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Abstract

One of the most fundamental and striking limitations of human cognition appears to be

a constraint in the number of control-dependent processes that can be executed at one

time. This constraint motivates one of the most influential tenets of cognitive

psychology: that cognitive control relies on a central, limited-capacity processing

mechanism that imposes a seriality constraint on processing. Here we provide a

formally explicit challenge to this view. We argue that the causality is reversed: the

constraints on control-dependent behavior reflect a rational bound that control

mechanisms impose on processing, to prevent processing interference that arises if two

or more tasks engage the same representations required to perform the tasks. We use

both mathematical and numerical analyses of shared representations in neural network

architectures to provide a formal grounding for this argument—historically known as

“multiple-resource theory”—and demonstrate its ability to explain a wide range of

phenomena associated with control-dependent behavior. Furthermore, we argue that

the need for control, arising from the shared use of the same representations by different

tasks, reflects the optimization of a fundamental trade-off intrinsic to network

architectures: the increase in learning efficacy associated with the use of shared

representations, versus the efficiency of parallel processing (i.e., multitasking) associated

with task-dedicated representations. The theory helps frame a formally rigorous,

normative approach to the trade-off between control-dependent processing versus

automaticity, and how this relates to a number of other fundamental principles and

phenomena concerning cognitive function, and computation more generally.
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1 Introduction

One of the most remarkable features of human cognition is the ability to override

habitual (automatic) responses to successfully guide behavior in the service of current

task goals. Mechanisms underlying this function are summarized under the term

cognitive control. They are engaged across virtually all domains of cognition, from

perception and action, to attention, learning, and memory (Anderson, 1982; Badre &

Wagner, 2007; Lavie, Hirst, De Fockert, & Viding, 2004; Posner & Snyder, 1975;

Ridderinkhof, Van Den Wildenberg, Segalowitz, & Carter, 2004; Shiffrin & Schneider,

1977), and appear to be fundamental to many of the faculties that distinguish human

mental function from other species (and continue to distinguish it from machines),

including problem-solving, planning, and language processing (Miyake & Friedman,

1998; Otto, Skatova, Madlon-Kay, & Daw, 2014; Shah & Miyake, 1996; Sweller, 1988).

Cognitive control has often been treated as an undifferentiated construct.

However, recent work has begun to focus on a distinction between mechanisms

responsible for the execution of control, that is, the regulation of processes subject to

control; and mechanisms responsible for the allocation of control, that is monitoring

internal states and/or the environment, including the outcome of processing, and

determining based on that information how control should be allocated. For example,

when confronted with the opportunity to perform one or more of several

control-demanding tasks, before committing to performing any of them, there may be

an initial phase during which the individual considers which (and possibly how many) it

is best to perform (Fischer & Plessow, 2015)—that is, how to allocate control. How

people make such determinations has been the focus of increasing theoretical interest,

including attempts to provide a normative account from a resource rational perspective

(Shenhav, Botvinick, & Cohen, 2013; Shenhav et al., 2017; Lieder, Shenhav, Musslick,

& Griffiths, 2018). These proceed from the assumption that the allocation of control is

constrained—an assumption that, as we will elaborate on below—has been central to

virtually all theory concerning cognitive control. The question of how control should be

allocated is then cast as an optimization problem that people seek to solve by
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evaluating candidate opportunities in terms of their expected future value, weighed

against the cost of allocation. The latter is generally formulated as an opportunity cost:

what is lost by forestalling or even forgoing other tasks to pursue a chosen one (or few).

However, like virtually all other theoretical work on cognitive control, these theories do

not explain why the allocation of control is constrained. This article seeks to address

that fundamental question, with the goal of grounding our broader understanding of

cognitive control on a firmer normative foundation. Below, we discuss the constraint

associated with control, followed by a brief review of explanations that have been given

for it, before introducing a formal account.

1.1 Capacity Constraints

Despite the powerful abilities that cognitive control affords, and its ubiquitous

engagement in daily life (e.g., mentally planning one’s day at work, or navigating an

alternate route to work), it has long been recognized that we have a dramatically

limited ability to carry out more than one (or a very few) control-dependent processes

at the same time (e.g., the inability to plan and navigate at the same time). This

limitation has been considered a defining feature of control-dependent processing since

the earliest efforts to distinguish this from automatic processing (Posner & Snyder,

1975; Shiffrin & Schneider, 1977), and is literally paradigmatic in the universal use of

dual-task interference to operationalize control-dependence in the laboratory (i.e.,

“diagnose” it experimentally; Lavie et al., 2004; McLeod, 1977; Meyer & Kieras, 1997a;

Welford, 1952). A constraint in the capacity for control-dependent processing has also

become a theoretical cornerstone of virtually all major theories of cognitive function

(Anderson et al., 2004; Anderson & Lebiere, 2014; Pashler & Sutherland, 1998; Simon,

1957) including ones, noted above, that address how rational choices are made among

the limited set of control-dependent behaviors that can be carried out at a given time

(Kurzban, Duckworth, Kable, & Myers, 2013; Lieder et al., 2018; Shenhav et al., 2013).

Despite the central importance of the constraints associated with the engagement of

cognitive control, the source of the constraint itself remains a mystery.
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1.1.1 Structural Constraints. A widely accepted view is that constraints in

the capacity for control-dependent processing arise from structural and/or processing

limitations inherent to the control system itself. One of the earliest and most widely

held views is that cognitive control relies on a centralized, limited-capacity mechanism

that imposes a seriality constraint on processing (e.g., Posner & Snyder, 1975; Shiffrin

& Schneider, 1977). This reflects two strong influences. One is an analogy with the

classical computer architecture (e.g., von Neumann, 1958), that has at its core a single,

general-purpose central processing unit (CPU) with a limited buffer that allows it to

execute a single program instruction at a time (Kerr, 1973). A second, convergent

influence comes from the longstanding tradition of work on selective attention, in which

the earliest theories proposed an attentional filter that limits information processing to

a small set of selected stimulus features (Broadbent, 1957, 1958; Craik, 1948; Welford,

1952). These ideas have matured and been refined by an extensive literature on

dual-task interference that provides compelling evidence for a central processing

bottleneck (e.g., Pashler, 1984, 1994).

The idea of a structural constraint has also been suggested by mechanistic models

of cognition in which control relies on the active maintenance in working memory of

representations needed to guide task performance (such as task instructions, goals, etc.;

e.g., Anderson, 1984; E. K. Miller & Cohen, 2001). Accordingly, constraints on control

are often attributed to the well-characterized constraints in the capacity of working

memory, such as a limited number of discrete slots for working memory representations

(Cowan, Rouder, Blume, & Saults, 2012; Kriete, Noelle, Cohen, & O’Reilly, 2013; Luck

& Vogel, 1997; Schneider, Detweiler, et al., 1987), their passive decay (Jensen, 1988;

Page & Norris, 1998), interference among representations held in a common working

memory buffer (Nairne, 1990; Oberauer & Kliegl, 2006; Usher & Cohen, 1999), or the

related idea that there is a trade-off between the number and precision of

representations that can be actively maintained (Ma & Huang, 2009; Ma, Husain, &

Bays, 2014)—for a comparative review of these accounts, see Oberauer, Farrell, Jarrold,

and Lewandowsky (2016).
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Even if dependence on working memory were responsible for the constraints on

cognitive control, this leaves at least two mysteries unsolved: (1) Whereas the exact

limits of working memory capacity are actively debated (is it 7, 4 or even just 2? Cowan,

2001, 2010; Luck & Vogel, 1997; G. A. Miller, 1956; Palmer, 1990; Turner & Engle,

1986), constraints on the simultaneous execution of controlled-dependent processing are

even more severe: it is almost universally considered to be a single task (e.g., Anderson

et al., 2004; Anderson & Lebiere, 2014; Pashler & Sutherland, 1998); (2) Why would a

system with processing resources as vast as those of the human brain (with billions of

neurons in the human cortex alone; Herculano-Houzel, 2009; Pelvig, Pakkenberg, Stark,

& Pakkenberg, 2008) suffer from such a draconian limitation on a function as adaptively

valuable as the capacity for cognitive control? In the face of modern compute clusters,

with 1000s of “cores” or more, the analogy between cognitive control and an

architecture with a single CPU has become as quaint as the architecture itself.

1.1.2 Multiple-Resource Theory. An alternative to the idea that capacity

constraints arise from the resource limitations of a centralized control mechanism—that

is, that they reflect a limitation of the control system itself—is the idea that they

reflect, instead, properties of the processes that are being controlled. This idea was first

expressed in the form of the multiple-resource theory (Allport, 1980; Allport, Antonis, &

Reynolds, 1972; Kinsbourne & Hicks, 1978; Navon & Gopher, 1979; McCracken &

Aldrich, 1984; Walley & Weiden, 1973; Wickens, 1991). This proposes that

control-demanding tasks, like any others, rely on a constellation of “local” resources

(e.g., task-specific representations)1. and that the inability to perform more than one

1 . The terms “shared resource” and “shared representation” describe similar concepts in different

models of human multitasking. In symbolic architectures, such as ACT-R (Anderson & Lebiere, 2014)

or EPIC (Meyer & Kieras, 1997a), two tasks are considered to share a resource if both of the tasks

require the engagement of the same processing component. A processing component may be used to

represent declarative information (e.g., sensory information or more abstract semantic knowledge) or to

manipulate information (e.g., productions for updating the activity of representations in declarative

memory and/or taking actions). In connectionist models—consisting of multiple interconnected

processing units, often grouped into modules that are used to represent and process a given type of



SHARED VERSUS SEPARATED REPRESENTATIONS 11

task at a time may reflect the conflict that arises within local resources when the tasks

involved rely on the same local resources, but demand that they be used for different

purposes, rather than reliance on a single centralized control mechanism (Botvinick,

Braver, Barch, Carter, & Cohen, 2001).

A classic demonstration of multiple-resource theory was provided by Shaffer

(1975), who contrasted two dual-task conditions. In one condition, participants were

asked to repeat an auditory input stream out loud (echoing) while manually typing

visually presented text (copy-typing); they were able to do this reasonably well after a

modicum of practice. The other condition involved the same stimulus modalities

(auditory and visual streams of verbal information) and response modalities (speaking

and typing) but, in this case, they were asked to type the auditory input (dictation)

while reading aloud the visually presented text (reading). This proved virtually

impossible to do, even after extensive practice. What is particularly striking is that one

of the tasks in the second condition—word reading—is considered to be a canonical

example of an automatic process (Warren, 1972; Posner & Snyder, 1975; R. F. West &

Stanovich, 1978; Seidenberg, Tanenhaus, Leiman, & Bienkowski, 1982); that is, it

should not have been subject to interference. Furthermore, since the response it

demanded (verbal) was different from the dictation task (manual), it should also not

have produced interference.

Fig. 1 illustrates these tasks and offers an explanation of the findings in a manner

consistent with the multiple-resource theory. In the first condition, the two tasks each

make independent use of two distinct “resources” (orthographic and phonological

representations of verbal materials); in the second condition, both tasks must make use

of both resources, each for a different purpose (i.e., to process different, competing

stimuli). From this perspective, the dual-task interference that arose in the second

information—two tasks can be considered to share a resource if they make use of the same set of units

in a module (i.e., they “share a representation”) but require different units to be active at the same

time (cf. Fig. 3C). Here, we refer to “representation” (singular) as a single set of units that is used to

represent a feature for a given stimulus dimension.
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Stimulus
Dimensions

Response
Dimensions

Internal	
Representations

(a) No	Cross-Talk

Phonological Orthographic

Auditory Visual

Verbal Manual

Echoing Copy-Typing

Stimulus
Dimensions

Response
Dimensions

Internal	
Representations

(b) Cross-Talk

Phonological Orthographic

Auditory Visual

Verbal Manual

Dictation Reading

No	Cross-Talk	A	 Cross-Talk	B	

Figure 1 . Two dual-tasking conditions contrasted in the experiment by Schaffer (1975).

(A) In the first condition, participants were asked to repeat spoken words (echoing) while typing

visually presented text (copy-typing). (B) In the second condition, participants were asked to type

spoken words (dictation) while vocalizing visually presented text (reading). Participants were able to

learn to multitask in the first condition but were unable to do so in the latter. The difficulty of the

second condition can be explained in terms of interference that arises from the shared use of

representations for two different purposes. In that condition (B), the phonological and orthographic

representations must each be used for two tasks (reading and echoing), leading to interference between

them. No such interference is present in the first condition (A).

condition did not necessarily reflect the limited-capacity of a centralized control

mechanism, but rather the conflict that arose from making competing demands of the

same local “resources” (on the assumption that each resource could not be used to

simultaneously represent different information). Similar effects reflecting the sensitivity

of dual-task interference to the particularities (often referred to as the “compatibility”)

of the stimulus-response mappings involved have continued to be widely reported in the

literature (Greenwald, 1970; Greenwald & Shulman, 1973; Göthe, Oberauer, & Kliegl,

2016; Halvorson, Ebner, & Hazeltine, 2013; Hazeltine, Ruthruff, & Remington, 2006;

Lien & Proctor, 2002; Liepelt, Fischer, Frensch, & Schubert, 2011).

Several computational models of cognitive function have implemented the idea

that constraints on the number of tasks that can be performed at the same time arise

due to the sharing of local resources, rather than a limitation in the mechanisms

responsible for control. For example, the executive-process interactive control (EPIC)
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framework (Meyer & Kieras, 1997a; Kieras & Meyer, 1997) implements a control

mechanism that schedules tasks, without any upper limit on the number that it can

schedule for execution in parallel. Bottlenecks arise from seriality constraints within

individual processing resources when these are required for performance by more than

one task at a time. Salvucci and Taatgen (2008) have described a similar view in the

context of a theory of threaded cognition. Such modeling efforts based on symbolic

architectures have been successful in predicting when multitasking performance is

possible, and when constraints arise, based on assumptions about which resources are

shared between specific tasks (Byrne & Anderson, 2001; Kieras, Meyer, Ballas, &

Lauber, 2000; Meyer & Kieras, 1997b; Salvucci & Macuga, 2002; Salvucci, 2006). While

these efforts have focused on people’s ability to multitask, connectionist models have

addressed the conflict that can arise from shared representations even when performing

a single task (i.e., when information from a competing source impinges on the shared

representations, such as in the Stroop and Erisken Flanker tasks), and the role that

control plays in managing such conflict (e.g., Botvinick et al., 2001; J. D. Cohen,

Dunbar, & McClelland, 1990).

1.1.3 Guilt by Association: Control as a Solution Rather than a

Cause. The modeling efforts above all emphasize the point that a fundamental

purpose of control mechanisms is to manage the potential for cross-talk between tasks,

by restricting the engagement of representations shared by multiple processes to the

one(s) relevant for a single process at any given time. That is, they make the point that

the constraints on the simultaneous execution of multiple control-dependent processes,

usually ascribed to the mechanisms responsible for control, can instead be viewed as the

purpose of control—to limit cross-talk—rather than a limitation of control mechanisms

themselves. Ascribing the constraints to a limitation in control mechanisms is mistaking

correlation for causation, akin to blaming the firefighters for the fire, since they are

always at the fire. The real constraint is the sharing of representations by different

processes, rather than assigning dedicated representations to each, not the control

mechanisms responsible for adjudicating their use in a particular setting. However, this
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perspective does beg the following question: Why, if the sharing of resources leads to

conflict, constraints on processing, and reliance on control, should such sharing arise in

the first place, no less be as prevalent as the bottlenecks associated with controlled

processing seem to be?

One potential answer to this question, and several closely related ones, is

suggested by a different analogy between the role of cognitive control in information

processing and that of a traffic controller in a transit system. Think of each process in

the cognitive system as a vehicle, conveying goods (by analogy, information) from a

source to a destination. Ideally, each vehicle travels on a thoroughfare that runs directly

from its source to its destination, without crossing any others. In this case, the system

can function independently (i.e., automatically), without any need for a traffic

controller. However, as the number of goods or, perhaps more importantly, the number

of uses to which they are put, increases, it becomes increasingly difficult to avoid the

crossing of routes. Where this occurs, there are two options. One is to build an overpass

so that the vehicles can continue to operate independently of one another or a

controller. However, this can be costly, take time, and it can also become complex, if

flexibility of routing is required (e.g., the “butterflies” at highway exchanges).

Alternatively, intersections can be allowed among thoroughfares, which are both easy to

construct and afford flexibility (allowing turns as well as direct passage). However,

intersections introduce the risk of collisions, so these must be accompanied by traffic

signals, and a traffic controller or some strategy implemented to manage them. The role

of traffic controller becomes increasingly important as the number of crossings and

vehicles traversing them grows.

This analogy brings several critical points to light. First, using traffic signals

rather than overpasses is faster and cheaper to implement, but restricts the flow of

traffic. More specifically, it is the number of stop signals that must be imposed at any

one time that constrains the traffic flow, and it is the responsibility of the traffic

controller to impose these. The fact that the traffic controller imposes this restriction

does not reflect a limitation of the controller (there is no practical limit to the number
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of signals available to it, nor any intrinsic limit on how many can be used to signal “go”

vs. “stop” at any time); but rather, the restriction in the number of “go” signals reflects

its purpose in preventing collisions. Analogously, the purpose of cognitive control is to

limit cross-talk that arises from those parts of the processing system that involve

“crossings”—that is, shared representations.

1.1.4 Shared vs. Separated Representations. The analogy above suggests

a qualitative answer to the question of why the cognitive system should favor shared

representations: Like traffic intersections, they may be easier, quicker, and/or cheaper

to construct, and also more flexible (e.g., allowing processing to be quickly re-directed

in a number of different directions), as compared to separated representations dedicated

to each process (e.g., overpasses). However, this qualitative answer brings into focus two

more specific, quantitative questions.

The first question is: How does multitasking2 capacity scale with the size of the

processing system, and the frequency of shared representations within it? By way of the

analogy above, how does the risk of collisions scale with the number of crossings in the

system? One might imagine that in a processing network with the capacity of the

human brain, the likelihood of a given set of tasks “colliding” (i.e., interfering by means

of a shared set of representations) might be relatively low, and should therefore play an

insignificant role in constraining the number of tasks that can be performed at once.

However, provisional numerical work suggests otherwise (Feng, Schwemmer, Gershman,

& Cohen, 2014), motivating the need for a more rigorous analysis of the impact of

representational sharing on network performance.

The second question is: How does the human cognitive system balance the costs

and benefits of shared vs. separated representations? As noted above, previous

computational modeling efforts have addressed the consequences of shared

representations with respect to cross-talk and attendant constraints on multitasking,

2 Here, we define multitasking as the simultaneous execution of two or more tasks to distinguish it from

broader uses of the term, such as the switching between multiple tasks (Koch, Poljac, Müller, & Kiesel,

2018).
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showing that mechanistically-explicit implementations of the multiple-resource theory

can provide quantitatively accurate accounts of human performance in task domains

where there appear to be constraints on concurrent multitasking (Byrne & Anderson,

2001; Meyer & Kieras, 1997b; Salvucci & Taatgen, 2008). However, these have assumed

a stationary resource taxonomy (see Wickens, 1991), based on pre-specified

representations for the tasks involved, without specifying how or why those

representations arose in the first place (Botvinick et al., 2001; Byrne & Anderson, 2001;

J. D. Cohen et al., 1990; Laird, 2012; Meyer & Kieras, 1997a; Salvucci & Taatgen,

2008). That is, they have not provided an account of the factors that drive the system

to rely on shared representations, at the cost of a reliance on control, versus the

development of separated, task-dedicated representations that provide the efficiency of

parallel processing and multitasking (i.e., automaticity).

1.2 Overview

The purpose of this article is to directly address both of the questions raised

above: How does multitasking capability scale with the prevalence of representational

sharing and the size of the processing system; and what are the factors that determine

the trade-off between shared and separated representations? For most of the article, we

focus on the domains of skill acquisition and task performance, however, in the General

Discussion we consider the extent to which the principles involved generalize to, or

relate to others concerning the cognitive system more broadly, such as visual

information processing, working memory, and semantic representations.

We begin, in Part I, by describing a formal framework in which the balance

between shared and separated representations, and the corresponding constraints on

multitasking capability and demand for cognitive control, can be quantified. Next, we

apply the framework to empirical findings from experimental tasks that have been used

to study control-dependent processing, from classic “attentional” tasks (such as the

Stroop paradigm) to dual-task and task-switching paradigms. We show how the

constraints imposed by shared representations can provide a unified account of
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behavioral effects commonly observed in these domains. Then, in Part II, we examine

the influence that learning has on this balance, and illustrate how this can be used to

provide a quantitative, and potentially normative account of the trajectory from

controlled to automatic processing over the course of training.

We conclude by suggesting that the trade-off between shared and separated

representations, and its interaction with learning, represent a fundamental principle of

adaptive network architectures that underlies and shapes all domains of psychological

function, from perception and inference to task execution, and extends equally to

artificial systems. Moreover, we discuss how solutions to this trade-off can be

approximated by considering a “cost of control” that has begun to receive considerable

attention in theories of control allocation (e.g. Kool & Botvinick, 2018; Kurzban et al.,

2013; Lieder & Griffiths, 2017; Shenhav et al., 2013, 2017), as well as in theories of

planning and decision making (Callaway et al., 2018; Kool, Gershman, & Cushman,

2017; Lieder et al., 2018). We also consider how the trade-off between shared and

separated representations may help provide a unified understanding of a wide range of

psychological phenomena that, to date, have been treated largely as distinct from one

another—including the role of “chunking” in skill acquisition (G. A. Miller, 1956;

Servan-Schreiber & Anderson, 1990), interference in working memory (Bouchacourt &

Buschman, 2019; Usher & Cohen, 1999; Wilken & Ma, 2004), attention in “binding”

(Treisman, 1996, 1999; Treisman & Gelade, 1980), facilitation in creativity (Kajić,

Gosmann, Stewart, Wennekers, & Eliasmith, 2017; Schatz, Jones, & Laird, 2018), and

the trade-off between pattern separation vs. pattern completion in episodic vs. semantic

memory (McClelland, McNaughton, & O’Reilly, 1995)—and discuss its relationship to

similar principles that have begun to emerge from machine learning, such as the

bias-variance trade-off and regularization. All reported analyses, simulations, and

experiments are available at https://github.com/musslick/rational_boundedness.
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2 Part I: Shared Versus Separated Representations

and Constraints on Multitasking Capability

We begin by describing a simple neural network model that has been used widely

to implement a fundamental function of cognitive control: configuration of information

processing in the service of performing a specified task. We use this model to define

what we mean by the terms “task,” “process,” and “shared representation;” and how

the configuration of processes used to perform tasks constrains the multitasking

capability of a network, and consequently the demands for control. We show how

constructs from graph theory can be used to analyze how the cross-talk associated with

these different configurations impacts performance, and how these effects scale with the

size of the network. We then demonstrate how these graph-theoretic methods can be

used to predict the multitasking capability of a network from measures of single-task

representations. We also examine how the amount of conflict induced by shared

representations interacts with the persistence characteristics of those representations to

produce constraints on multitasking and dependence on control. We show that these

interactions can account for patterns of reaction time (RT) that have been proposed to

index the degree of parallel processing in task performance (Townsend & Wenger,

2004). Finally, we demonstrate how the constraints on parallel processing imposed by

shared representations, and concomitant demands for control, provide a unifying

account of phenomena associated with the sequential execution of multiple tasks, such

as the psychological refractory period (PRP; Telford, 1931) and task switch costs

(Allport, Styles, & Hsieh, 1994; R. D. Rogers & Monsell, 1995), and discuss how this

can be used to define multitasking behavior along a continuum from pure sequential

processing, through rapid task switching, to pure parallelism (Fischer & Plessow, 2015;

Salvucci, Taatgen, & Borst, 2009).

2.1 A Simple Neural Network Model

We base our work on a family of neural network models that have been used

previously to capture a wide range of empirical findings concerning controlled
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processing in attention and conflict tasks (e.g. J. D. Cohen et al., 1990; Botvinick et al.,

2001; Gilbert & Shallice, 2002; Kalanthroff, Davelaar, Henik, Goldfarb, & Usher, 2018).

In this section we describe the network architecture and processing in a canonical

example of these models, and use this to illustrate the ways, some of which are subtle,

that shared vs. separated representations impact multitasking performance.

2.1.1 Architecture. The basic model consists of two input layers, one of

which represents the stimulus presented to the network and another that indicates the

task the network is required to perform on the stimulus. The stimulus information is

transformed by a matrix of connection weights from the stimulus input layer to a

hidden (associative) layer, where it is represented as a pattern of activity over the units

in the hidden layer. A simple version of this model is depicted in Fig. 2. The pattern of

activity over units in the hidden layer is used to determine the pattern of activity over

the output layer that represents the response to a given stimulus. Control is

implemented by projections from the task input layer to the hidden and output layers,

that bias processing towards task-relevant representations in each of these layers, thus

allowing the network to elicit different responses to the same stimulus, depending on the

task specified.3

2.1.2 Tasks and Processes. Note that the stimulus input layer is comprised

of several subsets of units, one for each dimension of information in the stimulus.

Similarly, distinct subsets of output units are generally used to represent different

response dimensions, although in the example shown in Fig. 2 there is only a single such

dimension (for verbal responses; see Fig. 3 for an example with two response

dimensions). We define a task as a one-to-one mapping from representations within a

single stimulus dimension to ones in a single response dimension (for example, each

color to a verbal response; i.e., its name). A process is the set of units and connections

within a network used to implement a task. Thus, the model shown in Fig. 2, with two

3 Note that, for descriptive clarity, all of our examples use one-hot (“localist”) representations of input

and output features within each dimension. However, all of our findings apply equally to cases in which

features are represented in a more distributed form (see Simulation Studies 4 and 6), so long as each

feature is orthogonal to all the others.
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Figure 2 . Neural network model of the Stroop paradigm (adapted from Cohen et al.,

1990). (A) Model architecture: The input layer has two partitions: one represents the current stimulus

(shown in gray) and projects to a hidden layer (shown in blue), and the other encodes the current task

(shown in orange) and projects to both the hidden and output layers. The hidden layer projects to the

output layer (shown in green). The output layer represents the network’s response. Stimulus input

units are structured according to stimulus dimensions (subvectors of the stimulus pattern), each of

which is comprised of a set of feature units with one input unit activated per dimension corresponding

to the stimulus feature in that dimension; in the present example, there are two units in each

dimension, one for red and the other for green (see Footnote 3). Similarly, output units are organized

into response dimensions, with only one output unit permitted to be active per dimension

corresponding to a selected response in that dimension; in the present example, there are two units, one

for each of the two responses (there is also only a single response dimension—verbal; see Fig. 3 for an

example with an additional response dimension). All units in the model are assumed to be inhibited at

rest. Projections from each unit in the task input layer act as control signals that engage task-relevant

units in the hidden and output layers by placing them in a more sensitive range of their activation

function (see Cohen et al., 1990 for a more detailed explanation). (B) To execute the color naming

task, a unit in the control layer is activated, which engages units in the hidden layer representing color

input features (thus allowing them to overcome any interference from word features at the output

layer); the control unit also engages units representing the verbal response dimension in the output

layer, licensing a verbal response (relative to others that are not shown here).

stimulus dimensions in its input layer and one response dimension in its output layer, is

configured with two processes that can be engaged to perform either of two tasks: color

naming or word reading. Fig. 3 shows an extended version of the Stroop model that

adds a dimension for manual responses in the output layer, allowing the network to

perform two additional tasks: manually pressing a button to a particular color, and
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similarly for words. Thus, the model can now be instructed to perform any of four

tasks: color naming, word reading, color mapping, or word mapping. Importantly,

however, whereas there is only one way to configure the two tasks as distinct processes

in the Stroop model, there are several ways to configure the processes for the four tasks

in the extended Stroop model, which have consequences for the number that can be

performed simultaneously, as discussed in the section that follows.

2.1.3 Shared Versus Separated Representation: Compositional and

Conjunctive Configurations. The two panels of Fig. 3 show two ways in which the

hidden units in Fig. 2 can be configured for the four processes required to perform the

four possible tasks. These represent two extremes along the dimension of shared vs.

separated representations, which help illustrate the advantages and disadvantages of

each. In Fig. 3A, the hidden units are divided into two pools, as they are in the Fig. 2,

each of which represents one of the two stimulus dimensions (for colors and words), and

are connected to each of the two response dimensions (for verbal and manual responses).

Thus, each pool of hidden units is shared by the processes for tasks involving a given

stimulus dimension (e.g., color naming and color pointing), and thus connotes a shared

resource in the network (see Footnote 1). This compact representation is homologous to

what has been referred to as compositional coding in perception (Biederman, 1987),

describing the sharing of representations for features (e.g., the color red) across objects

(e.g., circles and squares). Accordingly, we refer to configurations such as the one shown

in Fig. 3A) as “compositional,”, to reflect the fact that the same representations for a

given stimulus dimension can be “composed” (under the influence of control) with

different response dimensions, to perform different tasks 4 This has the advantage of

representational efficiency: The compositional configuration requires the fewest number

4 Note that, in the literature on perception, the term “compositional coding” refers to the composition

of representations in different stimulus feature dimensions (e.g., colors and shapes) to flexibly represent

different objects; here we use it to refer to the composition of a representation in a single stimulus

feature dimension with different response dimensions to flexibly represent different tasks. While the

application differs, the principles are the same, as are the consequences, providing a strong theoretical

link between the perception and control literatures to which we return in the General Discussion.
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Figure 3 . Compositional configuration versus conjunctive configuration. In a task

environment with two stimulus dimensions (e.g., color and word) and two response modalities (e.g.,

verbal and manual responses) the system can perform four tasks—that is, mappings from stimulus to

response dimensions: color to verbal (color naming), color to manual (color mapping), word to verbal

(word reading) and word to manual (word mapping). In the compositional configuration (A, C) tasks

with common stimulus dimensions share the same representation in the hidden layer. In the

conjunctive configuration (B, D) a separate representation is dedicated to each task. When asked to

multitask (e.g., execute color naming and word mapping at the same time; red lines), the compositional

configuration (C) leads to cross-talk in both response dimensions, which receive (possibly conflicting)

information from each stimulus dimension (dashed lines). No such cross-talk occurs for the conjunctive

configuration. Note that weights projecting from the task input layer are not shown.

of units and connections to implement all four tasks (four and eight, respectively).

However, it has the disadvantage of not being able to reliably perform more than a
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single task at a time. If conflicting information is presented in the color and word

stimulus dimensions (e.g., the color red and word GREEN), the model is unable to

resolve which information should be conveyed to each of the response dimensions, e.g.,

when asked to execute color naming and word mapping at the same time (see Fig. 3C).

This is an analog of the second condition in the Shaffer (1975) dual-task experiment

discussed above and provides the simplest example of the constraints on multitasking

imposed by shared representations.5 We will return to this in detail below.

The configuration in Fig. 3B overcomes this problem by implementing processes

using a dedicated set of hidden units for each task. Following the analogy to the

perceptual literature, we refer to this as the “conjunctive” configuration, which assigns

a separate, dedicated set of representations for each pairwise combination

(“conjunction”) of stimulus and response dimensions. This solves the problem faced by

the compositional configuration, allowing the maximum number of tasks to be

performed simultaneously; that is, in a way that does not involve competing input

and/or output representations. However, this comes at the cost of requiring a greater

number of hidden units and weights (eight and sixteen, respectively). It can also take

longer to learn than the compositional configuration—a critical consideration that we

address in Part II of this article.

2.1.4 Representational Requirements for Control. Before considering

the consequences that different configurations of representations used for task

processing have on performance and demand for the allocation of control—the primary

focus of this article—it is worth briefly considering the representational demands that

different configurations place on control; that is, on the representations required to

allocate control. In all cases, there is a need for control at the output level to determine

when to use a given output modality (e.g., we don’t always read words aloud that we

see; we choose when to vocalize and when not to). Thus, all configurations require some

5 This is also homologous to the “binding” problem that arises from the use of compositional

representations for object features (e.g., in perception; cf. Footnote 4), and to which we will return in

the General Discussion.
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allocation of control at the output level that we can represent, in simplest form, as a

control unit for each output dimension (e.g., see Simulation 6 in J. D. Cohen et al.

(1990)). However, different configurations of representations at the hidden layer

introduce interesting differences in the requirements for control. For the compositional

configuration (e.g., the network used in Fig. 3A), task selection can be managed with

four control units: one for each of the two stimulus dimensions represented in the

hidden layer and one for each of the two response dimensions in the output layer. Any

of the four tasks can be selected for performance by activating one from each pair6.

More generally, for a compositional configuration (for a network with a single hidden

layer), the minimum number of control units is equal to the sum of the stimulus and

response dimensions; that is, it scales additively with the stimulus and response

dimensionality of the network. In contrast, the minimum control requirement of the

conjunctive configuration scales multiplicatively with the number of stimulus and

response dimensions. In the example in Fig. 3B, the number of control units required is

4: one for each combination of stimulus dimension and response dimension.7 For this

particular example, this is the same as the compositional configuration. However, if the

number of stimulus and/or response dimensions increases, the minimum

representational requirement for control of the conjunctive configuration grows

multiplicatively with the product of those dimensions. For example, for a network with

three stimulus and three response dimensions, the compositional configuration requires

six control units, but the conjunctive configuration requires nine. Therefore, the

conjunctive configuration has representational requirements—both for hidden units and

6 Note that a partitioning of control units by stimulus and response dimensions is different from a

partitioning of control units by tasks (as depicted in Fig. 3). In this section, we discuss the former to

illustrate representational demands on control. However, for simplicity, we use the latter in figures and

all of the simulations reported in this article.

7 Whereas the compositional configuration requires that control be engaged at both the hidden layer

and the output layer, the conjunctive configuration can be parameterized to require control only at the

hidden layer—e.g., by assigning a strong negative bias to all of the output units, and ensuring that the

weights from the hidden layer to the output layer are strong enough to overcome that bias.
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control—that grow exponentially with the number of possible tasks relative to those of

the compositional configuration. This is one factor that may contribute to reduced

learning efficiency with conjunctive configurations, as discussed in Part II.

2.1.5 Multitasking Capability and Network Size. The compositional and

conjunctive configurations are two extremes along a continuum of possible

configurations that highlight an inherent tension between representational efficiency

(favored by the compositional configuration) and the number of tasks that can be

performed concurrently (favored by the conjunctive configuration), as a function of the

extent to which representations are shared across tasks. We refer to the number of tasks

that can be performed concurrently (i.e., multitasked) as the multitasking capability of a

network. This reflects its processing efficiency with respect to how many tasks it can

reliably perform per unit of time. As the size of a network increases, so does the

number of possible configurations. As noted above, one question of interest is how

shared representations impact the multitasking capability of a network as a function of

its size. That is, just how much of a problem is representational sharing in larger

networks? It might be assumed that, for a given proportion of shared representations,

multitasking capability scales with the size of a network, in which case the number of

tasks that can be performed simultaneously would grow proportionally with the size of

the network. However, recent theoretical results suggest otherwise.

Feng et al. (2014) carried out initial numerical analyses to address this question.

They simulated two types of networks: one involving a simple linear mapping from

inputs to outputs for each task, and another in which each task was implemented as a

drift-diffusion process (Ratcliff & Rouder, 1998) to accommodate dynamics of

performance and analytic optimization (Bogacz, Brown, Moehlis, Holmes, & Cohen,

2006). In both cases, the processing pathway implementing each task could be engaged

or disengaged by a corresponding control signal. Simulations were carried out for both

types of networks that varied their size and the degree of overlap among tasks (i.e.,

sharing of representations). Each simulation involved full optimization of all processing

parameters over control policies to determine the one that yielded the best performance
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for a given network configuration—that is, how much control should be allocated to

each task in order to optimize the performance of the network as a whole. For the linear

model, this was the mean error over the output units for all tasks; for the drift-diffusion

model, this was the aggregate reward rate over all tasks. In both cases, a dramatically

sublinear relationship was observed between the degree of task overlap (number of tasks

that shared a representation) and the number of tasks engaged by the optimal control

policy, with a fixed asymptotic limit in the absolute number of tasks it was optimal to

perform at once, irrespective of the size of the network (see Fig. 4).
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source of these effects. They suggest that, whereas modulation
of the entire pathway (i.e., both the input and output layers)
produces optimal performance, the sublinear scaling of
optimal K with network size relies heavily on control at the
output layer (see SOME, Figs. S6–S9). Some intuition for this
effect can be gained by considering the extended version of
the Stroop task described in the introduction. Presented with
the options of performing both the color-naming and
word–action tasks or just one of these, it would almost
certainly be preferable to choose the latter. Assume, for the
purposes of illustration, that the word–action task is chosen. In
this case, the full model would modulate the activity of both
the intermediate and response (output) units of the
color-naming pathway, leaving only the word–action pathway
activated (see Fig. 2B). However, now suppose that it were not
possible to modulate the output units in a pathway. This would
fail to suppress the effect of the intermediate units in the word
pathway on the verbal response units, which (for incongruent
stimuli) would produce an error in the color-naming task
(since the inputs to those units from the intermediate units in
the color pathway were suppressed). Therefore, under these

conditions, it would be preferable to also allocate control to
the color-naming pathway, allowing its input and interme-
diate units to influence the response, and at least partially
counteract the effects of the cross-talk at the output layer. In
other words, in the absence of the ability to control the
output, activating pathways that are subject to some (but
perhaps not too much) cross-talk can contribute beneficially
to their own outputs, and in some cases outweigh the cost of
any additional cross-talk that they introduce into the network.
However, when output can be controlled, this is not necessary,
and the optimal policy is to limit processing to only the best-
performing pathways.

General discussion

The simulations reported above provide a quantitative
examination of the effects of pathway overlap on the number
of tasks that can be simultaneously performed by networks
with the capability of performing multiple two-alternative
forced choice decision tasks. The results reveal that increasing
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Fig. 5 Capacity constraints in the I/O-matching model as a function of
pathway overlap for networks of different sizes. These results are for an
incongruence of φ = .75. The top panels (A and B) show capacity
constraints under the optimal control policy in terms of the absolute
number of active pathways (K), and the bottom panels (C and D) show
the results in terms of the percentage of active pathways (K/N). The left
panels (A and C) show the results in terms of the absolute amount of

pathway overlap (F), and the right panels (BandD) show them in terms of
the percentage of pathway overlap (F/N). Note that when there is no
overlap (F = 0), all relevant pathways are active (K = N), indicating
full multitasking. Increasing F quickly drives this down, limiting multi-
tasking. This effect is substantially greater for larger network sizes, with
networks of all sizes converging to a similar limit in multitasking at
around F = 20 %
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source of these effects. They suggest that, whereas modulation
of the entire pathway (i.e., both the input and output layers)
produces optimal performance, the sublinear scaling of
optimal K with network size relies heavily on control at the
output layer (see SOME, Figs. S6–S9). Some intuition for this
effect can be gained by considering the extended version of
the Stroop task described in the introduction. Presented with
the options of performing both the color-naming and
word–action tasks or just one of these, it would almost
certainly be preferable to choose the latter. Assume, for the
purposes of illustration, that the word–action task is chosen. In
this case, the full model would modulate the activity of both
the intermediate and response (output) units of the
color-naming pathway, leaving only the word–action pathway
activated (see Fig. 2B). However, now suppose that it were not
possible to modulate the output units in a pathway. This would
fail to suppress the effect of the intermediate units in the word
pathway on the verbal response units, which (for incongruent
stimuli) would produce an error in the color-naming task
(since the inputs to those units from the intermediate units in
the color pathway were suppressed). Therefore, under these

conditions, it would be preferable to also allocate control to
the color-naming pathway, allowing its input and interme-
diate units to influence the response, and at least partially
counteract the effects of the cross-talk at the output layer. In
other words, in the absence of the ability to control the
output, activating pathways that are subject to some (but
perhaps not too much) cross-talk can contribute beneficially
to their own outputs, and in some cases outweigh the cost of
any additional cross-talk that they introduce into the network.
However, when output can be controlled, this is not necessary,
and the optimal policy is to limit processing to only the best-
performing pathways.

General discussion

The simulations reported above provide a quantitative
examination of the effects of pathway overlap on the number
of tasks that can be simultaneously performed by networks
with the capability of performing multiple two-alternative
forced choice decision tasks. The results reveal that increasing
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Fig. 5 Capacity constraints in the I/O-matching model as a function of
pathway overlap for networks of different sizes. These results are for an
incongruence of φ = .75. The top panels (A and B) show capacity
constraints under the optimal control policy in terms of the absolute
number of active pathways (K), and the bottom panels (C and D) show
the results in terms of the percentage of active pathways (K/N). The left
panels (A and C) show the results in terms of the absolute amount of

pathway overlap (F), and the right panels (BandD) show them in terms of
the percentage of pathway overlap (F/N). Note that when there is no
overlap (F = 0), all relevant pathways are active (K = N), indicating
full multitasking. Increasing F quickly drives this down, limiting multi-
tasking. This effect is substantially greater for larger network sizes, with
networks of all sizes converging to a similar limit in multitasking at
around F = 20 %
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overlap rapidly constrains the number of tasks that can be
performed at once, and that this reaches a maximum in a
manner that is only weakly influenced by network size.
These findings support the idea that multiplexing of represen-
tations in the brain may be an important source of limits in the
ability for multitasking of control-dependent tasks. That said,
the upper limits on multitasking observed in the models (10–
30 tasks for a wide range of parameters) are noticeably higher
than those typically observed for humans (certainly under 10).
This may be due to a number of factors.

