MDS code (red line), as it should 
be. This closely approximates the Singleton Bound, as noted above. However, as D increases, 
the minimum coding distance rapidly decreases. This is because the minimum coding distance 
is determined by codes that have the same value along D–1 dimensions, differing only in the 
remaining dimension, and the similarity of such codes increases (i.e., their distance decreases) 
as the number of dimensions they share increases, given by: 

  (2) 

In other words, compositionality decreases the minimum coding distance by increasing the 
potential for codes to share the same feature value along multiple dimensions — that is, by 
increasing the opportunity for similarity structure over dimensions.  Next, we examined the 
extent to which this interacted with semanticity (i.e., similarity structure within dimensions).


Semantic structure. To evaluate the effect of semantic structure within dimensions, we again 
constructed dimensions in which the code length (K=1000) was distributed evenly among them. 
In this case, however, we distributed the values of codes along each dimension systematically 
along each dimension, by assigning two of them as far apart as possible (K/D), and then evenly 
spacing all the others between them. For a representational capacity of N, the minimum coding 
distance over the full space increases with D as: 

  (3) 

d N
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For the limiting case of a single dimension (solid black line), the effect is dramatic: simply 
placing codes on a line reduces the minimum coding distance to 1 bit, which is not surprising 
since, by construction, that is the distance between each code and the one next to it. 
Interestingly, however, unlike the effects of compositionality on in its own, increasing D for 
semantically structured dimensions increases the minimum coding distance (black dashed and/
or dotted lines). This is because dimensions are assumed to be orthogonal, so that feature 
values related along a given dimension can be reassigned to different independent dimensions 
as the number of those grows, and therefore states can be assigned increasingly distinct codes. 
This is made clearest by considering the limit of D = K, in which each state is assigned a unique 
(i.e., conjunctive) code along its own dimension, and thus is maximally distant from all other 
codes. Importantly, however, this is at the expense of generalization. That is, increasing the 
dimensionality of semantically structured codes increases their distinctiveness, but 
compromises generalization.   We quantify this tension below. However, it worth noting a 10

qualitative effect here, that may help explain the strongly asymmetric relationship between 
decoding error and generalization error that we quantify below: The increase in minimum coding 
distance that comes with increasing dimensional structure for semantic codes is a relatively 
weak effect. For example, while increasing the number of dimensions to 8 (dotted line) affords 
codes that approach the Singleton Bound, this is only up to a representational capacity of about 
300, beyond which the minimum coding distance drops rapidly. 300 codes is a negligible 
fraction of the full number of codes the system can represent (3/2998). For a given code length 
and representational capacity, it is possible to compute the number of semantic dimensions at 
which the minimum distance approaches the Singleton Bound. For example, for even a modest 
representational capacity of 10,000 items, 14-dimensional spaces are required for 1000-bit 
codes—but the number of feature values per dimension approaches the degenerate case of two 
(see Supplemental Information). 

Minimal coding distance and decoding error.  Under virtually any noise model, the 
precipitous reductions in minimum coding distance as a function of structure shown in Figure 3 
will produce a correspondingly dramatic increase in decoding error relative to that afforded by 
the Singleton Bound. For example, under the simple Binary Symmetric Channel (BSC) noise 
model — in which there is some small probability p that a bit will flip — the probability of 
decoding error as a function of p and minimum code distance d is given by: 

  (4) Pe =
K

∑
k=t+1

(K
k ) pk(1 − p)K−k

 This accords with the general notion that generalization involves abstraction, which in turn involves dimension reduction.10
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where is the maximum number of bit flips that can be corrected without 

confusing two codes, is the number of ways to choose k bits out of K, and  

is the probability of having exactly k bit errors.


Figure 3B shows the probability of decoding error as a function of p for MDS codes and two-
dimensional semantic codes at several codebook sizes. Note the sharply rising error rates 
relative to that of MDS codes, which are not discernible on the graph for these parameters. 

It is important to note that others since Miller have sought to identify the kinds of error that 
can explain human capacity limits in information theoretic terms. For example, SIms (2016) 
used Rate Distortion Theory (RDT) to explore the kinds of information loss that can best 
account for patterns of performance in the tasks that Miller considered.  Here, we focus on the 
tension between two forms of loss — decoding error and generalization error — and how this 
may explain capacity limits. In the Discussion, we consider how this relates to Sims’  findings, 
and RDT more generally.  At the same time, it is also important to note that the tradeoff between 
decoding and generalization is similar to ones that have been long recognized in other settings 
and forms. For example, it can be viewed as underlying a similar tension between pattern 
separation and pattern completion that is central to Complementary Learning System Theory 
(McClelland et al., 1995), cast there in terms of how partial information is used for the purposes 
of identification (pattern separation) versus generalization (pattern completion). The same 
tension has also been addressed in machine learning in terms of the bias-variance tradeoff (see 
note 7).  Here, we cast this explicitly in information theoretic terms, both to address its 
relationship to processing efficiency, that we turn to next, as well as for generality of application 
to other domains, such as automatic versus controlled processing and multitasking (e.g., 
Musslick et al., 2023; Petri et al., in press) or “in context” versus weight-based learning in neural 
networks and machine learning (Chan et al., 2022) that we consider in the Discussion.  

Processing Efficiency 

The tension between decoding error and generalization error is most clearly evident under 
conditions that, on the one hand require generalization for adequate performance but, on the 
other, evaluate performance in terms of accuracy of identification (i.e., decoding error).  The 
requirement for generalization is greatest when processing novel stimuli, and thus must rely on 
structured (compositional and/or semantic) codes to represent.  As elaborated above, this 
should invoke the curse of generalization, and an attendant increase in decoding error.  

t = ⌊ d − 1
2 ⌋

(K
k ) pk(1 − p)K−k
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Furthermore, this should be greatly exacerbated when multiple novel items must be represented 
at the same time — that is, it has a direct impact on processing efficiency.  This is evident in the 
Illustrative Example presented above, where representing novel stimuli (e.g., a yellow square in 
the upper right corner of a display, next to a green square diagonally just below and to the right 
of it, etc.) requires the use of compositional coding, both for items in terms of their features, and 
the display in terms of those items.  However, this poses a problem:  without some mechanism 
for associating each point in the display, and similarly each item, with its corresponding set of 
features, it would be impossible to determine which particular features belong to a given item 
— for example, to distinguish it from the case in which the green square was in the upper right 
corner, and the yellow square was below it.  That is, the use of compositional coding restricts 
the number of items that can be represented and identified at the same time.  This has been 
referred to as the “Binding Problem” in cognitive science (e.g., Treisman & Gelade, 1980), that 
highlights the curse of compositionality, classically observed as a cost in the ability to accurately 
identify the features of a given item in a display with many.  As noted earlier, this is because 
strictly compositional codes (i.e., on their own, without binding) carry information only about the 
fist order statistics of features in a state (which are present or absent), and not higher order 
statistics (i.e., their associations with one another, or patterns of covariation).  Furthermore, this 
is exacerbated by semantic coding, in which the similarity of codes for similar features makes 
the ability to distinguish such codes more sensitive to perturbation (e.g., if the squares had 
subtly different shades of yellow). The constraints that structured codes place on processing 
efficiency can be mitigated in one of two ways. 

Code modification.  One way to avert the cost of decoding error, in accord with the central 
tenet of RDT, is to augment the code under pressure from the environment.  This can be done 
either by adding conjunctive representations for frequently encountered items (to mitigate the 
problem of compositionality) and/or increasing precision by representing finer distinctions 
among features along relevant dimensions (to mitigate the problem of semanticity).  While both 
of these can occur, as noted above, through representational learning over longer time frames 
(e.g., through consolidation, automatization, or “chunking”), such longterm adaptation can’t 
explain the flexibility people exhibit in representing and processing novel states that, by 
definition, have not had a chance to exert pressure on the code.  However, it can be explained 
by mechanisms of short term adaptation, either by rapidly binding features along different 
dimensions of a compositional code (i.e., to represent higher order statistics), and/or 
dynamically modify the precision with which features are represented along a given dimension 
(to diminish the impact of semanticity).  The former is the function ascribed to episodic memory 
by Complementary Learning Systems Theory (McClelland et al., 1995).  This aligns closely with 
binding mechanisms we consider in the work presented below, which indicates that rapid 
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binding can only partially mitigate the constraints on processing efficiency imposed by 
compositionality — owing in large measure to the additional effects of semanticity. In principle, 
the latter could be mitigated by modifying precision, however it has been argued that this too is 
subject to constraints (e.g., Wilken & Ma, 2004; Bays & Husain, 2008). While we do not focus on 
the latter in this article, how it interacts with compositionality, mechanisms of rapid binding, and 
processing efficiency remain important questions for future research that we consider in the 
Discussion. 

Serial processing.  Another way to overcome the constraints imposed by compositionality on 
the simultaneous representation of multiple items is to serialize processing.  For example, the 
classic binding problem can be averted by sequentially processing one item at a time, focusing 
on its features in isolation of others.  A large and longstanding body of empirical evidence 
suggests that this is exactly what people do (e.g., Shiffrin & Schneider, 1977; Treisman & 
Gelade, 1980), and has been variously interpreted as the function of attention (Treisman & 
Kahneman, 1984) and cognitive control (Botvinick et al., 2001).  For instance, in the example 
above, focusing on one (set of) location(s) at at time, the covariance of red and square can be 
kept separate from the covariance of green and triangle. However, this comes at the cost of an 
increase in time needed to process all the items in the display — that is, at the cost of 
processing efficiency. 

Summary of Information Theoretic Formulation


The effectiveness of a set of codes in a given setting — that is, when performing a given 
task or set of tasks — can be quantified as the mutual information between the representation of 
a given state (e.g., the stimuli in the visual display of Figure 1A together with the probe used to 
indicate which should be reported on a given trial) and the correct response(s) for that state.   11

The use of conjunctive codes for each possible state satisfies this need, and would allow 
processing efficiency to grow linearly with the number of states and or items that must be 
processed (e.g., objects in a display), insofar as all can be processed at the same time (i.e., in 
parallel).  However, not only does this face the curse of dimensionality but, to the extent there is 
structure in the world, it is an inefficient form of representation.  Accordingly, agents that are 
resource constrained (whether in computational power and/or time) face pressure to acquire 
and use structured representations — in the form of compositionality and semanticity — that 

 Here, for simplicity, we assume that there is a “correct” response in any given setting, such as the accurate reporting of the 11

memoranda in a memory experiment, or pressing the button assigned to a particular stimulus in a sensorimotor task.  However, 
this can be generalized to “optimal” responses in settings where different options may be associated with different values and/or 
costs. Furthermore, whereas we focus here on tasks that require a single response, the approach can be readily generalized to 
circumstances in which a single task demands more than one response and/or multiple tasks each demanding a different 
response, that we consider in the General Discussion.
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optimize representational efficiency.  At the same time, “there is no free lunch” (Wolpert & 
MacCready, 1997):  adding representational structure, in the form of compositionality and 
semanticity, introduces correlations into the code. While this can be accommodated over the 
longer term through forms of representational learning that may preserve processing efficiency, 
it is not possible to do so over the short term in order to deal with novel states — precisely the 
conditions under which representational structure is needed for generalization.  That structure 
comes at the cost of processing efficiency.  We refer to this fundamental tension between 
representational and processing efficiency as “Miller’s law.”   