One factor is suggested by the difference in results ob-
served for the I/O-matching and DD models. The limits on
multitasking were less severe in the simpler, fully linear I/O-
matching model than for the DD model. Two primary differ-
ences in the latter model were the addition of an integration
process and the added nonlinearity that this introduced in the
relationship between processing and performance.
Presumably, the integration process afforded an additional
opportunity for cross-talk from irrelevant pathways to inter-
fere with processing in the relevant ones. The nonlinearity
may also have contributed to this effect. The inclusion of
additional nonlinearities commonly used in neural-network
models (e.g., in the processing function itself) could be ex-
pected to further accentuate it (e.g., by amplifying the influ-
ence of activation in irrelevant pathways on relevant ones).
Other factors that are likely to have a similar effect are mul-
tiple choices (increasing the likelihood of incongruence

among processes), recurrent connectivity (increasing interac-
tion among processes), more complex processes involving
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Fig. 7 Capacity constraints as a function of network size. The optimal
control policy is plotted for networks of varying size (N=10 to 1,000) for
the I/O-matching (top curve) and DD models (bottom curve). These
results are for a pathway overlap of F = 20 % and incongruence of φ =
.75. Note that the slopes of both lines reduce considerably as network size
increases, with the slope for the DD model decreasing more quickly and
reaching a lower value than the slope for the I/O-matching model. See the
text for a discussion. (Note that the change in slope from N = 10 to 30 is
due to a disproportionately high number of active connections for small
networks—about 50% of the units in the smallest network are active; this
small effect vanishes as N exceeds 30.)
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Fig. 6 Capacity constraints in the DD model as a function of pathway
overlap for networks of different sizes. See the Fig. 5 caption for details.
As in Fig. 4, the effects are substantially more pronounced than in the I/O-

matching model, with a striking convergence in the limit on multitasking
to less than 14 active pathways for a level of pathway overlap ofF= 20%,
irrespective of network size
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Figure 4 . Shared representations and asymptotic limits in multitasking capability.

Simulation results of Feng et al. (2014) showing the optimal number of simultaneously engaged

processing pathways K (multitasking capability) as a function of overlap F between processing

pathways (number of tasks sharing the same representation) in a neural network. Results rely on the

assumption that tasks interfere 75% of the time if their processing pathways overlap. The optimal

number of processing pathways was determined either by: (A) minimizing the mean error over all

output units in a linear model; or (B) maximizing the aggregate reward rate over all tasks, each of

which was implemented as a drift-diffusion process.

These observations suggest that even modest sharing of representations across

tasks can impose dramatic constraints on the number of tasks that can accurately be

performed at once. However, the results were obtained using two specific models, each

of which made a number of simplifying assumptions. While most of these assumptions

are likely to be conservative (that is, produce an underestimate of the effects of



SHARED VERSUS SEPARATED REPRESENTATIONS 27

interest—see Feng et al. (2014) for a discussion), the generality of the effects observed

remained to be determined. Below, we describe the use of graph-theoretic methods to

address this challenge. First, we use these methods to provide a formal characterization

of multitasking capability as a function of the amount of shared representation and

network size in simple linear networks, which also calls attention to two distinct forms

of interference that can arise from shared representation. We then demonstrate how

these methods can be used to predict both the overall multitasking capability of trained

artificial neural networks that use non-linear response functions, as well as behavioral

markers of dual-task interference, such as the psychological refractory period (PRP)

and task switch costs, from learned, distributed representations.

2.2 Graph-Theoretic Analyses

2.2.1 Definitions. In order to pursue a more rigorous analysis of the

relationship between shared representations and the multitasking capability of a

network, we first introduce more rigorous definitions of what we mean by a task, how

performance is measured, and two distinct types of dependence that can arise between

tasks that share representations. These definitions are stated in a more rigorous,

set-theoretic form in Lesnick, Musslick, Dey, and Cohen (2020).

Tasks and performance. For the purposes of this article, and in accordance with

the examples discussed above, we focus on simple types of “mapping” tasks that are

defined by a set of associations of stimuli with responses. More specifically, we assume

that: (1) inputs are structured by stimulus dimensions (e.g., color, shape, location,

etc.); outputs are structured by response dimensions (e.g., verbal, left hand, right hand,

etc.); (2) all of the stimulus features relevant to a particular task are drawn from the

same stimulus dimension, and all of its responses are drawn from the same response

dimension;8 (3) only a single stimulus or response can be represented within a given

8 For simplicity of description, in this article we focus on tasks that involve single stimulus and

response dimensions. However, our definition of a task extends easily to ones involving more than one

stimulus and/or response dimension, under the assumption that the mappings that define a task

involve the pairing of a unique feature from each stimulus dimension with a unique response along each
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dimension at a given time; (4) when a task is performed, the stimulus feature for that

task is drawn independently of the stimulus feature for any other task that might be

performed at the same time.9 Further on, we consider cases in which tasks may involve

varying degrees of overlap in stimulus representations in Section 2.3 (“Toward a

Mechanistic Account of Constraints on Control-Dependent Processing: Shared

Representation, Conflict, and Persistence”) and, in the General Discussion, more

complex forms of tasks (e.g., ones involving sequences of stimuli and responses).

When the performance of a task is evaluated, we assume that, for each trial, a

feature is selected from the relevant stimulus dimension and activated in the stimulus

input layer. Success is defined by the extent to which the correct unit within the

relevant response dimension (that is, the one specified by the mapping that defines that

task) is activated in the output layer (and no other output units are activated within

that dimension or any others). When the parallel performance of two or more tasks

(i.e., multitasking) is evaluated, a single feature is chosen independently for each task

from each of the relevant stimulus dimensions, and success is defined by the extent to

which all of the correct response units are activated (and no others).10 As noted above,

response dimension; that is, a task comprises a unique mapping from stimulus feature(s) to response(s).

9 This addresses an important, and potentially confusing point, that is relevant to the multitasking

conditions introduced below: Should the mappings of a stimulus dimension to two or more response

dimensions be considered a single task or different tasks? To the extent that these mappings can be

engaged by sampling stimuli independently for each, they must be considered as distinct tasks, only

one of which can be performed at a time. This is because sampling independently and simultaneously

from the same stimulus dimension would mean it must be possible to represent two distinct stimuli

(features) along the same dimension at the same time, which violates assumption (3). Given this

restriction, engaging the mappings from a single stimulus dimension to different response dimensions at

the same time must be limited to conditions in which the same stimulus is used for all of them, which

amounts to always generate the same set of responses for a given stimulus and that, in turn, can simply

be reformulated as a single task with a richer representation of responses (see Footnote 8 above).

10 Note that this precludes considering the performance of tasks that use the same stimulus dimension

as a genuine multitasking condition (e.g., color naming and color pointing in the example shown in

Fig. 3); see Footnote 9.
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our examples use “localist” representations of input and output features within each

dimension, but the same principles apply to distributed representations (see

Footnote 3). Based on these definitions, we identify two qualitatively distinct forms of

dependence on shared representations that can give rise to conflict, and therefore

demand control to avoid or resolve.11

Structural dependence. The most obvious way in which shared representations can

introduce the risk of conflict is if two or more tasks involve the same response

dimension, a classic example of which is the Stroop paradigm (see Fig. 2 and Fig. 5).

This follows from the definitions above: If, by assumption (4) above, the stimuli for the

two tasks are drawn independently from their respective stimulus dimensions, then they

have the potential to require different responses within the same response dimension

(e.g, verbal) and, according to assumption (3) above, both responses cannot be

represented within that dimension at the same time. Furthermore, the likelihood of such

interference grows rapidly with both the number of features in the relevant dimensions

and the number of tasks to be performed given the assumption that the stimuli for each

task are chosen independently of one another.12 Such dependence can also arise if tasks

to be performed in parallel converge on one or more internal dimensions of

representation (e.g., phonological and orthographic in the dictation and word reading

tasks of the Shaffer (1975) paradigm; see Fig. 1). We refer to these forms of dependence

as structural, defined as the potential for interference that arises when two or more

instructed tasks make common use of a dimension of representation. This is the type of

11 We use the term “dependence” rather than interference for several reasons: (1) It denotes situations

in which inter-task interactions can arise (i.e., cross-talk), irrespective of their consequence (interference

generally connotes destructive effects, such as conflict, whereas dependence can sometimes have

constructive effects, such as facilitation or “super capacity”; see Townsend and Wenger (2004) and the

General Discussion); (2) “dependence” is used in graph theory for similar purposes, where it

corresponds to the concept of “independent sets” used below.

12 Specifically, the likelihood of interference corresponds to the joint probability of selecting any stimuli

across the tasks that are associated with different responses (e.g., an “incongruent” stimulus in the

Stroop task).
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interference on which the multiple-resource theory was focused. However, there is a

subtler, indirect way in which dependence can arise in some network configurations.

Functional dependence. This refers to a form of dependence that arises indirectly

when the tasks to be performed do not share any representations with one another, but

the representations on which they depend can be recombined to form one or more other

(currently irrelevant) tasks. As an example, consider a subset of the tasks in the

extended Stroop paradigm: color naming, word reading, and word mapping. Fig. 5A

shows the compositional configuration for these tasks. Note that color naming and word

mapping are not structurally dependent. Nevertheless, they cannot be performed

simultaneously. This is because a combination of their stimulus and response

dimensions (word stimuli and verbal responses) forms another task (word reading) that

shares representations with one of the relevant tasks at the hidden layer (i.e., of words).

As a consequence, activating word representations (in the service of word mapping) as

well as the verbal output units (for color naming) inadvertently engages the word

reading pathway, introducing the potential for interference with the color naming task.

Thus, even though color naming and word mapping are not structurally dependent,

they are functionally dependent.

The functional dependence mediated by word reading in this example can be

averted if a separate set of representations for words is dedicated to the word mapping

tasks, as shown in Fig. 5B.13 Insofar as those are not associated with verbal responses,

activating them to perform the word mapping task would not engage the word reading

task, allowing the color naming task to be performed in parallel without risk of

interference. This corresponds to the conjunctive configuration for those two tasks.

These two ways of representing the word mapping task—using representations for words

that are shared with or separate from word reading—provide an example of how the

13 Alternatively, functional dependence between color naming and word mapping can be avoided by

configuring the word mapping task as a pathway from word stimuli to a different, existing set of

representations in the hidden layer (e.g., for locations). However, as a result, the word mapping task

would then be structurally dependent on any task relying on representations for that dimension (e.g.,

location mapping).
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Figure 5 . Structural and functional dependence in the extended Stroop model. Examples

of networks exhibiting each form of dependence among tasks in the extended Stroop paradigm and

their graph-theoretic representation. Each network implements four tasks: color naming (CN), word

reading (WR), and word mapping (WM; i.e., mapping a word to a button press). As discussed in the

text, color naming and word reading are structurally dependent since both share the same response

dimension, and thus cannot be performed simultaneously. However, color naming and word mapping

can be either functionally dependent or fully independent, based on the network configuration—that is,

whether a compositional or a conjunctive configuration is used for the representations required to

perform the word reading and word mapping tasks, as shown in the Neural Network Models in Panels

A and B. This determines whether they can be multitasked. (A) Compositional configuration for word

representations. The word mapping task shares a representation for words with the word reading task

at the hidden layer, which introduces functional dependence between it and the color naming task, thus

precluding multitasking. (B) Conjunctive configuration for word representations. Word Mapping relies

on a separate set of representations for words in the hidden layer, rendering color naming and word

mapping functionally independent, thus permitting multitasking (see text for explanation). Each

configuration has a corresponding bipartite task graph (middle part of each panel), with nodes

representing stimulus and response dimensions, and edges representing the tasks (i.e., the mappings

from features in a given stimulus dimension to corresponding responses in the response dimension that

define that task). The corresponding dependency graph represents the relationship between tasks, with

nodes now corresponding to tasks, and edges indicating tasks are dependent on (i.e., interact with) one

another. The solid and dashed lines in the dependency graph indicate structural and functional

dependence between two tasks, respectively. The maximum independent set (MIS) of this graph

corresponds to the multitasking capability of the network—that is, the maximum number of tasks it

can perform simultaneously (see text for explanation). The MIS of the dependency graph shown in (A)

is 1, whereas the MIS of the graph shown in (B) is 2.
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compositional configuration may be efficient to learn (for performing a novel task), but

at the cost of the multitasking capability (i.e., ability to multitask) afforded by the

conjunctive configuration, observations for which we provide empirical support in Part

II of this article.

2.2.2 Bipartite and Dependency Graphs. To analyze how structural and

functional dependence scale as a function of the prevalence of shared representations

and the size of a network, we define a graph-theoretic formalism of the relationship

among the tasks implemented in a network. This involves two graph representations

(shown at the bottom of each panel in Fig. 5). For clarification of exposition, we begin

by considering only three-layered networks of the sort shown in the examples thus far,

but then go on to consider the case of multilayered networks.

Bipartite graph. This is a simplified representation of the three-layered networks

used in the examples above that focuses on the hidden and output layers. This

simplification is justified by observing that, for the full range of network configurations

for a given set of tasks, the hidden and output layers are sufficient to describe the

factors of interest: whether, at the hidden layer, representations are shared between

tasks with each projecting to all response dimensions (as in the extreme case of the

compositional configuration); or whether a separate subset of hidden layer

representations is dedicated to each task (i.e., to each pairing of stimulus and response

dimension, as in the extreme of the conjunctive configuration). Thus, a given network

configuration can be represented as a directed bipartite graph GB = (I, O, T ) (see

Appendix A for an overview of relevant graph-theoretic terms), in which each input

node I represents a subset of hidden representations (corresponding to associative

dimensions in the original network),14 each output node O represents a response

dimension, and edges between them represent the tasks (see the left bottom of each

14 As noted above, for the compositional configuration, there is one input node of the bipartite graph

for each stimulus dimension represented in the hidden layer of the original network, whereas for the

conjunctive configuration, there are as many input nodes in the bipartite graph as there are distinct

task-specific sets of hidden layer representations in the original network.
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panel in Fig. 5). The bipartite graph can be used to formalize the distinction between

structural and functional dependence described above. Two tasks are considered to be

structurally dependent if their edges share either an input node or an output node (e.g.,

the color naming task and the word reading task in Fig. 5 both share the same output

node and are thus considered to be structurally dependent). In contrast, two tasks are

considered to be functionally dependent if they are not structurally dependent, but an

edge (a third task) connects the input node of one task to the output node of the other

(e.g., the edge representing the word reading task connects the color naming and word

mapping tasks in the bipartite task graph in Fig. 5A).

Dependency Graph. Using the bipartite graph described above, a dependency

graph can be constructed that directly expresses relationships between tasks. This is

constructed by assigning each edge of the original graph GB to a node in the

dependency graph GD. Thus, each node in GD represents a task in GB (and in the

original network). Edges are assigned between any two nodes in GD representing tasks

in GB that are either structurally or functionally dependent (see the right bottom of

each panel in Fig. 5), as defined above. For simplicity, we assume that either form of

dependence introduces a risk of interference that precludes those two tasks from safely

being executed in parallel. This relies on the assumption that independent tasks do not

reliably involve congruent information across the relevant stimulus dimensions (see

Footnote 12). Thus, the dependency graph GD can be used to determine which tasks in

the original network can be executed safely in parallel. In the analyses described below,

we exploit this to determine the maximum number of tasks that a given network can

execute in parallel, that is, its multitasking capability.

2.2.3 Analysis of Multitasking Capability. The dependency graph GD

can be used to analyze the multitasking capability of a network. However, this poses

challenges that we consider and address below.

Maximum independent set. The definitive way to determine the multitasking

capability of a network is to identify the largest set of nodes (tasks) in GD that do not

share any edges (i.e., that are not dependent on one another). This is known as the
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maximum independent set (MIS) of a graph (Godsil & Royle, 2001). Thus, determining

the MIS of GD provides a general means of examining how factors such as shared

representation (i.e., task dependencies) and network size influence its multitasking

capability (Musslick et al., 2016), corresponding to the factors that were examined

numerically for particular networks in Feng et al. (2014). However, there are practical

constraints on doing so. If the bipartite graph GB representing the network contains

only structural interference, or only structural interference is considered when

constructing the dependency graph GD, then GD is known as the line graph of GB, and

calculating its MIS is a well-formed and tractable problem (D. B. West et al., 2001). It

is equivalent to the matching problem and can be computed by computationally

efficient algorithms (Hopcroft & Karp, 1973). However, when there are functional

dependencies in GB, and they are included in GD, then the latter is known as the

square of the line graph of GB, and calculating its MIS is equivalent to solving an

induced matching problem (Cameron, 1989). This is known to be an “NP-hard”

problem, the complexity of which scales roughly factorially with the size of the graph,

and thus quickly becomes computationally intractable (Berman & Fürer, 1994; Tarjan

& Trojanowski, 1977). Since the latter is required to fully characterize the multitasking

capability of a network, doing so requires that constraints be placed on the problem.

Below, we address this issue (and how it relates to constraints on cognitive control),

exploring various ways of constraining the problem for analysis, and then examining

their ability to generalize more broadly.

Distribution complexity. One set of measures of the bipartite graph GB that can

be used to quantify the prevalence of shared representations in the network are its

out-degree and in-degree. The out-degree is the “fan out” of an input node; that is, the

number of response dimensions with which a stimulus dimension is associated.

Conversely, the in-degree is the “fan in” of an output node, specifying the number of

stimulus dimensions that map convergently to the corresponding response dimension.

As we show below, the multitasking capability of a network depends both on the mean

of these measures of degree across all input and output nodes, as well as the distribution
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of their values over the corresponding sets of nodes. Characterizing these factors

provides a basis for simplifications that can help make the enumeration of all possible

graphs tractable. Toward this end, we introduce distribution complexity DCin,out as a

measure of homogeneity in degree distribution in the bipartite task graph GB. The

distribution complexity of incoming edges of the output nodes DCin is defined as:

DCin = −
N∑
i=1

((
diin∑N
k=1 d

k
in

)
log2

(
diin∑N
k=1 d

k
in

))
. (1)

The distribution complexity for outgoing edges DCout is defined in an analogous

manner. The equation above can be read as a measure of the entropy over the sharing

of representations across all response dimensions. For a fixed network, DCin is

maximized when edges are uniformly distributed among the output nodes and, as we

will demonstrate, leads to lower values of multitasking capability. For example, Fig. 6

illustrates two bipartite graphs, both of which have output nodes with the same

out-degree dout = 2, but one of which has low distribution complexity (most tasks

converge on the same output node), and the other of which has high distribution

complexity (tasks are uniformly distributed among the output nodes).
(a) low	distribution	complexity (b) high	distribution	complexity

A	 B	Low	Distribution	Complexity	 High	Distribution	Complexity	

Figure 6 . Distribution complexity. Two bipartite graphs with output nodes that have the same

out-degree (dout = 2): (A) low distribution complexity (DCin = 1.75); (B) high distribution complexity

(DCin = 2).

To investigate the effect of shared representations and distribution complexity on

multitasking capability, we considered networks with N stimulus and N response

dimensions. We fixed the out-degrees of each input node such that diout = S where S is

a proxy for the number of tasks that rely on the same representation in the hidden layer

of the network (or, equivalently, the input layer of the bipartite graph). We constrained
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the in-degree of the output nodes to be uniform (i.e., diin = S,∀i ∈ Vin), which made it

tractable to enumerate all possible networks of a given size N and shared representation

S. For each enumerated network, we computed its multitasking capability by

computing the MIS of the associated dependency graph. Fig. 7A-D summarizes the

results for networks of size N = 5, 6, 7 and 8, respectively. The results show that

multitasking capability (averaged over all possible network configurations with a given

size N and fixed out-degree diout) dropped precipitously with the number of tasks

sharing the same stimulus representation S. This was observed over a wide range of

distributional complexities, from the maximum (red lines, corresponding to values used

in Feng et al., 2014), to the average value (black lines). Thus, the observations based on

the numerical analyses of a particular set of networks reported in Feng et al. (2014)

appear to generalize over a much broader range of possible networks. Nevertheless, it is

of interest to observe that, at the extremes, distribution complexity did impact

multitasking capability, with a minimum in DCin diminishing shared representation

between tasks and thus maximizing multitasking capability. For example, multitasking

capability is maximized when all sharing in the network occurs on a single output

component (shown in blue; also see Fig. 6A). In contrast, multitasking capability is

minimized when the sharing of representations is distributed more uniformly over the

network (maximum DCin, shown in red; also see Fig. 6B).

One might intuitively guess that the multitasking capability of a system is largely

dependent on the size of the network (i.e., the number of stimulus and response

dimensions). The computational intractability of enumerating all possible networks,

and limits of currently available computational power, preclude an exact analysis of

networks beyond size N = 8.15 However, by constraining enumeration to networks with

maximum DCin analyses can be extended to much larger networks. For example,

Fig. 7E shows results for networks up to size 50, which exhibited the same qualitative

effects (see Fig. 7A-D). In particular, they reaffirm the observation that even modest

15 Even for a network of size N = 8 with out-degree di
out = 4, the number of possible network

configurations exceeds 2.25 trillion.
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Figure 7 . Effect of distributional complexity on multitasking capability. Graph-theoretic

analysis of multitasking capability. Panels (A)-(D) show variation in multitasking capability (measured

as MIS of the dependency graph for networks of size 5, 6, 7, and 8) as a function of out-degree di
out for

all network configurations, corresponding to the average value of distribution complexity (black line in

panels (A)-(D)). Panel (E) shows multitasking capability (higher values correspond to warmer colors)

with a maximum value of distribution complexity for networks of sizes 1-50 and a corresponding range

of out-degree di
out.

amounts of shared representation impose dramatic constraints on multitasking

capability, virtually irrespective of network size. Although Fig. 7E shows the effect

when processes were distributed uniformly over the network, the results shown in

Fig. 7A-D indicate that the dramatically sublinear scaling of multitasking capability

with network size prevailed for a wide range of distribution complexities.

These results are consistent with those of similar, but complementary approaches

to computing the multitasking capability of network architectures as a function of

representational sharing (e.g., Petri et al., 2021; Alon et al., 2017). Together with those

of Feng et al. (2014), they strengthen the conjecture that, for control-dependent

processes—that is, those involving shared representations that require control for

disambiguation—the number that can be concurrently executed is dramatically limited

in a manner that is relatively insensitive to network size.

Effective multitasking capability. The computation of MIS described above

provides a theoretical maximum for the multitasking capability of a network. In reality,

the number of control-dependent tasks that a network can be expected to carry out in a
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given setting is likely to be considerably lower. This is because the MIS refers to the

largest set(s) of tasks that are independent of one another. However, even if there is

more than one such set, they are comprised of particular sets of tasks, and the network

can only realize the multitasking capability indicated by the MIS when those particular

tasks are available to be performed. The likelihood of this occurring is, of course,

determined by a variety of factors, such as the affordances of each task (i.e., the current

availability of the stimuli and feasibility of the responses), and the motivation for

performing them (i.e., their current value to the agent). It is easy to see that, even with

liberal assignments of probabilities to these individual factors, their joint probability

diminishes quickly with the size of the MIS, its proportion to the overall size of the

network (i.e., the total number of tasks it can perform) and the scope of the

environment. Thus, a more general characterization of the effective multitasking

capability of a network would account not only for the MIS, but all smaller independent

sets of tasks and, thereby, the likelihood that it could be realized in practice. One such

calculation, that considers smaller sets of tasks sampled uniformly at random, strongly

suggests that, like the MIS, the effective multitasking capability of a network decreases

dramatically with the extent of shared representations and grows sub-linearly with the

size of the network (Petri et al., 2021).

Multitasking capability and network depth. The analyses described above all

pertain to three-layered networks, with a single hidden layer represented by the input

nodes of the bipartite graph. A natural question is how multitasking capability is

impacted by the number of layers (i.e., “depth”) of a network—a factor that is of

obvious importance to understanding both the brain, as well as artificial systems that

have become increasingly important in machine learning. For example, one advantage of

deep architectures is that they are more economical in expressing real functions

(Goodfellow, Bengio, & Courville, 2016). A greater number of layers in a network

allows it to encode a larger set of mappings between a given pair of input and output

nodes. Thus, the number of tasks that a system can perform increases with the number

of layers. However, a greater number of layers in a network also increases the
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opportunity for cross-talk. To assess the influence of these factors, we generalized the

graph-theoretic analysis described above for bipartite graphs, to consider networks with

multiple layers. For simplicity, we considered networks with r disjoint layers, in which

every layer was an independent set (i.e., there were no connections between nodes

within the same layer), and all of which had the same size N . In such graphs, a task

corresponded to a path from a node in the input layer to one in the output layer.16 The

definitions of structural and functional independence can be extended by direct analogy

to the bipartite case: A pair of tasks are structurally dependent if their paths share a

node at any layer in the network; and a pair of tasks are functionally dependent if they

are structurally independent but are connected by an edge (that is, there is at least one

edge that connects a node of one task to a node of the other). As in the bipartite case,

we sought to determine the multitasking capability of the network, that is, the largest

set of tasks that were both structurally and functionally independent. Note that, in

these networks, the multitasking capability is constrained to be only as large as the

smallest multitasking capability between any two layers.

A B C

Figure 8 . Effects of network depth. Upper bound of multitasking capability as a function of task

density (the probability of an edge p between any two layers) and network depth (the number of layers

r). The number of nodes per layer varied across networks: (A) 100, (B) 10,000, or (C) 1,000,000 nodes

per layer.

In Appendix B, we show, using mathematical analysis, that the constraints on

multitasking capability are robust to network depth. The results are shown in Fig. 8. It

16 Note that in contrast to the case of three-layered networks, there may be multiple paths between an

input node and an output node, which could correspond to multiple realizations of the same task (i.e.,

using different intermediate representations).
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should be noted, however, that the probabilistic manipulation of task density (i.e., edge

probability) used in these analyses is not formally equivalent to directly manipulating

the degree of shared representation. That is, the results are limited to network

architectures that are defined by randomly connecting layers. However, recent work

using similar graph-analytic methods that control for both the number and distribution

of tasks in the network have generated similar results (Alon et al., 2017). That work,

together with the results presented here, suggests that the constraining impact of

shared representations on multitasking grows as the depth of a network increases.

Furthermore, these effects, together with the consideration of the factors relevant to

effective multitasking discussed above, suggest that the constraints on multitasking

capability imposed by the sharing of representations in realistically scaled neural

networks may be sufficient to explain the dramatic limitations in control-dependent

processing observed in human performance. However, in applying neural network

models to human performance, additional factors must be considered. In the section

that follows, we address these factors in considering the ability of representational

sharing to explain a wide range of empirical observations concerning human limitations

in control-dependent processing.

2.3 Toward a Mechanistic Account of Constraints on Control-Dependent

Processing: Shared Representation, Conflict, and Persistence

In the previous section, we introduced graph-theoretic methods for analyzing the

influence of shared representation on multitasking capability. These analyses relied on a

number of simplifying assumptions. First, they assumed that tasks either share or don’t

share a set of representations. However, many of the most important contributions that

neural network models have made to psychological research have relied specifically on

representations of concepts that are distributed over many processing units that allow

for graded degrees of sharing (Hinton et al., 1986; Kriegeskorte, Mur, & Bandettini,

2008; McClelland, Rumelhart, Group, et al., 1986; T. T. Rogers & McClelland, 2004;

Saxe, McClelland, & Ganguli, 2019; Yamins et al., 2014); and neuroimaging studies
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have provided strong support for this in the brain (Albers, Kok, Toni, Dijkerman, &

De Lange, 2013; Kosslyn et al., 1999; Notebaert, Gevers, Verguts, & Fias, 2006;

Salamoura & Williams, 2007; Decety & Sommerville, 2003). It remains to be shown

whether and how the graph-theoretic formalisms described above can be applied to such

networks. Second, all of the networks were pre-configured, either deterministically, or

connections were assigned according to general statistical constraints that were not

directly informed by the statistics of natural task environments. Networks that learn

representations through experience, in many cases reflective of the natural world, have

played a critical role in explaining human cognitive function (Botvinick et al., 2001;

J. W. Brown, Reynolds, & Braver, 2007; J. D. Cohen et al., 1990; Gilbert & Shallice,

2002; Herd et al., 2014; McClelland et al., 1986; O’Reilly & Frank, 2006; T. T. Rogers

& McClelland, 2004; Saxe et al., 2019), and have become a mainstay of research in

artificial intelligence (Goodfellow et al., 2016; Schmidhuber, 2015). Thus, an important

question is whether such networks exhibit effects similar to those observed for the

analyses reported above. Finally, those analyses focused exclusively on interference

arising from the simultaneous—that is, parallel—execution of two or more tasks (see

Footnote 10). They did not address performance costs known to be associated with the

serial execution of tasks, such as the psychological refractory period (Telford, 1931) and

switch costs (Allport et al., 1994). More generally, they do not address the continuum

from pure parallelism, through rapid task switching, to pure sequential processing that

has been described by others (Fischer & Plessow, 2015; Salvucci et al., 2009; Townsend

& Wenger, 2004). Below, we present the results of simulations studies showing how the

effects associated with all of these factors can be explained in terms of the sharing of

representations, by considering the influence of three graded properties that are intrinsic

to neural network architectures: the similarity of representations at a given level of

processing, the strength of associations among representations at different levels of

processing, and the emphpersistence characteristics of representations during

processing. In neural networks, in which representations are expressed as patterns of

activity over a set of units in a given layer, the three factors correspond, respectively, to
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the overlap in patterns of activity within a layer, the strength of connections between

units in different layers, and the persistence of activity among units in a layer once the

source of input to that layer has subsided.

In Simulation Study 1, we demonstrate that the graph-theoretic methods

described above can be used to predict the multitasking performance from distributed

representations of tasks in trained neural network models, by quantifying the degree of

representation sharing in terms of the similarity between patterns of activity associated

with each task. One motivation for this is the potential use of such methods for

analyzing brain imaging data, to predict multitasking performance from patterns of

activity associated with individual tasks. In Simulation Study 2, we investigate how the

degree of representation sharing interacts with connection strength (manipulated by

training) to produce conflict, and evaluate its effects both on multitasking accuracy as

well as established measures of reaction time distributions that have been used to infer

parallelism of multitask processing from human behavioral data. Finally, in Simulation

Study 3, we show that interference effects arising from the interaction between

representation sharing and the persistence characteristics of representations in neural

networks can explain costs associated with the sequential performance of multiple tasks

(such as the PRP and task switch costs). Furthermore, we discuss how these

interactions can be used to define a continuum from pure parallelism, through rapid

task switching, to pure sequential processing.

2.3.1 Neural Network Model of Multitasking Performance. We begin

by defining the general network architecture and the task environment used to simulate

both concurrent and sequential multitasking performance. We then describe the

network’s processing and training procedure, as well as performance metrics used across

simulations.

Architecture. As in the examples above, the models used here were comprised of

three layers of processing units: an input layer with two partitions, one of which

represented the current stimulus and projected to a hidden layer, and another that

encoded the current task and projected to both the hidden and output layers; a hidden
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layer (100 units) that projected to the output layer; and an output layer that

represented the network’s response. Stimulus input units were grouped by the stimulus

dimensions relevant to performing each task, and used a one-hot encoding (i.e., a single

unit was used to represent each stimulus, with the current stimulus clamped to 1 and

all others clamped to 0). The number of units in the input and output layer varied

across simulations studies, as determined by the corresponding task environment. Fig. 9

illustrates a network with three stimulus dimensions (each with three features) and five

tasks. The task input units used a similar one-hot encoding, with one unit representing

each task. Output units were grouped by response dimensions and trained (see below)

using a one-hot encoding for each response within a dimension.

Processing. The network was instructed to perform a given task by specifying the

current stimulus and task to be performed in the respective partitions of the input

layer. These stimulus and task input values were multiplied by a matrix of connection

weights from each partition of the input layer to a shared hidden layer, and then passed

through a logistic function to determine the pattern of activity over the units in the

hidden layer. This pattern was then used, together with the set of direct projections

from the task input layer to the output layer, to determine the pattern of activity over

the latter. The activation values of units in the hidden and output layer were computed

as a function of their net input. The net input neti of unit i in a given processing

(hidden or output) layer was calculated based on the connectivity and the activation

from preceding layers as

neti =
∑
j

wijxj − θ (2)

where xj is the activity value of the sending unit, wij is the projection weight from

sending unit j and θ = −2 is a constant negative bias. The net input of each unit in the

hidden and output layers was then passed through a logistic function to determine its

activity yi
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Figure 9 . Neural network used for simulations of multitasking. The input layer was composed

of a stimulus vector −→xs and a task vector −→xt . The activity of each element in the hidden layer yh ∈ −→yh

was determined by all elements xs and xt and their respective weights whs and wht to yh. Similarly,

the activity of each output unit yo ∈ −→yo was determined by all elements yh and xt and their respective

weights woh and wot to yo. A fixed bias of θ = −2 was added to the net input of all units yh and yo, to

implement the assumption that units are inhibited at rest. Thus, without additional input from the

task layer, units are relatively insensitive to information from the previous layer. Additional input from

the task layer puts these units on a more sensitive part of their non-linear activation function, making

them more susceptible to incoming information from preceding layers, thus implementing the effects of

control (see J. D. Cohen et al., 1990). Filled input and output units (circles) correspond to unit values

of > 0, and illustrate an example stimulus and task input pattern with its respective response pattern:

The task indicated by the activated unit in the task layer requires the network to map the vector of

values in the three stimulus input units in the first stimulus dimension (shaded in light grey) to one out

of the three units in the second response dimension (also shaded in light grey).

yi = 1
1 + e−neti

(3)

The response within a given response dimension of the network was determined by

a leaky competitive accumulator (LCA, Usher & McClelland, 2001) layer, implementing

the assumption that the network could only provide one response per response

dimension (e.g., the network cannot say “RED” and “GREEN” at the same time).17

One LCA layer was assigned to each response dimension k, which was comprised of a

17 This one-winner-take-all constraint is in agreement with our formal definition of a task in Lesnick et
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set of units ri that received as their input the activity of corresponding units in that

response dimension. The winning response in each dimension was determined by the

accumulation of activity by each LCA unit and the competition among them, the

dynamics of which were governed by

dri = [yo − λri + αf(ri)− β
∑
j 6=i

f(rj)]
dt

τ
+ ξi

√
dt

τ
(4)

where yo is the activity of the corresponding response unit in response dimension

k, λ is the decay rate of ri, α is the recurrent excitation weight of ri, β is the inhibition

weight between LCA units, τ is the rate constant, and ξ is noise sampled from a

Gaussian distribution with zero mean and standard deviation σ. The activity of each

LCA response unit was lower bounded by zero such that f(ri) = ri for ri ≥ 0 and

f(ri) = 0 for r < 0. The response for dimension k was determined by the unit within

the corresponding LCA layer, the activity f(ri) of which first reached threshold z. The

accuracy for each response dimension k corresponded to the probability of generating

the correct response for that dimension P (correct)k across 100 simulations of the LCA,

and the reaction time RTk for that dimension was the average number of time steps t

required for the response to reach the threshold, plus a fixed non-decision time of

T0 = 0.15s. That said, we only considered the accuracies and reaction times for

task-relevant response dimensions. The following parameter values were used for all

reported simulations: λ = 0.4, α = 0.2, β = 0.2, and σ = 0.2; z for each LCA layer was

chosen as the threshold that maximized reward rate P (correct)k/(ITI +RTk) for that

dimension, where ITI corresponds to an inter-trial interval of 0.5s.

Task environment. Each task was comprised of a pair of input and output vectors.

The input vector in each pair was composed of subvectors specifying the stimulus and

task, and the associated output vector specified the correct response for the stimulus for

each task. All of the stimuli for a given task were drawn from the same stimulus

al. (2020). While this constraint was not explicitly imposed on other layers of the network (since they

did not include recurrent connections), it could, nevertheless, arise through the feedforward inhibition

acquired through learning. We return to this issue in the General Discussion.
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dimension, and all of the responses for that task were drawn from the same response

dimension. Each stimulus was associated with a single, unique response; a task

comprised all of the unique pairs of stimulus-response vectors for its specified stimulus

and response dimensions; and there was one task for each unique combination of

stimulus and response dimensions. These implementations conform to the formal

definition of a task described in Lesnick et al. (2020). The number of stimulus and

response dimensions varied across simulation studies. In all tasks, the stimulus

dimension and response dimension each had three features (i.e., stimuli and responses,

respectively).

Training. Networks were initialized with a set of small random weights and then

trained using the backpropagation algorithm (Linnainmaa, 1970; Rumelhart, Hinton, &

Williams, 1986; Werbos, 1982) to produce the task-specified response for each stimulus

in each task while suppressing all other responses (both within the task-relevant

response dimension and all task-irrelevant response dimensions). The network was

trained in epochs, with each epoch sampling all training patterns in random order. The

error term used for training was the mean squared error (MSE) of the pattern of

activities in the output layer with respect to the correct (task-determined) output

pattern. The weights of the network were adjusted with a learning rate of 0.3 (except

bias weights, which remain fixed at their initial value of -2) after presenting each

training pattern within an epoch (online training) until the network reached an MSE of

0.001.

Measures of single and multitask performance. The accuracy of the network on a

single task was determined by the probability of responding correctly in the

task-relevant response dimension, averaged across all stimuli for that task. Multitasking

accuracy for a given set of tasks was determined by the average probability of

responding correctly across all task-relevant response dimensions, averaged across all

stimuli. Unless otherwise noted, we assessed multitasking performance only for

incongruent stimuli.18 Since all tasks in a multitaskable set are structurally independent

18 Testing the network on only incongruent stimuli corresponds to an assumption made by the
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(see below), stimulus incongruence is identified with respect to irrelevant tasks that

mediated functional interference. Thus, incongruent stimuli were defined as

configurations of stimulus features for which the correct response in at least one

response dimension was different for at least two tasks that mapped to that response

dimension. Conversely, congruent stimuli were defined as configurations of stimulus

features for which the correct responses in all task-relevant response dimensions were

the same (see Fig. 10).

Multitasking sets. We measured multitasking performance on “multitaskable” sets

of tasks on which a network was trained. All tasks within a multitaskable set were

structurally independent; that is, each task in the set had input and output dimensions

that were distinct from all of the others in the set. The requirement of distinct input

dimensions for the tasks in each set satisfies our definition of a task (see assumption (4)

in Section 2.2 and Lesnick et al. (2020)); the requirement for distinct output dimensions

ensures that it was possible in principle to perform the multitask over all stimuli (for

example, color naming and word reading would not constitute a legitimate multitasking

combination since it is not possible to execute both tasks simultaneously over all

possible stimuli, viz. incongruent ones).

2.3.2 Simulation Study 1: Predicting Multitasking Capability From

Single-Task Representations. In the previous section, we introduced

graph-theoretic analyses to investigate factors affecting the multitasking capability in

simplified network structures. These analyses were based on the assumption that shared

representations can induce functional dependence between tasks, constraining the

number of tasks a network can perform at the same time. Here, we examine the extent

to which these analyses can be applied to more complex models (of biological agents

graph-theoretic analysis above, that cross-talk always results in response conflict. This is not

unreasonable, as congruent stimuli are generally unlikely to be sampled from a uniform distribution of

stimuli, given that the likelihood of a congruent stimulus decreases with the number of stimulus

dimensions as well as with the number of features per stimulus dimension (Feng et al., 2014). Thus,

performance on incongruent stimuli is likely to be reasonably representative of behavior in rich task

environments.
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Stimulus
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Output 
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Hidden
Layer

…

Congruent Stimulus Incongruent Stimulus

…

A B

Figure 10 . Congruent and incongruent stimuli. The network in both panels consists of an

input, hidden, and output layer (the task input layer is not shown). The stimulus input and output

layers are grouped into three stimulus and response dimensions, respectively. A task is defined as a

mapping from one of three feature units in a given stimulus dimension to one of three output units in a

corresponding response dimension. Colored circles in the stimulus input layer indicate the active

feature in each stimulus dimension. Colored circles in the output layer indicate the correct response as

determined by the task that requires mapping the stimulus feature of the same color. (A) Congruent

stimuli require the same response in a given response dimension, irrespective of the task involving that

response dimension the network is asked to perform. (B) Incongruent stimuli require a different

response in a given response dimension, depending on the task the network is asked to perform.

and/or artificial systems) in which task representations are learned and distributed

across multiple processing units. We describe how neural representations of individual

tasks can be used to generate predictions about how many and which combinations of

tasks a network can perform in parallel (a space of possibilities that grows

combinatorially with the number of tasks, and thus quickly becomes intractable to

direct empirical inquiry), based on measurements of single-task performance (that

grows only linearly in the number of tasks). The purpose of these analyses is to confirm

that the constraining effect of shared representations generalizes to more complex

network architectures with distributed representations, and to validate the application

to such networks of diagnostic tools for assessing multitasking capabilities using

measurements made in single-task performance—that is, on amounts of data that would

practical to acquire in empirical settings.