In the sections that follow, we provide an example of how the tension between 
representational and processing efficiency can be quantified; first in abstract form, and then in 
the form of a neural network model parameterized with psychophysically plausible properties, 
that we use to simulate the tasks on which Miller (1956) focused.  We show that:  i) while it is 
possible to partially mitigate the effects of representational structure on processing efficiency, 
even modest amounts of structure have a strikingly restrictive effect; and ii) over parameters 
that optimize representational efficiency, the restriction in processing efficiency manifests as a 
capacity limit that falls consistently around 2.5 bits; that is, restricting the number of items that 
can be processed to approximately 7, the number Miller considered so magical. Finally, in the 
Discussion, we consider the extent to which this principle explains similarly restrictive 
constraints observed in the capacity of other cognitive functions, such as multitasking and 
cognitive control; how these can be overcome by processes such as consolidation, 
automatization, or chunking; and how these constructs relate to issues in computer science 
(such as interpreted versus compiled procedures) and machine learning (such as tradeoffs 
between serial and parallel processing in distributed systems, and “in context” vs. weight-based 
learning in neural networks). 

Results 

Abstract Model 

We begin with a simple abstract formulation of the problem, and show that whereas 
compositionally and semantically structured codes can be used to optimize representational 
efficiency and generalization, they severely constrain the number of individual items that can be 
processed at once. To demonstrate this, we consider a simple two dimensional world that has 
both compositional and semantic structure. We formalize compositionality by assuming that the 
feature values along the two dimensions are uncorrelated; and we formalize semanticity by 
treating each feature value along a given dimension as the center of a symmetric exponential 
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function, such that the similarity between two features is an exponentially decaying function of 
the distance between them (and has no similarity with features along other dimensions). The 
latter is grounded in Shepard’s (1987) Universal Law of Generalization, and work showing that 
this can be derived from principles of efficient coding (Sims, 2018). Here, these forms of 
structure are reflected in the correlations among codes, that captures the proximity relationship 
of features along each dimension and orthogonality across them (see example in Figure 4). We 
assigned 256 feature values to each dimension, and constructed 65,536 items from all 
combinations of one feature from each dimension.  Each item was represented by a 
concatenation of its two features, implementing a simple form of binding that, in principle, could 
avert the curse of generalization.  However, we show that processing capacity was nevertheless 
severely constrained by the compositional and semantic structure of the codes. 

We conducted two tests in this environment: i) a similarity test, in which we quantified 
generalization error to assess the ability to select which of two items a probe is most similar to 
along a given dimension; and i) an identification test, in which we quantified decoding error to 
assess the ability to identify a probe among a set of distractors. We modeled both tests as a 
probabilistic retrieval of items from a set given a single-dimensional probe, where the probability 
of retrieval of each item in the set was a normalization of the values in the correlation matrix set 
by the exponential similarity functions, and perturbed by noise (see Supplemental Information). 

In the similarity test, we randomly selected test sets of two items (items sampled without 
replacement) from all possible items in the environment, and then sampled a third item as the 
probe uniformly from the set of all possible items [1, 256], and assessed the agent’s ability to 
pick which of the two items in the test set was most similar to the probe. Because the probe is 
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Figure	4.	Compositional	and	Semantic	Structure.		Correlations	among	features	in	a	two	dimensional	space	(labeled	
here,	for	expository	purposes,	as	colors	and	spatial	position),	in	which	features	are	uncorrelated	across	dimensions	
(compositionality)	and	correlated	within	each	dimension	as	an	exponential	function	of	their	proximity	along	a	circle.



one-dimensional, the most similar item is easily computed as the one with a value closest to the 
probe’s value along the relevant dimension.  This closest-match task assesses how well the 
representations would support generalization to novel features. 

In the identification test, we constructed test sets of various sizes (sampling items without 
replacement), then randomly selected one of the items in the set as the probe and assessed the 
ability to identify the probe by reporting its feature along one dimension given its feature along 
the other.  In both tests, we measured performance as the mutual information between the index 
of the correct response (i.e., an integer from 1… n for a set size of n) and the index of the 
agent’s response.  We computed this mutual information via a numerical simulation that 
estimated the joint probability distribution over the correct responses X and agent responses Y, 
then computing mutual information as: 

 

where H(X) is the entropy of the marginal distribution of correct responses, H(Y) is the 
entropy of agent’s responses, and H(X,Y) is the entropy of the joint distribution. 

We examined the influence of two factors on these tests: semantic structure and set size.  
For both tests, we assessed the influence of semantic structure by manipulating the decay rate 
(spread) of the exponential distribution of correlation values over features within each 
dimension.  This provided a measure of generalization error and, accordingly, representational 
capacity — that is, the extent to which semantic structure allowed a response to be selected 
that was as similar to the probe as possible. For the identification test, we also manipulated the 
number of items in the test set. This provided a measure of the extent to which decoding error 
increased as a function of the number of items being represented at once and, accordingly, 
processing capacity. The representational codes in this model are simply scalars and distances 
in the semantic space that were specified directly by the exponential gradient; the model thus 
abstracts away from vector codes and their lengths. Since code length was implicitly fixed in all 
cases, these measures of representational and processing capacity directly indexed the 
corresponding forms of efficiency.  

Figure 5 shows the effects of both factors — semanticity (shown as thumbnail distributions 
of the exponential function for representative points), and test set size in the identification task, 
(shown as different colored lines) —  on performance in each of the two tests, both in terms of 
mutual information (Panel A) and proportion of maximum available information (Panel B).  The 

I(X; Y ) = ∑
x,y

p(x, y) ∙ log
p(x, y)

p(x)p(y)
(5)

= H(X ) + H(Y ) − H(X, Y ) (6)
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plots illustrate the tension between optimally tuning semantic structure (spread of the 
exponential function) to maximize performance on the similarity task, and minimizing this 
structure to maximize performance on the identification task, by narrowing the spread as much 
as possible in order to separate perfect matches from non-matches. We consider each of these 
effects in more detail below. 

Semantic structure (exponential decay) had a non-monotonic effect on generalization error 
in the similarity test: At the lowest levels (narrowest spread) all representations approached 
orthogonality, and at the highest levels (widest spread) representations became 
indistinguishable, both of which degraded performance on the similarity matching task. 
However, at intermediate levels, representations captured similarity structure within the relevant 
dimension, supporting good performance. The optimum (at an exponential rate of approximately 
4.0) yielded a representational capacity close to the maximum possible. 

In contrast, in the identification task, increasing semantic structure had a monotonic and 
dramatically degrading effect on performance. This reflects the tension between generalization 
error and decoding error considered above. Critically, it interacted with set size, with the relative 
impact of structure on decoding error increasing as the number of items (distractors) in the set 
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Figure	5.		Tradeoff	between	representational	capacity	and	processing	capacity.		Plots	of	information	transmission	in	
a	similarity	test	(abscissas)	used	to	probe	representational	capacity	(generalization	error)	and	an	identification	test	
(ordinates)	used	to	probe	processing	capacity	(decoding	error);	see	text	for	details	of	test	implementations.		Points	show	
different	values	of	similarity	among	nearby	codes	(exponential	spread	of	correlations	shown	in	example	thumbnails),	and	
colored	lines	show	different	number	of	items	in	the	test	set	(set	size)	used	in	the	identification	test.		(A)	Mutual	
information	between	the	correct	response	and	agent	response	(see	text).		For	the	similarity	test,	the	maximum	mutual	
information	possible	is	1	bit	because	the	task	required	selecting	which	of	two	items	most	closely	matched	a	probe.		For	the	
identification	test	with	set	size	n,	the	maximum	mutual	information	possible	is	log(n)	bits;	e.g.	8	bits	for	set	size	256	(dark	
green).		(B)	Proportion	of	maximum	information,	normalizing	for	the	total	amount	of	information	that	varied	with	set	size	
in	the	identification	task.		In	both	plots,	solid	lines	designate	a	pareto	front	in	the	tradeoff	between	representational	and	
processing	capacity,	and	dotted	lines	show	regions	in	which	degradation	of	information	occurs	over	both	tests.		Note	that	
comparisons	of	capacity	directly	reflect	relative	efficiency,	since	code	length	was	fixed	(representational	efficiency)	and	all	
items	in	a	test	set	were	always	processed	at	the	same	time	(processing	efficiency).



increased:  With minimal semantic structure, performance was optimal for all set sizes (in 
accord with the Singleton Bound), increasing with set size up to 8 bits for the largest set size 
256).  However, as semantic structure increased, performance decreased — dramatically in the 
case of the largest set sizes — and converged on a range with an upper bound of about 3 bits 
for all set sizes. The precipitous loss in processing capacity is seen most clearly in Figure 5B, 
which shows performance as a proportion of the maximum information available in the task.   

Note that the effect of set size for even minimal amounts of semantic structure suggests that 
compositionality played an important role in compromising processing capacity. It should also be 
noted that the exponential function used to implement similarity structure is sharply peaked 
relative to the spread of other possible functions, so that Figure 5 may present a conservative 
view of the impact of semantic structure on processing capacity. This is consistent with an 
analysis using a Gaussian function (see Figure S1 in Supplemental Information), as well as the 
results of simulations using empirically motivated codes that we report blow. Finally, note that 
the impact of structured codes were observed despite the fact that pairs of feature values along 
each dimension were conjunctively bound to one another (i.e., concatenated) independently for 
each item. That is, compositional and semantic representations impose a limit on processing 
capacity, irrespective of the ability to conjunctively bind such representations in context.   

In summary, the effects of structured representations, and their interaction with set size, 
define a pareto front in the relationship between representational capacity (indexed by 
generalization error) and processing capacity (indexed by decoding error), along which they 
trade off. This pareto front exhibits a strong asymmetry, with substantially greater room to 
improve representational capacity relative to processing capacity than the reverse.  This may 
explain why processing capacity is so consistently and severely constrained in tasks that 
demand generalization. 

One might ask whether these observations extend to more complex environments and 
natural agents. The free parameters of the analysis were the size of the environment (including 
the number of dimensions and feature values along each), and the form of structure used for 
representations. In the next section, we show that simulations using empirically-derived 
parameters and neurally-plausible processing mechanisms exhibit strikingly similar effects, This 
suggests that the effects observed in Figure 5 reflect a fundamental underlying relationship 
between representational capacity and processing capacity in information processing systems. 
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Mechanistic Model 

We implemented a mechanistic model to simulate behavioral performance in the tasks 
considered by Miller (1956), comprised of embedding, binding, memory, and response 
processes (Figure 6).  The model implemented compositionally and semantically structured 
codes that conformed to theoretical considerations outlined above (utility for generalization), and 
that were informed by empirical data concerning neural coding. It also included a binding 
mechanism for rapidly associating feature values across dimensions to form a conjunctive 
representation of each item in a display.  While these conjunctive representations allowed the 
model to process more than a single item at a time, we show that, like the abstract model 
presented above, it was still subject to the strict constraints on processing capacity imposed by 
the use of compositional and semantic codes. 