To assess the accuracy with which the graph-theoretic analyses described above

predict the multitasking capability in more complex neural networks, we compared
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predictions of multitasking performance made by task dependency graphs extracted

from 20 separately trained networks with the numerically simulated multitasking

performance of those networks. We did so by extracting a bipartite graph from each

trained network (using methods described below) and, from that, a dependency graph.

We then used the dependency graphs to make predictions about the networks’

multitasking capability, as well as the performance of multitasking sets as a function of

the number of dependencies between tasks in a set. We first describe specifics of the

network architecture and training environment used for these simulations, as well as the

procedure for extracting dependency graphs based on learned task representations,

followed by a comparison of predictions and results.

Network architecture and processing. The networks in these simulations used five

stimulus and five response dimensions (N = 5), each with three features (i.e., stimuli

and responses, respectively). Thus, they supported a total of 25 possible tasks, 1545

multitasking conditions, and 243 possible stimulus (and corresponding response)

patterns per task (including both task-relevant and task-irrelevant features).

Task environment. As described above, a task was defined as a mapping from the

three stimulus features of a task’s stimulus dimension to the three corresponding output

units of its response dimension, such that only one of the three relevant output units

was permitted to be active for a given stimulus input unit. Each network was trained

on a different subset of ten randomly sampled tasks (an example training environment

is shown in Fig. 11A). Tasks were sampled subject to the constraint that each stimulus

dimension and each response dimension was associated with at least one task.

Generating bipartite and dependency graphs from task representations. Network

analyses focused on representations (patterns of activity) in the hidden and output

layers. Analyses characterized the representations for each task and how they compared

across tasks. We used these measures to construct bipartite and dependency graphs for

each network, from which its predicted multitasking capability was computed and

tested against the empirically measured multitasking performance of the network.

The representations associated with each task that were learned during training
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Figure 11 . Prediction of multitasking capability from dependency graph constructed

from correlations among single-task representations. (A) A task environment consisting of 10

possible tasks represented as stimulus-response mappings. Each arrow from a stimulus dimension to a

response dimension denotes a task. (B) Task similarity matrix computed from correlations among the

mean activity patterns learned for each task in the hidden and output layers of a network. Pairs of

tasks that exceed a correlation threshold of 0.5 in a given layer are marked in black. The thresholded

similarity matrices are used to extract the bipartite (C) and dependency (D) graphs for the tasks (see

text). (E) The MIS of the dependency graph is used to predict the multitasking capability of the

network. The plot shows the highest multitasking accuracy of a network as a function of the number of

tasks it is asked to perform in parallel (multitasking capability curve) and the predicted MIS for that

network. Each line corresponds to the multitasking performance of a trained network, whereas the

color of each line indicates the predicted MIS for that network. The plot suggests that the multitasking

capability curve drops as the set size approaches the predicted MIS.

were characterized by calculating, for each unit in the hidden and output layers, the

mean of its activity over all of the stimuli for that task.19 This mean activity pattern at

each layer for each task was correlated with the one for each other task to yield a task

19 A formally equivalent analysis could be carried out using the weight matrix of the network. Here we

focus on patterns of activity, as these may serve as useful predictors for patterns of activity that can be

observed in empirical data, such as functional magnetic resonance imaging (fMRI) and/or neuronal

recordings.
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similarity matrix that was examined separately for the hidden and output layers of the

network. Fig. 11B provides an example of such similarity matrices. These were used to

assess the extent to which different tasks relied on shared or separated representations

within the hidden and output layers of the network, which was used, in turn, to

construct a bipartite graph (shown in Fig. 11C). The representations for a pair of tasks

within a given layer were considered to be shared if the Pearson correlation coefficient of

their mean pattern of activities exceeded 0.5.20 If a pair of tasks was determined to

have a shared representation in the hidden layer, then the two tasks were assigned the

same input node in the extracted bipartite task graph. Analogously, if a pair of tasks

was determined to have a shared representation in the output layer, then both tasks

were assigned the same output node. The bipartite graph was then used to generate a

dependency graph as described in Section 2.2.2, which was used to examine the

multitasking profile of the network.21 Thus, the dependency graph served as a summary

of the similarity relationships among tasks that we used to determine the multitasking

capability of the network (i.e., the size of the MIS), as well as the specific combinations

20 Thresholding the correlation between task activities was required in order to derive an unweighted

dependency graph. All results reported below were qualitatively robust to a wide range of correlation

thresholds. Nevertheless, it is worth noting that some data may be lost when averaging hidden

activation patterns across trials and/or thresholding correlations among them. Models that operate on

unaveraged time series data, by contrast, may offer a more complete measure of sharing and separation.

Such models may, for example, attempt to estimate the neural encoding of stimuli while an agent

performs each of several tasks, and then compare encoding functions for two different tasks directly, as

in Bernardi et al. (2018); U. Cohen, Chung, Lee, and Sompolinsky (2019); Henselman-Petrusek, Segert,

Keller, Tepper, and Cohen (2019). It remains a matter for future research to explore how well these

measures can be used to predict the multitasking capability of network architectures.

21 The bipartite graph, and its use in generating the dependency graph, are presented here for clarity

and consistency with the presentation of the graph-theoretic methods described in Section 2.2.2.

However, the dependency graph can also be directly computed from the similarity matrices of the

hidden and output layer as follows: An edge is assigned to a pair of tasks in the dependency graph if

(1) their correlation exceeds a threshold in either of the similarity matrices or (2) there exists a third

task that correlates above the threshold with one task in the similarity matrix for the hidden layers and

with another in the similarity matrix for the output layers.



SHARED VERSUS SEPARATED REPRESENTATIONS 52

of tasks that could and could not be performed concurrently. Fig. 11A-D illustrates this

sequence of steps for an example network. It is worth reiterating that the procedure

described above requires that the network be examined only for patterns of activity

generated by the performance of each task individually, and therefore is substantially

more efficient (scaling linearly with the number of tasks) than determining the

multitasking profile by simulating and examining the performance of the network for all

combinations of tasks (which scales factorially).

Multitasking capability. To test the extent to which the MIS of the extracted

dependency graph for each network predicted its multitasking capability, we compared

the analytically-determined MIS with the empirically-observed maximum multitasking

performance achievable by each network. We did this by identifying, for each network

and a given number of tasks (multitasking set), the particular combination of tasks of

that number that yielded the greatest multitasking accuracy. We predicted that the

accuracy should remain asymptotically high for multitasking set sizes at or below the

analytically-determined MIS, but should decline as a function of set sizes that exceeded

it. For example, if the extracted MIS of a trained network was 2, we predicted that the

maximum accuracy across multitasking sets would drop for multitasking sets of the size

of three or more. We refer to the maximum accuracy as a function of multitasking set

size as the multitasking capability curve of a network. To statistically evaluate the

predictions above, we computed the maximum multitasking capability curve for each

network, and fit a sigmoid function to each curve22, and tested the prediction that the

inflection point (i.e., offset) of the curve should lie between the multitasking set sizes

equal to MIS-1 and MIS+1.

Predictions of multitasking accuracy for specific combinations of tasks. We also

used the extracted dependency graph to predict how accurately the network could

perform particular combinations of tasks, and to characterize the extent to which this

22 Due to the limited number of data points per curve, we estimated only the slope and offset of the

sigmoid function. The maximum and minimum of the sigmoid were fixed to the respective largest and

smallest value of the multitasking capability curve.
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was influenced not only by multitasking set size, but also by the estimated number of

dependencies between the specific tasks in a given set. For each set size, we computed

the multitasking performance for all combinations of that number of tasks. Then, for

each set size, we grouped sets based on the number of functional dependencies among

the tasks in the set predicted by the dependency graph, and evaluated the effect that

this had on multitasking performance across sets. We predicted that multitasking

performance for a given set size should drop with the number of dependencies between

tasks in the set.
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Figure 12 . Network performance for sets of tasks with different numbers of dependencies.

Error bars indicate the standard error of the mean for multitasking conditions of networks trained in

different task environments. The dashed horizontal line indicates chance performance.

Results. As expected, the dependency graph accurately recovered the task

structure imposed during training. That is, it confirmed that the network learned to use

similar hidden layer representations for tasks involving the same stimulus dimension

(e.g., Tasks A and B in Fig. 11A-B), and that it learned similar output representations

for tasks involving the same response dimensions (e.g., Tasks B, D & I in Fig. 11A-B).

In Part II of this article (Simulation Study 4), we return to this finding in greater detail

and examine the conditions under which the network learns to share representations

between tasks. Fig. 11E shows that the predicted multitasking capability (derived from

the extracted dependency graph) accurately predicted the maximum number of tasks a
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network could perform.23 That is, the inflection point (i.e., offset) of the multitasking

capability curve lies significantly above a set size equal to the predicted MIS-1,

t(19) = 3.7810, p < 0.001, and below a set size of MIS+1, t(19) = −6.6706, p < 10−5.

However, as the MIS of a network grows, the analysis begins to overestimate the

network’s multitasking capability (the multitasking capability curve occurs drops before

the predicted MIS); that is, the analysis provides a liberal estimate of the constraints

imposed by shared representation, which are likely to be even more restrictive in

practice (e.g., if only a limited number of tasks are available to perform; see the

discussion of effective multitasking capability in Section 2.2.3 above).

Fig. 12 shows that these analyses also predicted the relative accuracy with which

tasks could be performed concurrently, which varied by the extent of representational

sharing. That is, for a given size of a multitasking set, average accuracy decreased

reliably as the number of dependencies between tasks predicted by representational

sharing increased. Interestingly, in addition to the predicted drop in multitasking

performance as a function of dependencies among tasks, we also observed an

unpredicted effect: a drop in performance as a function of multitasking set size

irrespective of how many predicted dependencies there were in the set. This suggests

that there were sources of processing interference among tasks other than the

dependencies extracted from shared representations at the hidden and output layer,

that increased with the number of tasks to be performed. Examination of the networks

revealed that a primary source of such cross-task interference was mutual inhibition of

output units between tasks, indicated by a smaller overall net input as a function of

task set size (Fig. S2). When trained on single tasks, for each task, the network learned

to suppress irrelevant responses (i.e., associated with the same inputs for other tasks)

by developing inhibitory weights for projections from the corresponding task unit in the

task input layer to all units in the output layer for task-irrelevant response dimensions.

However, this produced cross-task interference when the networks were asked to

23 The prediction is robust to a range of performance metrics, number of hidden units in the network,

and choices of correlation threshold (for a robustness analysis, see Petri et al., 2021).
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multitask (something they were not trained to do), an effect that is unrelated to the

amount of shared representation between tasks in the hidden and output layer (and

thus not captured by the graph theoretic analysis), and scales with the number of tasks

to be performed at once, as seen in Fig. 12. This suggests that a similar effect might be

observed empirically for sets of tasks that are predicted to be independent, but for

which participants have not been trained to multitask.

2.3.3 Simulation Study 2: Interaction Between Representation

Sharing and Graded Conflict. The results above offer provisional support for the

use of graph-theoretic analyses in predicting the effect of shared representations on

multitasking performance, subject to the potential for overestimation as the number of

tasks grows. However, there is another way in which the analyses presented are limited:

they assumed shared processing pathways were of equal strength, and treated the

interference associated with the sharing of representations as an all-or-none

phenomenon. In actuality, interference can be graded. For example, the relative

strength of pathways that share a set of representations can vary by degree of training,

that in turn can lead to asymmetric interference effects (e.g., Simulation 1 in

J. D. Cohen et al., 1990). Thus, graded differences in the relative strength of pathways

should be associated with correspondingly graded effects on multitasking performance.

Here, we consider the effects of relative differences in connection strengths for pathways

that fully share sets of representations. In Part II (Simulation Studies 4-6), we examine

the effect of graded degrees of representational sharing.24

24 For clarity of exposition, we treat strength of processing (here) and representational sharing (in Part

II) as separate factors. However, it should be noted that in networks with distributed representations,

pathway strength, and representational sharing, though potentially dissociable, may also be closely

related to one another. For example, in the case of two processing pathways that vary in the strength

of their connections to a shared set of processing units, the degree of overlap could be expressed as the

strength of the connections in each pathway to the processing units that are shared. However, at the

other extreme, if they are both connected to an equal number of units with equal strengths, then the

degree of sharing (number of shared units) can be dissociated from their relative strengths. These are

factors that can be determined by learning, and that we consider in greater detail in Part II. Here, we

focus on conditions in which varying learning impacts strength but not the extent of sharing.
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To illustrate the effects on multitasking of differences in the relative strength of

pathways that share representations, consider Tasks A-E shown in Fig. 13. Tasks A, B,

and C each map a different stimulus dimension to a correspondingly distinct response

dimension, and thus all are structurally independent of one another. However, if Tasks

A and B share representations with Tasks D and E, respectively, then they are

functionally dependent. Previously, we considered the connections implementing such

tasks to all be of equal strength, and, thus, functional dependence to be all-or-nothing.

However, previous work (J. D. Cohen et al., 1990; Gilbert & Shallice, 2002; MacLeod &

Dunbar, 1988) suggests that conflict introduced by Tasks D and E on tasks B and A,

respectively, should increase as the strength of pathways for the former increases

relative to the latter. That is, progressive training on Tasks D and E should have a

graded effect on the ability to multitask A and B (see Fig. 13A), while it should have no

impact on the ability to multitask either of the latter with Task C (see Fig. 13B). Here,

we report simulations of such effects and confirm expected dependencies between tasks

using the graph theoretic methods presented above. We also apply quantitative

methods that have been used to estimate parallel versus serial processing from reaction

time data (Townsend & Wenger, 2004). While these methods have been influential in

addressing this distinction in empirical data, they were derived from assumptions about

the linearity of processing, and to our knowledge, have not been applied to neural

networks with nonlinear processing functions, nor have they been used to characterize

parallel versus serial performance under conditions that explicitly involve multitasking.

Evaluating their applicability in such settings could be of potential theoretical and

practical value. To do so, we trained networks on all tasks shown in Fig. 13, varying the

amount of training that the network received for Tasks D and E relative to Tasks A, B,

and C, evaluating the multitasking performance of Task A with Tasks B and C, and

comparing this to quantitative measures of parallel versus serial processing based on

network response times. For each network, we controlled the extent to which

representations were shared, by fixing the weights projecting from the task input layer

to the hidden layer, to implement a compositional configuration.
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Figure 13 . Task dependencies used in Simulation Studies 2 and 3. (A) Tasks A and B are

assumed to be functionally dependent due to shared representations with Tasks D and E; thus, the

ability to multitask A and B should be impacted by the strength of D and E. (B) Tasks A and C are

assumed to be independent, and thus multitasking should not be affected by the strength of D and E

(see text for discussion)

Network architecture and processing. These simulations used a variant of the

network architecture described for Simulation Study 1, in this case, with just three

stimulus dimensions (containing three features per dimension) and three response

dimensions (also with three features per dimension). The network was trained on the

subset of tasks described below.

Task environment. For each simulation, we implemented tasks corresponding to

A-E in Fig. 13, such that Tasks A, B, and C each mapped different stimulus dimensions

to distinct response dimensions; Task D shared a stimulus dimension with Task A and a

response dimension with Task B; and, conversely, Task E shared a stimulus dimension

with Task B and a response dimension with Task A.

Training. We initialized 20 networks for each training condition with small

random weights. For each training condition, we sampled 100 patterns for each of the

three Tasks, A, B, and C, per training epoch. For Tasks D and E, however, we varied

the number of patterns sampled across conditions from none (0% task strength) to 150

(150% task strength relative to Tasks A, B, and C). Every network was trained until it

reached the same performance criterion for Tasks A, B, and C. To control for the

amount of representation sharing between tasks, we fixed the weights projecting from

the task input layer to the hidden layer throughout training. These weights were fixed

such that the task units for tasks relying on the same stimulus dimension (e.g., Tasks A
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and D) projected to a common set of units in the hidden layer (with a weight of 1).

Conversely, units for tasks relying on different stimulus dimensions projected to different

units in the hidden layer. Thus, Tasks A and D shared representations in the hidden

layer, as did Tasks B and E, since each pair relied on the same set of stimulus features.

Functional dependencies between tasks. To confirm assumptions about functional

dependencies between tasks, we applied the graph-theoretic methods described above to

determine dependencies between tasks based on the fixed weight patterns. In Simulation

Study 1, we focused on analyzing average patterns of activity for each task, to

demonstrate how graph-theoretic methods might be applied empirically to neuroimaging

data (e.g., fMRI). Here, we quantified representation sharing by calculating the Pearson

correlation of their weight vectors to the hidden layer, as these provide a more direct

measure of representational overlap (i.e., the degree to which two task units project to

the same hidden units).25 We then applied the same graph-theoretic analysis to extract

functional dependencies between tasks from the correlations.

Interim results: functional dependencies and multitasking accuracy. The fixed

weights from the task input layer to the hidden layer imposed the representational

similarity between tasks depicted in Fig. 14A-B. According to this compositional

configuration, Tasks A and B were constrained to be functionally dependent on one

another, and independent of Task C, as confirmed by the graph-theoretic analysis. We

assessed the multitasking accuracy for performing Tasks A and B, and similarly for

Tasks A and C, as well as the single-task accuracy for Tasks D and E as a function of

training on Tasks D and E(Fig. 14C). Multitasking performance for Tasks A and B

decreased with the amount of training on Tasks D and E, while performance for Tasks

A and C was virtually unaffected by the training condition. Even small amounts (30%)

of training on Tasks D and E, sufficient to improve their performance, came at the

expense of the impaired multitasking performance of Tasks A and B. This suggests that

detriments in multitasking performance scale with the degree of interference induced by

25 Prior simulations (not reported) suggest that weight vectors yield more accurate predictions of

multitasking performance than averaged patterns of activity.
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shared representations. In other words, shared representations alone may not be

sufficient to impair multitasking performance, but they do so if the processing strength

of these other tasks induces a sufficient amount of interference.
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Figure 14 . Effects of shared representation and graded interference on multitasking

accuracy. (A) Average correlations between learned task representations in the hidden layer. (B)

Bipartite task graph and task dependency graph extracted from the similarity between task

representations at the hidden and output layers. Solid lines in the dependency graph indicate

structural dependence, whereas dashed lines indicate functional dependence. (C) Single-task

performance of Tasks E and D, as well as multitasking performance for Tasks A & B and Tasks A & C

as a function of training on Tasks D and E (cf. Fig. 13). Error bars indicate the standard error of the

mean across 20 simulated networks.

Response time series after single-task training. The results above focused on the

effects of shared representation in networks with non-linear processing units, and

evaluated in terms of multitasking accuracy. This complements a separate, but closely

related line of work pursued by Townsend and colleagues (Townsend, Ashby, et al., 1983;

Townsend, Ashby, Castellan, & Restle, 1978; Townsend & Wenger, 2004), developing

mathematical methods for inferring the extent of parallel processing involved in task

performance from measures of cumulative reaction time (RT) distributions. These

methods assume that task performance relies on linear integration processes. Here, we

examine whether these methods can be extended to infer parallel processing (and hence
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multitasking capability) in networks composed of nonlinear processing mechanisms26. In

particular, we evaluate the sensitivity of these methods to shared representations, and

whether this aligns with the results described above using measures that infer

multitasking capability from network representations rather than performance.

Specifically, Townsend and Wenger (2004) showed that the cumulative RT

distribution for two non-interacting (i.e., parallelizable) linear integration processes TA

and TB both reaching a fixed threshold before time step t lies within the bounds

formulated by Colonius and Vorberg (1994):

PA(TA ≤ t) + PB(TB ≤ t)− 1

≤ PAB(TA ≤ t AND TB ≤ t) ≤

min[PA(TA ≤ t), PB(TB ≤ t)] (5)

where PA(TA ≤ t) and PB(TB ≤ t) are the probabilities of each task reaching its

threshold, respectively, conditioned on having a feature present in the stimulus

dimension relevant to each task, and the responses being the correct ones for those

stimuli. Conversely, interactions between two processes (i.e., cross-talk) should lead to

violations of these bounds (Townsend & Wenger, 2004). Here, we tested whether similar

properties are observed for the simultaneous performance of tasks in networks with

non-linear processing units and distributed representations; that is, whether tasks

implemented in such networks that are functionally independent obey the inequalities

above, while ones that are functionally dependent violate it, and the extent to which

this is sensitive to the relative strength of the pathways involved. To do so, we assessed

PAB(TA ≤ t AND TB ≤ t) for Tasks A and B, as well as PAC(TA ≤ t AND TC ≤ t) for

Tasks A and C in the networks described above, as a function of the strength of Tasks

26 This is not an unreasonable expectation, as the effect of attention in neural networks has been

modeled as placing non-linear units in the most sensitive, approximately linear range of their

processing function (J. D. Cohen et al., 1990); and, in Part II, we provide another example of the

applicability of linear analysis methods to non-linear networks.
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D and E, where t corresponded to the time taken by the LCA to reach a threshold.27

The results indicate that, while multitasking both pairs of tasks (A & B, and A &

C) strictly violated the inequality, this effect was distinctively greater for Tasks A and B

when the tasks that mediated the functional interference between them—Tasks D and

E—were strong (i.e., fully trained) compared to the other conditions (see upper right

panel of Fig. 15). In that case, Tasks A and B crossed the lower bound of the cumulative

RT distributions for independent processing channels at a much later point than in the

other conditions, indicating that it took more time for both tasks to reach a response,

presumably due to functional interference. Thus, the degree of inequality violation

appears to clearly reflect the degree of functional dependence. The observation that the

inequality was also violated in the other conditions (though to a much less degree) is

consistent with an effect discussed earlier: Training on single tasks can lead the network

to learn to directly inhibit output representations that are not relevant to the current

task, causing multitasking interference at the output layer (see Simulation Study 1).

Response time series after multitasking training. While the discrepancy between

the analysis of RT distributions and the graph-theoretic analysis across conditions may,

as just noted, reflect the effects of learning, it is possible that this could also be due to

the nonlinearity of processing and/or the presence of distributed representations in the

network, both of which deviate from assumptions made by the RT analysis methods of

Townsend and Wenger (2004). To evaluate this, we sought to eliminate any effects of

cross-task interference by training the network explicitly on multitasking for Tasks A &

B as well as for Tasks A & C, and then evaluating its performance using the analysis of

the RT distributions. If this eliminated the violations of the inequalities, it would

suggest that those were due to the effects of cross-task interference that arose from

single-task training, whereas if the violations persisted it would suggest that they were

due to deviations of the network architecture from assumptions made by the analysis.

In this simulation, 20 networks were trained to criterion on all five tasks as

27 We conformed to the same assumption used by Townsend and Wenger (2004), restricting our

analysis to only correct responses.
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Figure 15 . Cumulative RT distributions as a function of dependence (shared

representation) and training on interfering tasks (graded interference). Each plot shows the

lower (A+X − 1) and upper (min(A,X)) bounds (thin solid and dashed lines, respectively) for the

cumulative RT distribution of multitasking Tasks A and X (thick solid lines), where X is either Task B

(upper panels) or Task C (lower panels); see Fig. 13 for task configurations. Cumulative RT

distributions are shown for either 10% (left panels) or 150% (right panels) of training on Tasks D and

E, relative to the other tasks (as a manipulation of the strength of those pathways). Note that, whereas

the cumulative RT distribution evolves to fall below the lower bounds in all conditions, it does so to a

considerably greater degree for Tasks A and B when Tasks D and E are strong (150% training

condition; upper right panel) compared to the other conditions; see text for discussion.

described above (with 100% training on Tasks E and D). In addition, each training

epoch included 100 trials of multitasking Tasks A and B, as well as 100 trials for

multitasking Tasks A and C. Note that the weights projecting from the task to the

hidden layer were randomly initialized and no longer fixed, so that the network could

learn a conjunctive configuration. After training, the representational similarity

between all tasks, as well as the cumulative RT distribution for both multitasking

conditions, was assessed as described above.

Multitasking training virtually eliminated representational sharing between tasks

that relied on a common stimulus dimension (Tasks A and D, as well as Tasks B and E;

see Fig. 16A), and thus eliminated the functional interference between Tasks A and B,
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which was required to achieve criterion in training on multitasking performance. We

will consider these effects of multitasking training on shared representations in greater

detail in Part II (Simulation Study 5). Here, we note that the analysis of RT

distributions accurately reflects this effect, now showing strict adherence to the

inequalities indicative of full parallel processing (Fig. 16B). These results suggest that

the methods described by Townsend and Wenger (2004) can be extended to the analysis

of non-linear systems (at least those implemented in the networks described above), and

that measurements using these methods align with an assessment of parallelism in such

networks based on the graph-theoretic analysis as well as the direct evaluation of the

accuracy of multitasking performance of such network evaluated directly in simulations.

These results also suggest that for the simulations involving single-task training

reported above, the analysis of RT distributions was able to detect interactions between

tasks that arose during learning, but were not predicted by graph theoretical analysis of

representations at the hidden and output layers (see Simulation 1 for a discussion).
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Figure 16 . Representational task similarity and cumulative RT distributions after

multitasking training. (A) Average correlations between learned task representations in the hidden

layer (cf. Fig. 14). (B) Each plot shows the lower (A+X − 1) and upper (min(A,X)) bound for the

cumulative RT distribution of multitasking Tasks A and X, where X corresponds to either Task B

(upper panel) or Task C (lower panel); see text and Fig. 15 for an explanation of bounds; and Fig. 13

for task configurations.
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2.3.4 Simulation Study 3: Interaction Between Shared Representation

and Persistence. While training can be used to overcome multitasking interference

due to functional dependence—a topic to which we will return at length in Part II—it

is, of course, also possible to overcome such interference by executing the individual

tasks in series. However, a large body of evidence suggests that, for humans, serial

execution of tasks is also associated with costs. Serial task execution has been studied

in a number of experimental paradigms, the two most prominent of which are the PRP

procedure (Telford, 1931) and the task-switching paradigm (Allport et al., 1994;

R. D. Rogers & Monsell, 1995). Interestingly, however, little work has addressed the

relationship of effects between these; that is, between dual-task interference in the PRP

paradigm and switch costs associated with task switching (Koch et al., 2018).

Furthermore, the neural mechanisms underlying both effects remain elusive. Here, we

suggest that both reflect interference arising from the same underlying mechanism: an

interaction between shared representations and the persistence characteristics of

representations in neural architectures.

In the PRP procedure, participants are asked to respond as quickly as possible to

two tasks within the same trial. Each trial begins with the presentation of a stimulus

relevant to the first task (Task 1), followed by an experimentally manipulated delay (the

stimulus onset asynchrony; SOA) and then the stimulus for the second task (Task 2;

Fig. 17). Participants tend to respond more slowly to the second stimulus as the SOA is

reduced (Telford, 1931). The additional amount of time that it takes to respond to the

second task in the presence of a short SOA is referred to as the PRP. If the two tasks

could be performed fully in parallel, then participants should execute Task 2 as soon as

the relevant stimulus is available, and there should be no PRP. Therefore, observation

of a PRP is assumed to reflect dependence on serial processing. This has often been

interpreted as evidence that both tasks rely on a central, limited-capacity control

mechanism that imposes a bottleneck on processing, which delays the execution of Task

2 while Task 1 is still being executed (e.g., Welford, 1952; Broadbent, 1957, 1958;

Pashler, 1984, 1994). Alternatively, production system models closer in spirit to the
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multiple-resource theory have suggested the PRP effect can be explained by bottlenecks

that arise within more local resources (e.g., perceptual or motor processes) shared by

the particular tasks that are competing for execution, rather than a “central executive”

(Byrne & Anderson, 2001; Kieras & Meyer, 1997; Meyer & Kieras, 1997a; Salvucci &

Taatgen, 2008). However, those models do not explain why such bottlenecks exist; nor,

to our knowledge, have they used the same mechanisms to explain effects in

task-switching paradigms.28

Task 1 Stimulus
1

Response
1Processing Task 1

Reaction Time
for Task 1

Stimulus
2

Response
2Processing Task 2PRP

Reaction Time
for Task 2

Task 2 SOA

Figure 17 . Psychological refractory period (PRP) procedure (Telford, 1931). See text for

description.

In task-switching experiments participants are required to respond to only one

task per trial, but must switch periodically between tasks across trials. A large

literature reports a number of effects consistently observed in a variety of such

experiments (for a review, see Kiesel et al., 2010). Here we focus on the explicit

task-cueing procedure, in which each trial is preceded by a task cue indicating the next

task to be performed (Meiran, 1996; Sudevan & Taylor, 1987). Task switch trials require

the participant to perform a different task relative to the previous trial, whereas task

repetition trials require that the same task be performed again. Participants reliably

exhibit a switch cost on task switch trials; that is, they respond more slowly and/or less

accurately on task switch relative to task repetition trials. Some have suggested that

28 In Part II, we return to the question of why such bottlenecks might arise, providing an account in

terms of the value of shared representations during learning. Here we focus on how such

representations, coupled with their persistence characteristics, may explain the PRP and task-switching

effects in terms of common underlying mechanisms.
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switch costs reflect an active process of task-set reconfiguration (Mayr & Kliegl, 2000;

Meiran, 1996; R. D. Rogers & Monsell, 1995; Rubinstein, Meyer, & Evans, 2001) that

relies on a control mechanism. Others have suggested that switch costs arise from

passive processes, such as: proactive interference (sometimes referred to as “task-set

inertia”) from the previous task-set (Allport et al., 1994); inhibition of the previously

executed task-set (Altmann, 2007; Mayr & Keele, 2000); repetition priming of the task

cue (Logan & Bundesen, 2003; Anderson & Lebiere, 2014); or repetition priming of

stimulus features (Waszak, Hommel, & Allport, 2004; Wylie & Allport, 2000). Note

that all of these accounts assume some form of persistence of information encoded

about the previous task. In a neural network architecture, this is naturally interpreted

as the persistence of the patterns of activity used to represent such information.

The persistence of activity is a common computational feature of neural network

architectures, that enables the integration of information over time. Persistence

characteristics have been used to account for a variety of cognitive phenomena,

including sequential processing of stimuli (Braver, Barch, & Cohen, 1999; Elman, 1990;

Flesch, Nagy, Saxe, & Summerfield, 2023; McClelland, 1979; Musslick, Bizyaeva,

Agaron, Naomi, & Cohen, 2019), working memory (Engle, Kane, & Tuholski, 1999),

integration of sensory input in perceptual decision-making (Bogacz et al., 2006; Curtis

& Lee, 2010; Major & Tank, 2004; Mazurek, Roitman, Ditterich, & Shadlen, 2003;

Shadlen & Newsome, 2001; Usher & McClelland, 2001), temporal credit assignment in

reinforcement learning (O’Reilly & Frank, 2006), and the evolution of context

representations proposed to underlie event segmentation and temporal encoding in

episodic memory (Hasson, Chen, & Honey, 2015; Lerner, Honey, Silbert, & Hasson,

2011). Persistence of activity also suggests that the effects of shared representation on

multitasking performance may extend to the sequential execution of two tasks: the

more that a representation of a previously executed task persists in time, the more it

can interfere with a subsequent task that shares the same set of representations. Here,

we show that such an interaction between the persistence of activity and shared

representations can explain interference effects associated with the sequential execution
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of tasks, both in the context of PRP experiments as a function of SOA, and

task-switching experiments as a function of response set overlap and stimulus

congruency.

Network architecture, processing, and task environment. Using the same neural

network architecture and task environment as described in the previous section, we

trained 20 networks on Tasks A-E (see Fig. 13) until each network reached the

performance criterion across all tasks (with the same number of training patterns per

task). However, unlike in the previous simulation, we allowed the network to learn its

weights projecting from the task layer to the hidden layer. After training, we introduced

persistence in the computation of the net input of a unit i in the hidden and output

layers,

net
T
i = (1− p) · netTi + p · netiT−1

, (6)

where netiT−1 corresponds to the time-averaged net input from the previous time

step, netTi corresponds to the instantaneous net input, and p determines the rate of

integration (i.e., how much the time-averaged net input of the current time step netTi
depends on the time-averaged net input from the previous time step).29 Thus, the

higher the value of p, the longer activity persists in a given state over time. For each

network, we considered different values of p ∈ {0, 0.5, 0.8, 0.9}.

PRP after single-task training. We simulated the PRP paradigm for Tasks A and

B, as well as Tasks A and C. As demonstrated in the previous section, after single-task

training, Tasks A and B were functionally dependent and interfered with each other

29 This implementation of persistence by integrating (“time-averaging”) the net input to each unit

follows similar implementations (e.g., Cohen et al., 1990), though it can also be achieved through

recurrent excitatory connections (e.g., Usher & McClelland, 2001). For efficiency of simulation, training

occurred without integration so that, after training, integration during processing causes activity

patterns to asymptote on the learned patterns. Similar results were shown to apply when integration is

applied throughout training (Herd et al., 2014), so long as sufficient time is afforded during each

training trial for the activity of the network to approach an asymptote.
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when executed simultaneously, whereas Tasks A & C were independent and interfered

less (cf. Fig. 14). Here, we examined the effects of sequentially executing each pair of

tasks, with Task A always executed second. Thus, we first presented the network with a

feature from the stimulus dimension relevant to Task 1 (Task B or Task C), by

activating the corresponding unit in the stimulus input layer while keeping all other

stimulus input units inactivated. After a number of time steps (determined by the

SOA), we presented the network with a feature from the stimulus dimension relevant to

Task 2 (Task A) by activating a unit in the stimulus dimension relevant to that task

while the stimulus feature for Task 1 (Task B or Task C) was still present. PRP studies

commonly instruct participants to prioritize Task 1 (Meyer & Kieras, 1997a). We,

therefore, activated the task input layer unit for Task 1 at the beginning of each trial

and deactivated it as soon as the network had responded to that task. For Task 2 we

assumed that participants sought to optimize the outcome of performance by choosing

to initiate execution at a time that maximized reward rate (Musslick, Shenhav,

Botvinick, & Cohen, 2015). Accordingly, we determined the optimal onset of the task

unit for Task 2 such that the joint reward rate for both tasks was maximized, with

Reward Rate = P (correct)Task 1P (correct)Task 2

(ITI + RTtotal)
(7)

where P (correct)Task 1 and P (correct)Task 2 correspond to the accuracies of Task 1

and Task 2, respectively; ITI corresponds to an inter-trial interval of 0.5s;30 and RTtotal

is the RT that was determined by the time of the response to the last task to be

executed, measured from the onset of the trial. We then assessed RTs for Task 1 (Task

B or Task C) and Task 2 (Task A) as a function of SOA, by varying the SOA from 1s to

8s in steps of 1s (with each cycle of processing in the simulation corresponding to 0.1s).

PRP after dual-task training. A number of studies have demonstrated that the

PRP can be eliminated after a sufficient amount of dual-task training (Allport et al.,

1972; Hazeltine, Teague, & Ivry, 2002; Liepelt et al., 2011; Schumacher et al., 2001;

30 The duration of the ITI varies across PRP studies. Here, we choose an ITI of 0.5, similar to

Halvorson et al. (2013).
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Wickens, 1976), yielding “virtually perfect time sharing.” Accordingly, we tested

whether the PRP remained if the network was trained on dual-tasking Tasks A and B,

as well as on Tasks A and C. To do so, we trained 20 networks to criterion on all five

tasks as described above (with 100% training on Tasks E and D, to allow for the

possibility that shared representations and functional interference would develop

between Tasks A and B). In addition, each training epoch included 100 trials of

dual-tasking for Tasks A and B (to determine whether any PRP effects that occurred

following single-task training were eliminated by dual-task training), as well as 100

trials for dual-tasking Tasks A and C. After training, we measured the PRP as a

function of SOA, as well as the amount of representation sharing that developed

between tasks (see Simulation Study 2).

Results: PRP after single- and dual-task training. Simulation results validated the

expected effect that higher persistence prolonged RT for both Task 1 and Task 2, due to

slower rates of integration (Fig. 18). Critically, following single-task training, the model

exhibited a PRP effect for all non-zero values of persistence, showing a delay of Task 2

as a function of SOA (Fig. 18B). This effect was greater when Task 2 (always Task A)

followed Task B versus C, indicating that Task B interfered more with the subsequently

executed Task A. This is consistent with the persistence of shared representations

between Tasks A and D, as well as Tasks B and E, that produced functional

interference between Tasks A and B but not A and C, and therefore that the effects of

functional interference can be mediated by persistence in shared representations, even

when tasks are executed serially. Interestingly, a PRP effect, albeit smaller, was also

observed when Task A followed Task C. This is consistent with the results of Simulation

Studies 1 and 2, suggesting, once again, that interference between tasks can arise

through suppression of responses at the output layer acquired during single-task

training (see Simulation 1 for a discussion). The results here suggest that persistence

can amplify this effect, and produce a PRP even for tasks that are functionally

independent according to the graphic theoretic analysis. It is also worth noting that, in

line with prior observations (Marill, 1957; Pashler, 1994), the RT of Task 1 remained
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unaffected by the SOA, irrespective of whether Task 1 was functionally dependent or

independent of Task 2 (Fig. 18A). That is, a potentially early execution of Task 2 did

not interfere with an ongoing execution of Task 1. This reflects the instructed strategy

of the model to prioritize Task 1, by activating the task unit for Task 1 before the task

unit for Task 2. This strategy allowed the model to elicit a response for Task 1 before

the activity of the task unit for Task 2 became high enough to cause interference.
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Figure 18 . Simulated PRP after single-task training. RTs for (A) Task 1 and (B) Task 2 in the

PRP procedure as a function of persistence p. The first task to be executed (Task 1) corresponds either

to Task B or Task C in Fig. 13. The second task to be executed (Task 2) corresponds to Task A in

Fig. 13. Error bars show the standard error of the mean across 20 simulated networks trained only on

single tasks.

Finally, Fig. 19 shows that dual-task training, which greatly diminished

representational sharing (Fig. 19A), all but eliminated the PRP effect; this is now

observed only at the highest levels of persistence (p ≥ 0.8, Fig. 19B).

Task switching after single-task training. A large number of empirical studies have

shown that switch costs can vary, depending on whether the pairs of tasks involved

share the same set of (bivalent) responses or whether they use different (univalent) sets

of responses. Our analysis of task dependence suggests a refinement of this distinction,

such that task pairs with bivalent responses are structurally dependent (e.g., Task A

and Task E), whereas task pairs with univalent responses may be either functionally

dependent (e.g., Task A and Task B) or independent (e.g., Task A and Task C),

depending on whether they interfere by means of shared representations. This, in turn,

suggests more refined predictions concerning switches between tasks that have univalent
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Figure 19 . Simulated PRP after multitasking training. (A) Average correlations between

learned task representations in the hidden layer. (B) RT of Task 2 in the PRP paradigm as a function

of persistence p and task. Error bars show the standard error of the mean across 20 simulated networks.

responses: ones that are functionally dependent should exhibit switch costs, whereas

ones that are independent should not. We tested these predictions in the same networks

trained for the PRP simulations, by comparing performance in three task-switch

sequences (see upper panels of Fig. 20): Task E to Task A (structural dependence),

Task B to Task A (functional dependence), and Task C to Task A (independence), and

computing the switch cost of each relative to a repetition sequence (Task A twice in a

row).

Each task in each sequence was simulated by setting its unit in the task input

layer to 1 and all others to 0; randomly selecting a stimulus pattern (either congruent or

incongruent, cf. Fig. 10) for the stimulus input layer (with one unit active in each

stimulus dimension)31; and allowing the network to process the input until it reached a

response. Task 1 was either Task E, Task B, or Task C in task switch sequences, and

Task A in task repetition sequences. As soon as the network had responded to Task 1,

the instruction and stimulus were presented for Task 2 (always Task A). We measured

switch costs as the difference in RT between the switch and repeat conditions, averaged

over 100 randomly sampled congruent and, separately, 100 randomly sampled

31 Stimuli for which the features of the stimulus dimensions for both tasks are present are commonly

referred to as “bivalent” stimuli in the task-switching literature, as they afford the performance of the

other task.
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incongruent stimuli, calculated separately for the three switch scenarios: switch to A

from a structurally dependent task (E to A), functionally dependent task (B to A), and

independent task (C to A). As in Simulation Studies 1 and 2, the RT of the network

was determined using the response threshold that maximized the reward rate for a

given combination of task and stimulus inputs. Note that the model did not implement

any mechanism by which the RT was explicitly delayed on task switches as opposed to

task repetitions. Thus, a slower RT on task switch trials relative to task repetition trials

would reflect a normative strategy of raising the response threshold to maximize the

reward rate.

Task switching after dual-task training. To examine the influence of dual-task

training on task switch costs, we trained the networks additionally on dual-tasking

Tasks A and B, as well as Tasks A and C, as in the simulation of the PRP effect. Note

that we could not train the network to perform Tasks A and E simultaneously due to

their structural overlap in the response dimension. After training, we measured the RT

switch costs as a function of persistence for each of the three task-switching scenarios

described above.