Neural Network Implementation:  The MEME model


Embedding using structured representations.  The model used compositional 
representations over semantically structured feature dimensions (Figure 6A) similar to grid-like 
codes observed in medial entorhinal cortex (Hafting et al. 2005; Dordek, 2016; Stachenfeld et 
al. 2017; Wei et al. 2015). For example, an object’s location was coded as a pattern of activity 
over location nodes representing sine waves of different frequencies and phases (Bicanski & 

Burgess, 2019) using an empirically observed scaling of frequencies of √e  (Fiete, Burak, & 
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Figure	6.		Schematic	of	MEME	model.		(A)	Stimulus	sets	were	represented	(encoded)	using	semantic	(grid)	
codes	for	feature	values	separately	along	each	dimension	(compositionally)	that	distinguished	the	items	in	the	
display	(color	and	position),	with	those	feature	values	represented	in	the	model	as	patterns	over	nodes	in	a	
recurrent	network.	The	network	used	Hebbian	learning	to	associate	the	feature	values	belonging	to	each	item.		
(B)		The	model	was	tested	by	presenting	the	probe	display	(here	with	color	exchanged	between	two	items),	
encoding	it	in	the	same	way,	and	allowing	the	network	to	settle	into	a	stable	state,	at	which	point	the	feature	of	the	



Brookings, 2008). Thus, as in the abstract model above, similar states were represented by 
similar codes. The specific choice of codes was motivated by both theoretical and empirical 
considerations. Theoretically, they exemplify representational efficiency (Fiete, Burak, & 
Brookings, 2008; Wei et al., 2015; Stachenfeld, 2017; Chandra et al., 2023), minimizing the 
number of variables necessary to cover the space (Wei et al., 2015) while promoting 
generalization (Whittington et al. 2018; Frankland et al. 2019; Mondral et al. 2024). Empirically, 
grid-like codes have been found in a variety of species, including humans, to represent spatial 
as well as non-spatial dimensions such as sound (Aronov et al. 2017), olfactory stimuli (Horner 
et al. 2018), 2D visual arrays (Bicanski & Burgess, 2019), and abstract conceptual dimensions 
(Constantinescu et al. 2016). Here, we assumed that features such as color and number could 
be reasonably and usefully represented in this way as well. 

Binding to create online, context-specific conjunctive representations. Grid cells in the model 
projected to a memory buffer in the form of a simple recurrent neural network (Hopfield, 1982), 
with nodes corresponding to the coding elements (e.g., grid cells) in the embedding layer, that 
could be used to rapidly bind the codes (along each dimension) belonging to each item in the 
stimulus set through Hebbian learning.   The network had L binary nodes, where L was the 12

number of bits necessary to efficiently code for a stimulus domain (e.g., total number of grid 
cells needed to represent all the feature values along a given dimension).  Each item in a 
display (x) was defined by a combination of feature values along several dimensions in the 
encoding layer (such as color and spatial location).  Thus, every possible item could be 
represented as a unique pattern of activity (Z) over the nodes of the network.  We assumed the 
representation of every item also included a feature that was associated with the current task 
context c, that was shared by all items in that context (e.g., trial), and with a distinct 
representation over the context nodes for each context in the experiment. Thus, Zc was the 
representation of x in context c.   

Finally, we assumed that only codes for items required to perform the current trial of the task 
were actively represented, together with their corresponding responses. Each item was 
represented as a conjunction of the codes for its task-relevant feature values along each 
dimension together with the current task context (xc) and the corresponding response (Zc) 
These conjunctions were dynamically generated for each context c (e.g., each trial of a task), 
and stored in the associative memory.  

 Here, we focus on an implementation using a simple recurrent neural network and Hebbian learning for rapid associative binding 12

through modifications of connection strengths (i.e., in “weight space”); in Supplementary Information we show that similar effects 
are observed if, instead, tensor product representations are used to bind representations as unique patterns of activity (i.e., in 
“state space”) that might reflect use of working memory rather than episodic memory as the store, highlighting the generality of the 
coding and information processing principles involved.
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Processing capacity.  In information theoretic terms, the embedding layer and associative 
memory constituted a processing channel (that is, a mechanism for encoding information about 
the display and task demand, and “transmitting" this to the selected response). A trial (or context 
c) constituted a use of this channel, during which one more more items were encoded and used 
to generate a response. We sought to evaluate the processing capacity of this channel, by 
quantifying how many items could be stored simultaneously while maintaining their identity. The 
conjunctive representations z were formed by updating the weights among the nodes in the 
network corresponding to each item to be stored, so as to minimize an energy function (i.e., 
activation of the nodes corresponding to the feature values of x and the context c; see Figure 
1B). Hebb’s rule for weight updates implements this by capturing which feature values vary (are 
relevant) and co-vary (are related to one another) in the observed data, thus insuring the 
maximum entropy estimate of the statistics over the distribution of z(xc), while minimizing the 
energy of each representation (Mackay, 1991; Amit 1988, respectively).  Accordingly, we refer to 
this as the MEME model. The updating of weights was specific to and independent for each c.  
In summary, the set of conjunctive representations z needed to represent the specific set of 
stimuli x that occurred in a given context c were formed over the compositional codes (nodes of 
the network) by binding the nodes representing the relevant feature values of each item using 
the weights of the Hebbian network, and then resetting those weights for each new context.   13

While the compositional codes used to represent the feature values along each dimension were 
assumed to have developed over a long time frame, the weight updates used to bind those 
feature values to form the conjunctive representations for each item occurred on the time-scale 
of experimental variation — that is, within a specific context c — and were specific to that 
context.  This could be a single trial, as in working memory tasks, or over the set of trials in an 
experimental condition, as in the perceptual judgment and numerical estimation tasks that we 
consider below. 

Under the assumptions above, the upper bound on the processing capacity of the system 
(that is, how many conjunctive representations of items (xc) can be simultaneously and 
distinguishably stored) is defined by the well-known capacity constraints of a Hopfield network 
(Hopfield, 1982; McEliece et al. 1987; Sompolinsky, Amit, Guttfreund, 1985; Amit, 1989).  This 
has a critical point (p), based on the number of items xc that have been encoded in zc, (N) at 

 Note that this differs from the standard use of Hebbian learning, such as its use in models of episodic memory (e.g., Norman & 13

O’Reilly, 2003), in which weight adjustments are allowed to accumulate across contexts experienced by the agent.  In the 
Discussion we consider how the use of context-constrained weight updates for associative binding may arise from an interaction 
between durable representations in episodic memory and other psychological functions that mediate context-dependent 
processing (such as attention and cognitive control; e.g., Giallanza et al., 2024) and related constructs in machine learning (such as 
the use of external memory; Graves et al. ,2024).  In Supplemental Information, we consider an alternative mechanism for 
associative binding, that uses activity patterns based on tensor product representations (Smolensky, 1990) rather than weight 
updates, providing a mechanism by which such bindings may be temporarily represented for a given context in working memory, 
and then replaced in the next context (consistent with our model), rather than represented more durably in episodic memory.
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which the representation for any given item is dramatically less likely to be retrieved. When the 
set size )/L is less than p, the equilibrium states of the network are likely to correspond to 
previously experienced representations. When N/L is greater than p, they may reflect statistical 
summaries of those representations, rather than the identity of the representations themselves.  
That is, the processing capacity is limited by p.  

Critically, however, p assumes that all of the stored memories are independent of one 
another.  If the codes used to construct the memory are not independent (and thus the 
conjunctive representations are less distinguishable), then the processing capacity will be 
further reduced. In either case, retrieval accuracy degrades, as does the time to retrieve any 
one of these at a given level of accuracy. In the simulations of cognitive tasks presented below, 
we consider these as costs in the following optimization problem:  Given a set of compositional 
codes, what is the maximum number of conjunctions among them that can be assigned in a 
given context c (i.e., that maximizes its processing capacity), while minimizing degradation in 
performance.  We show that this obeys remarkably similar constraints to those observed in the 
abstract formulations presented above. 

Behavioral Performance


We applied the model outlined above to the three tasks highlighted by Miller (1956): short-
term (or “working”) memory, absolute perceptual identification, and numerosity judgment.  
Though these three tasks operate over different time-scales and different domains of 

information, in each case the task-relevant input-output mappings (xc→yc) require mediating 

conjunctive codes (zc) that, we assume, were not represented in the system’s existing set of 
codes.  Instead, they must be constructed compositionally, as combinations of existing codes, 
such as representations of color and location, or reference tones and their ordinal labels.  Here 
we provide a brief summary of the empirical findings, and our models’ account of them.  The 
Supplementary Information provides greater detail concerning model implementation and 
simulations of the experimental task.


Immediate Memory 

Figure 7 shows the model for a classic cued change detection paradigm, variants of which 
are widely used in the study of visual short term memory (e.g., Luck & Vogel, 1997; Wilken & 
Ma, 2004; Bays & Husain, 2008; Sims, Knill, & Jacobs, 2012; Luck & Vogel, 2013; Bays, 2015), 
that we use to evaluate the capacity of what Miller referred to as immediate (and now more 
commonly referred to as working) memory. In its simplest form, the task involves a brief 
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presentation of a visual display containing a number of items (e.g., shapes of different colors at 
various locations), followed by a delay (~1000 ms), and then a second version of the display in 
which a target item is cued, and the participant must respond by indicating whether the color of 
that item has changed (see Figure 1A).  Both the number of items in the display (“set size”) and, 
critically, the combination of feature values for each item are varied randomly across trials. 
Memory performance is ubiquitously found to decline as a nonlinear function of set size, with 
precipitous declines typically in the range of 3 or 4 items for simple combinations of color and 
shape  (Luck & Vogel, 1997). 

To simulate performance of this task, each item in the visual display was embedded in the 
model as a binary pattern over the nodes coding for each task-relevant stimulus dimension. 
Here, the nodes coded for spatial location and color (Figure 7A).  On each trial, the network’s 
weights were updated to associate what was where on that trial (Figure 7B). Thus, these 
weights served both to represent and store the set of bindings on that trial.  We then tested the 
network’s ability to use this information by presenting it with the location code for the target 
item as input, and allowing its activity to evolve until equilibrium (based on the input and the 
bindings encoded in its weights), and quantified performance using the Hamming distance 
between the equilibrium state and the correct representation of the color at the cued position. 
The code with the shortest hamming distance to the settled state was selected as the 
network’s response.
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Figure 7. Visual Short Term Memory (VSTM) phenomena. (A) We assume features of a visual stimulus are factored into separate 
representational streams and re-combined. Locations are represented by grid-like codes of the 2D array and colors are grid-like codes of the 
1D color space. The stimulus-specific weights (W) reflect what color was where in a particular image. (B) We present the network with a 
location code and allowing it to evolve until a local energy minimum. Changes are reported on 50% of change trials in which the correct 
color is not within a Hamming distance of 0.05 from the target. (C & D). The model’s performance closely tracks Luck & Vogel’s (1997) 
observation of qualitative change in performance at ~3 items (E,F). In this framework, representational precision also decreases as an 
approximate power law, as observed in Bays & Husain (2008).



Figure 7C,D shows that, with location codes derived from empirical data on spatial acuity 
(Westheimer & Beard, 1998) and color discriminability (e.g., Long et al. 2006), MEME captures 
the form of human error rates as a function of set size: Nearly perfect performance up to 3 to 4 
items (the “capacity-limit”), followed by a dramatic decline. Furthermore, as observed in more 
recent work (e.g., Wilken & Ma, 2004; Alavarez & Cavanagh, 2004; Bays & Husain, 2008; Sims 
et al., 2012), the representational precision of these stimulus features decreases as a power 
law-function of set size:  The more items that were present in the image, the greater the 
Hamming distance of the equilibrium state from the target (Figure 7E-F). The model thus 
captures phenomena central to both slot and resource models.


Absolute Identification 

We used the same model architecture to address capacity limits observed in the absolute 
perceptual judgment tasks considered by Miller (1956). In such tasks, participants were first 
presented with a reference set of auditory stimuli (e.g., tones) and associated ordinal rankings 
along a single underlying dimension (e.g., frequency). Then, throughout the experiment (usually 
lasting around an hour, though in some cases, weeks (See Shiffrin & Nosofsky, 1994), they 
were presented repeatedly with test stimuli drawn from the reference set in random order, and 
tested on the ability to identify the corresponding rank. For example, the reference set might 
have consisted of nine tones evenly spaced between 1,000 and 5,000 Hz and their 
corresponding ranks (e.g., 1 for 1000 Hz, 2 for 1500 Hz, etc.), for which the participant should 
have responded “2”  to a test tone of 1500 Hz. The limit to the number of such unidimensional 
perceptual stimuli that humans can reliably identify is strikingly similar to the capacity limits in 
working memory — 7 plus or minus 2 (or about 2.5 bits; e.g., Pollack, 1952; 1953). 

To simulate performance of this task, each item in the reference set was embedded in the 
model as a binary pattern over nodes coding separately for tones and integers, again 
representing each using a grid-like code comprised of frequencies and phases (Figure 8A). We 
derived the grid-like codes for tones based on the range sampled in Pollack (1952,1953) and a 
simplified uniform just noticeable difference (JND) of 0.05% over the range of 20 Hz to 20 kHz 
(Sek & Moore, 1995), as well as the same general grid-cell scaling properties (Stensola et al., 
2012; Wei et al., 2015) used in the short term memory model.  Also as in that model, the 
combination of tone and ordinal position for each item in the reference set was stored in the 
weights between the nodes representing the two relevant features. To evaluate the network, the 
grid code for the tone of a test stimulus was presented as input, activity states were allowed to 
evolve to equilibrium, and the representation of the integer code with the shortest Hamming 
distance to the settled state was chosen as the network’s decision.
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Once again, the model exhibited the empirically observed capacity limit of approximately 
2.5 bits (Figures 8B and 8D).  Furthermore, the model also reproduced the observation by 
Pollack (1953) that, when items are sampled uniformly within a given range, the capacity limit is 
largely invariant to the scale of that range (Figures 8C and 8E). The network exhibits this 
approximate scale invariance because its computational dynamics are influenced only by the 
coding elements that vary and co-vary within-context: As the sampling range is gradually 
increased, the number of within-context variables that vary and co-vary may increase, leading 
to a small increase in capacity. However, given the geometric progression of the frequencies 
(Wei et al. 2015), the difference in L is small and largely offset by the coarseness (imprecision) 
of the low-frequency variables. Importantly, however, Gravetter & Lockhead (1973) also 
observed that, when samples are not uniformly distributed, precision is greater for stimuli that 
are closest to others (“narrow” condition) than ones that are further (“broad”).  Figure 8, panels 
F and G show that the model reproduces this effect, which has been observed in a variety 
stimulus domains (Braida & Durlach, 1972, Rouder, 2001). In the model, the broad sampling 
context causes additional within-context variation in low-frequency grid-codes, which are 
inherently redundant with respect to nearby stimuli. Statistically, broad sampling decreases 
precision for the same reason that increasing set size decreases precision in short term 
(working) memory tasks (Wilken & Ma, 2004; Bays & Husain, 2008): both introduce correlations 
in the code, and these correlations increase the error rate for a fixed code length.
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Figure 8.  (A) Schema of Absolute Identification task. Subjects are presented with a set of stimuli along a target dimension 
(e.g. pitch) together with associated ranks. The task is to later report the corresponding rank when queried with a particular 
stimulus. To model these phenomena, we assume1D grid-like code for perceptual dimensions as well as the mental number 
line. (B) Pollack found a limit of ~2.5 bits of information for absolute identification of pitch, highlighted in Miller (1956). This 
limit is approximately scale invariant (C), as increasing the absolute difference between pitches has little effect on 
discriminability. Our model (averaged over 1000 trials) reproduces the limit (D), and the approximate scale-invariance effect 
(E), to the point of predicting the slight linear increase. (F) However, this depends on the relationship between sampling 
distribution and precision. For example, “broad sampling” to include stimuli near the min and max of the perceivable range 
(Gravetter & Lockhead, 1973) reduces precision on the middle items, relative to narrow sampling. (G) Our model predicts this 
pattern, as broad sampling introduces low-frequency redundancies into the codes, causing increased errors.



Numerical Estimation 

Finally, following Miller (1956), we “cannot leave this general area” (pg. 90) without 
considering limitations in the ability to judge the number of items in a visual display. There, 
participants show fast and nearly perfect numerosity reports when the number of items is small 
— referred to as the “subitizing” range — but increasingly slow and error-prone reports as that 
number increases past some limit (Kaufman et al., 1948; Mandler & Shebo, 1982). Early results 
put the limit at about 6 (Kaufman et al., 1948), in the range of Miller’s 7 plus or minus 2, though 
decades of subsequent work has found a limit often closer to 3 or 4 (Mandler & Shebo, 1982; 
Trick & Pylyshyn, 1993; Revkin et al., 2008; Cheyette & Piantadosi, 2020), with variation 
depending on features of the experiment (e.g., Revkin, 2008; Cheyenne & Piantadosi, 2020).


To simulate performance of this task, items in the display were embedded in the model as 
binary patterns over nodes once again using a grid-like code comprised of frequencies and 
phase, in this case to code for position and number (Figure 9A). The position codes were 
parameterized to cover the size and resolution of the 2D spatial display, and the integer codes 
were chosen to span the range of numerosities sampled (e.g., 1-12), and that constituted the 
range of possible responses in the task.


Note that this task differed from the preceding two tasks in that all of the information 
necessary to perform the task was available from the display when the participant was required 
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Figure 9. Numerosity	estimation.	(A)	Stimuli	are	visual	displays	consisting	of	sets	of	objects	of	size	N,	which	varies	
across	trials.	Subjects’	task	is	to	report	the	cardinality	of	the	set,	and	error	rates	and	response	times	are	collected.	To	
model	this	task,	we	assume	that	agents	factor	the	stimulus	into	a	spatial	representation	(grid	code	of	2D	space)	and	a	
number	line	representation	that	must	then	be	related	(“how	many?”).	To	evaluate	the	model,	the	network	is	queried	
with	location	codes,	and	allowed	to	evolve	until	equilibrium	to	identify	the	most	similar	number-code.	(B).	Example	
human	behavioral	data	from	Revkin	et	al.	(2008)	showing	standard	subitizing	effect	in	error	rates.	(C)	Like	humans,	the	
model	shows	nearly	perfect	performance	when	N<=3,	but	declining	performance	thereafter.	(D&E)	Likewise,	the	
canonical	human	RT	signature	is	qualitatively	predicted	by	the	number	of	iterations	(settling	time)	through	the	Hopfield	
network.	(F,G,H,I).	Both	human	and	model	performance	depends	on	the	experimental	context	shaping	the	statistics	in	
The	weights	encode	the	network’s	knowledge	of	this	relationship.	(1-8	naming	left	vs.	10-80	naming	right).	The	
capacity-limits	stem	from	(1)	the	correlations	in	the	spatial	structure	as	N	increases	and	(2)	the	decreasing	precision	in	
the	number	code	with	increasing	cardinality	(itself	determined	by	correlational	structure	on	a	slower	time	scale,	as	in	
the	absolute	identification	task).



to respond, without the memory requirements imposed by either of the other tasks considered 
above. Nevertheless, we assumed it required the same form of structured (i.e,. generalizable) 
codes and binding mechanisms to represent the arbitrary (i.e., novel) pairing of the number of 
items and their positions used in the task. Accordingly, the model’s representation of the 

display was generated as follows:  For each of the N items in the display, item i  

was selected randomly without replacement from the set of remaining (N-i) items, the code for 
its position was determined and added to the sum of the codes for the preceding N-1 items, 
that sum was paired with the code for the number i, and the pair was stored (bound) in the 
weights of the associative memory. This provided the model with a set of numerosity 
representations for the display, each of which was the conjunction of a number code with a 
representation of the simultaneously embedded positions for the corresponding number of 
items. The model was tested by encoding the display as described above, then presenting it as 
input and allowing the network’s activity state to settle, and then taking the representation of 
the number code with the shortest Hamming distance to the settled state as the network’s 
response regarding the number of items in the display (Figure 9B).


Similar to the simulations of the other two tasks, the model exhibited an abrupt change in 
error rates for displays with 3 or 4 items, closely matching the empirical data for human 
participants (see Figure 9C,D). In addition to the error curves, we computed an estimate for 
response times (RTs) as the mean number of updates required to reach equilibrium. The 
qualitative form of RT as a function of set size closely tracked empirically observed RT curves 
(e.g., Kaufman, 1948; Mandler & Shebo, 1983; Trick & Pylyshyn, 1993; Revkin et al., 2008; 
Cheyette & Piantadosi, 2020): For displays of 3 items or less, RTs are almost flat, after which 
they increase monotonically (see Figure 9E-F).  Furthermore, as with humans (Revkin, 2008), 
the error rate and RT functions depended on the range of numerosities used in the task. The 
observed functions, for both humans and the network, are markedly different when possible 
responses range from 10-80 in intervals of 10 than 1-8 in intervals of 1 (See Figure 9G-J). This 
pattern has previously been interpreted as inconsistent with single system accounts of 
subitizing that predict that numerosity estimation should follow a Weber-fraction, exhibiting a 
consistent logarithmic decrease in precision as a function of numerosity (e.g., Gallistel & 
Gelman, 1990).  Our findings question that interpretation, showing that a single system 
— motivated by normative coding considerations — can capture this phenomenon.  This 
extends previously proposed unified efficient coding model of numerosity estimation 
(Cheyenne & Piantadosi (2020), to also account for context-specific effects, and do so with a 
candidate mechanistic model.


∈ [1 → N ]
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Discussion 

Summary


The constraints on perceptual processing and immediate memory capacity, famously 
referred to by Miller (1956) as the “magical number 7,” have largely remained a mystery. This 
might be considered even more perplexing, given that it seems to extend beyond tasks involving 
perception and memory, as considered by Miller, to ones involving other functions that have 
been equally foundational in the study of cognition and the brain, including attention, 
multitasking capability and cognitive control (Posner & Snyder, 1975; Shiffrin & Schneider, 1977; 
Treisman & Gelade, 1980). Here, we have offered a unified account of these constraints from an 
information theoretic perspective, which arise from a fundamental tradeoff between the value of 
structured codes for efficient acquisition and flexibility of generalization on the one hand — that 
is, the optimization of representational efficiency — and, on the other hand, the correlations 
among codes that this introduces, which limit the ability to simultaneously represent and 
process codes for multiple independent items — that is, that restrict processing efficiency.  We 
have shown that: i) even modest amounts of structure, that improve representational efficiency, 
dramatically restrict processing efficiency; ii) this is observed for psychophysically and neurally 
informed types of structure and processing mechanisms; and iii) this account can provide a 
unified explanation of the restrictive constraints on performance observed across the range of 
tasks that puzzled Miller (1956).  