Results: task switching after single- and dual-task training. Fig. 20 shows the RTs

for Task A in all three switch sequences and congruency conditions, compared to those

for the repeat condition after single-task training. The network exhibited switch costs

(i.e., a higher RT for task switches; Allport et al., 1994; R. D. Rogers & Monsell, 1995)

compared to task repetitions for all three sequence types. The results also indicate that

switch costs for structurally dependent tasks (Task A and Task E) and functionally

dependent tasks (Task A and Task B) were higher for incongruent stimuli compared to

congruent stimuli. Such an interaction between task transition and stimulus congruency

has frequently been reported for structurally dependent tasks (using “bivalent”

responses; e.g. Fagot, 1995; Goschke, 2000; Meiran, Chorev, & Sapir, 2000;

R. D. Rogers & Monsell, 1995; Wendt & Kiesel, 2008). Previous accounts have

suggested that higher switch costs for incongruent stimuli reflect an increase in

“proactive interference” (Kiesel et al., 2010). In our simulations, the persistence of



SHARED VERSUS SEPARATED REPRESENTATIONS 73

A

Input
Layer

Output 
Layer

Hidden
Layer

B CStructural Dependence

…

A E

Functional Dependence

…

A B

Independence

…

A C

Switch from E to A Switch from B to A Switch from C to A

Congruent Incongruent
0.2

0.3

0.4

0.5

0.6

R
ea

ct
io

n 
Ti

m
e 

(s
) Task Switch

Task Repetition

Congruent Incongruent
0.2

0.3

0.4

0.5

0.6

R
ea

ct
io

n 
Ti

m
e 

(s
) Task Switch

Task Repetition

Congruent Incongruent
0.2

0.3

0.4

0.5

0.6

R
ea

ct
io

n 
Ti

m
e 

(s
) Task Switch

Task Repetition

Figure 20 . Effects of shared representations on task switching after single-task training.

The three upper panels show task pairs used in simulations of each of the three switch sequences.

Lower panels show corresponding RTs for Task 2 (always Task A) in each of the three switch sequences

(dashed lines) compared to the repetition sequence (solid lines), for congruent and incongruent stimuli.

Results are shown for a persistence of p = 0.9 at which differences between task dependencies become

most apparent. Error bars show the standard error of the mean across 10 simulated networks.

shared representations from the previously executed task mediated this effect, and the

longer RTs observed for incongruent trials reflect the effects of such interference. As

expected, we did not observe this effect for independent tasks (Task A and Task C)

although the persistence of activity from the to-be-repeated task facilitated task

repetitions relative to task switches. Note, however, that this makes a novel prediction

that switch costs for pairs of tasks with univalent responses (i.e., that involve different

response dimensions) should nevertheless differ, based on whether they are functionally

dependent tasks (such as Tasks A and B) or independent (such as Tasks A and C). To

our knowledge, this is an effect that has not yet been examined in the literature.

Fig. 21A illustrates the effect of persistence on the switch costs, averaged across

all stimuli, for each of the three sequence types after single-task training. Switch costs

increase with persistence in all three though, over most of the range, switch costs are

greater for structurally dependent tasks than functionally dependent and independent
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tasks, mirroring the empirical observation that switch costs for tasks with bivalent

responses are higher compared to tasks with univalent responses (Brass et al., 2003;

Meiran et al., 2000). Again, however, the model makes the novel prediction that a

distinction should be observed among univalent tasks, that can be empirically tested.

Finally, as in the PRP simulation, we observed that dual-task training on Tasks A

& B (as well as Tasks A & C) greatly diminished representational sharing (cf. Fig. 19A)

and, as a consequence, the functional dependence between Tasks A & B. This resulted

in a reduction of RT costs associated with switching from Task A to Task B (Fig. 21B).

Thus, the network simulations predict that dual-task training on two univalent tasks

can reduce performance costs associated with switching between the two tasks.
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Figure 21 . RT switch costs for incongruent stimuli in all task-switching scenarios (see

text) as a function of persistence. RT switch costs were assessed (A) after training the network to

perform all single tasks and (B) after training the network to perform all single tasks as well as to

perform Tasks A & B, as well as Tasks A & C simultaneously (cf. Fig. 13).

2.4 Summary, Discussion and Conclusions for Part I

We introduced a graph-theoretic approach to computing the multitasking

capability of feed-forward, single-layer, non-linear networks from task-related patterns

of activity over their hidden and output layers, and used this to predict network

performance for different multitasking conditions. This involved representing the
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network as a bipartite graph, and using that to generate a task dependency graph that

provides a compact representation of its multitasking capability. Determining the MIS

in the dependency graph identifies the maximum number of concurrent tasks that can

be executed without performance loss. The dependency graph can also be used to

identify all combinations of tasks that can be performed in parallel. Building on this

formalism, we conducted a quantitative analysis of the multiple-resource theory,

demonstrating that the multitasking capability of the network drops drastically with the

sharing of representations in the network. Furthermore, we showed that the sharing of

representations interacts with the strength of processing pathways and the persistence

characteristics of network representations, to define a continuum in the dependence on

control, and a commensurate one between parallel and serial processing for given

combinations of tasks. Finally, we showed how these factors can provide a mechanistic

account of widely observed interference effects between tasks, including the PRP and

task switch costs, and generate new predictions concerning these phenomena as a

function of the persistence characteristics and sharing of representations between tasks.

Below, we review the implications of the analytical results for the

multiple-resource theory, and discuss how the underlying graph-theoretic framework can

be applied to predict multitasking performance from neural correlates. We then

describe the relationship between estimations of multitasking capability based on neural

measures, on the one hand, and behavioral measures on the other (Townsend & Altieri,

2012; Townsend & Wenger, 2004). Finally, we consider some broader implications that

viewing task performance and control dependence through the lens of shared

representations has for the interpretation of classic phenomena, such as the PRP, task

switching, and cognitive control more broadly.

2.4.1 A Quantitative Approach to Multiple-Resource Theory. As

noted above, the graph-theoretic framework permits a quantitative analysis of the

multiple-resource theory, according to which parallel processing limitations can arise

due to local processing bottlenecks of shared task representations rather than a central

capacity limitation of the control system itself (Allport et al., 1972; Allport, 1980;
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Navon & Gopher, 1979; Wickens, 1991). Analytical investigations of the multitasking

capability of two-layer networks confirmed previous numerical results (Feng et al.,

2014), showing that small increases in the average number of tasks that share a

representation lead to dramatic constraints on the number of tasks that can be executed

simultaneously without cross-talk.

One may expect that the constraints imposed by shared representations on

multitasking might be negligibly small in a processing system as large as the human

brain. The structural capacity of a network may grow both with the number of nodes

per processing layer and the number of processing layers. Our analytical results suggest

that the multitasking capability of a two-layer network increases in a dramatically

sub-linear way with the number of nodes in a processing layer, yielding diminishing

returns. That is, the limitations imposed by shared representations may not be easily

circumvented by increasing the number of nodes per processing layer in a network.

Furthermore, although an exact analysis of networks quickly becomes intractable as the

size of the network grows, a probabilistic approach to the analysis of deep networks

reveals that multitasking capability decreases even further as the number of processing

layers in a network increases, since the two layers with the smallest multitasking

capability constitute a bottleneck for the entire network (see also Alon et al., 2017).

Note that the detrimental effect of depth on multitasking capability stands in contrast

to the benefit of depth for the learning of complex functions (Goodfellow et al., 2016;

Simonyan & Zisserman, 2014; Telgarsky, 2016), a factor that we turn to in Part II.

Altogether, these analyses suggest that even modest degrees of representation sharing

between tasks, paired with a large number of processing layers are likely to place strong

constraints on multitasking capability, even in neural architectures with the

considerable structural and representational capacity of the human brain.

A potential appeal of using neural network architectures to understand constraints

on processing is that, in principle, they can be more directly related to underlying

factors thought to be responsible, and measurable in the brain. Unfortunately, in

practice, though both representational mapping and connectomics have become



SHARED VERSUS SEPARATED REPRESENTATIONS 77

important areas of progress in neuroscientific research, current methods provide

measures that are still limited in scope and/or resolution relative to the constructs and

factors addressed by our analyses; for example, the identification and detailed

quantification of dimension- (and even feature-) specific patterns of activity associated

with processing in single and/or multiple tasks, and the strengths of synaptic

connectivity among them. Nevertheless, suggestive lines of evidence are beginning to

appear.

For example, analyses of functional networks of the macaque cortex, that treat

distinct brain areas as nodes and inter-cortical tracts connecting them as edges, yield

node degrees ranging from 20 to 40 (Sporns, Honey, & Kötter, 2007; see also Rubinov &

Sporns, 2010; Young, 1993). If different brain areas are assumed to represent different

forms of information, and the tracts between them correspond to processing pathways

used for task execution, then the estimated node degrees are in a range for which we

observed asymptotically low multitasking capabilities. Of course, as noted, such

findings are at an extremely coarse grain of analysis, and allow for the obvious

possibilities that a given brain area may support multiple distinct pools of

representations, and that connections among them could remain distinct within

intracortical tracts. More detailed studies are needed to directly quantify structural

overlap with and between task pathways, including ones of the human brain. An

important factor to consider in such studies is the distribution of node degrees, as the

analyses we report suggest that multitasking limitations are sensitive not only to the

density, but also to the structure (e.g., entropy) of connectivity in a network. It will, of

course, be equally important to relate such factors to task performance, as considered

below and in Part II of this article.

2.4.2 Application of Analytic Methods to Prediction of Multitasking

Capability. The results of Simulation Study 1 indicate that it is possible to estimate

the multitasking capability, and predicted the multitasking performance of a network

solely based on sufficiently detailed measures of similarity among representations

associated with individual tasks. These methods are of a form that it may also be
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possible to apply them to the analysis of brain activity, to predict multitasking

performance in humans and perhaps even other species. For example, if patterns of

neural activity can be identified for a set of individual tasks (e.g., using direct

multi-unit neuronal recordings, and/or methods such as fMRI or circuit-level imaging),

then the analyses described above can be used to predict multitasking performance for

all combinations of those tasks. This might be impossible to determine directly (i.e., by

measuring performance for all task combinations individually), as the number of

combinations grows factorially with the number of tasks (for example, with just five

input and five output dimensions, from which 25 tasks can be formed, the number of

multitasking combinations is over 1500). In contrast, the methods we have described

require measuring only the pattern of activity associated with each task individually,

which grows linearly with the number of tasks. That is, these analyses may be

particularly useful in situations in which exhaustively assessing the entire space of task

combinations is empirically intractable (e.g., combinations of tasks that can be

performed in a pilot cockpit).

The application of graph-theoretic methods to analyze connectionist models in

particular, and neural systems more broadly, is still early in its development and

requires making simplifications. An important simplification in our analyses, that could

be relevant to its use in empirical applications, is the thresholding of real-valued

correlations among task representations in order to construct the binary bipartite and

dependency task graphs used to predict multitasking capability. As we noted above,

simulation results suggest that the methods are robust across a wide range of thresholds

and learned task representations (see Petri et al., 2021). Nevertheless, it will be

important to explore generalizations of these methods to assess graded effects of

interference, and to apply them to more complex and realistic architectures (see

Section 4.8 “Limitations and Future Directions” in the General Discussion).

2.4.3 Relationship to Response Time Methodology. As discussed above,

sophisticated mathematical methods have been developed to infer the extent to which

the performance of a task relies on parallel processing versus serial processing from
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measurements of response time distributions (e.g. Townsend & Altieri, 2012; Townsend

& Wenger, 2004). These are based on Systems Factorial Design Technology (Townsend

& Nozawa, 1995), and theoretical results concerning RT inequalities for independent

information channels (Colonius & Vorberg, 1994; Grice, Canham, & Boroughs, 1984;

Grice, Canham, & Gwynne, 1984; J. Miller, 1982). Applications of these methods to

paradigms such as short-term memory search (Townsend & Fifić, 2004), visual search

(Fifić, Townsend, & Eidels, 2008) and the Stroop task (Eidels, Townsend, & Algom,

2010) have generated insights into the extent to which mental processes rely on parallel

versus serial processing. The approach presented here complements this work in several

ways. First, like it, the methods we describe provide a means for estimating parallel

processing (multitasking) capability when the underlying task structure is not known.

Here, we suggest how this can be done by measuring internal representations engaged

by individual tasks, providing an approach that complements, and perhaps could

synergize with the analysis of reaction time distributions. We have demonstrated the

plausibility of this approach in artificial neural networks, and suggested how it might be

applied empirically (e.g., by measuring patterns of neural activity). Second, while the

analysis of RT distributions, like a direct assessment of multitasking performance,

requires measurements for every combination of the tasks of interest—which, as noted

above, can rapidly become impractical for even modest numbers of tasks—the methods

we have described can be used to predict multitasking capability and performance from

measurements made of each task individually, which may be more practical in

realistically complex task settings. Third, our application of response time distribution

analysis to neural network simulations shows that, although the derivation of those

methods was based on assumptions of linear processing, they appear to apply

reasonably well to non-linear processing mechanisms and distributed representations

commonly used in neural network models, comporting both with predictions made by

our graph theoretic methods and direct measures of multitasking accuracy. In fact, in

Simulation Study 2, these methods appeared to be sensitive to factors influencing

network multitasking capability (such as mutual inhibition of response dimensions) that
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the graph theoretic methods were not (a point to which we return just below). Taken

together, these observations suggest that response distribution analyses may have value

not only in empirical research concerning human behavior but also in efforts to

characterize and understand the performance of artificial neural networks, an area of

increasing interest in machine learning (U. Cohen, Chung, Lee, & Sompolinsky, 2020;

Flesch, Juechems, Dumbalska, Saxe, & Summerfield, 2022; Saunshi, Plevrakis, Arora,

Khodak, & Khandeparkar, 2019). Finally, and perhaps most importantly, while the two

approaches offer complementary ways to infer parallel processing and multitasking

capability from empirical data, the simulation studies presented here also sought to

identify and examine the influence of a theoretically motivated causal factor—shared

representations. In this respect, we hope that our findings contribute to providing a

“linkage of quantitative concepts [. . . ] with neural mechanisms” (Townsend & Wenger,

2004, p. 1016).

As noted just above, the results of Simulation Study 2 suggested that the graph

theoretic methods we described may not be sensitive to mutual inhibition of response

dimensions among tasks that arises during single-task training, but is diminished with

multitask training (see Simulation Study 1 for a discussion). It is possible that these

methods can be extended, or other similar measures developed that are able to detect

such interactions from internal representations (Bernardi et al., 2018;

Henselman-Petrusek et al., 2019; Chung, Lee, & Sompolinsky, 2018). It is important to

note that, irrespective of methods of analysis, such interference at the output layer is

consistent with the general proposition that limitations in multitasking performance,

and the concomitant need for control, reflect local competition among task-specific

representations (in this case, at the output layer of the network) rather than a

limitation in the capacity for control itself.

2.4.4 Dual-Task Interference and the PRP. A large body of empirical

work on dual-task interference suggests that limitations in multitasking can extend to

situations in which two tasks are executed in sequence (Koch et al., 2018; Pashler, 1994;

Salvucci et al., 2009). One of the hallmarks of dual-task interference is the PRP, a
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period during which the processing of a second task is delayed because a first task is still

being processed (Telford, 1931). The PRP was an explanandum for some of the earliest

theories of modern cognitive psychology, in which the processing delay for the second

task was interpreted as evidence of a central information processing bottleneck that

limits processing to only one task at a time (Broadbent, 1957, 1958; Welford, 1952).

The neural network account described here aligns more closely with an alternative

account, multiple-resource theory, suggesting that processing bottlenecks responsible for

the PRP lie in local, task-specific resources (Byrne & Anderson, 2001; Meyer & Kieras,

1997a; Navon & Gopher, 1979; Salvucci & Taatgen, 2008) rather than a centralized

processor. However, previous applications of multiple-resource theory have generally

implemented these resources in production system (symbol processing) architectures, as

discrete, predefined sets of processing modules. Here, we used neural network models,

based on the parallel distributed processing framework (McClelland et al., 1986), in

which task-specific resources were implemented as representations (patterns of activity)

that can be learned, engaged in a graded way (based on the strengths of connections in

the network), distributed across multiple processing units that permit varying degrees

of overlap, and have persistence characteristics that can also cause processes to overlap

in time—features that are generally thought to be characteristics of computation in the

brain. In the remainder of this section, we discuss additional empirical phenomena

related to dual-task interference and the PRP, for which the neural network approach

provides a natural account, as well as novel predictions that follow from the simulation

work described in Part I. In the General Discussion, we revisit the relationship of this

account to prior multitasking theories more generally, including instances of structural

bottleneck theory and multiple-resource theory.

The zero-SOA effect. The neural network account can explain a number of effects

that have not been—and might not be—easily addressed using strictly symbolic

approaches. For example, while some studies have observed that, as predicted by

central bottleneck models, the PRP effect at an SOA of 0 matches the RT of the first

task (e.g., Welford, 1952), other studies have reported a smaller-than-predicted PRP
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effect (Karlin & Kestenbaum, 1968). Simulation Study 3 showed that the PRP can

match the RT of the first task if it and the second task are functionally dependent and

there is a high amount of persistence in the network. However, the PRP can be lower if

the tasks are only partially dependent or if persistence is low (see Fig. 18B). Conversely,

longer persistence of shared representations can explain a PRP (delayed execution of a

second task) that exceeds the RT for the first task (Welford, 1952; Marill, 1957). That

is, the neural network account predicts that, if task representations are subject to a

high degree of persistence (e.g., if they encode more abstract information; Hasson et al.,

2015), the response to the second task can be slowed even if the stimulus for the second

task is presented after response to the first task; something that discrete, symbolic

processing mechanisms might find difficult to explain (Pashler, 1994).

Practice effect. The neural network approach also provides a natural and

quantitative account of how multitasking practice can improve a system’s multitasking

performance. For example, Simulation Study 3 replicated the finding that the PRP can

be diminished with the practice of dual-tasking (Garner, Tombu, & Dux, 2014;

Hazeltine et al., 2002; Liepelt et al., 2011; Schumacher et al., 2001). Central bottleneck

models have proposed that this reflects a reduction in preparatory demands for both

tasks (Pashler, 1994), and/or shortens the central processing stage (Ruthruff, Johnston,

Van Selst, Whitsell, & Remington, 2003). Neural network models offer potential

mechanisms for these effects of practice; for example, increasing the strength of each

processing pathway could reduce integration times and thus the effects of persistence,

and/or accelerate their engagement by control. Here, however, we have focused on a

qualitatively different effect of dual-task practice, that is specific to network

architectures and more closely related to the multiple-resource account: that this can

lead to the separation of representations between tasks—an effect to which we will

return in detail in Part II.

Dimensional overlap and functional dependence. The graded nature of

representations in neural network architectures, and their potential for overlap in both

space and time, also provides a mechanistic grounding for other accounts of dual-task
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interference in terms of “dimensional” (Liepelt et al., 2011; Hazeltine et al., 2006) or

“representational” (Göthe et al., 2016) overlap. Here, “dimensional” or

“representational” overlap can be defined in terms of the degree to which tasks share

representations that may induce structural or functional dependence, and the

interactions that this has with the persistence characteristics of those representations.

These factors also make a number of novel predictions. For example, they predict that

functionally dependent pairs of tasks should be associated with a longer PRP compared

to independent pairs of tasks. They also predict a longer PRP for tasks that rely on

representations with longer persistence characteristics, such as tasks that require

integration of information over longer periods of time (Hasson et al., 2015).

Backward effect. Finally, there is at least one set of observations from the PRP

paradigm that the models we have described do not directly address: Performance of

the first task can, under certain conditions, be affected by features of the second. For

example, Hommel (1998) demonstrated that the RT of the first task can vary as a

function of compatibility between the response to the first task and the response to the

second task. In that study, participants responded to the color (red or green) of a letter

stimulus with a button press (left or right; Task 1) before responding to the identity of

the letter (“H” or “S”) with a verbal response (“left” or “right”; Task 2). Processing of

the first task was delayed if the response to the second task (e.g., say “left”) was

incompatible with the response to the first task (e.g., press the right button). In a

different PRP study, Logan and Schulkind (2000) presented participants with two

digits. Both tasks required categorizing a digit by its magnitude (i.e., judging whether

the digit was larger or smaller than 5). RTs for the first task were faster if both digits

belonged to the same category. Logan and Gordon (2001) proposed a computational

model that explains these effects in terms of category-level cross-talk: The outcome of

any categorization process (this may involve categorizations of stimulus features for the

first and the second tasks, both of which may occur in parallel) is attributed to the

object that is currently given priority (the digit relevant to the first task), leading to a

speed-up in processing the first task if the categories for both tasks are compatible.
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These, and other studies lend support to the claim that the two tasks are being

processed in parallel rather than in serial (Ellenbogen & Meiran, 2008; Fischer,

Gottschalk, & Dreisbach, 2014; Hommel, 1998; Logan & Schulkind, 2000; Schubert,

Fischer, & Stelzel, 2008). The effect described by Hommel (1998) may arise in a neural

network model that learns a shared representation between the response dimension of

the stimulus for Task 1 (left or right button press) and the response dimension for Task

2 (“left” or “right” verbal response) in the same (hidden) layer. This may be achieved

by training the network to represent the general concept of left and right. Alternatively,

feedback connections from the representation of the verbal response in the output layer

to the representation of the stimulus location in the hidden layer could introduce

cross-talk from the response for the (second) location-verbal task to the (first)

color-manual task (J. D. Cohen & Huston, 1994). While these possibilities are

compatible with extensions of the models we described here, those extensions remain to

be implemented and tested in future work.

2.4.5 Performance Costs Associated with Task Switching. The

simulations we reported showed that the same mechanisms used to account for the PRP

can also explain effects observed in task-switching paradigms. Costs associated with

task switching—one of the most robust findings in the cognitive literature—have been

considered previously in isolation of, and in different terms than the PRP (Koch et al.,

2018). One prominent account of switch costs is the task-set inertia hypothesis,

according to which the task-set of a previously executed task carries over to the next

(Allport et al., 1994). Simulation Study 3 provides a mechanistic interpretation of this

hypothesis, in which the task-set is represented as patterns of activity over the hidden

and output layers of the neural network, and its inertia corresponds to the persistence

of those representations.32 Accordingly, switch costs can arise as a consequence of the

32 In connectionist systems, a task-set can be defined as the “internal state of the network at a given

time that biases it to respond to a multivalent stimulus configuration” (Grange & Houghton, 2014, p.

180-181). However, task-set inertia may also result from the persistence of representations for task goals

(e.g., the activity of units in task layer of the networks described here; Musslick, Jang, Shvartsman,

Shenhav, & Cohen, 2018; Musslick et al., 2019; Ueltzhöffer, Armbruster-Genç, & Fiebach, 2015).
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interaction between the extent to which the patterns of activity are shared with the

next task to be performed, and persist during its performance. This suggests that

switch costs should scale with (1) the amount of shared representation between tasks

and (2) persistence in the network. Simulation Study 3 demonstrated that these effects

provide a mechanistic account for a number of widely replicated findings in the

task-switching literature, such as greater costs associated with incongruent stimuli on a

switch between tasks that use the same (bivalent) responses (e.g., Fagot, 1995; Goschke,

2000; Meiran et al., 2000; R. D. Rogers & Monsell, 1995; Wendt & Kiesel, 2008), as

compared to tasks using distinct (univalent) responses (e.g. Brass et al., 2003; Meiran

et al., 2000; R. D. Rogers & Monsell, 1995).

The model also makes novel predictions with respect to switch costs for tasks with

univalent responses. The simulation results indicated that: (1) tasks with univalent

responses should exhibit greater switch costs if they are functionally dependent relative

to independent tasks; and that (2) tasks with univalent responses may be sensitive to

response congruency. For instance, in the extended Stroop task (see Fig. 5A), color

naming is predicted to be functionally dependent on word mapping, but not on word

reading. Thus, switching from word mapping to color naming may require more time

than switching from word reading to color naming.33 Moreover, when switching from

word mapping to color naming, the model predicts a higher cost of switching for

incongruent Stroop stimuli compared to congruent Stroop stimuli, since incongruent

stimuli should be associated with stronger functional interference.

Finally, we note that the models described above were not intended to address a

number of other important task-switching phenomena, such as repetition priming effects

of task cues (Altmann & Gray, 2008; Logan & Bundesen, 2003; Sohn & Anderson,

2001). We suspect that adding the elements to the model necessary to address such

effects (e.g., processing units that represent task cues), coupled with the features we

have described (such as persistence characteristics), may be sufficient to account for

such phenomena. Nevertheless, these too remain targets for future work.

33 This assumes that word reading and word mapping are comparable in performance.
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2.4.6 Broader Implications. Altogether, Simulation Studies 1-3 suggest

that an interaction between (1) the potential for conflict introduced by shared use of

representation between tasks, and (2) the persistence of task representations over time,

define a continuum in the extent to which a set of tasks can be executed in parallel (i.e.,

“concurrent multitasking”), permit rapid switching (“time-slicing”), or require full

sequential execution (i.e., “serial processing”). Furthermore, insofar as control

mechanisms are responsible for regulating the execution of a task in order to mitigate

the conflict that can arise from parallel or overly rapid serial execution, then these

factors also define a corresponding continuum in the extent to which a task must rely

on control (i.e, its “automaticity”), as a function of the context (i.e., the other tasks in

contention) in which it must be executed. We have shown that this perspective can

provide a quantitative grounding of the multiple-resource theory, including the influence

that the number of tasks that share representations in a network has on its multitasking

capability; as well as a unifying account of two sets of phenomena classically associated

with control-dependent processing, but previously considered largely independently of

one another: the PRP and task-switching costs.

Intriguingly, this perspective predicts that there should be a relationship between

the performance costs associated with dual-tasking (such as the PRP) and those

associated with task switching, as a function of the extent to which the tasks involved

share representations (i.e., are structurally or functionally dependent). Although, to our

knowledge, there has not yet been a direct empirical test of this prediction,

modality-specific effects in both dual-task and task-switching paradigms suggest such a

relationship (Koch et al., 2018). For example, several studies have reported smaller

dual-task interference for pairs of tasks with compatible stimulus-response mappings

(e.g., a visual-manual task paired with an auditory-vocal task) compared to tasks with

incompatible stimulus-response mappings (e.g., a visual-vocal task paired with an

auditory-manual task; Greenwald, 1970; Greenwald & Shulman, 1973; Göthe et al.,

2016; Halvorson et al., 2013; Hazeltine et al., 2006; Liepelt et al., 2011; Shaffer, 1975).

Similarly, Stephan and Koch (2010) found that participants can switch faster between
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pairs of tasks with compatible stimulus-response mappings relative to pairs of tasks

with incompatible stimulus-response mappings, and that this effect diminishes as the

time between the last response and next stimulus increases, suggesting that the

interference induced by modality incompatibility ceases to persist in time.

Finally, it is worth noting that the approach taken here may resolve a

longstanding puzzle concerning the relationship of empirical evidence for a

response-selection bottleneck in dual-tasks experiments (e.g., the PRP) to the classic

interference effect observed for color naming of incongruent stimuli in the Stroop task.

Keele (1973) pointed out that the latter is difficult to reconcile with evidence for a

response selection bottleneck in dual-tasking: If the responses for two tasks cannot be

selected at the same time in dual-tasking scenarios, how could the color naming

response be influenced by the response associated with the word stimulus in the Stroop

task? Pashler (1994, p. 237) addressed this paradox, suggesting that “[. . . ] recent

investigations of neural networks suggest some possible ways of reconciling the two lines

of evidence. Consider, for example, so-called “pattern completion networks” composed

of simple units connected with variable strengths. The selection of one response may

involve a particular pattern of activity emerging in some subset of the units, whereas the

selection of a different response involves producing a different pattern in the same units.

Putting different inputs into such a network might involve activating different subsets of

units. The network could not select two different responses at the same time simply

because the output units could not settle into two different states at the same time. On

the other hand, different input units could be activated at the same time [. . . ]. If the

irrelevant input was associated with a different response than the relevant one, it could

retard the process of settling into a final output state”.

The neural network models described in Part I provide a mechanistic

implementation of this account: Shared representations in the hidden layer pose the risk

of cross-talk between tasks, leading to the simultaneous activation of competing output

states for those tasks. Resolving this competition results in a delayed response,

providing an explanation for Stroop interference, as well as the PRP in dual-tasking
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scenarios. Critically, Pashler (1994, p. 237) pointed out that such an account would rely

on assumptions about the nature of task representations: “One unattractive feature of

this explanation is that there is no independent motivation for supposing that different

outputs would be represented in the same units and different inputs would be represented

in different units”. In Part II we directly address this concern, showing that

interactions between the task environment and learning can provide a normative

motivation for the sharing or separation of representations between tasks.

3 Part II: Shared Versus Separated Representations and Learning Efficacy

Versus Processing Efficiency

3.1 Background: A Fundamental Tension

The findings reported in Part I support the fundamental proposition of

multiple-resource theory: that limitations associated with control-dependent processing

reflect cross-talk that arises from the sharing of representations between task processing

pathways—cross-talk that control mechanisms are responsible for managing. However,

the assumption of shared resources poses an explanatory gap, as pointed out by Kieras

and Meyer (1997, p. 11): “One [...] [concern] is that the concept of multiple resources

lacks sufficient principled constraints. In the absence of such constraints, there is a

temptation to hypothesize new sets of resources whenever additional problematic data

are collected. This could lead ultimately to an amorphous potpourri of theoretical

concepts without parsimony or predictive power”.

3.1.1 Taxonomies of Multiple Resources. To address this explanatory

gap, Wickens (1991) derived a taxonomy of resources from empirical data, building on

the assumption that dual-task interference arises when two tasks share a common set of

resources. For instance, it was observed that dual-task interference is higher if two tasks

share the same perceptual modality (McLeod, 1977). These and other findings lead

Wickens (1991) to conclude that each perceptual modality is associated with a separate,

dedicated processing resource. A similar proposal has been made with respect to motor

modalities (e.g., Glucksberg, 1963; Treisman & Gelade, 1980; Treisman & Davies,
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1973). More generally, Wickens (1991) proposed that task processing resources can be

distinguished along four dimensions: processing stage (perceptual vs. central vs.

response-related), processing code (verbal vs. spatial), input modality (verbal vs.

auditory), and response modality (manual vs. vocal). Similarly, McCracken and Aldrich

(1984) proposed a segmentation of resources into visual, auditory, cognitive, and

psychomotor components, each representing a local resource that may be shared across

tasks.

Computational implementations of multiple-resource theories, such as the EPIC

framework (Meyer & Kieras, 1997b, 1997a) and threaded cognition (Salvucci &

Taatgen, 2008), adapted the resource taxonomy by Wickens (1991) and others to define

shared resources. For example, EPIC assumes distinct processors for auditory and

visual inputs, as well as vocal and verbal outputs. Kieras and Meyer (1997) argued that

perceptual and motor resources are constrained to operate in serial (i.e., able to handle

only one task process at a time), whereas other cognitive resources, such as working

memory, can be used for multiple tasks in parallel. The theory of threaded cognition

assumes a similar taxonomy of perceptual and motor processes, in addition to two

cognitive resources: a declarative resource for memory encoding and retrieval; and a

procedural resource for coordinating goal-directed behavior (Salvucci & Taatgen, 2008).

Similar to Wickens (1991), these instantiations of multiple-resource theory motivate the

set of resources based on the type of behavioral data that they seek to explain (e.g., a

shared resource for visual processing is motivated by the observation that participants

fail to perform two visual tasks in parallel).

The work summarized above has coupled multiple-resource theory with

empirically-derived resource taxonomies of the sort suggested by Wickens (1991), to

provide mechanistic accounts of constraints on control-dependent processing and

multitasking phenomena. However, this has not provided a rationale for why shared

representations should arise in the first place, nor the circumstances under which they

should arise. In particular, it does not explain why shared representations, which

introduce bottlenecks in processing and the concomitant need for control, should be
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favored over dedicated representations that render a task independent of others and

capable of automatic processing. As noted by Meyer and Kieras (1997b, p. 68), models

such as EPIC “have chosen to embody [their] theoretical ideas in an architectural

production system and symbolic computation, rather than in hypothetical [...] neural

mechanisms, simply because the former level of representation is perhaps most

appropriate for initially characterizing functional aspects of executive cognitive processes

and multiple-task performance”. Here, we suggest that this approach can be

complemented by addressing the neural mechanisms—or at least taking account of their

computational properties—that underlie representational learning and that doing so can

provide insights into the factors that drive the development of shared versus

task-dedicated representations, and thus reliance on cognitive control versus the

development of automaticity.

3.1.2 Shared Representations and Semantics. It is well established that

the types of representations learned in neural networks are heavily influenced by the

statistics of the environment in which they are trained (Hinton et al., 1986; McClelland

& Rogers, 2003; Saxe et al., 2019). In particular, networks are likely to acquire

representations that are shared across tasks if those tasks share similar statistics (e.g.,

they involve similar input and/or output representations). This has been studied

heavily in the context of semantic tasks, in which the network is presented with physical

features of objects and trained to report their functional properties and/or category

memberships (e.g., McClelland & Rogers, 2003; Rumelhart & Todd, 1993). Networks

develop representations that are shared between semantic concepts if those concepts are

statistically related (e.g., Caruana, 1997; Bengio, Courville, & Vincent, 2013; Higgins et

al., 2018; Hinton et al., 1986; McClelland & Rogers, 2003; Saxe et al., 2019). For

example, Saxe et al. (2019) have shown, in formal analyses of learning, in multilayer

linear networks, that shared representations are learned more readily for objects that

share features relevant for categorization (e.g., salmon and sunfish) than for objects

that share fewer category-relevant features (e.g., salmon and canary); and, more

generally, that the most widely shared features (e.g., corresponding to the highest level,
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or broadest categories) are learned faster than features shared more narrowly

(corresponding to lower level or more specific categories (e.g., in learning about living

things, the distinction between plants and animals is learned more quickly than the

distinction between different kinds of plants or animals; Saxe, McClelland, & Ganguli,

2013; Saxe et al., 2019). This has been used to explain a wide array of psychological

phenomena associated with semantic processing, such as the development of category

knowledge (McClelland & Rogers, 2003), as well as semantic priming and similarity

judgements in individuals both with intact as well as disrupted brain function

(T. T. Rogers & McClelland, 2004). In machine learning, representational sharing has

been exploited to promote generalization, as we will discuss further below.

Interestingly, work on both human cognition and machine learning has focused

almost exclusively on conditions in which the person or network is required to perform

only one task at a time (i.e., is presented with a single stimulus to which a response

must be generated), without considering conditions in which the system is expected to

perform multiple tasks simultaneously. More generally, such work has given little

consideration to the relationship between representation and control (for a discussion,

see T. T. Rogers & McClelland, 2004). The results presented in Part I suggest that the

value of shared representations in acquiring semantic knowledge and multitask learning

is in tension with the cost of serial processing and reliance on control. This poses an

interesting and fundamental question: Why, or under what conditions, should a system

favor shared representations at the expense of a seriality constraint in processing and an

attendant dependence on control, versus the development of task-dedicated

representations that afford the efficiency of multitasking capability?

3.1.3 Multi-task Learning versus Multitasking: Generalization in

Learning Versus Efficiency of Processing. There are several reasons why a neural

system might favor the learning of shared representations. An obvious one is that this is

representationally more efficient, both with respect to the representations themselves

and with respect to the requirements for control (see Section 1.1.3 “Guilt by

Association: Control as a Solution Rather than a Cause”). While this is certainly a
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possibility, it may not be a strong constraint, considering the enormous representational

resources of the brain and the cost of seriality and dependence on control. A more

compelling reason is that shared representations permit the more rapid acquisition of

tasks and transfer to novel (but related) ones; that is, more effective learning and

greater flexibility through generalization (Baxter, 1995; Caruana, 1997; Bengio et al.,

2013). In the domain of machine learning, this is often discussed in the context of

“multi-task learning,” which refers to the ability of an agent to learn multiple different

tasks from experience with only limited exposure to a subset of those tasks during

training. In multi-task learning, the agent is trained to perform a set of auxiliary tasks,

one at a time, and evaluated with respect to its ability to acquire one or more new,

target tasks. If the auxiliary tasks share similarities with the target task(s), then

exploiting this to learn shared—that is, task-general—representations have been shown

to improve the acquisition of the target task(s). These benefits of shared representation

rely on the ability of the network to detect and encode patterns of shared statistical

structure across the tasks, comparable to the acquisition of semantic knowledge

discussed above (cf. McClelland et al., 1986). Critically, however, the benefits of

multi-task learning obtain only when each task is performed individually, one at a time.

In Part I, we showed that shared representations incur the risk of conflict, and thus

reliance on control to impose seriality of processing that limits multitasking capability.

That is, multi-task learning is distinct from, and appears to be in tension with learning

to multitask—the ability to perform two or more tasks simultaneously. Here, in Part II,

we directly investigate this tension. That is, we consider how a system may rationally

adjudicate the choice between, on the one hand, the efficacy of learning and flexibility of

generalization afforded by the acquisition of shared representations, at the cost of

seriality and control-dependent processing; and, on the other hand, the efficiency of

parallel processing (i.e., multitasking) afforded by the acquisition of task-dedicated

representations and automaticity, but at the cost of the additional time and effort

required to learn such representations.

In the sections that follow, we describe a set of computational, mathematical, and
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behavioral studies that examine the tension between the efficacy of learning afforded by

shared representations (i.e., transfer to novel tasks) and the efficiency of processing

afforded by separated representations (i.e., automaticity and the capability for

multitasking). We begin by examining circumstances that promote shared

representation and attendant multitasking constraints in neural networks, describe a

combination of mathematical analyses and computational simulations that directly

examine the trade-off between the learning of shared versus separate representations

and then report the results from a behavioral experiment that tests predictions of this

trade-off in an extended version of the Stroop task. Finally, we discuss a normative

theory of multitasking, which suggests that constraints on multitasking may reflect a

general preference for learning efficacy (i.e., transfer) over performance efficiency (i.e.,

multitasking).

3.2 Conditions for Learning of Shared Versus Separated Representations

Several external factors can bias a neural system to favor shared versus separated

representations. Here, we consider the effects of the task environment and training

regime in the context of single-task execution versus concurrent multitasking. We begin

by verifying and systematically examining the effects of structural overlap between

task-relevant stimulus features on the learning of shared representations when, during

training, tasks are executed only one at a time. We then compare this to the effects

that explicitly training on concurrent multitasking has on the learning of shared versus

separate task representations.

3.2.1 Simulation Study 4: Impact of the Task Environment on the

Development of Shared Representations. As discussed above, a key feature of

neural network architectures is their ability to discover latent structure in the training

environment, exploiting similarity between stimulus features in the form of shared

representations (e.g., Rumelhart & Todd, 1993; Hinton et al., 1986; McClelland &

Rogers, 2003; Saxe et al., 2019). While this work has focused largely on inference (e.g.,

object categorization and the learning of semantic structure), the network architectures
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and learning mechanisms involved are homologous to those used in Part I to address

tasks involving actions, and thus the same principles should apply. This is further

suggested by the work on multi-task learning discussed above, in which learning of

shared representations has been shown clearly to benefit learning efficacy through

transfer (Baxter, 1995; Caruana, 1997). However, work in both of these domains has

focused almost exclusively on the performance of single tasks (e.g, the effects of

representational sharing on interference and priming effects; Abdel Rahman & Melinger,

2009; Levelt, Roelofs, & Meyer, 1999; McRae, De Sa, & Seidenberg, 1997; Plaut, 1995),

and has not considered the consequences this has on the demands for control or the

potential for multitasking (e.g., recognizing more than one object at a time, or

performing two newly learned tasks simultaneously).

Here, we extend previous work to directly examine the impact that shared

structure between tasks, and the development of shared representation has on both the

speed of learning and multitasking performance, which forms the basis for a rational

analysis of the trade-off between control-dependent vs. automatic processing that we

consider further on.

Network architecture. We used a variant of the network architecture described in

Part I that allowed us to examine a graded range of similarity structure of the stimuli

within subsets of tasks. The input layer consisted of 54 units, 45 of which were used to

represent the current stimulus, and nine to represent the current task. As before, a

different set of five stimulus features were assigned as being relevant to each of the nine

tasks, corresponding to the stimulus dimensions assigned to each task in the models

described in Part I; and tasks were coded as binary “one-hot” vectors, with a single unit

assigned to each task, and the unit for the current task assigned a value of 1 while all

other units were assigned 0. However, whereas in Part I, we simulated environments

made up of subsets of tasks in which the same set of features was relevant to all tasks

within a given subset, here we simulated environments that differed in the degree to

which tasks within a given subset shared features (details provided below). To

implement the degree of sharing in a continuous manner, input patterns were
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continuously valued (rather than binary, “one-hot”) vectors, each unit of which was

assigned a value between 0 and 1. These input patterns were used to form the stimuli

for different tasks, as described below. The remainder of the network was configured in

a manner similar to those described in Part I: the hidden layer consisted of 100 units,

and the output layer consisted of 15 units organized into three response dimensions of

five units each, in which each response was coded as binary, “one-hot” value.