In the remainder of this article we consider several questions raised by this account:  i) How 
does it relate to the information theoretic treatment of capacity limits presented in Miller’s paper?  
ii) How does it relate to previous applications of information theory to learning and 
representation in cognitive science and neuroscience? iii) How does our implementation of 
binding relate to standard psychological and neural mechanisms thought to be responsible for 
associative memory? iv) To what extent can our account explain similar constraints in other 
cognitive capabilities, such as multitasking and cognitive control? v) How can these constraints 
be overcome? vi) How do our observations relate to related issues in statistics, machine 
learning, and the use of neural network architectures in artificial intelligence. 

Relationship to Miller’s Analysis


Miller’s (1956) article was perhaps the most influential one to call attention to the severe 
limits on immediate memory, indelibly imprinted in most people’s minds — as it was in Miller’s 
— as the magic number 7. Oddly, it is also known mostly for that observation alone — though 
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he assiduously referred to those who originally made it (Hayes, 1952; Pollack, 1953) — rather 
than for the observation that consumed him, and motivated him to refer to the number as 
magical: the diversity of settings and forms in which it appears as a constraint, and the 
possibility “that there may be something deep and profound behind all these sevens, something 
that is calling out for us to discover it.“  Miller was inspired by the initial surge in applications of 
information theory to perception and memory following Shannon's seminal 1948 paper, and 
intrigued by the prospect of using information theoretic measures to solve the mystery of “all the 
sevens."   

In his effort to solve the mystery, Miller focused on a set of tasks that had been used to 
assess the channel capacity of human cognition as an information transmission system and, 
accordingly, sought to quantify the capacity of memory and perceptual judgment in terms of the 
amount of information transferred, in terms of bits.  He accepted this as a reasonable measure 
of capacity for perceptual processing (i.e., performance in the absolute judgement and 
numerosity tasks), but ran into trouble when applying it to immediate memory, where he noted 
that the number of bits transmitted seemed to vary widely depending on the items to be 
remembered. For example, decimal digits carry about about 3.3 bits each, so remembering 7 
digits (e.g., a birth date) actually amounts to remembering 23 bits of information; and English 
words carry about 10 bits, so remembering 7 English words amounts to remembering ~70 bits, 
and so on.  This led Miller to conclude that the constraint on immediate memory is not the 
amount of information conveyed by the memories, but rather the number of familiar items that 
must be remembered, which he referred to as “chunks.”  Without a similar construct for 
perception, and without a formal characterization of a chunk, he expressed suspicion that the 
constraint of 2.5 bits for perception and the 7 chunks for immediate memory was “only a 
pernicious, Pythagorean coincidence.” 

The work we present here suggests that the disparities Miller observed across tasks can be 
resolved by taking account of representational structure.  As noted earlier, information theoretic 
accounts typically consider only the probabilistic structure of independent events, without 
considering the extent to which there may be meaningful correlations among these that can be 
captured by including structure in the codes to represent them. Much like Mathy & Feldman 
(2012) and Nassar et al. (2018), we suggest that such correlations provide a formal grounding 
for what Miller referred to as a “chunk” (and what we define as an item):  a pattern of covariation 
over a set of feature values along one set of dimensions (e.g., color and shape) that is shared 
over a range of values along other dimensions (e.g., spatial or temporal). This embraces objects 
in a display (such as in Figure 1A), but also the digits of a birthday, or the letters of a word. 
Crucially, we show that the pervasiveness of the ~2.5 bit constraint can be explained by taking 
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account of how representational structure affects decoding error, and how this interacts with the 
number of items that must be processed at the same time. 

From this perspective, Miller’s chunks can be viewed as conjunctive (unstructured) codes 
dedicated to particular items, that have been been acquired through repeated exposure to the 
correlations among feature values that define those items. While such codes are not 
representationally efficient (i.e., with respect to learning and generalization), the lack of 
correlations among them increases their coding distance, allowing them to be used at the same 
time without risk of interference (decoding errors), and thus increases the rate with which 
information can be transmitted — that is, they afford processing efficiency. Conversely, when 
such conjunctive codes are not available — that is, when the items to be processed are 
comprised of novel combinations of feature values for which the correlations have not been 
learned — then structured codes must be used for generalization. However, the structure of 
such codes reduces their minimum coding distance, introducing the potential for interference 
(decoding errors) that limits processing efficiency. These are exactly the conditions imposed by 
the tasks on which Miller focused. Furthermore, the formal analyses and simulations we 
presented indicate that these conditions are subject to a remarkably consistent constraint of 
approximately ~2.5 bits in the rate of information processing, and that this can be traced to a 
strikingly strong asymmetry in the effects of coding structure on representational efficiency 
(generalization) versus processing efficiency (information rate):  Even the modest amounts of 
structure required to promote generalization have draconian effects on processing efficiency.   

In sum, inspired by Miller’s information theoretic approach, and his observations of a 
provocative similarity in processing constraints among tasks that probed perception and 
memory, we arrive at a conclusion that differs from his, but one that we suspect he might have 
liked:  The similarity in constraints does indeed reflect “something deep and profound behind all 
these sevens,” a relationship between representation and processing in which gains in 
representational efficiency come at a disproportionate cost to processing efficiency, along the 
lines of:


(Representational efficiency)k (Processing efficiency) ∝ c 

which defines an envelope of performance within which any information processing system 
must operate — a principle that we suggest reflects Miller’s Law.  We have shown that, with 
even a modest premium placed on the efficiency of learning and flexibility of generalization 
afforded by representational efficiency, processing efficiency is constrained — in number of 
independent items that can be processed at once — to the number that so intrigued Miller. 
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However, if it is truly a general principle, it should apply not only to the particular phenomena 
that intrigued Miller but, more broadly, to a wealth of related data and models that have 
accrued in the nearly seven decades since his landmark article. In the remainder of this 
Discussion, we consider some of these connections.


Relationship to Rate Distortion Theory (RDT)


RDT is a major branch of traditional information theory that addresses coding efficiency, a 
central tenet of which is that it is possible to reduce signal distortion by a commensurate 
increase in code length (i.e., rate, in bits per symbol; Shannon, 1959). As noted earlier, an 
implication of the Singleton Bound is that similarity structure can be viewed as a form of 
distortion with respect to decoding error, insofar as it reduces the minimum distance between 
codes (see Figure 3) which, in turn, increases decoding error. RDT suggests that a 
commensurate increase in code length can compensate for this — a consideration that we turn 
to below, as a way of formalizing the effects of consolidation, automatization, and “chunking” 
noted above. However, as emphasized from the outset, we are interested here in cases for 
which code length is fixed — both for the purposes of analysis, and under the assumption that 
modification of code length requires time, and thus cannot contribute meaningfully to the rapid 
and flexible processing of novel states.  Under the constraint of a fixed code length, the use of 
structured code extracts a cost in decoding error in exchange for the benefit of generalization, 
as captured by the expression above. From the perspective of RDT, this suggests that, using 
decoding error as the loss, it should be possible to quantify the increase in code length that 
would be required to compensate the distortion introduced by similarity structure. This is 
consistent with findings reported by Sims (2016), who used RDT to analyze the efficiency of 
coding (in terms of bits) with respect to a loss function akin to decoding error. He found that 
people consistently use less than optimally efficient codes in the immediate memory and 
perceptual judgement tasks of interest to Miller. We suggest that this can be explained by the 
use of structured codes required to support generalization for the processing of the arbitrary 
stimuli used in those tasks. This, in turn, is consistent with his finding that human performance 
was better fit with a loss function that takes account of distanced-based similarity (akin to 
generalization error). Here, we have made a direct connection between these two observations 
— in terms of the tradeoff between generalization error and decoding error — by showing that 
the use of structured codes directly and profoundly constraints processing efficiency. 
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Information Theoretic Accounts of Learning and Representation


Our work builds on a longstanding and influential tradition of theoretical work in cognitive 
science and neuroscience, inspired both by statistical physics and information theory (Barlow, 
1961; Linsker, 1988; Friston, 2011) suggesting that the brain implements efficient coding to 
maximize information preservation, given an agent’s resource constraints. Here, we argue that 
by extending this approach to take account of similarity in additional to probabilistic structure 
in optimizing representational capacity can help explain an apparent paradox in human 
cognitive function: on the one hand, the remarkable range of information over which it can 
operate, as well as the flexibility it exhibits in responding to novel information; and, on the 
other, the equally striking constraints in processing capacity it exhibits.  Most previous work 
has focused on the former — that is, optimal coding that maximizes the ability of the system to 
come to accurately represent as much information as efficiently as possible. Furthermore, it 
has focused largely on probabilistic structure, wherein optimal coding is achieved by adapting 
code length to the frequency of events. The objective of such forms of optimization is to 
minimize decoding error — the frequency with which the selected code is not the same as the 
correct one.  Here, we have pointed out that an equally important goal is representing the 
similarity structure of the world as efficiently as possible, the objective of which is to minimize 
generalization error — the distance of the selected code from the correct one. This follows from 
Shepard’s (1987) Universal Law of Generalization, and relies on the use of structured codes.  
Critically, we show that minimizing generalization error is in direct tension with the traditional 
focus on minimizing decoding error, placing the optimization of representational efficiency 
— how many independent things can be represented — in tension with the optimization of 
processing efficiency — how many independent things can be represented at once.  We have 
shown that this tradeoff can explain the conditions under which cognitive function is 
constrained  — viz., when it relies on the use of semantically and compositionally structured 
codes to process novel items — and the remarkable severity of these constraints even when 
the amount of structure introduced to the codes is relatively modest. 


Our account also aligns with analyses of mixed selectivity in neural coding, their use in 
optimizing the tradeoff between generalization and discrimination, and the implications this has 
for the relationship between neural representation and task performance (e.g., Barak et al., 
2013).  Our work provides an information theoretic interpretation of this relationship, and applies 
it to the performance of tasks involving perception and memory that have figured centrally in 
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theorizing about cognitive capacity.  More generally, by extending the information theoretic 
account of optimal coding to address representational structure, and the constraints this 
imposes on processing efficiency, our work continues in the rich traditions of cognitive and 
brain science, by framing an understanding of capacity constraints in terms of the nature of the 
representations on which processing relies, and formulating this understanding in quantitative 
terms.  Advances in both brain imaging and computational modeling offer the promise of 
exploiting such quantification (e.g., by measuring patterns of correlation among neural 
representations) to ground a theoretically rigorous and quantitatively precise understanding of 
the envelope of our capabilities in empirical data.


Our approach may also provide a useful point of contact with an influential theory 
concerning capacity constraints on working memory (Wilken & Ma, 2004; Bays & Hussain, 
2008; Ma, Hussain & Bays, 2014), that explains these in terms of a tradeoff between 
representational precision and load.  According to this theory, increasing the precision with 
which items are represented increases accuracy, but at the expense of the number of items 
that can be represented at the same time.  In information theoretic terms, increasing precision 
can be cast as an increase in the code length used to represent an item which, for a given total 
code length, will limit the number of items that can be represented at a given time and for a 
given level of decoding error. This theory suggests that one source of the empirically observed 
envelope of constraints on precision and load may be the metabolic costs of the code. Our 
approach complements this theory, pointing to the structure of the code as another critical 
factor that, in addition to code length, can constrain load.  Furthermore, our results suggest 
that the benefits of representational structure for generalization, and its strikingly restrictive 
effects on load, can provide a normative account of constraints, independently of code length 
(i.e., representational or metabolic resources).  Nevertheless, understanding the interaction 
between these factors is clearly an important direction for future investigation. 