Task environment. Six task environments were constructed that varied the extent

to which the stimuli for each task overlapped with those of others (see Fig. 22 for an

example of three such environments). In each environment, five random patterns over

the stimulus input units were chosen as the stimuli for a given task, with each pattern

assigned to a distinct output unit within the response dimension used for that task,

ensuring that every output unit was equally likely to be required for execution. For a

given environment, we divided the tasks into three subsets and, across environments,

varied the similarity among tasks within each subset. The similarity was defined by

stimulus feature overlap, that is, the number of stimulus input units shared between a

pair of tasks within a subset that were associated with different response dimensions.

At one extreme (full overlap), corresponding to the type of environment used in Part I,

the nine tasks were divided into three subsets, with all of the tasks within a subset

sharing the same stimulus input units (Fig. 22A and upper row of Fig. 23A); at the

other extreme (no overlap), every task was assigned a separate pool of stimulus input

units (Fig. 22C and bottom row of Fig. 23A). In addition, four environments with

intermediate levels of similarity were generated by varying the number of stimulus input

units shared from one to four while ensuring that all tasks involved the same number of

“relevant” input units (see Fig. 22B intermediate rows of Fig. 23A).34 Note that, despite

34 The task structures defined by these schemes allow tasks to be implemented that do not necessarily

align with naturally defined stimulus dimensions (such as shape, size, color, etc.) but may be

characteristic of other forms of naturally occurring semantic structure, such as the similarity among

different categories of objects versus others (e.g., different kinds of animals, plants, etc.). Importantly,

this structure remains consistent with the general, formal definition of task environments described in

Lesnick et al. (2020), in which a task is defined as a mapping from any set of input features to a set of
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Figure 22 . Task environments with varying degrees of feature overlap among tasks. The

figure illustrates relationships between stimulus features and responses on which the network was

trained. Note that this figure does not depict the network itself, which included hidden units (shown in

transparent blue) for which connections were learned. Tasks were grouped into sets of three (A, B, C;

D, E, F and G, H, I), and the network was trained on every single task. For each task within a set, the

network was trained to map a subset of five stimulus features onto a subset of five responses. The three

panels show examples of overlap within each set of three tasks, from one extreme (complete overlap) to

the other (no overlap). (A) Complete overlap, in which the stimulus features are the same for all three

tasks in each set. (B) Partial overlap, in which two stimulus features are shared among all three tasks

in a set (varied from one to four in actual experiments; see text). (C) No overlap, in which each task

within a set uses a distinct set of features.

output features. Varying the similarity of stimuli across tasks allowed us to examine how this impacts

the structure of the representations learned by a network and, in turn, how that impacts its ability to

perform those tasks in parallel.
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the sharing of stimulus input units, tasks within a set were structurally independent of

one another insofar as each was associated with a distinct response dimension. This

conforms to the definition of legal multitasking conditions in Section 2.2

(“Graph-Theoretic Analyses”).

Training and analysis. We trained 100 networks using the backpropagation

learning algorithm (Linnainmaa, 1970; Rumelhart, Hinton, & Williams, 1986; Werbos,

1982) in each of the six different task environments described above. The networks were

initialized with a set of small random weights and then trained on all nine tasks with

the same set of 50 stimulus samples (selected as described above) until the network

achieved criterial performance (MSE of 0.01). For each training trial, an input pattern

was generated by selecting a task (i.e., activating one of the nine task units) and

assigning an activity to each stimulus unit by randomly sampling from a uniform

distribution U [0, 1]. Note that, although the activity of stimulus input units was

assigned randomly, the procedure for generating tasks ensured that there was a

mapping from any arbitrary input pattern in the stimulus dimension for a given task to

one of the five output units in the response dimension for that task (see above). Thus,

every pattern of activity over the set of stimulus units in the input layer was associated

with a fully specified response for each task at the output layer, and, given the

procedure for generating these mappings, random sampling of input values amounted

approximately to an equal probability of sampling (and generating a corresponding

error signal) for each response during training.

Based on previous work reviewed above, we hypothesized that the amount of

stimulus feature overlap between two tasks would impact the similarity of hidden unit

representations across the two tasks after training; and, based on the results reported in

Part I, this would in turn impact the multitasking capability of the network. As in

Simulation Studies 1 and 2 in Part I, we focused our analysis on the weights from each

task unit to the hidden layer (see Footnote 25), by computing the Pearson correlation

between weight vectors from the two task units to the hidden layer for each pair of

tasks. This analysis was restricted to pairs of tasks within each subset, each of which
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mapped to a different response dimension (e.g., Tasks A and B in Fig. 22) as a function

of the environment (i.e., degree of stimulus feature overlap between tasks), in order to

evaluate the extent to which the development of shared representations in the hidden

layer could be attributed to similarity structure in the input. Also, as in Part 1, we

measured multitasking accuracy for the corresponding pairs of tasks by activating the

two corresponding task units and evaluating the concurrent processing performance in

the response dimensions for the two tasks. Finally, as a measure of learning efficacy, we

assessed the average number of iterations it took to train a network to criterion on all 9

tasks for each environment.
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Figure 23 . Effects of task similarity. (A) Networks were trained in task environments that

differed by the number of features shared by subsets of tasks in their stimulus dimensions (“feature

overlap”). Yellow and pink shades designate task-relevant stimulus features for each of the two tasks

within a subset, with orange designating features shared between the two tasks (see text). The effects

of feature overlap are shown with respect to (B) the average similarity of the learned representations at

the hidden layer; and (C) the average number of iterations required to train the network to criterion

(colors of each data point in (C) indicate the multitasking accuracy). Vertical bars in (B) and (C)

indicate the standard error of the mean across networks.

Results. The simulation results confirm the well-characterized behavior of neural

networks trained with backpropagation (Hinton et al., 1986; McClelland & Rogers,

2003; Rumelhart & Todd, 1993); viz., that similarities in the input are encoded as

similarities among learned internal representations. This is shown in Fig. 23B, in which

greater overlap among stimulus features between tasks within a subset was associated

with a higher correlation between the vector of weights from the task unit for each task
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to units in the hidden layer. Critically—and consistent both with results in machine

learning (Caruana, 1997) and the analysis of linear systems (Saxe et al., 2013, see

Appendix C)—greater overlap among stimulus features also promoted faster learning of

all tasks, as a shared structure between tasks can be exploited in the form of shared

representations (Fig. 23C). Interestingly, there is a non-linear relationship between

stimulus feature overlap and learning speed, with a substantially greater improvement

in the efficacy of learning at the highest levels of overlap. As predicted by the analyses

in Part I, we also found that learning shared representations progressively degraded

multitasking accuracy (colors of dots in Fig. 23C). Thus, this simulation clearly

illustrates that similarity in the input among a set of tasks not only shapes the

similarity among the internal (hidden) representations learned by a network, favoring

the development of shared representations; but, critically, the acquisition of such shared

representations has a direct negative and graded impact on the network’s multitasking

accuracy.

3.2.2 Simulation Study 5: Impact of Training Regime on the

Development of Shared Representations. The previous simulation showed that,

when tasks share similar inputs and the network is trained on tasks one at a time, there

is a strong bias toward developing shared representations and concomitant limitations

in multitasking capability. However, as discussed in Part I, empirical studies involving

dual-task training indicate that participants can overcome such limitations through

multitasking training (Hazeltine et al., 2002; Liepelt et al., 2011; Schumacher et al.,

2001). While Simulations 2 and 3 in Part I captured this effect qualitatively, it is

unclear which aspects of the training procedure (e.g., training on single-task execution

versus concurrent processing of both tasks or training on congruent versus incongruent

stimuli) were responsible for improvements in multitasking performance. Unfortunately,

mechanisms underlying different forms of multitasking training have not been well

studied, either empirically or in neural networks. This was noted by Schumacher et al.

(2001, p. 107), after observing that not all participants achieved interference-free

multitasking performance after dual-task training: “Why do some but not all people
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readily achieve virtually perfect time sharing? Would practice eventually enable

everyone to time-share perfectly? Can special training regimens promote this

perfection?”. Furthermore, some have suggested that multitasking performance can

improve through single-task practice alone (Ruthruff, Van Selst, Johnston, &

Remington, 2006), while others have argued that multitasking training combined with

single-task training leads to greater improvements in multitasking performance as

compared to single-task training alone. For instance, Liepelt et al. (2011) assessed

multitasking performance for a verbal-manual task and an auditory-vocal task for two

groups of participants. The first group was trained to perform a mixture of single-task

and multitasking trials over seven sessions (hybrid practice group) and the second group

received practice on only single-task trials over the same number of sessions (single-task

group). Multitasking performance, assessed in a final eighth session, was higher for the

hybrid practice group compared to the single-task group. However, while these studies

have provided evidence for the benefits of multitasking training on multitasking

performance (unsurprising in itself), they do not address the mechanisms involved. For

example, while some have argued that such benefits reflect improvements in the efficacy

of control mechanisms, the results presented in Part I of this article suggest that they

result from the learning of separated, task-dedicated representations.

A neuroimaging study provided evidence of an association between improvements

in multitasking performance and representational separation between tasks (Garner &

Dux, 2015). In their fMRI study, Garner & Dux described two training groups. In the

experimental group, participants were trained to perform two single tasks in isolation,

as well as both tasks simultaneously. In the control group, participants were trained to

execute a visual search task instead but then tested on multitasking the same two tasks

on which the experimental group was trained. The authors observed that multitasking

training in the experimental group led to a higher separation of neural representations

associated with the two individual tasks compared to the control group. However, the

study leaves open the question of which aspects of the training procedure were

responsible for the observed effects. For example, the observation of representational
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separation and concurrent improvements in multitasking may have been due to the

practice of single-task executions, training on concurrent processing of both tasks, or

both.

Here, we report the results of simulations that characterize: (1) how the relative

amount of multitasking versus single-task training impacts the development of

separated, task-dedicated representations; (2) its influence on multitasking performance;

and (3) the degree to which the potential for interference between tasks drives the

development of separated representations. We did this by comparing single-task

training to variable amounts of multitasking training in each of two types of

multitasking training regimes: training to execute groups of tasks simultaneously in

response to congruent stimuli; and training to execute groups of tasks simultaneously in

response to incongruent stimuli. In addition to providing a more detailed

characterization of the effects of training on the development of shared representations

and multitasking capability, our goal was to generate predictions concerning the

dynamics of acquisition that can be tested in future empirical studies.

Network architecture and training environment. The network architecture and

processing were the same as those reported in Part I, with the following exception. The

number of units in the input and output layers was adjusted to accommodate a task

environment with three stimulus dimensions and three response dimensions and with

three features in each dimension. Thus, the stimulus input and output layers each had

nine units, and the network could support a total of 3 ∗ 3 = 9 possible tasks.

Training and analysis. 100 instances of the network were implemented and

initialized. We then generated nine copies of each initialized network and applied

different training regimes to each. All regimes involved training the network on 500

patterns per training iteration. The nine training regimes were divided into three types:

single-task (one), multitask congruent (four), and multitask incongruent (four). As in

Part I, for the “congruent” conditions, stimuli were chosen such that, for structurally

dependent tasks (that is, ones that shared the same response dimension), they were

associated with the same response across those tasks (see Fig. 10 in Part I); whereas in
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the “incongruent” conditions, stimuli were chosen that were associated with competing

responses. In the single-task regime, all training patterns in every iteration were

sampled with replacement from the set of all single-task training patterns. In the

multitask congruent regimes, a proportion of the training patterns was sampled with

replacement from all multitasking patterns that involved executing three tasks at the

same time using congruent stimuli, relative to executing single tasks (either 20%, 40%,

60% or 80% multi- versus single-task execution), and the remaining proportion was

sampled from all single-task patterns. In the multitask incongruent regimes, a

proportion of the training patterns was sampled with replacement from patterns that

involved performing three tasks simultaneously using incongruent stimuli (either 20%,

40%, 60% or 80% multi- versus single-task execution). Each regime was executed for

1000 training trials.

For tasks trained in each of the three types of training regime, we assessed: (1)

the average number of training iterations it took to reach an MSE of 0.01 on all single

tasks (in the single-task regime); (2) multitasking accuracy at the end of training (after

1000 training trials); and (3) how similarity of the hidden layer representations between

tasks changed over the course of training (using the similarity measure described for

Simulation Study 4). We focused the similarity analysis on task pairs that used the

same stimulus dimension since, as suggested by the results of Simulation Study 4, the

network should have developed shared representations for those task pairs when trained

only on single tasks. The similarity was assessed at the end of each training procedure

for each of the 100 networks trained using a given regime and then averaged over all 100

networks for a given training trial and training regime. We visualized the relationship

between task representations learned under each training regime using

multi-dimensional scaling (MDS). This involved measuring the hidden representation

for performing each of the nine tasks alone, and projecting all nine single-task

representations onto a two-dimensional plane (see Fig. 25). The projection was

performed such that the Euclidean distance between the single-task representations was

preserved.
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Results. As expected, networks trained on single-tasking acquired all tasks much

faster than the networks trained on multitasking (Fig. 24B). However, as in previous

simulations, these yielded poor multitasking performance (Fig. 24A). Furthermore, as

expected, greater multitasking training yielded better multitasking performance, but at

the expense of slower acquisition of single tasks.35 Critically, all three effects were

stronger when multitasking training was performed with incongruent stimuli as

compared to congruent stimuli. The effects of the different training regimes on the

learning of shared representations are clearly observed in the MDS projections of the

patterns of activity for the hidden layer of each network (Fig. 25). For single-task

training (upper left panel), the representations project perfectly into three points, one

corresponding to each stimulus dimension, confirming that tasks that shared a stimulus

dimension developed extremely similar hidden unit representations (as was observed in

the correlations reported for previous simulations). As the proportion of multitasking

increased, representations for different tasks showed progressively more separation;

however, this effect was considerably less for the congruent than the incongruent

conditions. The persistence of clustering by stimulus dimension in the congruent

condition, even at the highest levels of multitasking training, and a similar trend, even

in the incongruent condition, indicates a strong bias toward shared representation.

Nevertheless, at the highest levels of multitasking training with incongruent stimuli, the

network developed fully separated representations, indicated by distances among them

that were roughly equivalent for tasks associated with the same and different stimulus

dimensions.

35 Note that neither multitasking training on congruent stimuli alone, nor multitasking training on

incongruent stimuli alone yielded perfect multitasking performance, as multitasking performance was

assessed across the set of all congruent and incongruent stimuli.
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Figure 24 . Effects of the training regime on performance. (A) Average multitasking accuracy

and (B) iterations of training required for networks to achieve criterial single-task performance (MSE =

0.01 across all tasks individually) as a function of the proportion of multitasking training (abscissa) for

each of the three training regimes (shades of gray—see the legend, and see text for explanation of

regime types). Vertical bars indicate standard errors of the mean across networks.

3.3 Shared Versus Separated Representations and the Trade-Off Between

Learning Efficacy and Processing Efficiency

In the preceding section, we investigated the conditions under which networks

favor the development of shared versus separated representations, showing that shared

representations are learned more quickly and that there is a bias toward doing so even

under conditions of modest exposure to multitasking training. Here, we turn to detailed

analyses of how this impacts the trade-off between the efficacy of learning provided by

shared representations and the efficiency of processing provided by separated

representations. We begin by presenting a mathematical analysis that builds on exact

solutions to learning dynamics in deep linear networks (Saxe et al., 2013), that we

apply to the trade-off between learning efficacy and processing efficiency in such

networks. We follow this, in Simulation Study 6, with a validation of the results of that

analysis in simulations involving non-linear networks. Then, we report results from a

behavioral study using the extended Stroop paradigm that tests predictions from these

analyses. Finally, we discuss an analysis of the optimal balance between learning

efficacy and processing efficiency that provides a normative perspective on the

transition between control-dependent and automatic processing.
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Figure 25 . Effects of the training regime on representational separation. Projections of

hidden representations for each task in example networks trained with varying proportions of

multitasking (see Fig. 24). For each example network, MDS was used to make projections of its hidden

unit representations for each task onto a 2-dimensional plane while maintaining Euclidean distances

between representations of tasks. Each panel depicts the projections for an example network trained

with each of the nine training regimes; each point depicts the hidden unit representation for each of the

nine tasks in a regime; and colors depict representations for tasks associated with the same stimulus

dimension. Note that in the 100% Single-Task Training regime, there are, in fact, nine dots, but all of

the three for each input dimension are fully overlapping, indicating fully shared representations. Insets

correspond to the mean (M) and standard deviation (SD) of the average Pearson-correlation between

the hidden unit representations of tasks that are associated with the same stimulus dimension.

3.3.1 Mathematical Analysis: Trade-off Between Learning Efficacy

Versus Processing Efficiency in Linear Networks. To analyze the trade-off

between learning efficacy and processing efficiency and its relationship to

representational sharing, we introduce a simplified version of the networks considered in

the previous sections that use linear processing units. As part of this simplification,

task units and their projections to the hidden and output layers are replaced with

“gating signals” that regulate the activity of units in the hidden and output layers (as

described below). With these simplifications, the dynamics of learning for the mapping

of stimuli to responses for sets of tasks can be solved exactly using methods developed

by Saxe et al. (2013).
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An example of the simplified model is shown in Fig. 26, with two stimulus and

two response dimensions (though it can be extended to any number). As in the models

described in Part I (cf. Fig. 3), units in the hidden layer are separated into sets

corresponding to stimulus dimensions and sets in the output layer corresponding to

each response dimension. We analyze two versions of this model: one with full sharing

of stimulus input representations in the hidden layer (i.e., the compositional

configuration, Fig. 26A), and one with full separation (i.e., the conjunctive

configuration, Fig. 26B). Unlike the models described above, hidden and output units

use linear rather than non-linear activation functions. Furthermore, tasks are specified

by gating the activity in sets of hidden and output units corresponding to task-relevant

dimensions. Specifically, the activity is zeroed for all units in all sets at the hidden layer

except those that receive input from the task-relevant stimulus dimension(s); similarly,

activity is zeroed for all units in all sets at the output layer except those corresponding

to the task-relevant response dimension(s). The activity of units in sets corresponding

to task-relevant relevant dimensions is allowed to “pass through.”36

Crucially, with this implementation, the output of the network is a linear function

of units in the task-relevant dimensions (i.e., that are not zeroed). This, coupled with

the gating scheme, permits closed-form analysis of the learning dynamics, which

amounts to the aggregation of a set of linear solutions across training examples. To

illustrate the effects of the gating scheme, consider the network with a compositional

36 This multiplicative effect, in a linear system, is comparable to the effects of attention in nonlinear

systems, as implemented in the models described in this article. In the latter, attention modulation is

produced by activity passed from the task units to processing units in the hidden and/or output layers:

because the activity from the task units is added to the net input of the processing units, and the latter

appears in the exponent of the nonlinear activation function (see Equation (3)), the effect is

multiplicative (summing of exponents amounts to multiplication). If it is assumed that processing units

are inhibited at rest, occupying a relatively flat region of their activation function, then a suitable

amount of activity from a task unit can place them on a steeper portion of the activation function,

making them more sensitive to afferent sources of input. This corresponds to the gating function

implemented in the linear model described here (see J. D. Cohen et al. (1990); Flesch, Nagy, et al.

(2023) for a more detailed consideration of attentional effects in nonlinear networks).
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Figure 26 . Gating model used for mathematical analysis of the trade-off between the

learning efficacy vs. processing efficiency. (A) Network with shared representations in the hidden

layer for tasks associated with the same stimulus dimension (compositional configuration). Since the

same input-to-hidden weights are used for the M different tasks associated with a given stimulus

dimension, this increases learning speed by a factor
√
M relative to learning the tasks with separated

representations as shown in (B) (see text). However, in this configuration, functional dependence

prevents two tasks that rely on different stimulus dimensions from being performed at the same time

due to cross-talk at the output layer (convergent red and green arrows). (B) Network with separated

representations grouped by output representations (conjunctive configuration). As elaborated in Part I,

dedicating separate hidden units to each individual task allows tasks associated with different stimulus

dimensions to be performed simultaneously, as long as they also don’t share a response dimension (also

see Fig. 3 and Fig. 5); here, tasks are grouped by those sharing a response dimension, so that one from

each group can be performed at the same time. However, only tasks within a group share weights from

the input to the hidden layer, yielding a learning speed of
√
M/Q, where Q is the number of groups

(see text).

configuration, in which the input-to-hidden weights for one stimulus dimension are

shared by all tasks that rely on that stimulus dimension, and a task that maps the first

stimulus dimension to the first response dimension (see Fig. 26A, red). This will rely on

the weights W 1
hs, mapping stimulus dimension x1 to response dimension y1. In a linear

network without gating to the hidden layer, the output y1 can be corrupted by

information in the other stimulus dimension x2 (Fig. 26A, green), as that information
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can pass through the network unattenuated. Furthermore, without gating at the output

layer, the network would produce a response in the irrelevant response dimension y2. As

in non-linear networks, we assume that control mechanisms manage such cross-talk. The

gating signal is configured such that it gates the irrelevant stimulus dimensions (x2, in

the example shown in Fig. 26) in the hidden layer and the irrelevant response dimension

in the output layer (y2 in the example), allowing only information from the task-relevant

stimulus dimension x1 to pass to the task-relevant response dimension y1. A gating

scheme can be configured to perform all other tasks in an analogous manner, assuming

they are performed alone. Furthermore, the compositional nature of this scheme allows

each input-to-hidden weight matrix to be shared across the tasks corresponding to

different response dimensions, which affords a factor
√
M speedup in learning speed

relative to learning the tasks with separated representations (see Appendix C).

While the sharing of representations in the network speeds learning, it impedes

multitasking, as in non-linear networks. For example, in the compositional

configuration shown in Fig. 26A, gating more than one task through to the output will

lead to interference due to functional dependence between tasks. As discussed in Part I,

this can be mitigated by separating hidden unit representations into sets dedicated to

individual tasks (i.e., conjunctive configurations), as shown in Fig. 26B (cf. Panel B of

Fig. 3). This allows a maximum of Q tasks (i.e., the number of output dimensions) to

be performed simultaneously; however, the number of shared weights projecting from

the input to the hidden layer is reduced across tasks by a factor Q, which slows

learning. These effects can be formalized, providing an analytic expression of the

trade-off between learning speed and multitasking ability as follows:

t2 ∝ kQ/M (8)

where t is the number of iterations required to learn all tasks, Q is the maximum

number of concurrently executable tasks, M is the number of tasks sharing the same

stimulus dimension, and k is a proportionality constant that summarizes the statistical

strength of the stimulus-response associations for each task, the learning rate, and the
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performance criterion used to decide when learning is complete (see Appendix C for the

derivation and complete form of this expression).

A key observation from this expression is that, as noted above, learning speed

increases in proportion to
√
M—that is, the number of tasks that share the same

stimulus dimension. In full nonlinear networks of the sort described in Part I (and used

in the simulations below), random initial weights from task units to the hidden and

output layers can be thought of as implementing a random sampling of (weak) gating

schemes. Equation (8) indicates that gating schemes that can exploit shared

representations at the hidden layer will learn more quickly. This should bias networks in

which the weights from the task units to the hidden output layers are learned, to

develop task weights that induce shared representations at the hidden layer for tasks

that share similar inputs. In the section that follows, we test the link between speed of

learning and multitasking performance through causal manipulation of representation

sharing in non-linear networks.

3.3.2 Simulation Study 6: Trade-off Between Learning Efficacy Versus

Processing Efficiency in Non-Linear Networks. The mathematical analysis of

linear networks presented above formalizes the relationship between (1) shared

representations, (2) faster learning of single tasks, and (2) decrements (at least initially)

in multitasking performance. Simulation Studies 4 and 5 exhibited effects that suggest

that these relationships generalize to non-linear networks as well, showing that

single-task training on tasks with shared structure was associated with the acquisition

of shared representation, and that this was accompanied by faster learning and poorer

multitasking performance. However, those simulations did not establish a causal

relationship between the acquisition of shared representation and its consequences for

learning and processing in those networks. That is, faster learning and poor

multitasking performance could have resulted from the task environment and training

regime alone, irrespective of whether the network learns shared representations for tasks.

To test whether the learning of shared representations is a cause of faster learning

in non-linear networks, we biased the network toward learning either shared or separate
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representations through weight initialization. Architectural biases in artificial systems,

such as weight initialization, may correspond to intrinsic constraints (innate or arising

from early development) of biological neural systems. Thus, studying the effects of

architectural biases toward shared representation may also yield insights into similar

biases that may exist in the human brain and shape the trajectories of task acquisition,

which we discuss further in the General Discussion.

Network architecture and task environment. We used the same network

architecture and task environments as described in Simulation Study 4, with the

following modifications. We restricted simulations to three environments, in which tasks

were divided into subsets that shared either 100%, 80%, or 0% of their stimulus features

(see Simulation Study 4). We also added a manipulation of initial task weights as

described below.

Training and analysis. To examine the effects of representational sharing, we

manipulated the correlations, across tasks, of the weights from the task input units to

units in the hidden layer (“task weights”), as these determine the amount of overlap

between task representations at the hidden layer. Specifically, for each subset of tasks

that shared input features, we initialized the task weights within the subset to have a

correlation of r. For each of the three task environments described above, we

constructed a separate set of 40 different networks that varied r from 0 to 1. The weight

vectors for tasks of non-overlapping stimulus dimensions were constrained to be

uncorrelated (i.e., r=0). Finally, to enhance the effects of these task weight

manipulations on learning (for observation and analysis), all task weights to the hidden

layer were scaled to be, on average, five times higher than the weights between other

layers in the network. 100 networks were trained per initialization condition, using the

same values for all other parameters as those reported for Simulation Study 4. For

every pair of tasks that mapped to different response dimensions, we assessed the

similarity between the task weights learned for the two tasks and the networks’

multitasking performance for that pair (see Simulation Study 4). In addition, we

assessed the number of learning iterations required to reach the training criterion (MSE
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= 0.01) across all single tasks.
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Figure 27 . Effects of bias toward sharing in weight initialization. (A-C) The average

similarity in task weights, after learning, between pairs of tasks in the same subset associated with

different response dimensions, as a function of the initial similarity in their task weights, for

environments with (A) 100%, (B) 80% and (C) 0 % stimulus feature overlap among tasks within the

subset. (D) Mean multitasking accuracy (averaged over pairs of tasks within a subset associated with

different response dimensions) plotted against the mean number of iterations required to train the

network to a fixed criterion on all single tasks (MSE=0.01). All data points represent the mean

measures across networks initialized with the same task similarity for tasks in the same subset and

same environment. (E) Enlarged view of 100% feature overlap condition showing that, compared to the

other conditions, initial bias toward sharing was more positively correlated with speed of learning

(r(38) = 0.8630, p < 0.001) and more negatively correlated with multitasking accuracy

(r(38) = −0.8036, p < 0.001).

Results. As might be expected, networks with a higher initial bias toward sharing

(i.e., higher correlation of the task weights between pairs within a set) developed more

similar representations at the hidden layer for those tasks (in terms of the final
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correlations between task weight vectors; Fig. 27A-C). Furthermore, as observed in

Simulation Study 4, shared structure in the task environment influenced the correlation

between learned task representations, with higher stimulus feature overlap between

tasks within a set leading to higher correlations between the representations of those

tasks. Critically, in environments with high feature overlap between tasks, stronger

initial biases toward shared representation lead to increased learning speed (i.e., fewer

iterations required to achieve a given level of single-task performance), as similarities

between tasks could be exploited by means of shared representations (Fig. 27D-E). That

is, biases toward shared representation amplified learning benefits from shared structure

between tasks, suggesting a direct link between the presence of shared representation

and learning efficacy. In Appendix D, we describe a neural network simulation showing

that a bias toward shared representation arises “naturally” when a network is trained on

multiple tasks that have shared input structure, and that such shared representations

promote cognitive flexibility by facilitating transfer to novel tasks. However, the current

simulation study suggests that this comes at the cost of multitasking performance.

Networks that learned faster (due to biases toward shared representation) showed lower

performance in multitasking, at least for environments with high amounts of feature

overlap (Fig. 27E), r(38) = 0.79654, p < 0.001. Not surprisingly, learning benefits from

shared representations were less prevalent in environments with less feature overlap

between tasks (in fact, there was a trend toward the opposite effect; see clusters of

points at the right of Fig. 27D). For environments with 80% feature overlap, there was a

smaller correlation between the number of required training iterations and multitasking

accuracy, r(38) = 0.3090, p = 0.0524; as was the case for environments with 0% feature

overlap, r(38) = 0.2624, p = 0.1010. Nevertheless, the deleterious effects of shared

representation on multitasking performance remained (Fig. 27D). These results suggest

that, to the extent it is advantageous for an agent to be able to respond to the same set

of stimuli in more than one way (e.g., point to an object such as a ball or a rock, pick it

up, or kick it), then an “inductive bias” (such as correlations between task weights;

Flesch, Juechems, Dumbalska, Saxe, & Summerfield, 2021) that favors the development
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of shared representations may be valuable, insofar as it promotes faster learning of

different responses to those objects (i.e., tasks), even though this comes at the cost of

dependence on control and the risk of multitasking interference if several of those

objects must be processed in different ways at the same time. That is, systems that

must function flexibly in rich environments may, at least by default, favor the efficacy of

learning over the efficiency of parallel processing. We address this trade-off more

directly in Section 3.3.4 (“A Normative Theory of Automaticity: Optimization of the

Trade-off between Shared and Separated Representations as an Intertemporal Choice”).

In the next section, we empirically examine this trade-off in a modified version of the

Stroop paradigm.

3.3.3 Behavioral Study: Learning, Shared Representations, and

Functional Dependence. The mathematical analysis and simulation studies above

make three predictions with regard to human performance: (1) learning a new task

involving a stimulus dimension for which there are already representations (i.e., that is

used by other familiar tasks) should be associated with rapid acquisition (by exploiting

the shared use of those representations); (2) it should not initially be possible to

perform that task simultaneously with others that rely on that input representation;

however, (3) extensive practice on such multitasking should make it possible to perform

them simultaneously. The idea that the performance of a novel task may be

control-dependent, but that extensive practice can lead to automaticity and parallel

processing (i.e., multitasking capability) is, of course, one of the foundational

observations in cognitive psychology, that was demonstrated in a number of classic

studies (e.g., Logan, 1988; MacLeod & Dunbar, 1988; Shiffrin & Schneider, 1977).

However, neither those studies nor any others of which we are aware have explicitly

addressed the role of shared representations in mediating the observed effects. To do so,

we conducted a behavioral study using a modified version of the Stroop paradigm (cf.

Fig. 5), and analyzed both overt performance (i.e., RT and accuracy) as well the extent

to which multitasking performance reflected serial vs. parallel processing, using the

measures discussed above (Townsend & Wenger, 2004, see Simulation Study 2).
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In the classical Stroop (1935) paradigm—described in Part I, under Section 2.1

(“A Simple Neural Network Model”)—the canonical observation of poorer performance

for color naming of incongruent stimuli (e.g., responding “red” to the word GREEN

displayed in red) is widely considered to reflect response interference (Glaser & Glaser,

1982; Morton & Chambers, 1973; Roelofs, 2003) arising from shared phonological

representations (see Fig. 2). This represents an instance of structural interference, as we

defined it in Part I (see Section 2.2.1 “Definitions”). This not only precludes

multitasking but, as the Stroop effect demonstrates, can even degrade single-task

performance when that task is weaker than those with which it shares representations

(as is the case for response representations used in color naming versus word reading;

J. D. Cohen et al. (1990)). Here, we develop an extended version of the Stroop task to

address the effects of functional interference that can arise when the learning of a new

task relies on representations shared with an existing task, and use this to test the first

and second predictions enumerated above; viz., a bias toward reliance on existing

representations to learn a new task, and the deleterious consequences this has for

multitasking performance.

The study involved three single-task conditions and two dual-task conditions, all

of which used the same Stroop stimuli. In all conditions, a trial consisted of presenting

a Stroop stimulus (color word displayed in a congruent or incongruent color) at one of

four eccentric locations on a computer screen.

Single-task conditions. In the single-task conditions, participants were asked either

to: say the color of the stimulus out loud (color naming, CN); map the location of the

stimulus on the screen to a key press (location mapping, LM); or map each word to an

arbitrary key press (word mapping, WM). Note that location mapping and word

mapping are considered novel tasks in the sense that participants were required to learn

arbitrary associations between words or locations (as stimuli) and keys (as responses).

As in the standard Stroop task, trials in which the color and the word matched were

considered to be congruent, and ones in which they did not match were considered to be

incongruent trials.
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As discussed in Section 2.2 (“Graph-Theoretic Analyses”) in Part I, there are at

least two ways participants could learn to perform the word mapping task: They could

exploit existing orthographic representations (i.e., those used for word reading), and

learn to map these to manual responses (see Fig. 28A); alternatively, they could learn a

new set of orthographic representations dedicated to mapping words to manual

responses (see Fig. 28B). The former involves the sharing of existing representations

(e.g., between word reading and word mapping) that should be able to be learned

relatively quickly but, because the representations are shared with word reading,

introduces functional dependence of word mapping and color naming. Accordingly, this

should make it impossible to multitask with color naming. In contrast, the formation of

new representations dedicated to the word mapping task, which are separate from those

used for word reading, should take longer to develop but would make word mapping

functionally independent of color naming and thus permit the two to be multitasked.

The multitasking conditions of the experiment were designed to test the first two of

these predictions.

Multitasking conditions. In the first multitasking condition, participants were

asked to multitask color naming and location mapping (CN+LM). This served as a

control for the effects predicted above. According to the network models depicted in

Fig. 28, these tasks are fully independent. Thus it should be possible to perform them

concurrently without interference by allocating control to the hidden representations

that map the two stimulus dimensions (color and location) to the response dimensions

associated with each task (verbal and manual, respectively). For the same reasons,

performance in this condition should be unaffected by stimulus congruency. Critically,

this condition provides a baseline for evaluating the general ability to perform a newly

learned task (LM) at the same time as a more familiar one (CN), such that any

(predicted) detriments of performance observed in the other multitasking condition

could be attributed to the specific demands of the particular combination of tasks.

In the second multitasking condition, participants were asked to perform the color

naming task concurrently with the word mapping task (CN+WM). If participants
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Figure 28 . Two neural network models of the extended Stroop paradigm. Each network

implements simplified examples of the four tasks (using only two features instead of four for each

stimulus and response dimension): color naming (CN); word reading (WR); word mapping (WM) from

a word to a key press; and location mapping (LM) from a location to a key press. Both networks can

perform color naming and location mapping simultaneously because those tasks are functionally

independent of one another (i.e., they do not share any representations, nor are there any other tasks

that share representations with both). However, the two networks show different multitasking

performance capabilities for color naming and word mapping. (A) In the first network, the word

mapping task shares a representation for words with the word reading task at the hidden layer,

introducing functional dependence between the word mapping task and the color naming task. As a

consequence, the network is not able to accurately perform color naming and word mapping at the

same time. (B) In the second network, the word mapping task has a separate set of associative (hidden

unit) representations for word (orthographic) stimuli that are independent of word reading so that the

network can perform color naming and word mapping simultaneously.

learned to perform the word mapping task using shared orthographic representations

(Fig. 28A), then performance in this multitasking condition should be subject to

considerable interference. This is because it would require the allocation of control to

the hidden representations for words (to perform the word mapping task), which are

shared with word reading. This would implicitly engage the word reading process,

which interferes with color naming, thus producing functional dependence between word

mapping and color naming. Such functional dependence would induce greater
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interference for incongruent Stroop stimuli than congruent Stroop stimuli. In contrast,

if participants learned a set of orthographic representations dedicated to the word

mapping task (Fig. 28B), then it should be functionally independent of color naming,

and the CN+WM multitasking condition should not be affected by stimulus congruence

(viz., the word stimuli should not impact color naming performance). Thus, the use of

shared versus separated representations for word reading versus word mapping make

different predictions regarding performance for multitasking color naming and word

mapping, which can be used to adjudicate between the two possibilities. Based on the

formal analyses above, we predicted that learning the word mapping task in the second

single-task condition should favor the exploitation of shared representations (i.e., use of

existing orthographic representations for word reading), which should not only produce

impairment of multitasking performance for color naming and word mapping but,

critically make this sensitive to congruency.

Below, we present additional details of the experimental procedure, simulations

using the neural network model presented in Part I that formalizes our predictions, and

empirical data regarding human performance that test these predictions.

Transparency and openness. We report how we determined our sample size, all

data exclusions (if any), all manipulations, and all measures in the study, and we follow

journal article reporting standards (JARS; Kazak, 2018). All analysis code, and research

materials are available at https://github.com/musslick/rational_boundedness.

Anonymized behavioral data will be made available in the same repository upon

publication of the manuscript. Data were analyzed using Matlab (version R2101b).

This study’s design and its analysis were not pre-registered.

Experiment procedure. The experiment consisted of the three single-task

conditions and two multitask conditions described above. Participants first performed

the three single-task conditions in the fixed order (CN, LM, WM), and then performed

the two multitask conditions (CN+WM, CN+LM). The order of the multitask

conditions was counterbalanced across participants.

In all conditions, a trial began with a grey screen and a fixation cross at its center
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for an inter-trial interval (ITI) of 500ms. After the fixation cross, a Stroop stimulus was

presented for 850ms. Each Stroop stimulus consisted of one of four color words (“RED”,

“GREEN”, “BLUE”, “BROWN”) displayed in one of four colors (red, green, blue,

brown) at one of four locations (left, top, bottom, right). The color, word, and location

of the stimulus was fully counterbalanced across conditions. Thus, each condition

contained one block of 64 trials (reflecting a fully crossed 4 x 4 x 4 design involving the

three factors (color, word and location) with four levels each. All single-task conditions

were performed before multitask conditions, and before each of the single-task

conditions participants performed five practice trials of the task for that condition.

In each condition, participants were instructed to indicate their response(s) while

the stimulus was on the screen. In the CN condition, participants responded vocally to

the color of the stimulus, by naming it out loud. In the LM condition, participants were

instructed to respond to the left, top, bottom and right position of the stimulus with

the keys “1”, “2”, “3” and “4” respectively. In the WM condition, participants were

asked to respond with the same set of keys to the four color words, with specific

assignments counterbalanced across participants. In each of the single-task conditions,

participants were instructed to ignore the two task-irrelevant stimulus dimensions (e.g.,

in the CN condition, participants were told to ignore the word and location of the

stimulus). In the two multitask conditions, participants were instructed to respond to

the two task-relevant stimulus dimensions simultaneously, using the same response

mappings as in the single-task conditions, while ignoring the third stimulus dimension

irrelevant to the tasks being performed. Thus, in the CN+LM condition, they were

instructed to name the color in which the stimulus was displayed while simultaneously

pressing the key corresponding to the location of the stimulus relative to the center dot,

and ignore the word; whereas in the CN+WM condition, participants were instructed to

name the color of the stimulus while simultaneously pressing the key corresponding to

the word learned for the WM condition, and ignore the location of the stimulus.

Sample. The sample size was determined based on a pilot of the experiment.

Thirty individuals were initially enrolled to participate, but three were disqualified
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based on technical malfunctions or misunderstanding of instructions. We excluded

another 6 participants whose accuracy was below chance (25%) in at least one of the

single-task conditions, yielding 21 participants (14 female) ages 18 to 34 years (M =

21.52 years) who were included in data analysis. All participants gave written informed

consent and were debriefed about the purpose of the study after the experiment. The

study was approved by the Institutional Review Board of Princeton University.

Data analysis. The response time (RT) and accuracy for each task in each trial

was recorded. RTs for verbal responses were determined by plotting the waveform for

the audio response for each trial and having graders manually select the time of speech

onset. Manual grading was necessary to ensure that random acoustic signals, such as

coughing or deep breaths, were not counted as speech onset. The graders were blind as

to which trials came from which conditions. Mean RT and accuracy was computed

separately for congruent and incongruent trials in each single-task condition for each

participant. For the multitask conditions, we computed accuracy by considering a trial

to be correct if the response for both tasks was correct. The RT of a multitasking

condition corresponded to the slower of the two responses and was conditioned on

correct trials only. As with the single-task conditions, multitasking accuracy and RTs

were computed separately for congruent and incongruent trials.

We first conducted one-tailed t-tests for each multitasking condition to determine

whether accuracy was above chance level for each condition. In order to investigate the

effects of multitasking condition (CN+WM vs. CN+LM) and stimulus congruency

(color-word congruent/incongruent), we used two linear mixed effects regression models:

(1) a generalized linear mixed effect regression for multitasking accuracy, assuming

binomial distribution of response variables with a logit link function; and (2) a mixed

effect linear regression for multitasking RT. In the first model, accuracy (as defined

above) was the dependent measure, with fixed effects estimated for multitasking

condition, stimulus congruency, and the interaction between multitasking condition and

congruency. In the second model, RTs were used as the dependent measure, with the

same fixed effects as the first model. Both models also included a random effect of
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participants to account for individual differences.

Previous work has shown that accuracy and RT measures are insufficient

indicators of parallel versus serial processing (Townsend, 1972, 1990). Moreover,

accuracy or RT differences between multitasking conditions may be the result of

performance differences in the single tasks. Thus, it is difficult to infer whether

participants operated more or less parallel in one multitasking condition versus the

other when investigating multitasking accuracy and RT alone. To address these

limitations, we computed a metric of parallel processing capacity—proposed by

Townsend and Wenger (2004) and introduced in Simulation Study 2 (Part I)—for both

multitasking conditions. In their work, Townsend & Wenger introduce a load capacity

coefficient C(t) that assesses the degree two which two task processes operate in parallel

at time point t, by assessing the distribution of RTs for each individual task, and

comparing it to the distribution of RTs at which participants respond to multiple tasks

simultaneously. The capacity coefficients can be used to assess the degree of interaction

between two tasks, taking into account performance for each single task.

For each participant, the capacity coefficient in the CN+WM condition was

defined as

CCN+WM(t) = log(P (TCN ≤ t)) + log(P (TWM ≤ t))
log(P (TCN ≤ t AND TWM ≤ t)) (9)

where P (TCN ≤ t) corresponds to the probability that the participant responded

to the color naming task before time t in the CN condition, P (TWM ≤ t) corresponds to

the probability that the participant responded to the word mapping task before time t in

the WM condition, and P (TCN ≤ t AND TWM ≤ t) corresponds to the probability that

the participant responded to both tasks before time t in the CN+WM condition. The

capacity coefficient for the CN+LM condition, CCN+LM(t), was defined in an analogous

manner. We computed the capacity coefficients in both multitasking conditions across

all stimuli and separately for each participant. Similar to Townsend & Wenger (2004),

we conditioned these measures on correct trials.37 A capacity coefficient of 1 would

37 Townsend and Altieri (2012) propose similar metrics taking into account multitasking accuracy.
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indicate that the two tasks were executed in parallel at time point t, suggesting that the

underlying task processes are independent. A capacity coefficient larger than one would

indicate that the two task processes facilitate each other when executed in parallel

(yielding faster RTs for both tasks compared to when each task is executed alone).

Conversely, a capacity coefficient smaller than 1 would indicate that the two task

processes interfere with one another. We assumed that CCN+WM(t) < CCN+LM(t) at

any time t if the color naming and word mapping task are functionally dependent by

means of a shared representation between word reading and word mapping.

Neural network simulation. We simulated learning and performance in the

Extended Stroop experiment using the same general neural network architecture and

learning parameters as described in Simulation Study 2.38 The stimulus input layer was

comprised of three stimulus dimensions (representing color, word and location) with

four input units per dimension. The output layer was comprised of two response

dimensions (verbal and manual), with four output units per dimension. The task input

layer was comprised of four task units, one each for the color naming, word reading,

word mapping and location mapping tasks.

We trained 21 networks—matching the final number of human participants—on

each of the four individual tasks using the entire set of Stroop stimuli used in the

experiment. As in Simulation Study 2, we sampled 100 patterns for each of the single

tasks (CN, WM and LM) per epoch. We also trained the network on twice as many

patterns for the word reading task to simulate prior training on and therefore greater

automaticity of WR (cf. J. D. Cohen et al., 1990). The network was trained until it

reached an average MSE of 0.001 over all three relevant single tasks.

After training, we used the procedure described in Simulation Study 1 to extract a

However, our experiment did not yield sufficient numbers of trials for both correct and incorrect

responses to compute those metrics.

38 Note that the network was not directly fit to experimental data. Instead, we used the same

parameters as in previous simulations to derive qualitative predictions about the network’s

performance in the extended Stroop paradigm, based on the learning of shared representations and

their effects on multitasking performance discussed in this article.
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task dependency graph based on the single-task representations in the network. To

assess the similarity between the learned representations for each task in the hidden

layer of the network, we projected each task representation onto a 2-dimensional plane

as described in Simulation Study 5. We also computed the average accuracy across all

networks for all single tasks (CN, WM and LM), as well as for both multitasking

conditions (CN+WM, CN+LM), separately for congruent and incongruent stimuli.

Finally, we investigated the effects of multitasking condition (CN+WM vs. CN+LM)

and stimulus congruency (color/word congruent/incongruent) in a mixed effect linear

regression. We modeled multitasking accuracy as a function of multitasking condition,

stimulus congruency, as well as their interaction. Differently initialized networks were

treated as a random effect. Finally, analogous to Simulation Study 2 (Part I), we

determined the capacity coefficients in both multitasking conditions across all stimuli

and separately for each network.

Results: neural network simulation. Fig. 29A shows projections of the patterns of

activity in the hidden layer for the four single tasks after training in an example

network. The representations for word reading and word mapping form a cluster,

suggesting that the neural network exploits structural similarity between the two tasks

by learning a shared representation. As a consequence, both tasks share an input node

in the extracted bipartite task graph (Fig. 29B). Thus, the corresponding task

dependency graph predicts functional dependence between the color naming and word

mapping tasks (Fig. 29B-C). In contrast, neither structural nor functional dependence is

predicted between the color naming and location mapping tasks. The performance of all

networks was consistent with this prediction: they were more accurate in multitasking

color naming and location mapping (CN+LM) than color naming and word mapping

(CN+WM), (β = −0.2701, SEM = 0.0070, p < 10−52). Notably, multitasking

performance in the CN+LM condition was comparable to the high overall performance

on all single tasks, and stimulus congruence showed no main effect on multitasking

accuracy (β = 0.0030, SEM = 0.0070, p = 0.6683). However, the mixed effect

regression revealed a significant interaction between multitasking condition and
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Figure 29 . Simulation results for a neural network model of the extended Stroop

paradigm. (A) Hidden unit representations in an example of a trained network for color naming

(CN), word reading (WR), word mapping (WM), and location mapping (LM), projected onto a

2-dimensional plane while maintaining Euclidean distances between the representations using MDS.

Each circle corresponds to a projection for a given single task (see Fig. 25 for additional details). (B)

The bipartite task graph extracted from representations in the hidden and output layers of an example

network. (C) The corresponding task dependency graph, with structural dependencies shown as solid

lines and functional dependencies as dashed lines. (D, E) Accuracies for single tasks and multitasking

conditions after network training for (D) congruent and (E) incongruent Stroop stimuli, averaged

across all networks. Each dot corresponds to the performance of a single network in a given condition.

(F) The capacity coefficient for both multitasking conditions as a function of time (see text) averaged

across all networks (solid lines). The shaded area around each line indicates the standard error of the

mean across networks.

stimulus congruency (β = −0.2564, SEM = 0.0100, p < 10−40), suggesting that

incongruent stimuli had a detrimental effect on accuracy when multitasking CN+WM

but not when multitasking CN+LM (Fig. 29D-E). Finally, the mean capacity coefficient

stayed below 1 for both multitasking conditions, suggesting that in both multitasking

conditions the two tasks interfered with one another. The latter reflects interference due

to the mutual inhibition of output units between tasks, as discussed in Simulation

Study 1 (Part I). However, as expected, the networks exhibit a lower capacity coefficient
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for the CN+WM condition compared to the CN+LM condition.

Results: human performance. Table 1 lists accuracies and RTs for all experiment

conditions. Performance dropped for multitasking CN+LM, but was still substantially

above chance (multitasking chance performance = 6.25%) for congruent trials

(M = 76.02%, SD = 33.83%), t(20) = 9.4520, p < .0001, and incongruent trials

(M = 71.54%, SD = 28.67%), t(20) = 10.4357, p < .0001. Human performance in the

CN+LM condition was notably lower than the performance of the neural network in

this condition. This suggests that there may be factors over and above functional

dependence that contributed to impaired multitasking performance (see Simulation

Study 1 in Part II). However, as predicted by the simulation results, performance for

CN+WM was much lower, despite the fact that participants could perform each of

these tasks well on their own (see Fig. 30A-B). The error rate for CN+WM trials was

still above chance in both the congruent condition (M = 28.03%, SD = 33.83%,

t(20) = 3.7092, p < .001) and the incongruent condition (M = 11.47%, SD = 28.67%,

t(20) = 2.2564, p < .05) though, in alignment with the behavior of the neural network

model, it was lower in the latter.
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Figure 30 . Behavioral results for human participants in extended Stroop paradigm. (A,

B) Accuracies for single tasks (color naming, CN; location mapping, LM; word mapping WM) and

multitasking conditions for (A) congruent and (B) incongruent Stroop stimuli averaged across all

participants. Each dot corresponds to the performance of a single participant in a given condition. (C)

The capacity coefficient for both multitasking conditions as a function of time (see text) averaged

across all participants (solid lines). The shaded area around each line indicates the standard error of

the mean across participants.

The linear mixed-effects regression models further illustrate the differences

between multitasking conditions and stimulus congruency, and their interaction.
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Condition Accuracy in % (M ± SD) RT in s (M ± SD)

Congruent Incongruent Congruent Inongruent

Single-Tasking

CN 100.00 ± 0.00 96.49 ± 4.56 0.641 ± 0.086 0.696 ± 0.074

LM 96.63 ± 7.41 97.10 ± 4.75 0.498 ± 0.088 0.502 ± 0.083

WM 88.35 ± 16.57 89.68 ± 8.26 0.720 ± 0.101 0.775 ± 0.088

Multitasking

CN+LM 85.71 ± 35.86 80.95 ± 40.24 0.971 ± 0.087 0.991 ± 0.074

CN+WM 33.33 ± 48.30 9.52 ± 30.08 0.883 ± 0.151 0.964 ± 0.124
Table 1

Accuracies and RTs for extended Stroop task. M and SD correspond to the mean and standard

deviation across participants, respectively. Results are reported for single-task conditions color naming

(CN), location mapping (LM), word mapping (CM) and multitasking conditions color naming +

location mapping (CN+LM), as well as color naming + word mapping (CN+WM).

Accuracy was significantly lower on CN+WM trials compared to CN+LM trials

(β = −1.9630, SEM = 0.2813, p < .0001), and RTs significantly slower

(β = 0.1834, SEM = 0.0317, p < .0001). As expected, RTs were overall slower on

incongruent compared to congruent trials (β = 0.0641, SEM = 0.0202, p < 0.01).

However, accuracy was overall higher on congruent compared to incongruent trials

(β = 0.5660, SEM = 0.2076, p < .01). A posthoc analysis revealed a significant

interaction between multitasking condition and congruency for accuracies

(β = −1.7031, SEM = 0.3421, p < .0001), while there was no significant interaction

between multitasking condition and congruency for RTs

(β = 0.0650, SEM = 0.0421, p = 0.1237). Congruent trials were associated with higher

accuracy than incongruent trials in the CN+LM condition

(β = 0.5172, SEM = 0.2175, p < 0.05); as predicted by functional dependence of CN

and WM, participants performed worse on incongruent trials relative to congruent trials

in the CN+WM condition (β = −0.9072, SEM = 0.2672, p < .001).
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Fig. 30C shows the capacity coefficient for both multitasking conditions as a

function of time within trial. The capacity coefficient stayed below 1 across all

participants for both multitasking conditions, suggesting that the two tasks interfered

with one another in both multitasking conditions. For short response times (< 0.74s),

the capacity coefficient was lower in the CN+WM condition compared to the CN+LM

condition, suggesting a greater degree of interference at early stages of processing

and/or when participants made an effort to perform both tasks in parallel (note that

the capacity coefficient ensures a fair comparison by taking into account the RT of each

single task). For intermediate response times, the two multitask conditions were

comparable in terms of their capacity coefficient but diverged again for longer response

times. That is, for intermediate reaction times, the two multitasking conditions appear

comparable in mutual interference, possibly reflecting the processing of the two tasks in

a sequence that would avoid such interference but be associated with longer response

times.

Overall, these results indicate that human participants performed poorly in the

CN+WM condition relative to the CN+LM condition, as predicted by the network

model. This supports the conjecture that participants leveraged existing representations

(e.g., for WR) when acquiring a novel task (WM), leading to functional interference

between CN and WM. This is further supported by the observation that performance

decrements in multitasking CN+WM were greater for both the network model and

human participants for incongruent as compared to congruent stimuli. These results

should not have been observed if participants had learned separated instead of shared

representations for WM and WR.

3.3.4 A Normative Theory of Automaticity: Optimization of the

Trade-off between Shared and Separated Representations as an

Intertemporal Choice. The simulations and experiment presented corroborate the

value of shared representations (including the exploitation of existing ones) for the

purposes of learning and generalization, while highlighting the cost that this incurs in

terms of the potential for multitasking and, therefore, processing efficiency. The latter
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suggests that when processing efficiency is valued, the cost of additional training may

be offset by the value of developing separated, task-dedicated representations that

support parallel processing. That is, the trade-off between the acquisition of shared

versus separated representations presents a form of an intertemporal choice between (1)

the more immediate value of flexibly acquiring a new skill by quickly using shared

representations, but at the expense of control-dependence and the inefficiency of serial

processing (e.g., playing the piano with one finger at a time); versus (2) the potentially

greater value of more efficient processing afforded by separated representations, but that

is deferred due to the additional time (as well as effort, and possibly even expense)

required to acquire task-dedicated representations (e.g., playing chords with several

fingers at the same time).39 This can be framed as optimization or bounded rationality

problem (Gigerenzer, 2008; Griffiths, Lieder, & Goodman, 2015; Howes, Lewis, & Vera,

2009; Simon, 1957), along the lines of recently proposed theories of cognitive control

(Shenhav et al., 2013, 2017) by taking into account of the costs associated with each

option, including the time frame over which they yield reward. Here we take a step in

this direction by formalizing the optimization of the trade-off between the flexibility of

control and the efficiency of automaticity as an intertemporal decision-making problem.

Overview of approach. To formalize the intertemporal choice between the

immediate rewards associated with the use of shared representations and the

longer-term rewards associated with the formation of separated representations, we

formulate an ideal Bayesian agent that seeks to maximize the expected reward over a

specified time horizon. A complete analysis would be built on a quantitative

characterization of the learning dynamics for different types of representations as a

function of specific learning algorithms and their parameterizations. Here, as a starting

point, we simplify the problem by assuming a simple (sigmoidal) functional form for the

learning trajectory, that differs only in the learning rate for shared (faster) vs. separated

(slower) in a multitasking environment, and then construct a probabilistic generative

39 This is consistent with the proposition that intertemporal choice is a fundamental feature of all

decisions about the allocation of control (J. D. Cohen, 2017).
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model of an ideal Bayesian agent for selecting optimally between learning of the two

types of representations within that environment. Taken together, the environment and

agent models provide a simple, normative framework in which questions about the

learning-processing trade-off can be explored. We begin our analysis of the optimal

balance between learning and processing efficiency by formalizing the task environment.

We then describe how the agent model chooses between the learning of shared versus

separated representations in that environment to optimize performance, which we define

as maximizing reward over the entire horizon of performance. In Appendix E, we

mathematically derive the conditions under which shared versus separated

representations are preferred under different task environments. In Fig. 31, we show

that over a large space of parameters, the agent sacrifices long-run optimality (higher

multitasking capacity) for short-term reward (faster learning).

Task environment. Following the formalizing of task environments in previous

sections, we assume that stimuli consist of N dimensions (e.g., color, shape, and texture)

and that responses are carried out over K response dimensions (e.g., naming, pointing,

or looking), resulting in NK possible tasks in any environment. We adopt a formal

definition of multitasking from Section 2.2 (“Graph-Theoretic Analyses”), in which a

multitasking condition is defined as the requirement to execute multiple tasks at the

same time, none of which are structurally dependent (i.e., share a stimulus or response

dimension). Consequently, at most min{N,K} tasks can be carried out concurrently.

The agent is asked to optimize performance over a series of τ multitasking trials.

On each trial, the agent is presented with α tasks to perform, where α is drawn from a

latent multinomial distribution, and it must decide whether to perform them in parallel

(multitask choice) or one at a time (sequential choice). For simplicity, we assume that

each task takes the same fixed amount of time to perform. If the agent chooses to

multitask, then for every task performed correctly, it receives 1 unit of reward, resulting

in α rewards if it is able to perform all tasks accurately. If the agent chooses to perform

the tasks sequentially, it incurs a serialization cost C, proportional to the time taken to

perform the α tasks in that trial. Specifically, it loses jC reward units on task j, where
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j indexes the tasks from 0 to α− 1, so that the agent receives ∑α−1
j=0 1− jC rewards

given maximal accuracy. Thus, the per-task loss is linear in time taken, making the

per-trial (cumulative) loss over all assigned tasks quadratic. Note that the results

reported below generalize to any serialization cost scheme, as long as the serialization

costs do not change over the course of trials.

Optimization is defined as the choice, on each trial, of a performance strategy that

maximizes total future reward; that is, summed over the current trial and the discounted

reward anticipated for each future trial. This requires estimating and convolving the

expected multitasking requirements over trials, expected performance for multitasking

versus sequential execution as a function of the estimated learning rate for each (see

below), and the serialization costs associated with performing tasks sequentially.

Agent. The agent is considered to be a rational decision-maker that chooses

between two processing strategies based on the acquisition and use of two

representational schemes, corresponding to the two extremes of how multiple tasks can

be represented in a single network discussed in previous sections: in a compositional or

conjunctive form. Acquisition and use of the conjunctive scheme lead to full

multitasking capability, whereas acquisition and use of the compositional scheme are

associated with a serialization cost of jC reward units for task j = 1, 2, . . . , α− 1. We

assume that the agent can learn both schemes through use. For each trial in which a

strategy is selected, performance based on the corresponding representational scheme

improves by some amount, as determined by its learning rate. Furthermore, following

the work described in Section 3.3.1 (“Mathematical Analysis: Trade-off Between

Learning Efficacy Versus Processing Efficiency in Linear Networks”) and Simulation

Study 6, we assume that the learning rate for the compositional scheme is faster than

for the conjunctive scheme. Thus performance improves faster with learning using the

sequential as compared to the multitasking strategy.

For analysis purposes, we abstractly model the effects on the performance of

learning the two representational schemes (in Simulation Study 6, we briefly describe a

model that implements this using a neural network). Specifically, we define the
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probability of success (or “training”) functions, fcomp, fconj : N≥0 → [0, 1], that reflect

the effects of learning the compositional and conjunctive schemes on the success of the

sequential and multitasking strategies, respectively. These allow us to characterize the

learning dynamics for each scheme explicitly; fX(t) implements the learning curve by

evaluating the probability of success on a given task after strategy X has been selected

t times. Formally, let x0, x1, . . . , xn be a sequence of n choices of representation. We

define the probability that an agent succeeds when employing strategy X on a task in

trial t as:

PX(success on a task in trial t) = fX(
t−1∑
i=0

1xi=X) (10)

For convenience, we use the logistic function fX(t| k, t0) = 1
1+e−k(t−t0) . However,

our analysis applies to any learning function that is monotonically increasing and

bounded between fX(0) ≈ 0 and limt→∞ fX(t) = 1. As noted above, we assume that

learning occurs faster for the compositional scheme than the conjunctive scheme, and

examine the influence of this difference by exploring a range of values for k, t0 that

together determine the rate of learning.

The agent uses standard Bayesian machinery to infer the expected reward given

each strategy and then selects the one that maximizes the total discounted future

reward. Specifically, let EX [R] denote the expected reward for strategy X, EX [R|t]

denote the expected reward on trial t, and µ(t) be the temporal discounting function.

Then we have:

EX [R] =
τ∑
t=0

µ(t)EX [R|t]. (11)

Recall that α is the randomly assigned number of tasks required to be performed

on a given trial. By marginalizing over α, we get that the expected reward on each

individual trial is EX [R|t] = ∑min{N,K}
i=1 P(α = i)EX [R|t, α = i]. Thus, the expected

rewards for the sequential strategy (using the compositional scheme) and multitasking

strategy (using the conjunctive scheme) are, respectively:
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Ecomp[R|t] =
min{N,K}∑

i=1
P(α = i)

i−1∑
j=0

Pcomp(success)(1− jC)

Econj[R|t] =
min{N,K}∑

i=1
P(α = i)

i−1∑
j=0

Pconj(success)
(12)

In order to compute the expected reward terms in Equation (12), the agent must

be able to evaluate P(α = i) and PX(success) by inferring the multinomial task

distribution, as well as the training function fX . The first can be inferred using Bayes’

theorem by keeping track of the number of times each particular α value was seen, in

conjunction with a Dirichlet prior (we start from a uniform prior, implying the absence

of strong a priori belief about the distribution).

Inferring the parameters for the two training functions fcomp, fconj can similarly be

done by tracking the history of successes and failures and then performing a Bayesian

logistic regression (intuitively, this can be understood as the agent inferring how fast it

will learn). In this model, k and t0 have independent normal priors centered on their

true values with high variance. Finally, we assume that the agent already knows τ , the

sequential processing cost C,, and the temporal discounting function µ(t). Once the

expected values are computed, the agent must select an action. We assume this is done

using a standard explore-exploit algorithm, the ε-greedy rule, in which the agent picks

the action associated with the greatest value with probability 1− ε, and uniformly

otherwise. In Appendix E, we characterize the behavior of an agent with perfect

knowledge of the task environment and its learning functions. Here, we relax these

assumptions and use numerical simulations40 to evaluate the behavior of an agent that

must infer these parameters.

Numerical analysis and results. We assessed the agent’s performance across a

series of task environments and learning specifications by examining a set of reasonable

parameter ranges. We let τ = 1000. We set C ∈ [0, 1], varying from no punishment to

receiving no reward for a correct answer. We used an exponential discounting scheme

µ(t) = γ−0.025t for γ ∈ [0.5, 1.0], covering the range from extreme discounting to no

40 Code is available at https://github.com/yotamSagiv/thesis.
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discounting at all. We characterized the training functions as logistic with

fX(t) = 1
1+e−0.1(t−tX ) . This allowed us to precisely characterize the difference in learning

rates with the ratio tconj/tcomp. To that end, we set tcomp = 200 and let tconj vary in

[200, 600]. We set the number of stimulus and response dimensions (N and K) to be 4,

for a total of 16 possible tasks and defined the distribution over tasks as

P(α = 1) = 0.7, P(α = 2) = P(α = 3) = P(α = 4) = 0.1, so that the intensity and

frequency of multitasking trials were sufficient to permit either strategy given

appropriate parameters. We set ε = 0.1 to facilitate early exploration of the

multitasking strategy in the face of more immediate rewards afforded by the sequential

strategy. Finally, we quantified the agent’s strategy preference as

P(pick X) = number of times X was picked
τ

, and tracked how P(pick compositional) varied with

the parameters41.

Fig. 31 shows the proportion of trials on which the agent selected the sequential

strategy (using the compositional scheme) across the range of parameters described

above. Note that there is a broad range of parameterizations over which it chose this

strategy (P(pick compositional) > 0.5) over the multitasking strategy (that used the

conjunctive scheme). These preferences align with the normative analysis in Appendix

E of how the parameters should affect overall preference: preference for the sequential

strategy should increase with the relative speed of learning, less time (serialization)

cost, and degree of temporal discounting, as indicated by the linear model fit

P(select compositional) ∼ b1 × tconj
tcomp

+ b2 × timeCost + b3 × γ

(b1 = 0.25, t(78) = 47.26, p < 0.001; b2 = −0.52, t(78) = −49.38, p < 0.001; b3 =

−0.64, t(78) = −35.78, p < 0.001).

Discussion. The results presented in this section (and the analyses presented in

Appendix E) were based on a number of simplifications, including an abstraction of the

learning processes underlying the acquisition of compositional versus conjunctive

41 Equation (59) in Appendix E to show that even with weak discounting (γ = 0.90) and a modest

learning rate ratio tconj/tcomp = 2, the importance of fast training is such that the time cost must

nearly equal the reward value (Ceq ≈ 0.75) for indifference in this environment.
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Figure 31 . Strategy preferences for the simulated agent as a function of temporal

discounting, processing time costs, and relative learning rates. tT /tB refers to the midpoint

ratio of the conjunctive and compositional training functions. γ is the temporal discount factor, and

“time cost” the value of C (serialization cost). Note that the agent’s preference for the compositional

scheme (sequential strategy)) consistently increases as gamma and time costs decrease and the relative

learning rate increases.

representations. However, they comport with a recent computational analysis of this

trade-off in deep neural networks revealing even larger effects of shared representation

on learning speed in such networks(Ravi, Musslick, Hamin, Willke, & Cohen, 2020). In

that study, a multilayered neural network was trained to perform various visual

recognition tasks in a virtual environment. The network was provided with two stimulus

dimensions: an input providing coordinates that designate the location of the object in

a 3D image space, and a 2D image resembling the object. The network was trained to

perform four tasks: (1) map 3D coordinates provided as input to a location in the 2D

space of an image (coordinates → location); (2) label the object at a specified location
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in 3D space (coordinates → label); (3) identify the location of the object in the 2D

image (image → location); and (4) label the object in the 2D image (image → label).

Biasing the network to share representations between tasks that used the same stimulus

dimension (e.g., Tasks 3 and 4 performed on the image) led to large benefits in learning

speed. However, as expected, this resulted in poor multitasking performance. As in the

work described above, the model was equipped with a Bayes-optimal meta-learning

mechanism responsible for deciding on each trial whether to train on single-task or

multitask performance. In that network, there were no constraints on the extent to

which single-task training transferred to multitasking or vice versa (the network was free

to develop and use whatever representations it chose). The results corroborated those

presented above, with the meta-learner preferring single-task over multitask training if

the seriality penalty was low and, furthermore, the preference for learning shared

representations via single-task training increased even further when the difficulty of

learning both tasks was increased (by adding white noise to the inputs). Together, these

observations extend the findings from the simplified, abstract model described above to

one in which task representations were actually learned in a deep neural network, and

further suggest that more complex task environments impose a higher pressure on

neural agents to rely on shared representations at the expense of multitasking capacity.

In summary, the work described in this section provides a normative analysis of

the trade-off between sequential (control-dependent) processing and multitasking

(automatic processing) in terms of the optimization of an intertemporal choice between

the acquisition and use of shared (compositional) versus separated (conjunctive)

representations. Several factors governed behavior in both the abstract and deep

learning models: the cost of serial versus parallel performance, the rate at which each

strategy can be acquired, the discount rate for future rewards, the distribution of

multitasking opportunities within the environment, and the complexity of the

environment. The broad range of these factors over which the sequential strategy, based

on compositional representations, was optimal suggests that the theory on which these

are models provides a plausible account of why so many skills (e.g., driving a car,
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playing an instrument) seem to rely on cognitive control and serial execution during

acquisition: compositional representations are faster to acquire, providing a flexibility

that, under many conditions, offsets the costs associated with serial processing and is

preferable to the slower pace at which the efficiency of automaticity can be acquired.

That is, these results strongly support the proposal that the prevalence of constraints

on multitasking observed in human performance may arise from a normative approach

to an inescapable trade-off between the value of rapidly acquiring a set of novel skills,

and optimizing the efficiency with which these skills can be exercised. Such a normative

theory of multitasking may have value not only for understanding human performance,

but also for the design of artificial systems, which we consider at greater length in the

General Discussion (Section 4.7 “Relevance to Machine Learning and Communications

Engineering”).

3.4 Summary and Discussion of Part II

In Part II of this article, we addressed the question of why and when a neural

system should favor shared over separated task representations, given the reliance on

control and constraints that this imposes on processing efficiency—that is, on the

multitasking capability of a network. We framed this in terms of a tension between the

benefits of more effective learning and generalization (i.e., flexibility and transfer)

versus greater efficiency of processing (i.e., parallel processing and multitasking

capability). In the first two simulation studies of Part II, we showed that neural

networks are likely to develop shared representations between tasks if they rely on

similar stimulus features and if the networks are trained to execute one task at a time.

Conversely, training networks on unrelated tasks or performing multiple tasks at the

same time lead to the acquisition of separated, task-dedicated representations. We then

investigated the computational trade-off between these types of representations. We

began with a formal analysis of linear networks that revealed a fundamental dilemma

faced by neural network architectures—increased sharing of representations between

similar tasks increases the speed with which the network can learn those tasks, but
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decreases the number of tasks that the network can perform at the same time without

interference—and provided a quantitative formulation of the trade-off. We then showed

that this trade-off also applies to non-linear networks by using weight initialization to

bias networks towards greater or lesser representational sharing. We also provided

empirical evidence concerning human performance in an extended version of the Stroop

task, consistent with the network analyses, suggesting that human participants rely on

shared use of existing representations (for word reading) to perform a new task (word

mapping) at the expense of multitasking performance (color naming and word

mapping). Finally, we described a normative treatment of the trade-off between shared

and separated representations, showing that shared representations—and attendant

limitations in multitasking—may be an optimal choice under a wide range of

circumstances, providing an explanation for why the performance of novel tasks often

relies on control-dependent processing, and providing a formal framework for examining

conditions under which the choice may be made to pursue automaticity.

Here we consider how the framework we have described may further contribute

formal rigor to multiple-resource theory, as well as to our understanding of the neural

mechanisms underlying multitasking training, and the ubiquitously observed trajectory

from control-dependent processing to automaticity.

3.4.1 Shared Resources Arise from Statistical Regularities Among the

Tasks. One of the major criticisms of the original multiple-resource theory (Allport et

al., 1972; Navon & Gopher, 1979; Wickens, 1991), and more recent computational

implementations of it (Meyer & Kieras, 1997a; Salvucci & Taatgen, 2008), concerns the

lack of specificity with regard to its core assumption; that is, why, where, and the

degree to which resources should be expected to be shared between tasks. In the worst

case, this explanatory gap allows arbitrary sets of resources to be proposed to account

for any particular set of data (Hirst & Kalmar, 1987; Meyer & Kieras, 1997a). We

addressed this explanatory gap by turning to the characteristics of learning in neural

networks, in which statistical regularities between task-relevant stimulus features favor

representational sharing. Simulation Studies 4 and 5 demonstrated that the learning of
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statistically correlated stimulus features tends to produce shared representations of

those features (i.e., a shared resource), whereas subsets of stimulus features that are

statistically independent of others are more likely to be represented separately from

those others (i.e., as a distinct resource). That is, in neural networks, the learning of

shared representations varies by degree as a function of structural similarity between

tasks. This observation reflects a fundamental and well-recognized characteristic of

neural network architectures and learning algorithms: that they encode the similarity

structure of the environment and exploit this in learning in a graded manner, as

functions of both degrees of similarity and training (Hinton et al., 1986; Saxe et al.,

2019; Rumelhart & Todd, 1993). The behavioral and simulation results reported in

Section 3.3.3 suggest that similar principles apply when existing representations (e.g.,

orthographic) can be used to support the performance of a novel task (e.g., word

mapping), providing flexibility in processing but with similar consequences for reliance

on control and constraints on multitasking. These characteristics provide a rationale,

and a quantitative grounding for the core assumption of multiple-resource theory: In

addition to perceptual similarity, if the structure of information within a modality is

shared across tasks, then those tasks will likely rely on shared representations of that

structure. Conversely, Simulation Study 4 showed that a neural system might learn

different representations for tasks, even if they rely on the same perceptual modality, if

the stimulus features on which they rely are uncorrelated. For instance, colors and

words are both visual inputs but may be regarded as separate stimulus dimensions if

they are statistically unrelated. Results from Simulation Study 4 are in line with

findings of P. Lindsay, Taylor, and Forbes (1968), showing that even if two tasks rely on

the same sensory modality (e.g., for visual inputs), they may not interfere with one

another if they rely on representations for different sets of task-relevant features42.

Results from Stimulation Study 4 are also in line with insights gained from the

study of semantic knowledge acquisition, showing that neural networks develop shared

42 Note that a lack of interference requires the two tasks are also functionally, and not just structurally

independent (see Section 2.2 “Graph-Theoretic Analyses”).
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representations for stimuli that share similar semantic features (Hinton et al., 1986;

McClelland et al., 1995; Quinn & Johnson, 1997; T. T. Rogers & McClelland, 2004;

Rumelhart & Todd, 1993). This has received empirical support from fMRI studies,

which suggest that stimuli with similar semantic features overlap in terms of their

neural patterns of activity, both within and across individuals (Kriegeskorte & Kievit,

2013; Carlson, Simmons, Kriegeskorte, & Slevc, 2014; Connolly, Gobbini, & Haxby,

2012). Thus, the same principle—that representation sharing is promoted by statistical

regularities over a set of inputs—seems to apply across cognitive domains, from simple

sensorimotor tasks to more complex domains such as language. In the General

Discussion, we consider how similar ideas concerning semantic cognition and category

formation may relate directly to representations used for cognitive control.

3.4.2 Multitasking Practice Facilitates Representational Separation.

Despite constraints on multitasking, a number of studies have suggested that the ability

to execute two or more tasks simultaneously can improve with extensive practice

(Garner & Dux, 2015; Hazeltine et al., 2002; Liepelt et al., 2011; Ruthruff et al., 2006;

Schumacher et al., 2001). While some have suggested that these improvements can

result from practice on performing each individual task alone (Ruthruff et al., 2006),

others have argued that larger improvements can be achieved through multitasking

training (Liepelt et al., 2011). Simulation Study 5 is consistent with the latter

observation, showing that repeated simultaneous execution of multiple tasks can lead to

greater improvements in multitasking performance compared to single-task training.

The benefit of dual-task training over single-task training has led some to suggest

that dual-task training improves general purpose processes on which multitasking is

assumed to rely, such as inter-task coordination, that should generalize to other

dual-task conditions (Bier, de Boysson, & Belleville, 2014; Hirst, Spelke, Reaves,

Caharack, & Neisser, 1980; Kramer, Larish, & Strayer, 1995; Liepelt et al., 2011;

Strobach, Frensch, & Schubert, 2012). While this may be true, Simulation Study 5

suggests an additional possibility: that dual-task practice promotes the acquisition of

separated, task-dedicated representations in order to minimize processing conflict—a
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training signal that is generally absent in single-task practice. The results of Simulation

6 further suggest that representational separation between tasks may be sufficient to

improve dual-tasking performance and does not require improvements in inter-task

coordination. Critically, representational separation would predict no positive transfer

of practice from one dual-task condition to other dual-task conditions that use different

representations because separation would only apply to the representations used by the

tasks being practiced. This is consistent with the results of empirical studies that have

found little or no such transfer effects (Strobach et al., 2012; Liepelt et al., 2011).

Nevertheless, the demands for coordination may still be an important factor in

multitasking, at least during initial performance—a possibility that we will consider

further in the General Discussion.

3.4.3 Neural Mechanisms Underlying Improvements in Multitasking.

Neuroimaging studies of dual-task training have suggested at least three plausible

candidate neural mechanisms that may underlie improvements in multitasking ability:

(1) improved efficiency of existing brain regions (efficiency account; Dux et al., 2009;

Jonides, 2004; Kelly & Garavan, 2005; Medeiros-Ward, Watson, & Strayer, 2015;

Poldrack, 2000), (2) reduced recruitment of brain regions associated with cognitive

control with concomitant redistribution of task processes to other areas (redistribution

account; Chein & Schneider, 2012; Dux et al., 2009; Kelly & Garavan, 2005; Petersen,

Van Mier, Fiez, & Raichle, 1998) and (3) the segregation of neural representations

between tasks within a task-specific brain region (divergence account; Garner & Dux,

2015, 2022). The efficiency account suggests that multitasking improvements can be

attributed to more efficient processing of individual tasks; for example, by a

strengthening of synapses or formation of new synapses in underlying brain regions

responsible for a single task (Münte, Altenmüller, & Jäncke, 2002; Rioult-Pedotti,

Friedman, & Donoghue, 2000; Schlaug, 2001). This account is consistent with the

proposition that multitasking improvements can be accomplished by reducing temporal

overlap between tasks in the presence of processing bottlenecks; for example, by

compiling task processes into smaller chunks (see Section 4.1.3 “Multiple-Resource
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Theories” in the General Discussion; Newell & Rosenbloom, 1981; Rosenbloom, Laird,

& Newell, 1993; Salvucci & Taatgen, 2008; Taatgen & Anderson, 2002; Taatgen & Lee,

2003). The redistribution account is based on the assumption that multitasking

limitations arise from the reliance on capacity-limited mechanisms in brain regions

associated with cognitive control, such as the prefrontal cortex. A number of fMRI

studies have observed that task practice leads to a decreased activity of prefrontal

regions in conjunction with increased activity in other brain areas during multitasking

(Debaere, Wenderoth, Sunaert, Van Hecke, & Swinnen, 2004; Sakai et al., 1998;

Shadmehr & Holcomb, 1997). Thus, the redistribution account postulates that

improvements in multitasking through training are accomplished by re-routing task

processes away from regions presumed to implement capacity-limited control

mechanisms to task-specific sensory-motor pathways (Dux et al., 2009). Finally, the

divergence account suggests that multitasking training leads to a separation of task

representations, thereby reducing interference between them. Garner and Dux (2015)

showed that if participants are explicitly trained to multitask, they are able to do so by

developing separated task representations. Improvements in multitasking were highest

for participants whose task representations were most separated after multitasking

training.

The results of Simulation Study 5 are most consistent with the divergence

account, suggesting that improvements in multitasking training can be achieved through

a separation of task representations. Representational separation is substantially greater

if: (1) a network is trained to execute multiple tasks simultaneously; and (2) executing

multiple tasks simultaneously leads to response conflict (i.e., the tasks are trained on

incongruent as opposed to congruent stimuli). Note that Garner and Dux (2015) found

that the relationship between representational separation and multitasking improvement

was specific to frontoparietal and subcortical brain regions, suggesting that multitasking

limitations can be attributed to shared representation between tasks in those regions.

However, other studies have found that the relationship between representational

separation and multitasking performance may be more distributed (Nijboer, Borst, van
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Rijn, & Taatgen, 2014). The present work focuses on representational separation that

should occur in regions that encode task-relevant associations between stimulus and

response dimensions, rather than regions that just exert control over those. However, in

Section Section 4.2.3 (“Semantics and Control”) in the General Discussion, we consider

how the costs and benefits of shared versus separated representations may also be

relevant to the formation and use of representations responsible for task control.

Simulation Study 5 also provides a mechanistic basis for the findings offered in

support of the redistribution account that training on multitasking leads to diminished

engagement of control-related areas (e.g., Dux et al., 2009). While this is interpreted as

evidence that multitasking training reduces reliance on control, it does not say how or

why this comes about. Simulation Study 5 provides such an explanation. As illustrated

in Fig. 3 in Part I, compositional configurations (with overlapping task processing

pathways) generally are associated with a greater likelihood of the need for and

engagement of control, as well as greater representational requirements to manage it,

than the conjunctive configurations made possible through the development of

separated representations. Accordingly, the development of the latter through multitask

training should be associated with a diminution in the demands for control and, thus, a

corresponding diminution in brain activity of areas associated with its engagement.

Note that this inverts the traditional interpretation that the association of diminished

activity in control regions with the acquisition of multitasking proficiency implies that

control was responsible for the capacity constraints in the first place. Rather, it

represents a diminution of need rather than an indication of cause; in terms of the

analogy used earlier, as the fire abates, the retreat of the fire workers reflects the

diminution of their need for managing, rather than their responsibility for causing the

fire in the first place.

3.4.4 Rationalizing the Trajectory From Controlled to Automatic

Processing. One of the most fundamental and widely studied phenomena in

cognitive psychology is the ubiquitously observed trajectory in skill acquisition from

control-dependent to automatic performance. While this has been characterized
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extensively in some of the foundational and most influential laboratory studies in

cognitive psychology (Logan & Crump, 2011; Schneider & Shiffrin, 1977; Shiffrin &

Schneider, 1977), and has tremendous importance in real-world settings (Drascic, 1991;

Gallagher & O’Sullivan, 2011; Hodges & Williams, 2012), nevertheless, there have few

mechanistically explicit accounts of how this transition occurs (J. D. Cohen et al., 1990;

Logan, 1997; Taatgen & Lee, 2003), none of which provide a normative account of when

and why it should occur. The framework we have described offers both, in terms of an

intertemporal choice between the efficacy of learning and a more immediate form of

flexibility afforded by shared representations versus the efficiency of parallel processing

afforded by separated representations that take longer to acquire. In the final section of

Part II, we reviewed recent work that directly examines this trade-off, both in abstract

formal terms and in the context of a deep learning model tasked with acquiring a set of

plausibly realistic skills (object identification and localization; Ravi et al., 2020).

While the models we have considered make a number of assumptions, they

indicate how the framework we have presented may provide a promising foundation for

a formally rigorous, normative theory of how people choose between learning to perform

a task quickly but at the expense of control dependence and seriality, versus expending

the additional time (and effort) to learn to perform it in a way that affords automaticity

and the efficiency of multitasking. In novel and/or rapidly changing environments,

shared representations afford the ability to generalize what has been learned in other

domains, thus enhancing cognitive flexibility. For example, people can quickly learn

how to play a melody on a piano by using their knowledge of how to place fingers at

designated locations. However, this reliance on existing representations comes at the

cost of a seriality constraint: they can only be used for one purpose at a time (e.g.,

placing only one finger on the keyboard at a time). With sufficient motivation and time

(e.g., the desire to become a concert pianist and the opportunity to take lessons and

practice), it is possible to acquire task-dedicated, separated representations that afford

automaticity and the capacity for parallel processing (i.e., simultaneously and

independently configuring all of the fingers required to play a given chord). Thus, the
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development and/or exploitation of shared representations may prove useful for initial

task acquisition, but in time yield the value of separated representations and the

acquisition of automaticity for frequently performed tasks.