Relationship to Neural Mechanism for Associative Memory


The ability to rapidly associate (bind) compositional codes to represent novel items plays a 
central role in our account, that we assume is supported by some form of associative memory.  
This raises two closely related questions: How do such associative mechanisms relate to 
traditional cognitive constructs such as episodic memory (EM) and working memory (WM), and 
what neural mechanisms might be responsible for these?


On the one hand, rapid associative binding is a hallmark of EM, that is widely believed to 
be supported by the hippocampus (e.g., McClelland et al., 1995), and perhaps other structures 
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such as the cerebellum (Musslick et al., 2023; Webb et al., 2024).  Our mechanistic model using 
a recurrent neural network and Hebbian learning aligns with models of such structures (e.g., 
Hasselmo & Wyble, 1997; Norman & O’Reilly, 2003; Spens & Burgess, 2024).  Furthermore, one 
of the most influential theories of EM function, the Temporal Context Model (TCM; Howard & 
Kahana, 2002), asserts that entries in EM are accompanied by a temporal code, usually 
assumed to be a slowly drifting signal, that makes it possible to identify when an event 
occurred and its temporal relation to other events.  However, this also introduces characteristic 
patterns of memory errors, arising from correlations in the temporal code, that have received 
extensive empirical support (e.g., Sederberg et al., 2008). The presence of such structure in 
EM, along with both its advantages and disadvantages, are consistent with its role as a 
mechanism the for rapid associative binding of structured codes that is central to our account.


On the other hand, it has also been proposed that rapid associative binding may occur 
among representations actively maintained in WM, whether using similar Hebbian mechanisms 
(Oberauer et al., 2012), phase coupling among oscillating representations (Hommel, 2004; 
Roux et al. 2012; Jensen & Lisman, 1998), or through the online formation of tensor product 
representations (Smolensky, 1990) (as we describe in the Supplemental Information).  


One fundamental difference between EM and WM is the durability of the associations 
formed among representations:  a fundamental feature of EM is that such associations are 
stable, and remain accessible for considerable periods of time after they are formed (hours to 
years), a feature that is assumed to reflect their formation through modification of synaptic 
weights. In contrast, WM is generally assumed to rely on the transient maintenance of 
information in activity states: associations formed in WM are inaccessible once the 
corresponding representations are no longer active, presumably after short periods of time 
(minutes if not seconds;  though see Stokes, 2015 for the possibility of “activity-silent working 
memory”).  Accordingly, use of EM versus WM for binding should make different predictions 
about the influence of the associations formed on subsequent processing over different 
temporal intervals — a factor that has received some attention (Beukers et al., 2021), but 
remains an important direction for future research.  More realistic is the possibility that both 
mechanisms play a role in binding, and that interactions between them contribute to the 
efficiency and flexibility of human cognitive function, a possibility that has begun to attract 
attention both in cognitive neuroscience (Giallanza et al., 2024) and machine learning (Graves 
et al., 2014).  One particularly interesting possibility is that the rapid binding function, that may 
have evolved under the pressures for optimization discussed here, provided a platform for the 
emergence of symbolic computation in the brain, an idea that has also begun to attract 
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attention in cognitive neuroscience and machine learning (Webb et al., 2021; Webb et al., 
2024).


Relevance to Language Processing


Language is perhaps the most widely recognized domain in which there is pressure for 
structured, compositional representations that support generalization (Fodor & Pylyshyn, 1988). 
Therefore, based on our considerations, this should be closely accompanied by extreme limits 
in capacity when multiple similar representational codes must be processed simultaneously.  
Such limits were first pointed out by George Miller in collaboration with Noam Chomsky 
(Chomsky & Miller, 1958): we seem to have striking limits in our ability to process syntactically 
well-formed sentences that require the maintenance and discrimination of items with highly 
similar structure, such as in self-embedded clauses (e.g., “the mouse the cat the dog bit chased 
hid”).  Modern accounts suggest that the need to manage long-distance dependencies — 
syntactic, semantic and referential relations that may stretch across dozens of words or even 
sentences — requires that linguistic representations be actively maintained in working memory 
which, coupled with similarity-based interference among those linguistic representations, give 
rise to the severe capacity limits observed in language processing (Gibson, 1998, 2000; Lewis, 
1996; Lewis et al., 2006). 

The challenge of reliably handling long-distance dependencies in natural language led 
directly to the development of architectures such as the Transformer (Vaswani et al., 2017), and 
the large language models (LLMs) based on them.  Such models provide a useful test of the 
extent to which the tension between representational efficiency and processing efficiency is a 
general principle. On the one hand, they have massive numbers of parameters, suggesting that 
processing resources should not be a source of constraint. On the other hand, they were 
designed to handle the online processing of long-distance dependencies, and trained under 
heavy pressure for generalization, suggesting that they should make use of structured codes 
and, on our account, that these factors should together induce strict constraints on processing. 
Remarkably, there is growing evidence that such models do indeed exhibit constraints in 
processing capacity similar to humans when tested under conditions that elicit these in humans: 
they have difficulty processing sentences involving self-embeddings (and their attention patterns 
reflect this; Ryu & Lewis, 2021), and with tasks requiring the simultaneous processing of 
multiple items composed of arbitrary combinations of features (Campbell et al., 2024).  We will 
return to the latter where we consider the relevance of our work to artificial systems in greater 
detail further below.
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Relevance to Automaticity and Control


In this article we have largely adhered to Miller’s (1956) focus on capacity constraints in 
tasks that involve perception and/or memory, ones that we suggested above may extend to 
language processing. Another domain of cognitive function in which similarly restrictive 
constraints have been observed is in multitasking capability and the allocation of cognitive 
control. Here, the constraints are usually framed in terms of a distinction, foundational in 
cognitive psychology, between automatic and control-dependent modes of processing (Posner 
& Snyder, 1975;  Shiffrin & Schneider, 1977). Control-dependent processing is characterized as 
highly flexible and general, but subject to interference and therefore limited to inefficient serial 
processing. Automatic processing, in contrast, is less prone to interference and can support 
efficient, parallel processing, but requires extensive practice to achieve and is more rigidly task-
dedicated. The same distinction — sometimes referred to as “dual process” theory” — has been 
made in other fields using other other terms, such as system 1 and system 2  in behavioral 
economics (Sloman, 1996), model-free (habitual) and model-based (deliberative) in machine 
learning and neuroscience (Daw et al., 2005; Doya, 1999; Sutton & Barto, 1998); and in the lay 
terms of thinking fast and slow (Kahneman, 2011).   

The constraints on control-dependent processing have traditionally been attributed to 
reliance on a centralized, general purpose mechanism that is responsible for the flexibility of 
human cognitive function, including its ability to respond effectively to novel situations (Norman 
& Shallice, 1986), but that is capacity-limited and restricted to the serial execution of processing, 
akin to the central processing unit (CPU) of a traditional computer (Pashler, 1988; Posner & 
Snyder, 1975; Shiffrin & Schneider, 1977). However, a longstanding alternative — “multiple 
resources theory” (Allport et al., 1982; Navon & Gopher, 1979) — suggests that processing is 
distributed, and that constraints arise not from reliance on a “central bottleneck” imposed by a 
capacity-limited control mechanism, but rather when different processes must compete to use 
the same set of shared local resources. This has received growing support from computational 
analyses (e.g., Meyer & Keiras, 2001;  Feng et al., 2014;  Musslick et al., 2023), in which "local 
resources” are sets of representations required to perform a given task; and interference arises 
when different tasks (e.g., naming the color versus shape of a stimulus), that rely on a shared 
set of representations (e.g., phonological codes), require different ones to be activated at the 
same time. This has lead to a formulation of the distinction between control-dependent versus 
automatic processing in terms of a tradeoff between, respectively: i) the shared use of 
compositional representations, that can be acquired efficiently and flexibly reconfigured to 
perform novel tasks, but are subject to interference that imposes the need for serial processing; 
and ii) the formation of separated, conjunctive representations that are less subject to 
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interference and therefore permit parallel execution (i.e., multitasking), but require time and 
effort to acquire and are more rigidly task-specific (Musslick et al., 2023). 

This interpretation aligns directly with the informational theoretic approach we have taken 
here, in terms of the tradeoff between representational efficiency and processing efficiency: 
Control-dependent, serial processing can be viewed as an adaptation by the cognitive system in 
which processing efficiency is sacrificed in exchange for the representational efficiency of 
structured codes, that afford flexible generalization. From this perspective, we can view the 
constraints associated with control-dependent processing as the purpose (rather than a 
shortcoming) of control: the imposition of serial processing to avert the risk of interference (i.e., 
decoding errors) incurred by the correlation intrinsic to structured codes. This framing offers a 
unified account of capacity constraints, that spans perception, working memory, and tasks that 
rely on cognitive control. It also provides a formally rigorous, and potentially normative 
framework within which to consider how and when such constraints may be overcome, that we 
turn to next. 

Overcoming Capacity Constraints


Conjunctive Codes: Recoding, Consolidation and Automatization 

In this article we have followed a long tradition of information theoretic work in cognitive 
and neuroscience by focusing on the importance of representational efficiency and expanding 
it, here, to take account of the value that similarity structure has for learning and generalization 
at the expense of processing capacity. While the latter are brought into sharp relief by tasks 
that involve novel or unpredictable stimuli — including those on which Miller focused — at the 
same time there are many conditions under which people exhibit remarkable parallel 
processing capabilities, as discussed above, both in perception (e.g., identifying a face in a 
crowd) as well as control and action (e.g., talking and driving). We assume that this relies on the 
use of conjunctive codes that have been acquired over the course of evolution, early in 
development, or through repeated experience, and that are not subject to the interference of 
structured codes. When the agent has access to such codes, identifying and using them can 
be an effective strategy for increasing processing capacity, a process that Miller referred to as 
“chunking” (e.g., representing a string of digits as a single date, or a string of letters as a single 
word). Such recoding is a well known mnemonic device that can produce dramatic increases in 
capacity, such as remembering an arbitrary string of 100 digits (Ericsson & Simon, 1980).


Importantly, with time and effort, people can also acquire new representations of this sort, 
using longer term learning mechanisms to generate purpose-specific conjunctive codes, by 
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forming enduring associations among existing codes that co-occur with sufficient frequency.  
This is what drives the process of automatization that occurs with practice in skill acquisition 
(Cohen et al., 1990; Logan, 1982; Musslick et al., 2023; Shiffrin & Schneider, 1997).  The 
framework we have described provides a formally rigorous, normative approach to 
understanding this canonical trajectory, from capacity-limited, control-dependent performance 
early in training, that exploits the flexibility of structured codes, to more efficient, automatic, 
parallel processing and multitasking capability that comes from the formation of conjunctive 
codes with time and practice. It also bears striking parallels to observations and theory 
regarding representational learning, which is often framed in terms of statistical learning, where 
the same principles may apply.  

For example, learning patterns of correlation among features has been used to explain the 
semantic structure of representations acquired by neural networks (Hinton, 1996; 2013; 
McClelland & Rogers, 2003; Rumelhart & Todd, 1993; Saxe et al., 2019), and the function of 
consolidation in the context of Complementary Learning Systems theory (Kumaran et al., 2013; 
McClelland et al., 1995). Consolidation refers to the use of associations rapidly formed in 
episodic memory (among previously unassociated representations in semantic memory) to 
forge new associations among those representations in semantic memory, while preserving 
existing structure as much as possible. Insofar as the initial, rapidly formed associations in 
episodic memory are between structured forms of representations in semantic memory, this 
can be considered homologous to the function of rapid binding among structured codes we 
have considered in this article (though see note 10), and subject to the same limitations.  For 
example, while the storage capacity of episodic memory is generally treated as unlimited, the 
number of independent sets of associations (e.g., among features of an item) that can be either 
stored or retrieved at a given time are constrained by the same factors of compositionality (the 
binding problem) and semanticity (proactive interference) as those we have considered in this 
article.  Similarly, the transition from the flexible but arbitrary associations formed in episodic 
memory to the richer, domain-specific semantic codes generated over time through replay and/
or rehearsal, can be considered homologous to the transition from control-dependent to 
automatic forms of processing that come with practice in the domain of skill acquisition.