The benefits of shared representation for transfer may also have a “snowball

effect:” Once novel tasks build on existing representations, those representations may

be refined by more training signals to provide a better (more noise-free) filter of

stimulus information that is generalized across tasks, thus making them more useful for

other tasks (Baxter, 1995) and further enhancing learning benefits as more tasks use

those representations. The results we present here suggest that this is also associated

with a correspondingly rapid increase in the potential for interference and, thus,

reliance on control and concomitant constraint on how many tasks can be performed at

once. This was evidenced in the results of the study reported in Section 3.3.3

(“Behavioral Study: Learning, Shared Representations, and Functional Dependence”),

in which participants were able to quickly learn a new task (i.e., map color words onto

an arbitrary set of response keys) by using an existing set of (orthographic)

representations, although this prevented them from being able to multitask this with

another task (color naming) due to the sharing of those representations with an

interfering task (word reading). In the General Discussion, we discuss the broader role

of these benefits for cognitive flexibility, including their role in canonical forms of

control-dependent processing such as language and symbolic processing

Finally, the models described in Section 3.3.4 (“A Normative Theory of

Automaticity: Optimization of the Trade-off between Shared and Separated

Representations as an Intertemporal Choice”) provide a formal basis for studying the

higher-level processes responsible for strategic decisions about whether and when to rely

on control-dependent processing, which constitutes an important focus of future

research. Those processes may be closely related to others responsible for longer-term

forms of adaptation, such as regulating the balance between exploration and

exploitation, and more explicit forms of planning, all of which might be considered

forms of meta-reasoning (Gershman, Horvitz, & Tenenbaum, 2015; Horvitz &
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Zilberstein, 2001; S. Russell & Wefald, 1991). In the General Discussion, we consider

such processes within the broader context of the Expected Value of Control Theory

(Shenhav et al., 2013, 2017), which proposes mechanisms in the human cognitive

architecture responsible for evaluating the portfolio of control-dependent tasks that it

can pursue in any given setting, and select ones—on the basis of a cost-benefit

analysis—that it estimates will yield the greatest cumulative future discounted benefits

factoring in the cost(s) of control.

4 General Discussion

The limited ability to perform multiple control-dependent tasks at the same time

is one of the most salient characteristics of human cognition and is universally

considered a defining feature of cognitive control (Posner & Snyder, 1975; Shiffrin &

Schneider, 1977). Despite these facts, the source(s) of such constraint(s) on

control-dependent processing have received considerably less attention in research than

the observation itself. Here we build on the idea that such constraints have to do with

the circumstances under which the need for control arises—viz., the sharing of

representations between tasks (Allport et al., 1972; Allport, 1980; Kieras & Meyer,

1997; Kinsbourne & Hicks, 1978; Navon & Gopher, 1979; McCracken & Aldrich, 1984;

Meyer & Kieras, 1997a; Walley & Weiden, 1973; Wickens, 1991) —rather than capacity

constraints associated with the mechanisms responsible for control themselves. We

provide a formal framework that permits studying the relationship between learning,

representational sharing, and the capacity constraints associated with

control-dependent processing in neural architectures. The framework suggests that:

• The multitasking capability of a network architecture decreases drastically with

the amount of overlap among task representations (i.e., sharing)—an effect that is

nearly invariant to the dimensionality of representations within layers of the

network and exacerbated by the number of layers. Moreover, the particular

pattern of overlap among task representations can be used to predict the

multitasking profile of the network as a whole. Taken together, these factors
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provide a quantitative grounding for multiple-resource theory (Allport, 1980;

Allport et al., 1972; Kinsbourne & Hicks, 1978; Navon & Gopher, 1979;

McCracken & Aldrich, 1984; Meyer & Kieras, 1997b, 1997a; Walley & Weiden,

1973; Salvucci & Taatgen, 2008; Wickens, 1991).

• The dependence among tasks induced by (1) shared representation, (2) the

amount of conflict, and (3) the persistence of representations provides an

integrated mechanistic framework within which to account for the conditions

under which parallel processing and concurrent multitasking capability are

possible (at an extreme), and the rate at which tasks can be switched when serial

execution is required. This, in turn, provides a coherent account for psychological

phenomena, such as the PRP effect and performance costs associated with task

switching, that have largely been treated as distinct in the cognitive literature.

• Neural network architectures are subject to a fundamental tension between the

sharing of representation that promotes efficacy of learning and generalization,

and the separation of representations that permits the efficiency of parallel

execution and interference-free multitasking. When trained on tasks individually,

neural systems exhibit a bias to learn shared representations in environments

where there is shared structure between tasks, which in turn is associated with a

seriality constraint on processing and a reliance on control to manage that

constraint. Conversely, training explicitly on multitasking, or in environments in

which task structure is not shared, networks favor the generation of separated

(task-dedicated representations) that permit parallel processing, full concurrent

multitasking capability, and minimization of reliance on control for those tasks.

• The foregoing factors provide a mechanistically explicit, formally rigorous, and

potentially normative account of the commonly observed trajectory in skill

acquisition from controlled to automatic processing: When acquiring one or more

tasks that share structure (with each other or existing ones), the immediate value

of exploiting shared representations (faster acquisition) may be preferred over the
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future discounted value of increased multitasking capability and processing

efficiency that comes with learning separated, task-dedicated representations, but

at the expense of slower acquisition (and greater effort). Thus, novel tasks are

often learned quickly, but at the expense of a seriality constraint and

control-dependence. However, when it is deemed worthwhile, separated

representations can be acquired through explicit training on multitasking (or

possibly passively, with sufficient experience) that afford parallel processing and

multitasking capability—that is, automaticity.

In the remainder of this discussion, we consider the implications of these

observations and their relationship to fundamental principles in other domains of

cognition.

4.1 Relationship to Existing Theories of Dual-Task Limitations

There is a large literature on decrements in human performance associated with

the attempt to execute two tasks simultaneously (Fischer & Plessow, 2015; Janczyk &

Kunde, 2020; Koch et al., 2018; Logan & Gordon, 2001; Meyer & Kieras, 1997a;

Pashler, 1994), commonly referred to as dual-task interference. Broadly, three classes of

theories have been proposed to account for the observed effects, each of which points to

a different source of dual-task limitations: (1) structural bottleneck theories that

attribute dual-task limitations to a central, structural bottleneck that can process only

a single task at a time; (2) capacity sharing theories that posit all tasks rely on a

unitary, limited resource, and that parallel execution can occur provided the resource is

sufficient, but that competition arises as it is depleted; and (3) multiple-resource

theories that assume dual-task limitations arise only when the two tasks rely on the use

of a shared local resource (i.e., specific to those tasks) for different purposes. The

historical progression among these theories, and the empirical evidence that has been

offered in support of each, is well reviewed in other work (e.g., Logan & Schulkind,

2000; Meyer & Kieras, 1997a; Pashler, 1994; Wickens, 1991). Here, we summarize each,

focusing on the core assumptions of these theories, and a comparison of them with the
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theoretical framework presented in this article.

4.1.1 Structural Bottleneck Theories. Structural bottleneck theories build

on Telford’s suggestion (1931) that organisms might be subject to a PRP that prevents

the rapid successive execution of two tasks. Telford argued that the PRP is analogous

to the refractory period of neurons that prevents the rapid initiation of an action

potential immediately after a preceding action potential.43 To explain the PRP and

related findings (e.g., Craik, 1948; Vince, 1948), Welford (1952) postulated a central

information processing channel that takes some “organizing time” to initiate a response

to information provided by a stimulus. Critically, Welford suggested that “no two

central organizing times can overlap, so that information from a stimulus arriving while

information from a preceding stimulus is being dealt with has to be ‘held in store’ until

the central mechanisms are free” (Welford, 1952, p. 18). This single-channel hypothesis,

which might be thought of more accurately as analogous to the seriality constraints

imposed by the central processor of a traditional computer than the refractoriness of a

neuron, assumes that humans can only process one task at a time (Welford, 1952, 1967;

Davis, 1959).

While Welford postulated that the central channel “deal[s] with the information

provided by a stimulus and [...] initiate[s] a response to it” (Welford, 1952, p. 18) it

remained unclear whether the bottleneck encompasses stimulus perception and/or

motor execution, leading to subsequent debates about the locus of the bottleneck. For

instance, Broadbent’s (1957) early-selection model of attention assumed that the

bottleneck is located in the selection of task-relevant stimulus features. Conversely,

Keele (1973) contended that tasks may be processed in parallel from perception up

through response selection (see also Logan & Burkell, 1986; Norman & Shallice, 1986;

43 The analogy is flawed in the sense that the refractory period of neurons is a recovery phenomenon

whereas the PRP is thought to result from an actual bottleneck that precludes the second task from

being processed while the first is still executing (Meyer & Kieras, 1997a). Moreover, the neuronal

refractory period can be overcome by amplifying the input signal to the neuron. In contrast, the

dual-task PRP does not seem to become shorter if the intensity of the second stimulus is increased

(Pashler, 1994).
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De Jong, 1993), but that there is a bottleneck in response initiation. Perhaps the most

prominent, or at least enduring account of the single channel hypothesis localizes the

bottleneck to the response selection process (De Jong, 1993; Pashler, 1984, 1994;

Welford, 1967), described as a decision mechanism that “converts the stimulus code to

an abstract symbolic code for a physical response based on some set of innate or

previously learned stimulus-response associations” (Meyer & Kieras, 1997a, p. 4). The

decision mechanism is assumed to be central in the sense that it is

modality-independent (i.e., it handles response selection for all tasks). What is common

across most of these structural bottleneck accounts is that they assume that processing

occurs in stages (e.g., stimulus perception, response selection, motor execution), and

that the stages are strictly successive (i.e., processing at different stages cannot occur in

parallel; Sternberg, 1969). Despite strong arguments that challenge the assumption of

discrete stages of processing (McClelland, 1979), and growing evidence against a

structural processing bottleneck (see Section 2.4 “Summary, Discussion and Conclusions

for Part I”), the presumption of such a bottleneck has had a profound influence on

thinking about dual-task interference.

The models we have described include components—layers of the

network—corresponding to the different levels of processing that have previously been

ascribed to distinct stages of processing (e.g., stimulus, association, and response), and

collectively implement a response-selection process that satisfies the definition given

above. For example, the three-layer network used in Simulation Studies 1-3 (see Fig. 9)

implements the response-selection process by mapping stimulus codes in the stimulus

input layer, through an internal, distributed representation in the hidden layer that

encodes task-relevant stimulus-response associations, to a representation in the output

layer that determines the response. However, this differs from the response-selection

process in bottleneck accounts (Pashler, 1994) in three critical ways: (1) layers of

processing are not isolated from one another in the way that “stages” of processing are

assumed to be, although processing within one or more layers can be strategically

deferred by control if need be; (2) response-selection is not modality-independent; and
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(3) it can occur in parallel for different response modalities, subject to the potential for

interference arising from shared representations in other processing layers. Properties

(1) and (3) can conspire to produce bottlenecks in response selection, due to structural

and/or functional interference between a pair of tasks, without appeal to the capacity

constraints of a central processor. In such a system, the PRP depends on the amount of

interference induced by shared representation. That said, this does not preclude the

possibility that dual-task interference can also arise at other points in processing or for

other reasons; for example competition among representations responsible for control, a

possibility to which we will return in Section 4.2.3 (“Semantics and Control”), or

retrieval of necessary information from episodic memory, that we consider in

Section 4.2.4 (“Episodic Memory and Control”).

To be fair, Pashler has dutifully noted that “the predictions [of a response

selection bottleneck] do not require strict successiveness and might well be compatible

with selective influence on processes that normally operate in cascade (McClelland,

1979) [...] Key predictions depend on the idea that once a stage is completed, factors

selectively influencing that stage cannot have any later effects; in a cascade model, this

would still be the case if a stage reached its asymptotic output level and then maintained

that state for some period of time until following stages began to use that output.”

(Pashler, 1994, p. 238). However, the models we have presented that address the PRP

violate Pashler’s constraints: As in the original Cascade model of (McClelland, 1979),

processing at one layer can occur in parallel with, and can continue to influence the

processing in layers to which they project. This includes the output layer responsible

for selecting a response, which can continue to be influenced by processing in preceding

layers until it reaches its response threshold. Specifically, Simulation Study 3 showed

that a neural network model with such continuous processing could exhibit effects

consistent with the PRP. Whereas such effects have traditionally been attributed to a

structural bottleneck imposed by a central processing mechanism, our results suggest

that the PRP could alternatively reflect the effect of local bottlenecks imposed by

shared representations, and the adaptive regulation by control mechanisms in response
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to those bottlenecks in order to optimize processing.

4.1.2 Unitary Resource Theories. The observation that, under many

conditions, people can multitask led Kahneman (1973) and others (Navon & Gopher,

1979; Navon & Miller, 2002; Tombu & Jolicœur, 2003) to propose that, although

attention constitutes a central, limited-capacity resource, within constraints it can

nevertheless be shared between multiple tasks. According to Kahneman’s theory, tasks

such as naming the color of a Stroop stimulus rely on dedicated processing structures

(e.g., for categorizing a color as green). Activation of a structure is assumed to depend

on attention allocated to that structure, as well as the presence of a specified stimulus

(e.g., a color patch), similar to a population of neurons coding for a task process.

Attention is assumed to be limited and may be allocated in a graded fashion between

structures.44 Furthermore, allocation of attention is subject to voluntary control, and

the amount of allocated attention depends on the demands of the task(s) being

executed. Kahneman assumed that increases in attention are generally insufficient to

compensate for increases in task complexity, as well as the demands imposed by

executing more than one task at a time. Thus, dual-tasking interference is primarily

attributed to the attentional demands of competing tasks. Norman and Bobrow (1975)

elaborated Kahneman’s theory, suggesting that, in addition to attentional limitations,

task performance may also be “data-limited” which explains cases in which additional

attention cannot improve performance (e.g., if the signal-to-noise ratio of the sensory

input is too low).

The neural network models presented here share at least three assumptions with

Kahneman’s theory and Norman’s elaboration of it: First, task structures (i.e., task

representations) require both sensory input and control to be sufficiently activated,

although can be diminished (but not entirely eliminated) with practice. Second,

multitasking interference arises when two tasks make competing use of a shared resource

(i.e., a set of processing units in the neural network). Third, it is assumed that the

44 The limit itself is subject to momentary fluctuations and is assumed to be correlated with

physiological indices of arousal, such as pupil dilation (Kahneman, 1973).
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cognitive system can allocate cognitive control between tasks in a voluntary and graded

fashion, based on the demands of the tasks and the needs of the agent.45 However,

several critical assumptions about the nature and role of cognitive control contrast with

those of unitary resource theories. First, in our models, limitations in multitasking do

not arise from an intrinsic limitation of the control system but rather can arise from the

sharing of representations between specific tasks. The latter is crucial, as it addresses

three criticisms previously lodged against unitary resource theories (Wickens, 1991).

First, a unitary capacity-limited resource cannot explain circumstances in which a

complete absence of dual-task interference is observed (“virtually perfect time sharing”;

Greenwald, 1970; Greenwald & Shulman, 1973; Göthe et al., 2016; Oberauer et al.,

2016; Halvorson et al., 2013; Hazeltine et al., 2006; Liepelt et al., 2011), assuming

executing multiple tasks requires a higher amount of attention than is available.

Second, it cannot account for the observation that the difficulty of one task can have

little to no effect on its joint performance with another (“difficulty insensitivity”;

Briggs, Peters, & Fisher, 1972; Johnston, Greenberg, Fisher, & Martin, 1970; Kantowitz

& Knight, 1974; Kantowitz & Knight Jr, 1976; Wickens & Kessel, 1979). Third, it fails

to accommodate the observation that the more difficult of two tasks brings about less

interference with a third task than an easier one (“uncoupling of difficulty and

structure”; Wickens, 1991). Each of these criticisms can be addressed by dropping the

assumption of a unitary capacity-limited resource, and by permitting tasks to rely on

task-specific representations that may or may not be shared with other tasks, as is the

case in the network models described here. That said, as discussed in Section 4.2.3

(“Semantics and Control”) below, there may be constraints on how much control can be

allocated in some circumstances, as a function of the nature of the representations used

for control of the tasks involved, although even this can be mitigated by an investment

in the acquisition of separated representations and automaticity, as discussed in

Section 3.4.2 (“Multitasking Practice Facilitates Representational Separation”) in the

45 We assume that control is allocated such that reward rate is maximized (e.g., Shenhav et al., 2013)

as outlined in Section 2.3.1 (“Neural Network Model of Multitasking Performance”) in Part I.
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Summary and Discussion of Part II. Importantly, this is distinct from unitary resource

theories, in that it predicts that any constraints in the allocation of control itself are

particular to the set of control representations required and their relationship to one

another—which obey the same principles of representational sharing at any level of

processing—rather than to the intrinsic capacity of a central unitary resource.

4.1.3 Multiple-Resource Theories. Multiple-resource theories renounce the

concept of a central processing bottleneck or unitary resource. Instead, they contend

that a cognitive system is equipped with many independent, specialized resources and

that different tasks rely on different combinations of such resources. According to this

class of theories, multitasking limitations result from conflicts that arise when two or

more tasks demand the use of the same resource for different purposes at the same time.

Instances of multiple-resource theory vary in their assumptions about whether an

individual resource can ever be shared between two tasks at the same time, and whether

two tasks with different resources can interact with one another. Here, we review three

types of multiple-resource theories, considering each with respect to the present

framework.

Divisible resources. Early instances of multiple-resource theory borrowed from

Kahneman’s notion of capacity limitation, suggesting that each resource has its own

capacity that is divisible among several concurrent tasks (Navon & Gopher, 1979;

Wickens, 1991). However, Navon and Gopher (1979) assume that the capacity of each

resource is fixed and independent of task load, unlike the unitary resource proposed by

Kahneman (1974). A cognitive system would then supply resources to meet the demand

determined by the desired level of task performance for each task, subject to constraints

imposed by external and internal task parameters (e.g., predictability of the stimulus or

task practice, respectively). The neural network models presented in this article are

compatible with this notion of resource divisibility if it is assumed that the extent to

which a resource is shared between two tasks is proportional to the overlap in the

representations they require (e.g., the extent to which they share a common set of
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processing units needed to execute each of the tasks in isolation successfully).46 As

such, a resource is divisible in the sense that two tasks may share the same set of units

to a variable extent, and the amount of resource sharing can be quantified as the

correlation of the average pattern of activity (reflecting the configuration of processing

units in that resource required) for each task over the set of shared units (Edelman,

1998; Kriegeskorte & Kievit, 2013; Saxe et al., 2019). If there is a high correlation, then

the two tasks rely on similar configurations of units, and since a single configuration

(set of processing units) cannot be in two different states (demanded by the two

different tasks) at the same time, then the resource cannot be relied on to be “divisible”

between the two tasks. However, critically, this depends on the extent to which the

particular information being processed by the different tasks is congruent or

incongruent—a factor to which return just below. More generally, the formulation of

resources as representations in neural network architectures not only allows resource

sharing to be treated as a quantitative, continuous dimension that allows the amount of

sharing between tasks to predict the likelihood of interference associated with

multitasking, but also provides an account of the factors that determine such sharing

(such as the statistical structure of the tasks and learning).

Indivisible resources. More recent instances of multiple-resource theory assume

that resources are not divisible; that is, each resource can only be executed by one task

at a time (Allport et al., 1972; Byrne & Anderson, 2001; Meyer & Kieras, 1997a;

Salvucci & Taatgen, 2008). For instance, using the symbolic architecture EPIC, Meyer

and Kieras (1997a) proposed multiple perceptual and motor processors, as well as a

central cognitive processor and working memory. In this architecture, perceptual

processors (e.g., for visual information) can process information from two tasks in

parallel as long as that information is congruent. In contrast, motor processors (e.g., for

46 Note that, unlike in some instances of multiple-resource theory, there is no pre-specified structural or

procedural constraint on executing two tasks in parallel, even if they rely on the same resource (i.e.,

sets of processing units). Their parallel execution, however, may result in multitasking interference,

which may lead control mechanisms to determine they shouldn’t be processed in parallel, and/or

learning mechanisms to modify the representations so that they can be in the future.
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verbal responses) can only execute one task process at a time, irrespective of whether

they involve processing congruent or incongruent information. This contrasts with the

neural network models described in this article, which can be thought of as having

“divisible” resources (in the sense discussed above) that depend not only on the degree

to which processing units are shared but also on the degree to which the information

being processed by the different tasks is congruent or incongruent. That said, unlike

earlier instances of multiple-resource theory, but in line with the framework proposed

here, Meyer & Kieras entirely eliminated the assumption of central processing

limitations, and allowed that the central cognitive processor could, in principle, execute

an unlimited number of operations (called “productions”) in parallel; it was constrained

only by the potential for conflict among task-related actions. Interestingly, Byrne and

Anderson (2001) proposed a model, referred to as “ACT-R/PM”, which adhered to the

assumption of the ACT-R framework (Anderson & Lebiere, 2014) that a central

processor can operate only one task process at the time, but was able to account for

PRP effects just as well as EPIC. Critically, it shared with EPIC the assumption that

processing was constrained primarily by competition for use of local resources, rather

than the central seriality constraint on the execution of productions. This suggests that,

at least under the conditions addressed by these models, constraints on the processing

capacity of a central executive may not matter as much as those imposed by the sharing

of local resources.

This idea was further reinforced by Salvucci and Taatgen (2008), who proposed a

theory of threaded cognition based on a production system architecture in which all

local resources (perceptual, cognitive, and motor) were constrained to process only one

request at a time (i.e., they were indivisible), and that relied on a fully distributed

coordination among tasks, without any specific central executive. Rather, the

scheduling and execution of task processes were distributed among the mechanisms

responsible for the execution of each task, following simple rules intrinsic to the

architecture. For instance, tasks (“threads”) were assumed to demand mechanisms in a

“greedy” manner as soon as they were needed, and release resources to other tasks in a
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“polite” manner as soon as they were no longer required.

Despite the implementational differences between our approach and ones using

indivisible resources to implement multiple-resource theory, these approaches all agree

in at least two fundamental ways: (1) dual-task interference is driven in large measure

by the potential for local conflicts in processing, and (2) such conflict can be avoided by

strategically delaying the processing of one task to prevent interference from another

other. This was first described as strategic response deferment (SRD) within the EPIC

framework by Kieras and Meyer (1997); Meyer and Kieras (1997a), in which a response

to the second task could be deferred by an executive (control) mechanism until after

sufficient progress had occurred on the first task. Similarly, in Simulation Study 3, the

response to the second task was deferred by increasing the response threshold of the

LCA for that task, to circumvent interference from the persistence of processing of the

first task. We further assumed that these adjustments were made in a normative

fashion to optimize the joint reward rate for both tasks. More sophisticated algorithms

for making such normative adjustments, and the neural mechanisms that implement

them, are the focus of several lines of recent work (Lieder et al., 2018; Simen et al.,

2009; Shenhav et al., 2013; Westbrook et al., 2020). Such normative adjustments could,

of course, also be added to symbolic processing architectures such as EPIC (Meyer &

Kieras, 1997b, 1997a) or threaded cognition (Salvucci & Taatgen, 2008). However, once

again, such mechanisms are likely to be constrained to making discrete adjustments,

whereas their implementation in a neural architecture would permit graded

adjustments, and allow these to be learned.

Cross-talk models. The third class of multiple-resource theories is often referred

to as “cross-talk models”. Cross-talk models assume that dual-tasking interference may

occur even if the tasks involved do not directly compete for the same resource. For

instance, Kinsbourne and Hicks (1978) proposed that the brain supplies tasks with

limited “cerebral space” akin to the notion of a generalized processing resource.

According to this account, much like the unitary resource theories, high performance on

a task requires more cerebral space. However, Kinsbourne’s version adds that the closer
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the functional cerebral space for two tasks—measured in terms of the connectivity of

associated brain regions—the more likely they are predicted to interfere with one

another. This assumption parallels the more formal treatment of structural and

functional dependence between tasks in neural network models based on the degree of

representational sharing discussed in Part I. Another hypothesis put forth by Navon

and Miller (1987) suggests that cross-talk between the processing channels of two tasks

may lead to “outcome conflict,” especially if the information content being processed in

one task is incongruent with the information content being processed in another task, as

is the case in the extended Stroop task described in Part II (see Section 3.3.3

“Behavioral Study: Learning, Shared Representations, and Functional Dependence”).

Navon & Miller’s proposition posed an interesting challenge for multiple-resource

theories, which assumed processing conflict irrespective of the information to be

processed for different tasks. However, it did not come with a formal framework to test

these predictions. Townsend and Wenger (2004) provided such a framework and used it

to study cross-talk in holistic cognitive processes, such as Gestalt-like phenomena.

Similar to Navon & Miller (1987), they argued that cross-talk between different

processing channels could be both facilitatory and detrimental, depending on the

information content being processed (see Section 4.4 “Interference Versus Facilitation”

below). The interaction between resources, as well as the sensitivity of dual-task

interference to the information content being processed, is a distinct prediction of such

cross-talk models.47 However, Townsend and Wenger (2004) remained agnostic to the

neural mechanisms underlying such cross-talk.

Similar to cross-talk models, neural network models allow us to extend the

analysis from direct, structural interference on which most previous instances of

multiple-resource theory have focused, to the case of functional interference: Even if two

47 Some instances of multiple-resource theory have acknowledged the importance of information

content, and allowed resources to be used by tasks in parallel if the information content being

processed is congruent (Meyer & Kieras, 1997a; Byrne & Anderson, 2001; Salvucci & Taatgen, 2008).

However, they lack a mechanistic explanation for this policy.
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simultaneously executed tasks don’t directly share the same resources, they may still

interfere with one another by means of a third task that introduces functional

dependence between the two. The phenomenon of functional dependence, as illustrated

in the extended Stroop task (Section 3.3.3 “Behavioral Study: Learning, Shared

Representations, and Functional Dependence”), results from both representational

sharing and the role of control in processing. With regard to the latter, it is assumed

that, in order to execute a task, control must be allocated to the representations for

that task. Allocating control to two structurally independent tasks (e.g., color naming

and word mapping) may implicitly engage a third task (e.g., word reading) that shares

representations with each of the two tasks (e.g., word representation shared between

word mapping and word reading, and verbal representations shared between word

reading and color naming). We showed that multitasking performance could be reliably

predicted from the measurement of such functional dependencies. This role of control in

regulating which information is being processed (gated through the network) is a

notable distinction from prior cross-talk models (e.g., Townsend & Wenger, 2004),

which do not make commitments about how information flow is regulated.

Furthermore, the present framework also makes commitments about how information is

represented, providing a mechanistic explanation for why dual-task interference depends

on the content of the information being processed. Interference between two

functionally dependent tasks (e.g., color naming and word mapping) is predicted to be

higher if the stimulus features relevant to the interfering task (word reading) are

associated with a different response than the stimulus features relevant to the task

subject to interference (color naming). We found evidence for this interaction in the

extended Stroop task, in which dual-task interference between color naming and word

mapping was modulated by the response congruency of colors and words. Thus, the

neural network models presented in this article combine assumptions of classic,

symbolic multiple-resource models regarding structural interference with the

assumption of functional dependence from cross-talk models.
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Commonalities and challenges for multiple-resource theories. All three classes of

multiple-resource theories can account for a broad range of experimental phenomena,

including ones that troubled unitary resource models. Moreover, some of them are

expressive enough to account for complex multitasking scenarios outside the lab, such

as driving a car while attempting to dial (Brumby, Howes, & Salvucci, 2007; Brumby,

Salvucci, & Howes, 2009; Salvucci & Macuga, 2002). However, previous

implementations of multiple-resource theories also face a number of theoretical

concerns. First, unlike theories that posit a central processing mechanism,

multiple-resource theories must explain why multitasking appears to be so commonly

limited to a small number of tasks (e.g., in the absence of limitations imposed by motor

or sensory processes, why can we have only one stream of thought at the same time?),

despite the enormous structural capacity of the human brain. In this light, it is perhaps

not surprising that most multiple-resource theories do not rule out the possibility of a

central capacity-limited mechanism on which many, or even most processes rely (Byrne

& Anderson, 2001; Navon & Gopher, 1979; Meyer & Kieras, 1997a; Salvucci & Taatgen,

2008; Wickens, 1991). Second, multiple-resource theories rely on auxiliary assumptions

about the number and types of task-dedicated resources and thus are both less

parsimonious compared to theories that posit a central limitation, and difficult to

constrain (Kinsbourne & Hicks, 1978; Navon & Gopher, 1979; Wickens, 1991). While

some resource taxonomies are informed by effects of task-similarity on dual-task

interference (e.g., Meyer & Kieras, 1997a; Wickens, 1991), this risks circularity

(Treisman & Davies, 1973) that, to be avoided, requires more than behavioral criteria

when deciding about the number and types of task-dedicated mechanisms. That is,

there is a risk of adding an increasingly large number of auxiliary assumptions about

resource sharing as the number of explained behavioral phenomena grows. Finally,

multiple-resource theories have previously all been implemented in symbolic

architectures, both raising questions about how the postulated resources are

implemented by neural mechanisms and, conversely, missing the opportunity to exploit

a rapidly growing understanding of the processing capabilities and characteristics of
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neural architectures (both natural and artificial).

The work presented in this paper addresses the theoretical limitations of

multiple-resource theory by leveraging the formalisms offered by neural network

modeling. First, it provides a more stringent test of the multiple-resource theory by

evaluating multitasking capability in architectures that, prima facie, have available

extensive resources (i.e., numbers of processing units and pathways). Our finding that

shared representation drastically limits multitasking capability, even in large networks,

provides qualitative support for multiple-resource theory in such settings. That is,

neither the assumption of a central unitary resource nor a single local resource

bottleneck may be necessary to account for the striking limitations of human

multitasking behavior, even given the size of the brain. Second, it formalizes the

construct of local resources as the source of constraints in multiple-resource theory, in

terms of graded and quantifiable factors: the extent to which the representations used

by different tasks overlap with one another (i.e., share processing units), the specific

content being processed in any given circumstances (i.e., congruency), and the relative

strength and persistence with which representations of that content are activated. The

latter provides a unified account of the constraints on parallel, multitasking capability

and the dynamics of serial, control-dependent processing—an account that aligns with

the broader notion that automaticity and control are best thought of as graded, relative

attributes (J. D. Cohen et al., 1990). Finally, implementation in a neural network

architecture allows these factors to relate directly to statistical similarities between

tasks and the conditions under which they are learned: two tasks are more likely to

share representations if they rely on similar features and if both tasks are acquired

without pressure to perform them simultaneously.

Is the capacity for control itself limited? As discussed above, implementations of

multiple-resource theory—including the neural network models presented in this

article—all concur with regard to two principles: (1) the sharing of local resources

across tasks is a critical source of constraints on multitasking capability; and (2) those

constraints reflect the operation of mechanisms responsible for control, which impose
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serial processing in order to mitigate the conflict that can arise from the simultaneous

use of shared resources for disparate purposes. Notwithstanding this concurrence,

models vary in how they implement the mechanisms responsible for control, and in

whether those mechanisms are themselves subject to processing constraints that may

further contribute to limitations in multitasking capability. Some models explicitly

assume that control mechanisms are constrained to serial operation (e.g., in ACT-R,

only a single production can be selected for execution at a given time; Anderson &

Lebiere, 2014), while others allow control to support concurrent execution of multiple

tasks so long as they do not incur conflict (Meyer & Kieras, 1997a). In principle, the

framework we have presented aligns with the latter category, inasmuch as it does not

posit any universal or pre-specified constraint on the capacity for control-dependent

processing. Nevertheless, control relies on representations that, like any others, may be

subject to competition, and such competition may impose a constraint on the

processing of tasks that rely on those representations for control.

More specifically, neural network architectures do not require any specific

mechanisms or types of representations that are dedicated to control. Rather, as

implemented in all of the models presented in this article, control is implemented as the

biasing effect that one set of representations has on others (J. D. Cohen et al., 1990;

Kalanthroff et al., 2018), without requiring any qualitatively distinct mechanisms or

forms for the representations on which control relies.48 For simplicity, and to focus on

the role of sharing among representations in task-specific processing pathways, all of the

models presented in this article relied on control representations that were pre-specified

and provided externally as stimuli (i.e., as a pattern of activity applied to the task

48 Note that, while they are not necessary, there can be mechanisms in neural network architectures

that are specialized for the active maintenance and updating of representations and/or their role in

attentional selectional that contribute to their use for control (Braver et al., 1999; Frank, Loughry, &

O’Reilly, 2001; Hochreiter & Schmidhuber, 1997; Vaswani et al., 2017; Zipser, Kehoe, Littlewort, &

Fuster, 1993). Furthermore, some representations may be more suitable for or play a more consistent

role in control than others. We return to a discussion of each of these considerations, respectively, under

Section 4.2.1 (“Working Memory and Control”) and Section 4.2.3 (“Semantics and Control”) below.
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input units), rather than implemented as internal representations and/or learned. More

generally, and in many other models (e.g., ones that have been used to address both the

dynamics of control (Braver & Cohen, 2000; Botvinick et al., 2001; J. D. Cohen &

Servan-Schreiber, 1992; O’Reilly & Frank, 2006; Musslick et al., 2018, 2019; Ueltzhöffer

et al., 2015) and how control representations themselves may emerge (Rougier, Noelle,

Braver, Cohen, & O’Reilly, 2005; Kriete et al., 2013), control representations are

patterns of activity over internal units that can be elicited but are not necessarily

isomorphic with the external cues or instructions used to engage a task, and that can be

learned through experience.

In general, control representations can be thought of simply as representations of

the context information needed to select the relevant task-specific information (e.g.,

dimensions, relations, etc.) required to perform that task. Critically, since such context

representations are like any others, the principles of representational sharing, strength,

and persistence apply to them as well. Accordingly, insofar as two or more tasks rely on

the same context representations for control, they may be subject to constraints on

multitasking due to competition among the representations on which they rely for

control. In this respect, such constraints may be reasonably attributed to the

mechanism responsible for control, and, in such cases, other representations may be

required as an additional source of control to avoid conflict. Note, however, that the

same principles apply here as in the models discussed throughout this article:

constraints arise from the nature of the representations involved, which depend on the

particular tasks involved (here extended to include the control representations on which

they rely), rather than from some intrinsic limitation in the nature of control as such.

That is, the framework we have presented suggests that the mechanisms responsible for

control may themselves also be subject to a capacity constraint for the same reasons as

any other. However, the implementation of control differs from that posited by central

bottleneck theories in two important ways: (1) control mechanisms are not by fiat

centralized; (2) and they are subject to exactly the same constraints as any other

resource within the processing architecture, which are determined by the sharing,
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strength, and persistence characteristics of the representations involved. This emphasis

on the importance of representation in control also provides a unified understanding of

how control interacts with other fundamental cognitive functions, such as working

memory, attention, and the organization of semantic memory and its relationship to

episodic memory. We consider these in the sections that follow.

4.2 Relationship of Control to Memory and Attention

4.2.1 Working Memory and Control. One approach that has been taken

to explaining the capacity constraints of control-dependent processing has been to

assume that the active maintenance of context representations used for control relies on

a central, limited-capacity working memory mechanism (Cowan et al., 2012; Kriete et

al., 2013; Luck & Vogel, 1997; G. A. Miller, 1956; Schneider & Detweiler, 1988). While

this is not explicitly specified by most central bottleneck theories (Welford, 1967;

Pashler, 1994), it could contribute to the capacity constraints associated with control.

For example, this is implicit in ACT-R, in which working memory is defined to be those

representations that are currently active in declarative memory. Since a limit is imposed

on the amount of activity permitted in declarative memory, and only productions that

match the contents of working memory are eligible to execute at a given time, the

activity limitation imposed on working memory imposes, in turn, a constraint on which

productions are eligible to fire. In the traditional ACT-R architecture (Anderson, 2014),

there was a single, centralized declarative memory; thus, the constraint on its activity

can be thought of as contributing to a central bottleneck. More recent revisions have

added domain-specific modules, each with dedicated buffers that can be thought of as

sub-components of declarative memory that are subject to their own, independent

activity constraints. This more closely approximates a form of multiple-resource theory,

in which the buffers correspond to local resources. Accordingly, this also aligns more

closely with the framework we have proposed in this article, in which constraints

associated with control are specific to the tasks involved, rather than on a single,

central, limited-capacity control mechanism. In both cases, constraints are imposed by
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limits to the number of representations that can be active within a given module at a

given time, including those on which control relies. If working memory is defined in

neural systems as it is in ACT-R—as those representations that are currently

active—then it follows that constraints on control-dependent processing are tied

directly to constraints on working memory. That said, how these constraints are

determined differs between ACT-R and neural architectures. In ACT-R, modules are a

pre-specified, structural feature of the architecture, as is the parameter that determines

the total amount of activity permitted within a buffer (Anderson, Reder, & Lebiere,

1996). By contrast, in neural networks, modules (e.g., “layers”) and the amount of

activity that can be supported within them are determined by the pattern of connection

weights. These can be graded and either determined architecturally (i.e., pre-specified)

or acquired through learning. In this article, we have given examples of how learning

can shape the extent to which different tasks rely on shared representations (i.e., the

same “module”) or separated ones (i.e., different “modules”). In both cases,

performance can be said to be constrained by the capacity limits of working memory

(i.e., the activation within each module). Note, however, that on this account, the

association between working memory and control may be less informative, or at least

less restrictive than it is in central bottleneck theories, in which there is a single central

capacity limitation. Here, the capacity is determined by the degree to which

representations are separated (i.e., the number of “modules”). What is more

informative in a neural architecture is the relationship among the representations on

which a set of tasks rely. We return to this point in greater detail below, in

Section 4.2.3 (“Semantics and Control”), where we consider how control relates to the

organization of semantic knowledge. First, however, we consider features of neural

architectures that may be more specifically tied to working memory, and how those may

relate to constraints on control-dependent processing.

In the foregoing discussion, we considered working memory as comprised of all

currently activated representations. This appropriately identifies the information

currently being actively processed (i.e., “worked on”). However, it fails to distinguish
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between information that may be only transiently activated from that which may be

actively maintained over longer periods. All of the models presented in this article

involved strictly feed-forward networks, and thus focused on representations the activity

of which was primarily dependent on the current input. While we did discuss the effects

of passive persistence of activity, this was assumed to decay relatively rapidly (e.g., over

hundreds of milliseconds); we did not consider more sustained forms of activity that are

often associated with working memory function (Baddeley, 1992; Baddeley & Hitch,

1974; Cowan, 1993; Cowan et al., 2012; Oberauer et al., 2016), that may be of particular

relevance to control (e.g., enduring representations of context needed to guide extended

sequences of action in support of goal-directed behaviors; E. K. Miller & Cohen, 2001).

Neural network architectures often include structural features that are specialized for

such purposes and have played an important role both in models of working memory

(Usher & Cohen, 1999; Zipser et al., 1993; O’Reilly & Frank, 2006; Bouchacourt &

Buschman, 2019) and cognitive control (J. D. Cohen & Servan-Schreiber, 1992; Braver

& Cohen, 2000; Frank et al., 2001), as well as in machine learning applications involving

sequential behavior (Mnih et al., 2015; Silver et al., 2017). Nevertheless, such

subsystems are subject to the same principles of representation and processing that

apply to the simpler, feed-forward models considered in this article. Specifically, they

are subject to the same constraints imposed by shared representations, the relative

strength of processing, and persistence characteristics that are the focus of this article.

For example, Usher, Cohen, Haarmann, and Horn (2001) described an analysis of

simple attractor networks, in which the capacity to actively represent multiple items

was found not only to be tightly constrained but also influenced by the relationship

among the activated representations. Recently, Bouchacourt and Buschman (2019)

observed similar principles in a biophysically detailed model of the neural mechanisms

underlying sustained activity in visual working memory. Their model consisted of two

layers: a sensory network composed of independent sub-networks, each dedicated to

representing a visual object in a different location in space; and a separate network that

was randomly and reciprocally connected to the sensory network. Representations of
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stimuli in the sensory network elicited patterns of activity in the random network that

fed back to the source representations in the sensory network. This reciprocal

connectivity ensured that representations for stimuli were sustained after the removal of

external input (i.e., the stimulus) to the sensory network. The random connections

ensured that the network was flexible enough to represent arbitrary sets of stimuli.

However, as a consequence, stimuli from different sensory sub-networks shared

representations in the random network. The authors demonstrated that such

representation sharing produced interference between items, limiting the number of

objects that could be actively maintained by the network. This model provides a

template of a configuration presumed to recur throughout the brain, in some cases

elaborated with gating mechanisms that can regulate the access to such systems (e.g.,

Frank et al., 2001), that provide a mechanism for sustaining the activity of

representations needed over enduring delays, but subject to constraints imposed by the

extent to which those representations are shared with other tasks.