In summary, the information theoretic framework we have described may provide a unified, 
formally rigorous approach to understanding the effects of recoding (“chunking”), as well as the 
trajectories in representational learning and skill acquisition, in terms of the formation of 
purpose-specific conjunctive codes that reduce correlations with (i.e., increase distance from) 
other codes with which they may interfere. The frequency-dependent nature of the learning 
mechanisms involved accord with the general principle of optimal coding in information theory, 
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in which likelihood should impact the structure of the code. This has recently been applied to 
provide a normative account of dual process theory in terms of the minimum description length 
principle (Moskovitz et al., 2024). Here, we propose that this can be extended beyond the 
traditional assertion that frequency should impact code length, to the idea that frequency 
should impact code distance, by modifying or forming new codes for frequently encountered 
forms of correlation (e.g., items) that are further from those with which they can be confused.  
At the same time, there may be pressure to also consider their value for compositional coding: 
that is, the extent to which these codes can themselves be combined to represent novel items.  
In general, an important factor in consolidation and automatization may be the formation of 
dedicated representations for high frequency items, combinations of which are most useful for 
representing a broad class of low frequency items.  This framing may provide a useful 
foundation for a more detailed, and normative understanding of how and when learning can be 
used to optimize the tradeoff between representational and processing efficiency.


Optimization of the Tradeoff between Representational and Processing Efficiency 

Recognizing the normative value of frequency-dependent structuring of the code highlights 
the importance of the processes of consolidation and automatization discussed above:  These 
processes allow people to actively manipulate the frequency with which they experience and 
process different information. That is, replay, rehearsal and practice all selectively increase 
exposure to some correlations over others, relative to their incidental likelihoods in the 
environment. This active manipulation of frequency suggests that optimization of the tradeoff 
between representational and processing efficiency involves at least three additional, closely 
related factors:  the utility of restructuring the code, the time it takes to do so, and the temporal 
horizon over which that utility obtains. Characterizing the specific forms of utility that drive these 
processes is beyond the scope of this article.  However, the general problem can be cast in the 
form of an intertemporal choice with respect to optimizing the rate of utility maximization.  When 
confronted with a novel or unfamiliar task, should an agent: a) rely on the flexibility of currently 
available, representationally efficient codes, that can support immediate performance and thus 
maximize utility rate over the short term, relative to investing the time and effort required to 
restructure the code, but that incurs the opportunity cost of improving processing efficiency over 
the longer term; or b) invest in restructuring the code to improve processing efficiency, which will 
increase the rate of utility maximization over the longer term, but will take time and effort and 
thus incur opportunity costs over the shorter term.  Recent work has begun to address this 
question in the context of skill acquisition and multitasking capability (e.g., Sagiv et al., 2018; 
Ravi et al., 2020; Petri et al., 2024). The current framework could be used to generalize this 
approach to perceptual and inference processes, which may have relevance not only for 
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understanding the profiles of human performance, but for the design of artificial systems, that 
we discuss next. 

Relevance to Work in Machine Learning and Artificial Intelligence


Progress in machine learning has produced remarkably successful systems that exhibit 
flexibility of processing and generalization comparable to that of humans in tasks such as 
inference and analogical reasoning (e.g., Webb et al., 2023), suggesting that they have 
acquired structured codes required to support such generalization capabilities. According to our 
account, this predicts that, despite their massive resources (processing units and parameters) 
and the data to which they have access, these models should nevertheless be subject to 
constraints in processing efficiency similar to those observed for humans when called upon to 
process novel information.  

Consistent with this idea, it has been observed that the distributional properties of the data 
on which transformers are trained is important in determining what information is stored in the 
structure of the weights, and what information relies on dynamic construction of activity states, 
often referred to as “in context” learning (Chan et al., 2022).  Intriguingly, it was found that 
weight-based learning occurred for high frequency items involving stable correlations in the 
data, whereas large numbers of rarely occurring classes and/or items the meanings of which 
were dynamic rather than fixed across samples, tended to rely on “in context” learning.  These 
observations align well with the idea that stable, frequently encountered forms of correlation will, 
with sufficient exposure, be assigned dedicated conjunctive codes; that is, they will become 
incorporated into the system’s set of existing semantic codes, with weights dedicated to the 
relevant correlations, comparable to the processes of consolidation and automatization 
discussed above. In contrast, items encountered less frequently (i.e., involving more “novel” 
correlations) will rely on dynamically constructed compositional representations formed from 
existing semantic codes; that is, the correlations will be represented using rapid binding 
mechanisms such as those implemented in the models described in this article. These 
observations also reinforce the prediction made by our analysis, that the amount of information 
transformers can process using “in context” learning should be limited in ways similar to humans 
when they are forced to process information involving novel or unpredictable correlations (as in 
the tasks discussed in this article). 

As noted earlier, this may already be evident in state of the art machine learning models.  
For example, one recent study investigated the extent to which existing large visual language 
models (VLMs; such as GPT-4v) can reliably distinguish among simultaneously presented 

47



items, using the types of tasks and stimuli that have been used to characterize capacity 
constraints in humans, including those we have considered in this article.  That study found that 
VLMs consistently exhibited constraints in processing capacity as restrictive as those observed 
for humans forced to rely on rapid parallel processing (Campbell et al., 2024). This is consistent 
with the supposition that VLMs rely on the learning of structured representations for 
generalization, and the generality of the principle that such representations should be 
associated with restrictions in processing capacity.  

Finally, in a separate line of work in machine learning, there have been extensive studies 
seeking ways to improve the generalization performance of neural networks.  These have 
shown that training networks on several related tasks in ways that encourage the discovery of 
shared structure — referred to variously as “multitask training” (Baxter, 1995; Bengio at el. 2013; 
Caruana, 1997) or meta-learning (Finn et al., 2017; Hospedales et al., 2021; Santoro et al., 
2016) — can substantially improve performance on novel tasks that share similar structure. 
Critically, however, networks in these paradigms are only ever trained or asked to perform one 
task at a time.  Recently, the effects of such learning have been interpreted in terms of the 
acquisition of compositional representations, where it is shown that this leads to dramatic 
restrctions in multitasking capability — that is, the ability perform multiple tasks at the same time 
(Musslick et al., 2023) — an effect that is largely invariant to the size of the network (Petri et al., 
2023). Again, this is consistent with the principle that, whereas structured representations 
support more efficient learning and generalization, this comes at the expense of processing 
efficiency (in this case, the ability to simultaneously perform multiple tasks). As noted above, 
recent work has begun to consider ways in which the tradeoff between generalization and 
processing capacity can be optimized, using both formal analysis of abstracted networks and 
simple task settings (Sagiv et al., 2018; Petri et al., in press), and using deep learning in the 
context of more complex and realistic tasks (Ravi et al., 2020). 

These findings may have significance for the design of artificial systems. Most work to date, 
like traditional work in cognitive and neuroscience, has focused on representational efficiency: 
how artificial systems can achieve the efficiency of learning and the level of flexibility and 
generalization exhibited by humans. It is generally assumed that this will require imbuing 
models with more powerful inductive biases for discovering structure, whether in their training 
curricula (e.g., Marinescu et al., 2024) and/or their architecture (Webb et al., 2024), in order to 
optimize the bias-variance tradeoff (see note 7).  The work we have presented suggests that 
one way to frame this is the need to form dedicated representations of high frequency items that 
can be combined (i.e., compositionally) to represent as many low frequency items as possible. 
However, while optimizing this tradeoff remains a major challenge for the design of artificial 
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systems, the work we have presented suggests that, even with complete success in this effort, 
the design problem faces another tradeoff: to the extent that inductive biases are found that 
maximize representational efficiency, this will carry a commensurate cost in processing 
efficiency. That is, it will be subject to the curse of generalization. 

This tradeoff between flexible but inefficient processing and efficient but task-dedicated 
processing is comparable to a similar tradeoff faced in traditional computational architectures, 
between highly flexible components (interpreted procedures and general purpose processors) 
and purpose-dedicated ones (compiled procedures, drivers and custom chipsets). It is intriguing 
to consider the possibility that this reflects yet another expression of the information theoretic 
principles we considered in this article.  Whether or not this is so, the tension is a fundamental 
one for any adaptive system that must function in the real world.  While flexibility and 
generalization are clearly assets in naturalistically non-stationary and unpredictable 
environments, so is the need to simultaneously encode and meaningfully distinguish among 
multiple sources of input, and/or manage the simultaneous execution of multiple independent 
tasks — capabilities that are likely to be critical for artificial autonomous agents functioning in 
naturalistic environments. It is clear that the human brain has developed mechanisms to 
adjudicate this tradeoff and, as we discussed above, to adapt both its behavior and its structure 
over time to do so as a function of experience and need. We hope that our consideration of the 
information processing principles underlying this tradeoff will help advance the understanding of 
how this tradeoff is managed by the brain, as well as the design of artificial agents that are as 
effective in doing so. 

Conclusion


In this article, we provided a formal characterization of a fundament tradeoff faced by any 
information processing system, between: representational efficiency — the efficiency with 
which an agent can acquire and generalize information about the world, advantaged by the use 
of structured (similarity-based) codes; and processing efficiency — the amount of information 
that can be processed at the same time, advantaged by conjunctive (maximally separated) 
codes. We presented an analysis of this tradeoff in an abstract, information theoretic form, and 
then demonstrated that the same principles are exhibited in a neurally-inspired mechanistic 
model of tasks that have been used to characterize human information processing capacity 
constraints in perception and memory.  Finally, we argued that the same principles can be 
applied to other domains of cognitive function that exhibit similarly restrictive constraints on 
processing capacity, such as language, multitasking performance and control-dependent 
processing.  
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Our account follows a long tradition of work that assumes natural agents place a premium 
on representational efficiency, that is the pace at which generalizable codes can be acquired 
and the flexibility with which they can be used. While our analyses demonstrated the value of 
structured codes in an abstract formulation of the problem, and in simulations of relatively 
simple tasks that have been used in the laboratory, these likely underestimate their value in 
more realistic environments, given the statistical complexity of the natural world, and the value 
of responding flexibly and effectively within it. Nevertheless, processing efficiency can also be 
of considerable value, and it is clear that humans actively invest the effort to achieve this when 
the demand is sufficiently frequent and valuable, through processes such as consolidation and 
automatization.  The information theoretic approach we have presented offers a unifying, 
formally rigorous framework for understanding these processes, as the formation of purpose-
dedicated, conjunctive codes that reduces the correlation with (i.e., increases the distance 
from) other codes with which they may interfere. 


Our analyses, inspired by George Miller’s landmark observations, have lead us to a very 
different conclusion than the one he felt compelled to make: the consistency of capacity-limits 
in the range of the “magic number 7”  is not a coincidence. Instead, we suggest that it is a 
fundamental property of a system optimally configured to represent as broad a range of states 
as possible, weighed against the value of responding to these as efficiently and accurately as 
possible. That is, it reflects a ubiquitous and inescapable tradeoff, that defines the envelope of 
achievable performance for any finite information processing agent — a constraint that we 
suggest should appropriately, if ironically, be thought of as Miller’s Law. 
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Supplementary Information 

Abstract Model 

We simulated the similarity and identification tasks as follows.  For each trial n items were sampled 
without replacement from the integers {1, 2 … 256} to constitute a test set S.  For the identification task, 
one of these items was sampled as the probe. For the similarity test, a probe was sampled from the 
uniform distribution U[1, 256]. The probability that any item i would be retrieved as the response to probe 

p was proportional to an exponential generalization gradient parameterized with  as in Shepard (1987): 

 

This function returns 1 when i and p are equal and approaches 0 as i and p are separated, at a rate 

determined by .  We refer to  as a generalization score.  We introduced noise by sampling  

generalization scores  from a beta distribution parameterized with a mode   and a 

concentration  determining the amount of noise: 

 

where the beta distribution is shown here mapping  and  into the standard  

parameterization.   The value of  used for the plots shown in Figure 5 of the main text was 1015. The 14

noisy generalization scores for each of the n items in the set were normalized to produce a probability 
distribution over the n items, so the probability of retrieving item i from S given probe p is: 

μ

g(i, p) = exp (−2
| i − p |

μ )

μ g(i, p)

Gi,p ω = g(i, p)

κ

Gi,p ∼ Beta(1 + ωκ,1 + (1 − ω)κ)

ω κ Beta(α, β )

κ

 An unintentional “bug” that reaffirmed the principle.  Noise is critical to producing the tradeoff between generalization and 14

identification error.  Without noise, generalization error — like identification error — is minimized by minimizing ,  and there is no 
tradeoff between the two forms of error.  However, the amount of noise required to produce the tradeoff is extremely small, and 
even introducing minimal amounts of noise quickly and dramatically induces the tradeoff. This can be shown in analyses that will 
be included in a future update of this document; these indicate that no practically realizable reduction in noise is sufficient to 
meaningfully diminish the severity of the tradeoff. That is, even modest increases in , that fall considerably short of optimizing 
generalization error, induce sufficient identification error to impose the radical constraints in processing efficiency observed 
empirically. Interestingly, simulations described in a previous version of this report demonstrated these effects, but did so without 
including an explicit noise term. Rather, the observed effects arose (inadvertently but instructively) due to the limits in the floating 
point precision of the simulations. Those made it impossible to distinguish between distances below some critical value, thus 
imposing effects comparable to noise, and thereby induced the tradeoff. This was confirmed by directly manipulating the floating 
point precision, which reduced the effects as precision was increased.  While this effect of floating point precision was not 
intended or anticipated, it can be taken as a convincing affirmation of the generality of the principle:  The same qualitative effects 
were observed when the simulations were run with the maximum precision on the most physically precise machine to which we 
had access.  That is, no physically realizable level of precision could avert the tradeoff between generalization and identification 
error, and thus achieve any reasonable amount of generalization error without drastically impacting identification error and thus 
constraining processing efficiency.

μ

μ
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An  table of weighted counts was maintained tracking the co-occurrence of correct response indices 

and model response indices; for each simulated trial, the table was updated using the vector of 
probabilities P. After 1000 trials the table was used to estimate the joint probability distribution from 

which the mutual information performance scores were computed at each value of  tested. 1000 trials at 

each level of  was sufficient to produce the smooth curves shown in Figure 5. 

Gaussian Similarity Function 

The results shown in Figure 5 of the main text used the exponential decay function above to 
implement similarity structure in the code.  This was inspired by the derivation of this in Shepard (1987). 
However, given the “peakedness” of this function, it may provide a conservative estimate of the impact 
that semantic structure can have on processing capacity, relative to ones that may be relevant to various 
forms of coding.  This is suggested by Figure S1, which shows analyses using the same procedures 
described in the text, but here using a Gaussian rather than an exponential distribution to implement 
similarity among codes along each direction. 

Mechanistic Models 

Hopfield-Ising Network 

P(i ) =
Gi,p

∑
j∈S

Gj,p

n × n

μ

μ
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Figure	S1.	Tradeoff	between	representational	capacity	and	processing	capacity.		Shows	results	of	analysis	using	
the	same	procedure	described	for	Figure	5	in	the	main	text.	but	using	a	Gaussian	rather	than	an	exponential	
distribution	to	implement	similarity	structure	among	codes	along	each	dimension.		Note	that	this	has	a	more	
restricting	influence	on	processing	capacity	than	the	exponential	function	used	for	Figure	5.



We adopt the statistical framework of computation (i.e., encoding and decoding in the channel above) 
as minimization of an energy function (Hopfield, 1982; Hinton & Sejnjowski, 1983), influential in 
computational neuroscience (Hopfield, 1982; Friston et al. 2010; Gottlaub & Braun, 2021) as well as 
machine learning (Zemel et al. 1995; Hinton & Salaktudinov, 2007; Salakhutdinov, 2018; LeCun et al. 
2006). The “energy” state of a network is a global measure of the agreement between the knowledge 
stored in the network’s parameters (weights) and its current activity values. Here, we consider its utility as 
an abstract cognitive model, capable of explaining human experimental data in classic cognitive tasks. 

As in other frameworks, our model assumes two time-scales of parameters: slow and fast (Hinton & 
Plaut, 1987; McClelland, O’Reilly, & McNaughton, 1995; Ba et al. 2018; Whittington et al. 2020). Given 
a stimulus (x*), a binary code Z|x* is inferred using an encoder f, which we imagine to be acquired over a 
slow ontogenetic or phylogenetic time-period. In the Hopfield network simulations, we specifically 
assume the outputs of the encoderZ( |x*) are efficient codes of the task-relevant stimulus variables (e.g., 
spatial location, color, or tone). To specify these codes we follow the coding scheme of Bicanski & 
Burgess (2019) adapted for both 1D and 2D domains: each state is encoded using frequencies at different 

phases, scaled at √e .  These continuous grid-codes and binarized to allow the Hopfield network to 

operate over variables that can take values of (+1,-1). 

We assume the agent is unable to store encodable/decodable entries in Z for all possible task-relevant 
states (e.g., colors at particular locations). Instead, they address this shortcoming by augmenting f with a 
fast-time scale encoder f* that reflects the minimal statistics of Z|x*. For example, what was where in a 
particular display. We treat the outputs of the fast-time scale encoder as cases of rapid “variable-binding”: 
for example, that a particular color was at a particular location on that trial. Although how neural circuits 
rapidly bind (Von der Malsburg, 1994; Singer & Gray, 1995; Doumas et al. 2008; Hayworth, 2012; 
Kriete, 2013; Maas et al. 2019) remains an outstanding question, here, we focus simply on the co-variance 
statistics induced by binding. The co-variance statistics of this “binding” are captured by the Hebbian 
weight matrix. 

Eq S1.  

To complete each task, partial stimulus information is available (Z’| x*), and the missing information 
must be inferred. We implement this process through standard asynchronous settling in a Hopfield 
network (Hopfield, 1982; Amit, 1988). Specifically, given the population of binary variables that have 
discrete-time (t) varying values (a) , computed as: 

Eq S2.  

W = Z |x* ⊗ Z |x *

ai = ∑
i≠j

wij xj + θ
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update these individual variables according to 

Eq S3.    

That is, “asynchronously”, until the energy function (E) 

Eq S4. .     

reaches a local minimum. In the absence of additional noise, dynamics will drive the network toward 
local energy minima. We further follow Mackay (1991) and add a sustained bias term to each node, 
proportional to the agent’s assumed uncertainty about a task-relevant feature. For those features that are 
observable (e.g., the stimulus location at time of test) , a sustained bias on those coding elements devoted 
to that feature are included to prevent the network from "drifting away”. This bias is defined for each 
coding element Zi 

Eq S5.   

Where bi = 0 if the feature Zi  partially codes for is currently observable (the “cue”) and bi = 0.5 if the 
feature Zi partially codes for is is not observable, and must be inferred. If we treat the weights as an 
empirical prior, this is much like a Hierarchical Bayesian model, but without the explicit normalization in 
the denominator. 

Finally, we note that our model follows in the tradition of Hopfield networks as non-ferromagnetic 
“spin-glass” models and assumes that the weight (interaction) matrix is (a) fully connected (rather than 
local as in the Lenz-Ising Model) and (b) symmetric (Wij=Wji). Symmetry is a sufficient condition for 
guaranteeing that the algorithm settles at local minima in the energy landscape (Hopfield, 1982; Amit, 
1989). Moreover, for any fixed N, it’s preferable to equip the system with all-to-all connections. All-to-all 
connections maximize the number of possible dependencies, while allowing the experience-dependent 
statistics to determine which in-context dependencies exist in W. 

Tensor Product Variant 

To highlight the representational generality of the principles, we consider a simple case in which the 
bindings are represented in a population of activities (Smolensky, 1990), rather than the network weights 
(Hopfield, 1982). Imagine an efficient m bit code for a task-relevant feature, (e.g., for color) (Zf), and an n 

ai(t + 1) = {1, i f ai(t) > 0.
−1, other wise

E [S ] = −
1
2 ∑

i≠j

wijsisj + θ

biasi = Zi(
1
2

log(
1 − bi

bi
))
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bit code (for e.g. spatial positions) (Zr) as in the Hopfield network formulation, but with a separate 

population of (m+n)2 nodes that represent the bindings of each Zr and Zf  as a tensor product ⓧ, such that 

each combination contains a unique node in TP, indexed by i. For each task context *, we compute the 
tensor product of the codes (Zr, Zf r for task-relevant features. 

To perform the experimental participants’ task, a control system “actively maintains” the TP 
representation over the temporal context window *, much like classical models of prefrontal cortical 
function (Braver et al., 1999; O’Reilly & Frank, 2001). Although we could imagine this control function 
optimized through reinforcement learning, here we simply stipulate by fiat that activities are maintained 
throughout the temporal context and are updated with each contextual change. Given partial information 
Zf,, the network’s task is to use the actively-maintained bindings in the TP layer to complete the missing 
information in Zr. That is, as in the Hopfield model, we seek to induce the most-likely activity state in Zr, 
given the knowledge in Zf and the tensor product of  Zr and Zf, maintained in a separate population of 
activities.  

A population of Hebb-like gates (g) control the influence of TP* on Z. A gate between any of the 
(m+n)2 TP nodes (i) and any of the m+n Zk exists if TPi is influenced by Zk.. During the inference process, 
each gk is closed by default. To align with the asynchronous updating procedure of the Hopfield network, 
we randomly sample nodes in Z without replacement throughout the settling process. The gates between 
the sampled nodes in TP that have co-varied with Zk in * open, allowing those conjunctions induced by Zk 
to project to Z at time t. We compare that projection against the information available in the content layer 
by inner product, as in the Hopfield rule. The node Zk is updated as  

Eq S6.    

Eq S7  

The process is repeated over all content nodes until it finds a local energy minimum. Results for a 
simple activity-based (Tensor-Product) and weight-based (Hopfield) model with 24 nodes and similarity-
preserving codes are presented in Figure S2. Results are qualitatively the same across implementations. 

sign(g( Zk(Zr ⊗ Zf ) + b))

= { 1 if Zk × TPk > 0
0 otherwise
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