4.2.2 Perception, Attention, and Control: The Binding Problem. The

consequences of co-activating multiple representations are also central to a longstanding

debate about the mechanisms underlying perception, and how these manage what is

often referred to as the binding problem (Treisman, 1996, 1999); that is, how perceptual

features are represented and associated with the objects to which they belong. This

debate is most commonly framed in terms of two contrasting proposals for how features

of objects are represented—using compositional versus conjunctive coding (A. Agrawal,

Hari, & Arun, 2020; Barlow, 1972; Desimone, 1991; Eickenberg, Gramfort, Varoquaux,

& Thirion, 2017; Liang, Erez, Zhang, Cusack, & Barense, 2020)—that differ in both

their representational and processing demands. In this article, we have used the same

terms—compositional and conjunctive—to refer to two extreme ways in which a

network can be configured to perform multiple tasks. We chose these terms specifically

to highlight the idea that the same principles of representation, processing, and control

in neural architectures may be in play at all levels of processing, from perception to

action. That is, the problem of simultaneously detecting multiple objects can be
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thought of as homologous to, and governed by the same principles as the problem of

executing multiple tasks at the same time (Logan & Gordon, 2001), and the binding

problem simply an expression of this in the domain of perception. Here, we discuss how

the analyses and interpretations we have presented concerning the role of control in the

execution of multiple tasks may provide insights into the role of attention with respect

to the binding problem in perception, as well as the factors that may shape the use of

compositional versus conjunctive coding schemes that have been proposed in this

context.

Compositional coding and the binding problem. This has been most famously cast

within the context of visual perception, and arises when multiple objects are present in

the display (e.g., a blue square and a yellow circle): How are the features of the objects

(e.g., their colors and shapes) represented in such a way that each feature is correctly

associated with the object to which it belongs (e.g., without misperceiving a blue circle

and/or yellow square)? More specifically, the problem arises if the representation of

objects is assumed to rely on compositional coding, in which there is a single set of

representations for each feature dimension, and the representation of a given object is

“composed” by activating its features along each dimension. This scheme has the virtue

of being representationally efficient, since only a single set of representations is needed

for each feature dimension. Such modular coding of different feature dimensions (e.g., of

colors, shapes, and locations) is observed across the visual system in the brain

(Desimone, 1991; Tanaka, 1996; Rolls & Tovee, 1995), and is thought to support

generalization and flexibility, such as spatial invariance of object processing (e.g., the

ability to detect the color of an object irrespective of its location), which correspond to

advances in artificial object recognition (LeCun et al., 1989; LeCun, Bengio, & Hinton,

2015; Schmidhuber, 2015). However, when more than one object is present, it is subject

to the binding problem. For example, given the objects above, the representations for

the colors red and green as well for the shapes square and circleand their locations will

all be simultaneously active, making it unclear which color is associated with which

shape and at what location—that is, which features are bound to which objects (Shiffrin
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& Schneider, 1977; Treisman & Gelade, 1980; Woodman & Luck, 2003). This can be

thought of as a form of cross-talk among object representations, homologous to the

cross-talk among tasks when they are represented in a network using a compositional

configuration (in which case the composition is not just of stimulus features, but of

those and corresponding responses; cf. Fig. 3). In both cases, cross-talk and the risk of

conflict arise for the same reason: reliance on a shared set of representations.

Feature integration theory. In the case of perception, as in task performance,

cross-talk can be prevented through the use of control, in this case by allowing the

features associated with only a single object to be activated at a time. This aligns with

the role that is ascribed to attention in Treisman’s influential Feature Integration

Theory (FIT, Treisman & Gelade, 1980): it acts to select the features associated with a

single object at a time, allowing them to be identified with that object, in the same

manner that control allows the input feature(s) to be associated with the relevant

response(s) for a given task. From this vantage, attention plays the same role in

perception that is ascribed to control in governing task execution, consistent with the

general idea that attention can be thought of simply as the application of control in the

domain of perception: the selection of perceptual information for further processing. It

also aligns with the classical observation that, when perception is made to be dependent

on attention (e.g., when an object must be identified based on features with which it is

not typically or strongly associated), processing (e.g., visual search) is serial (Shiffrin &

Schneider, 1977; Treisman, 1977). This is homologous to the seriality of task processing

imposed by control, and occurs for the same reason: to avoid the risk of conflict or

confusion due to cross-talk posed by the reliance on representations that are shared

across tasks or objects—that is, that are compositional. Importantly, however, this

interpretation of the cause of serial processing differs from the one commonly associated

with FIT.

FIT follows the logic of traditional central bottleneck theories: the allocation of

attention relies on a central, capacity-limited processing mechanism, and the

observation of serial processing when attention is required is due to its capacity
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limitation. In contrast, as argued throughout this article, we suggest that the causal

relationship is reversed: serial processing does not necessarily reflect a capacity limit in

the ability to allocate attentional control, but rather its allocation to enforce seriality of

processing in order to avoid conflict and confusion. This framing also suggests that

attention “binds” features to an object in a way that differs subtly from what is implied

by FIT: attentional control selectively restricts activity to the features of a single object

(e.g., at a single location) that constrains downstream processing to the corresponding

information, rather than structurally integrating those features into a specific or explicit

representation of the object, as might be inferred from the phrase feature integration.

The latter might be used more fittingly to refer to processes that produce changes to

the representation of the object itself; for example, the formation of associations among

the features of the object in episodic memory (e.g., an “object file”; Kahneman,

Treisman, & Burkell, 1983), and/or the strengthening of associations among its features

through learning in order to form a more enduring representation of that particular

object in semantic memory (discussed further below). From this perspective, the role of

attention in perception may be more precisely described as “feature selection” than

“feature integration,” with the latter relying on additional associative processes. This

point also highlights the idea, shared by both perspectives, that attention—and control

more generally—“binds” information by selectively co-activating representations

required for a given process.

Oscillatory mechanisms for binding. The considerations above rest on the

assumption that activation of a set of representations to be composed is co-extensive in

time with any others that are activated for the same purpose—that is, the persistence

of representations is on approximately the same time scale as the processing of the task

itself. However, a number of theories have proposed that representations may be

activated in a finer-grained way, or over a finer-grained time scale. For example, it has

been proposed that oscillations of activity may allow different sets of representations to

be co-activated in different phases of activity, binding items that are activated in the

same phase without cross-talk with items activated in other phases (Hommel, 1998;
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Lisman & Jensen, 2013; Verbeke & Verguts, 2019; Verguts, 2017; Verbeke, Ergo,

De Loof, & Verguts, 2021). This would represent an activity-based mechanism that can

solve the binding problem, at least for least modest numbers of items that otherwise

share representations and thus would be subject to cross-talk or conflict. Note that this

can be considered an example of the interaction between persistence and sharing

discussed in Simulation Study 3, in which limiting persistence allows more rapid

switching between activated representations, implementing a form of time slicing—i.e.,

fine-grained serial processing—needed to avoid the cross-talk or conflict posed by

representational sharing. From this perspective, it can be considered as a specialized

mechanism for implementing control on a fine time scale, that permits multiple distinct

bindings to be implemented among the representations activated for a given stimulus.

It is worth noting that the capacity of such mechanisms has generally been considered

to be limited to a number of bindings that is consistent with observations about the

capacity limits of visual stores and short-term memory (Luck & Vogel, 1997; Raffone &

Wolters, 2001). It remains to be determined whether such mechanisms can be deployed

more generally, to account for the simultaneous execution of multiple tasks requiring

novel bindings of stimuli to responses; and, if so, what the capacity limits are in that

case. More generally, we note that the need for and engagement of such mechanisms are

driven by the same relationship between representational sharing, persistence, and the

role of control in serializing processing that have been the focus of this article.

Compositional representations and cognitive flexibility. All of the activity-based

mechanisms considered above, coupled with compositional forms of representation, have

the ability to rapidly and flexibly implement novel associations required to perform an

unfamiliar task, whether this involves an object with a novel combination of features, or

a novel mapping from stimuli and responses (Lee, Hazeltine, & Jiang, 2022). This

capability is often considered an important form of “cognitive flexibility.” Of course,

this is also exhibited more broadly, in other, distinctly human cognitive capabilities

such as problem-solving, planning and, in the domain of task switching, the ability to

rapidly switch between already acquired tasks (Goschke, 2000; Kiesel et al., 2010; Koch
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et al., 2018; Musslick & Cohen, 2021; Musslick et al., 2018). While these are beyond the

scope of the present article, the principles presented here are likely to apply in such

domains as well; for example, the identification and selection of relevant representations

in a state space for planning (Ho et al., 2022; Piray & Daw, 2021), which is often

considered a hallmark of cognitive control (J. D. Cohen, 2017; Duncan, 2001; Goschke,

2000; Kriete et al., 2013; Shiffrin & Schneider, 1977; Verguts, 2017). Furthermore,

insofar as the flexibility associated with higher level cognitive functions such as

planning and problem solving rely on the use of compositional forms of representation,

they are subject to the need for serialization of processing imposed by the shared nature

of such representations. Thus, two defining features of cognitive control—its association

with capacity constraints and with cognitive flexibility—may, once again, reflect the

same underlying factors: shared representations, and their interaction with the effects of

relative strength and persistence of processing.

Conjunctive coding. All of the activity-based mechanisms considered above

represent a flexible but transient form of binding that, as noted, is subject to some

degree of capacity constraint. This can be distinguished from a more durable form of

binding, with the potential for much higher capacity, which is often referred to as

conjunctive coding. This involves the dedicated representation of each object as a

combination of its features. In neural networks, this corresponds to direct, pre-existing

connections among the features of an object, with each possible version of the object

(i.e., with different combinations of features) assigned a different set of connections;

that is, binding is implemented in connection weights rather than via co-activation of

features. Conjunctive coding is often proposed as an alternative solution to the binding

problem, as it allows multiple objects to be represented simultaneously without risking

the misattribution of features. This is consistent with the observation that, under many

conditions, visual search can be parallel rather than serial (Cave & Wolfe, 1990;

McLeod, Driver, & Crisp, 1988). Such conjunctive coding is the homologue, in

perception, of the conjunctive configuration for task processing discussed in this article

(e.g., see Section 2.1.3 “Shared Versus Separated Representation: Compositional and
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Conjunctive Configurations” in Part I); and both afford parallel processing for the same

reason: reliance on separated, dedicated representations for objects or tasks. Once

again, this perspective may help illuminate the relationship between perceptual

representation and attention, and their relationship to learning.

Conjunctive representations, whether for objects or tasks, are expensive: they

require a dedicated representation for every possible object or task (i.e., a combination

of features or stimulus-response mapping). Accordingly, the number of representations

grows combinatorially with the number and size of the feature dimensions from which

the objects or tasks are constructed (Barlow, 1972; Riesenhuber & Poggio, 1999).

Furthermore, as discussed extensively in this article with respect to task learning,

conjunctive representations are less flexible and can take longer to form using standard

learning procedures (below, under Section 4.2.4 “Episodic Memory and Control”, we

consider how conjunctive representations may be formed more rapidly, and how this

may interact with control). The same should be true for perceptual learning. This may

be mitigated by the possibility that evolution has served to genetically preconfigure

certain types of conjunctive representations, or to bias learning mechanisms to be

particularly sensitive to their formation. Such preconfiguration seems plausible for

representations that are critical for survival (e.g., ones associated with body parts), or

that occur widely in nature and are useful for composing more complex representations

(e.g., associations of shape with movement or shading).49

While preconfiguration of some conjunctive representations may be valuable, and

even imperative for survival, the “curse of dimensionality” imposed by the complexity

and non-stationarity of the world makes it impossible to preconfigure all potentially

useful representations. At the same time, acquiring them through learning may also be

costly. Compositional coding thus provides a valuable complement, allowing novel as

well as more complex representations to be constructed rapidly and flexibly “on the fly,”

as they are needed, by composing (i.e., co-activating) existing representations under the

49 The same is true for tasks. For example, evolution has genetically preconfigured some specific

stimulus-response conjunctions, that take the form of reflexes.
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guidance of attentional control. However, insofar as this involves the use of shared

representations, it carries the cost of reliance on attention for enforcement of serial

processing. Accordingly, for representations that are of particular value, and/or

frequently and consistently co-activated—whether passively through experience or

actively through practice—learning mechanisms strengthen the associations among

them, leading to the progressive formation of new dedicated, conjunctive codes, and the

attendant automatization of processing. That is, object recognition may, like task

configurations, face the same trade-off between flexibility and efficiency of learning

promoted by the sharing of compositional representations (of features across multiple

objects), versus the efficiency of processing (i.e., simultaneous detection of multiple

objects) afforded by conjunctive representations.

The homologous roles of attention in object perception and control in task

execution suggests a clear trajectory for how object representations may develop in the

brain: Learning about a new object (i.e., involving a new combination of features) may

exploit existing compositional rather than conjunctive representations, committing

dedicated representations to individual objects only after considerable experience, or

when parallel recognition of multiple objects is important. This comports with the

canonical trajectory of skill acquisition, first described with respect to visual search in

the classic studies of Shiffrin and Schneider (1977), in which performance of a novel task

is initially serial and dependent on attentional control; but, with extensive practice on a

consistent set of stimuli, becomes parallel and automatic. The framework we have

proposed provides a unified, mechanistic, and normative interpretation of this

phenomenon across processing domains, whether viewed from the perspective of

attention and perception or control and task execution. Specifically, it suggests that the

value of shared representations and their relationship to control-dependent processing

reflect general principles of processing in neural network architectures, that apply

universally throughout the system. It also aligns with broader theories of learning and

representation, and in particular, the relationship between semantic and episodic

memory that we consider next.
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4.2.3 Semantics and Control. A fundamental assumption of the approach

taken to control in this article is that it reflects the influence that one set of

representations has on others in supporting the processing of task-relevant information.

This emphasis on representation aligns with the foundations of cognitive psychology,

and cognitive science more generally, that place the structure and organization of

representations at the heart of efforts to understand how information is processed. Such

efforts have been profitably informed by studies of the semantic structure of

representations in neural network architectures (e.g., T. T. Rogers & McClelland, 2004).

That said, the models presented in this article, and those on which they were built, use

the simplest possible representations to implement control, in which the activation of a

single unit (as an external input to the network) is used to designate a given task.

Nevertheless, even this simple form of representation, and its effect on the

representations in pathways responsible for task execution, embody semantic properties

that are illustrative of the relationship between semantics and control more generally.

For example, in models of the Stroop task, a single unit was used to engage the color

naming task, and similarly for the word reading task. These units can be thought of as

explicit representations of knowledge the system has about basic feature categories or

dimensions, such as colors and shapes (e.g., orthography), and control as the effect that

activating such explicit representations of a category or dimension has on the sets of

representations of its members (i.e., specific colors or shapes), making them more

accessible to processing and thereby supporting performance of tasks for which they are

relevant. Within the domain of language processing, the role of control can be thought

of as the influence that higher-level representations have on the priming or biasing of

lower-level representations, such as the effects of words on letter perception (Plaut &

Booth, 2000), or of discourse representations on the interpretation of word meaning

(McClelland, St. John, & Taraban, 1989). More generally, control can be seen to rely on

two fundamental properties of the semantic organization of representations in the

system: (1) the structuring of representations in such a way that different subsets of

information can be selectively activated to align with the needs of different tasks; and
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(2) the availability of higher level, explicit representations of this structure that can be

used to effect such selection.

Representational sharing, semantics, and control. The first property—the

structuring of representations—has been the subject of intensive study in the domain of

semantics, with results that align with those we have presented here: neural network

learning algorithms have a strong bias toward the formation of shared representations

that exploit the statistical structure of the training environment. For example, the early

work of Hinton and Rumelhart (Hinton et al., 1986; Rumelhart & Todd, 1993), followed

by Rogers, McClelland, and their colleagues (T. T. Rogers & McClelland, 2004;

Patterson, Nestor, & Rogers, 2007; L. Chen, Lambon Ralph, & Rogers, 2017) has shown

that networks trained on large corpora of objects with rich semantic structure (i.e.,

multiple subsets of real-world objects that share co-variation in their features) develop

distributed representations of category structure in which objects that share features

have overlapping representations. In particular, they have shown that learning category

structure requires associating individual features that characterize those categories.

However, some of those features may rarely or never co-occur in the same context (e.g.,

that birds fly and lay eggs), posing a challenge to forming meaningful associations

between those features. To form such associations, the system must learn to use the

same representation across different contexts (Jackson, Rogers, & Lambon Ralph, 2021;

T. T. Rogers & McClelland, 2004). Such shared representations also enable the learning

of relationships between different semantic categories (e.g., that birds and mammals are

both motile). The formation as such structure can explain a wide range of phenomena

observed with semantic development and processing in humans, and its disruption can

explain patterns of neuropsychological deficits associated with disturbances of brain

function (T. T. Rogers & McClelland, 2004; McClelland & Rogers, 2003). Recently,

Saxe, McCelland & Ganguli (2019) (Saxe et al., 2019) formalized these observations in a

mathematical theory of semantic learning in neural networks showing, as we discussed

in Simulation Study 4, that these are biased toward learning shared representations

between categories (e.g., trees and flowers) that have features in common (e.g., trees
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and flowers both grow but are not motile).

The findings of Saxe et al. and others (T. T. Rogers & McClelland, 2004; Jackson

et al., 2021; Frankland & Greene, 2020) also suggest that shared representations are not

just a “byproduct” of learning; they allow networks to learn more rapidly and generalize

better. These observations correspond closely to the results we have presented here for

the acquisition of simpler, sensorimotor tasks, as well as the findings from “multi-task

learning” environments commonly used in machine learning (Caruana, 1997; Bengio et

al., 2013), both of which exhibit a strong bias toward the development of shared

representations (i.e., compositional codes) for tasks that rely on similar inputs. This

suggests that, to the extent that control-dependence in language processing—as in the

sensorimotor tasks on which we have focused—reflects reliance on the use of shared

semantic representations, then it should be possible to use dual-task interference as a

novel, and sensitive probe of semantic representations. Support for this conjecture

comes from a study of semantic interference in the context of multitasking by (L. Chen

& Rogers, 2010). In their study, participants had to perform a lexical decision task at

the same time as an auditory judgement requiring stimuli to be judged on semantic

features (e.g., animal type) or lower-level ones (e.g., pitch). They found that word

recognition was significantly impaired when executed in conjunction with the semantic

versus non-semantic auditory judgement task; and, critically, this effect was diminished

for words that were orthographically distinct, suggesting that when the task could be

performed without reliance on semantic representations, multitasking improved. These

results are consistent with the idea that in language processing, as in simpler

sensorimotor domains, reliance on shared representations for different tasks—even when

they involve highly distinct modalities (such as lexical decision and acoustic

judgements)—comes at the cost of a limitation in multitasking performance.

Representations used for control. While considerable progress has been made in

addressing the first property noted above, which suggests that semantic structure is

represented implicitly in the degree of overlap among distributed representations,

considerably less work has addressed the second property noted above: how
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representations are learned that explicitly represent the semantic structure in a form

that can be used to selectively activate subsets of information (i.e., representations

corresponding to a particular category or dimension) needed for a given task; that is,

that can be used for control. In most models of both semantics and control, the

representations used to specify the task that the network must perform have been

predefined in the same simple way as the models presented in this article: as the

activation of a single input unit assigned to each task. For example, in the original

Rumelhart network (Rumelhart & Todd, 1993), each of the type of information it was

trained to generate for a stimulus (e.g., “is a,” “has a,” “does,” etc.) was specified by

activating a dedicated context input unit instructing it to report a particular relation,

analogous to the activation of a task input unit in the Stroop models instructing it to

response according to a particular stimulus dimension. A critical question is how

internal representations capable of performing this function—that is, selecting the

task-relevant information for processing—might arise through learning.

One previous study has suggested that the development of explicit representations

of task-relevant semantic structure may rely on a combination of factors, including:

training regimens such as those used in multi-task learning (i.e., multiple tasks, all of

which require selection along the same set of feature dimensions), as well as blocking

(i.e., consecutive of trials of the same task); and processing mechanisms capable of

selectively activating and sustaining representations during, and updating them

between tasks (Rougier et al., 2005). As noted earlier (under Section 4.2.1 “Working

Memory and Control”), such processing mechanisms are consistent with the idea that

neural network architectures may include ones specialized for control, and that such

mechanisms may contribute to the development of representations that are particularly

useful for control.50 However, that study, like most studies of control, focused on

50 However, again, such mechanisms: (1) may be distributed throughout the system and thus need not

imply a centralized mechanism of control; (2) make use of and are subject to the same mutual

exclusivity constraints on representations as any other, including the effects of sharing, strength, and

persistence discussed in this article.
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relatively simple stimulus dimensions and tasks.

Codependence of semantic structure and control. More recent work by Giallanza,

Cohen, and Rogers (2022) has begun to address the question of how representations

useful for selection and control may arise and be deployed in more richly structured

domains, such as those used in studies of semantics. This work highlights the

importance of two additional factors in the development of semantic representations,

that are closely related to control: (1) the statistical structure not only among features

of objects (i.e., inference), but also the affordances (i.e., their mapping to actions) posed

by different task demands; (2) the interaction between the learning of both forms of

statistical structure and the need for selection and control in the service of task

performance. This work shows that: (1) the same mechanisms used in earlier, simpler

models of control, for selecting between discrete, separated sets of representations (e.g.,

colors vs. words) can also operate over more complex, distributed forms of

representation in ways that exploit, but are also constrained by the semantic structure

of those representations; (2) the same learning mechanisms that shape semantic

representations of perceptual inputs and associated concepts can, with the appropriate

architecture and training, build on that structure to form more abstract representations

capable of warping it in ways that allow task-defined subsets of information to be

selected for processing along relevant dimensions; and (3) the development and

deployment of such higher level, abstract representations can, in turn, shape the further

refinement of lower level representations to support subtler forms of semantic structure,

and the performance of more sophisticated tasks based on them. That is, this work

shows that not only do representations used for control rely on semantic structure, but

they can arise from the same learning mechanisms; and that, through ongoing learning,

the semantic structure can itself be further shaped under the influence of control

representations.

Such interactions were demonstrated in a model trained on objects using

empirically derived sets of features (Levelt et al., 1999), that exhibited categorical

structure implicit in the high dimensional, distributed representations it learned for the
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objects, as well as higher level representations that could “warp” those object

representations to organize and distinguish them according to feature dimensions along

different axes (e.g., animacy versus size) and at different levels of description (e.g., the

size of all objects versus the sizes of either just animals or just musical instruments).

The model was used to predict effects concerning the differential engagement of such

representations under different experimental conditions, that were confirmed in a novel

empirical study involving size judgements. These observations can be thought of as an

expression of the general principles of interactive activation, illustrated by some of the

earliest neural network models of processing (McClelland et al., 1986; Rumelhart,

Hinton, McClelland, et al., 1986), here extended to include the effects of learning and

their application in the context of task control. That is, at the broadest level, the

relationship between the semantic structure of representations and the execution of

control can be thought of as the dynamics of the interaction between “bottom-up” and

“top-down” processing, and how these are shaped by interactions with the learning of

statistical structure at all levels within the system. From this perspective, the

inextricably intertwined relationship between semantics and control demands that

further efforts to understand each must be built on an understanding of its interactions

with the other. These same issues may be central to understanding the functioning of

large language models that use “transformer” architectures (Vaswani et al., 2017),

integrating standard neural learning algorithms with attention and control mechanisms

similar to those used by the models presented in this article.

Abstractness and capacity constraints on control. Importantly, the considerations

above suggest that the role of representations in control is closely related to their

abstractness; and this, in turn, may constitute another source of constraint on the

capacity for control-dependent processing. The sorts of higher level, explicit

representations of semantic structure useful for control—e.g., of categories and

dimensions—are intrinsically more abstract than the representations of particular items

or features that lie within each. Such abstract representations are valuable precisely

because they can be used by any task that requires selective use of that type of
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information. As a consequence, they are likely to be shared by many tasks and, thus,

themselves subject to regulation by control, to insure they are not used for more than

one task at a time. This is consistent with the observation that it is difficult, if at all

possible, to simultaneously process two types of information (e.g., identify objects) that

vary arbitrarily across items. This is simply another expression of the binding problem

discussed above. Thus, in general, the more abstract a representation is, the more likely

it is to be useful across a wide range of tasks, and thus the more likely it is that those

tasks will rely on control. At the extreme, this may help explain why tasks involving

language and mathematical reasoning are subject to such striking limitations in

multitasking, and are considered to be canonical examples of control-dependent

processing. Both rely on the use of symbolic representations which, by definition, are

applicable in a wide—and in the limit, arbitrary and unlimited—number of tasks; that

is, the most general purpose representations are by construction the most extreme forms

of shared representations. From this perspective, the very feature that makes the use of

language and mathematical reasoning so powerful and flexible may also explain why

they are so canonically representative of control-dependent, serial processing.

Meta-knowledge about representational structure and the demands for control.

The considerations above suggest not only that abstract representations can be useful

for control, but that recognizing the constraints associated with these is equally

important. For example, it seems to come relatively naturally to people that they can’t

simultaneously read the word and name the color of an incongruent Stroop stimulus.

Presumably this reflects the knowledge that doing so would risk conflicting use of the

phonological representations shared by these tasks. In other cases, however, the

potential for conflict may not be so obvious, and the lack of such knowledge can have

profound consequences (for example, the failure to recognize that it is unwise to drive

and talk on a speaker phone at the same time, since these do not engage any obviously

shared resources; e.g., Sanbonmatsu, Strayer, Biondi, Behrends, & Moore, 2016). Put

more generally: How does the system know, when confronted with a set of tasks to

perform, whether or not these can be executed simultaneously (i.e., concurrently
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multitasked), and why does that knowledge seem to be so accessible in some cases but

not in others? This can be thought of as a form of meta-knowledge the system has

about its multitasking capabilities.

The framework we have presented offers a principled way of thinking about the

accessibility and acquisition of such meta-knowledge, in terms of the representational

structure on which control relies and, closely related to that, the extent to which a

given set of tasks are structurally versus functionally dependent on one another. As

suggested above, representations belonging to the simplest, most widely relevant

dimensions are likely to be genetically pre-configured or acquired early in development

(see Section 4.2.2 “Perception, Attention, and Control: The Binding Problem”).

Accordingly, the explicit representation of such dimensions may also be learned

relatively early, along with the consequences of their engagement for performance in

tasks involving them in various combinations. Furthermore, the potential for conflict

may be relatively obvious in cases of structural dependence among tasks, that directly

share a set of representations (e.g., phonological representations in the Stroop task),

and less so for tasks that are functionally dependent on one another (as may be the case

for driving and talking). However, more abstract forms of semantic structure—and the

explicit representation of these needed for control—are likely to take longer to learn,

and thus so too would knowledge about how their co-engagement may impact task

performance. That is, it may be more difficult to recognize and take longer to learn

about the extent to which tasks that depend on such representations share

representations, and that their co-activation risks conflict. Thus, meta-knowledge both

about functional versus structural dependence among tasks, and about dependence

among tasks involving more abstract forms of structure may be substantially more

difficult to acquire than for simpler tasks that are structurally dependent on one

another.

How the system may acquire such meta-knowledge is an important open question.

One possibility is that, at least initially, such meta-knowledge reflects “online”

processing, that detects the potential for conflict through internal pre-processing (e.g.,
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mental simulation of a task). Eventually, with sufficient experience, this knowledge

could become “hard-coded” through learning—that is, through the formation of new,

higher-level representations that encode the mutual exclusivity of (e.g., through the

formation of mutually inhibitory connections among) representations used for control of

tasks that are either structurally or functionally dependent. This progression, from

online detection to “hard-coding” of the relationships among representations through

learning, could be subserved by mechanisms similar to those responsible for the

progression from model-based to model-free processing in reinforcement learning

(M. Agrawal, Mattar, Cohen, & Daw, 2021; Daw, Gershman, Seymour, Dayan, &

Dolan, 2011; Mattar & Daw, 2018). That is, the system could learn, through experience

(whether overtly and/or through mental simulations), which tasks share representations

through the conflict that ensues from attempts to execute them simultaneously, and

avoid this by developing inhibitory connections among the task representations on

which they rely for control. Recent work has begun to explore this idea (Ravi et al.,

2020; Bustamante, Lieder, Musslick, Shenhav, & Cohen, 2021). Such a progression

would be comparable to the trajectory from control-dependent to automatic processing

in skill acquisition (see Section 4.3 “The Continuum from Control to Automaticity”

below), in this case involving the acquisition of a form of “meta-automaticity” that

supports more effective and efficient regulation of the allocation of control.

Note that representational resources of the sort described just above are shaped

by, and in that sense, are specialized for the allocation of control. In this respect, the

constraints to which they are subject (by mutual exclusivity) could be considered to

pertain directly to the mechanisms responsible for control itself. Furthermore, some of

the representations may be relatively abstract and used widely throughout the system.

In this respect, they may be thought of as “central.” Nevertheless, because the

representations shared by one set of tasks need not be the same as the ones shared by

others (e.g., along lines similar to domain-specific modules in production system

architectures), there may be multiple representational resources used for control that

are independent of one another, and these could co-exist with ones comprised of more
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specific (process-dedicated) representations. Furthermore, the mutual exclusivity

constraint that applies to them does not differ in any fundamental or qualitative way

from any other representational resource. Finally, since representational resources

specialized for control reflect an adaptation that arose from the sharing of

representations among the tasks over which they preside, their formation (and

constraints) can be traced causally to the sharing of representations among the tasks

over which they preside, rather than to constraints that are qualitatively unique or

specific to the mechanisms responsible for control. Thus, although representational

resources can be hierarchical, some may be specialized for the allocation of control, and

those may themselves be subject to and responsible for constraints in the allocation of

control, they are neither unitary nor unique, and ultimately reflect the sharing of

representations among tasks. In these respects, the account remains faithful to the

general principles of multiple-resource theory.

4.2.4 Episodic Memory and Control. In this article, we have focused

largely on familiar tasks (e.g., color naming or word reading), or their acquisition

through extensive training. However, people are of course also capable of rapidly

learning and performing genuinely novel tasks; that is, ones that pair stimuli with

responses in a way they have never done before. For example, the extended Stroop task

described in Section 3.3.3 (“Behavioral Study: Learning, Shared Representations, and

Functional Dependence”) in Part II required participants to map color words to manual

responses unrelated to those words in a way they have presumably never done before,

and for which they have no pre-existing processing pathways. Nevertheless, participants

can often perform the task with little or no practice. Accordingly, it must somehow be

possible to form such novel associations by creating new connections (or strengthening

existing but very weak ones) extremely quickly – a capability that is inconsistent with

the slower learning rates required for the statistical forms of learning in neural networks

discussed throughout this article. More generally, this tension between the rapid

formation of novel associations (including “one-shot” learning) and slower, statistical

forms of learning is known as the problem of “catastrophic interference” (McCloskey &
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Cohen, 1989): when the learning rate is high enough to capture rapid acquisition, new

associations override old ones, and the system is incapable of integrating or preserving

information over time.

This tension between fast and slow learning was also evident in the original

Stroop model (J. D. Cohen et al., 1990): learning rates that were appropriate for

capturing the acquisition of automaticity over extended practice were insufficient to

explain initial performance on novel task (Simulation 4 and Fig. 12 in J. D. Cohen et

al., 1990). To address this, an “indirect pathway” was added to the model comprised of

an additional set of intermediate units, with connections that could be rapidly

configured to perform the novel task. The ability to rapidly form new associations has

long been attributed to an episodic memory system (Raaijmakers & Shiffrin, 1981;

Tulving, 1983), and its interaction with semantic memory was the basis for the

Complementary Learning Systems (CLS) theory (McClelland et al., 1995). This

proposes that the brain handles the dual but competing needs for slower learning

capable of acquiring representations of statistical structure and rapid learning of new,

potentially arbitrary associations, by instantiating these in two distinct interacting

systems: one, subserved by neocortical structures, that relies on slower learning to

acquire representations of statistical structure, and assumed to be the substrate of

semantic memory; and another, subserved by structures in medial temporal cortex

including the hippocampus, responsible for rapidly encoding arbitrary associations

among inputs from the neocortex, and assumed to be the substrate of episodic memory.

The formulation of control-dependent processing and automaticity presented in this

article, and their relationship to the binding problem discussed above, bear a close

relationship to the principles of CLS, extended from the domain of inference and

semantics to the domain of task execution and skill acquisition.

Episodic memory, novel task performance and binding. Like work on semantics

more generally, CLS theory focuses on forms of semantic structure associated with

correlations among features of the input, and their use in semantic inference. However,

as discussed just above, the same principles apply to the learning and representation of
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mappings from inputs to actions required to perform the more overt types of tasks

discussed in this article. In both cases, learning the relevant structure takes time, and is

biased toward the formation of shared (overlapping) representations for items (i.e.,

objects or tasks) that are related to one another—that is, that represent semantic

structure. This contrasts with the more rapid encoding of instance-specific information

that according to CLS theory is supported by the episodic memory system. This can be

thought of as the function subserved by the indirect pathway in the original Stroop

model, that is required for the initial performance of a task involving new mappings.

An important feature of episodic memory as formulated by CLS theory is its

reliance on highly separated representations of items within episodic memory itself that

might otherwise share representational structure with other items in semantic memory.

This allows existing representations to be associated with one another in new and

arbitrary ways, that do not carry along or align with—and may even directly conflict

with—associations among them that already exist in semantic memory (e.g., to encode

a penguin as a bird that doesn’t fly). The encoding of such associations in episodic

memory allows them to be formed without interfering with the structure of

representations in semantic memory.51 The formation of such arbitrary associations

within episodic memory can be used as an extreme form of conjunctive coding, that

allows the binding of representations drawn from anywhere in semantic memory.

However, this differs in important ways from the kinds of separated representations and

conjunctive encoding within semantic memory itself, which has been proposed as a

solution to the binding problem, and that we have proposed may develop with the

acquisition of automaticity (see Section 4.2.2 “Perception, Attention, and Control: The

Binding Problem”). One difference is that the use of binding in episodic memory

involves a less direct processing pathway (e.g., routed through the hippocampus, rather

51 For this reason, within the machine learning literature, the mechanisms responsible for episodic

memory have come to be referred to as a form of “external memory” (Graves et al., 2016); that is, an

extensible form of memory that can store arbitrary new information in a way that does not interfere

with previously stored information.
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than direct cortico-cortical pathways). Thus, processing is likely to take longer (as

exhibited by the indirect pathway in the Stroop model) than reliance on direct

pathways within semantic memory. Perhaps more importantly, however, the use of

episodic memory for conjunctive coding exhibits several properties that are, perhaps

counterintuitively, similar to the use of shared representations in semantic memory; and

thus critically, and for similar reasons, its use may be dependent on control.

Dependence of episodic memory on control. First, the formation of associations

among a set of items in episodic memory requires that co-activation be restricted to

only those items, lest errant associations get formed among items belonging to different

sets. That is, the initial formation of associations that bind items in episodic memory is

subject to the same constraints on activation as binding by co-activation in semantic

memory. Second, although the binding of items in episodic memory forms a distinct

conjunctive representation for that set of items, retrieval of that particular set of items

is subject to proactive interference from other conjunctive representations involving

items with similar content (e.g., J. Brown, 1958; Peterson & Peterson, 1959). Such

interference produces effects remarkably similar to the mutual exclusivity constraint

imposed on the activation of shared representations in semantic memory (Beukers,

Buschman, Cohen, & Norman, 2021). Finally, even if different associations in episodic

memory can be distinctly cued for simultaneous retrieval, the consequences this has for

activation of the associated representations in semantic memory may not be

obvious—that is, it may be subject to conflict from the unanticipated co-activation of

retrieved items that share representations in semantic memory. Under Section 4.2.3

(“Semantics and Control”), we discussed how the system might be able to acquire

knowledge about which combinations of tasks pose the risk of such conflict. However,

the arbitrary nature of associations formed in episodic memory makes it likely that such

conflict will be difficult to anticipate and/or learn. To avoid the potential for such

conflict, retrieval from episodic memory may, like encoding, need to be restricted to a

single set of associations at a time. In aggregate, these properties suggest that the use

of episodic memory—both for encoding and retrieval—is subject to similar types of
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constraints as the use of shared representations in semantic memory; that is, to the

serial encoding and retrieval of one set of associations at a time to avoid conflict.

Accordingly, for the same reasons, episodic memory should rely heavily on control for

its use.

Episodic memory as a centralized mechanism for control. Given the observations

above, an argument could be made that the use of episodic memory for task

performance is consistent with structural bottleneck theories of control; that is, it

reflects reliance on a centralized, capacity-limited, serial processing mechanism for

control. Its unitary structure and universal access to representations in semantic

memory suggest that it can be considered a centralized mechanism; and the

considerations discussed above suggest that it is limited to serial processing.

Furthermore, to the extent that episodic memory is used not only to form associations

needed to implement novel input-output mappings, but also novel associations among

representations used for control (e.g., between the category representations for words

and for manual responses needed to perform the word mapping task described in

Section 3.3.3 “Behavioral Study: Learning, Shared Representations, and Functional

Dependence” in Part II), then it can be viewed not just as control-dependent, but also

as a mechanism of control itself.52

52 This may explain why some participants are able to rapidly achieve good performance in the

multitasking condition of the extended Stroop task involving color naming and word mapping (Hoskin,

2023). These participants may rely on episodic memory to rapidly form associations between existing

word reading representations and the corresponding manual responses. If sufficiently sensitive, they

associations may be able to leverage weak activation of the word reading representations that occurs

even in the absence of attention (J. D. Cohen et al., 1990; Kahneman & Chajczyk, 1983; Kahneman &

Henik, 1977), limiting interference to the amount seen in the standard Stroop task, while supporting

rapid acquisition of the word mapping task and its performance together with color naming.

Nevertheless, the profile of performance should still be distinguishable from full concurrent

multitasking using separated, task-dedicated representations for word mapping: the latter should take

longer when relying on episodic memory, and should still show the signature Stroop effect of stimulus

congruence on color naming. Indications of this were observed in the behavioral data reported for the

Section 3.3.3 (“Behavioral Study: Learning, Shared Representations, and Functional Dependence”) in
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This perspective on the relationship of episodic memory to control is consistent

with recent work in both cognitive science and machine learning, suggesting that

episodic (“external”) memory plays a critical role in the formation of abstract codes and

their use in variable binding (Altabaa, Webb, Cohen, & Lafferty, 2023; Graves, Wayne,

& Danihelka, 2014; Lake, 2019; Ritter et al., 2018; Vaishnav & Serre, 2023; Webb et al.,

2020)—two properties that are fundamental to symbolic processing, are often associated

with a centralized, capacity limited processing mechanism, and considered responsible

for the remarkable flexibility of human cognitive function. Together with the close

association between abstractness and shared representations discussed above, this may

also help explain why the most abstract and flexible forms of processing are so closely

associated with dependence on cognitive control. Nevertheless, as argued extensively

throughout this article, this is almost certainly not the only mechanism responsible for

control, nor may it even be a dominant one. Rather, as formulated by CLS theory, it

should be viewed as complementary to the semantic memory system, which is capable

of control-dependent processing on its own in many (if not most) instances of task

performance. This complementarity further suggests that the trajectory from

control-dependent to automatic processing can be usefully extended, to include an

initial phase of control-dependence in which performance relies on episodic memory, and

in which the trajectory from control-dependence to automaticity can be thought of as

engaging the same mechanisms as memory consolidation proposed by CLS theory. We

consider this idea in the next section.

4.3 The Continuum from Control to Automaticity

The work presented in this article strongly supports the general view that task

processing lies along a continuum from dependence on control to automaticity, focusing

on three critical and closely related factors—strength of connections, representational

sharing, and persistence characteristics—that must be considered in relation to other

tasks in contention, and showing how these can be shaped by practice. The idea of a

Part II, and in the analysis of capacity coefficient using the methods of (Townsend & Wenger, 2004).
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continuum of automaticity is not a new one (e.g., Kahneman & Treisman, 1984;

J. D. Cohen et al., 1990). However, the considerations discussed above suggest two

important refinements to this general view. One concerns the relationship between the

strength of processing and control, and the other the trajectory from control

dependence to automaticity.

4.3.1 Strength of Processing and Control. This article has focused on the

role of control in managing conflict. However, the same mechanism may be required for

the licensing of task execution even in the absence of conflict, which may be required for

all tasks that do not involve simple reflexes. For example, although reading a word out

loud is often used as a canonical example of an automatic process (e.g., in the context

of the Stroop task), people do not perform this task perforce whenever they see a

written word. While the encoding of such stimuli may occur involuntarily (e.g., as

evidenced by semantic priming effects; Schvaneveldt & Meyer, 1973; Seidenberg et al.,

1982), the overt response does not. Even the encoding of the word may be subject to

the allocation of attentional control (e.g., Kahneman, Treisman, & Gibbs, 1992). The

dependence on control, even for putatively automatic processes, was addressed in the

original connectionist model of the Stroop task (J. D. Cohen et al., 1990), which showed

that even relatively strong pathways depend on some degree of collateral activation to

overcome baseline inhibition and place processing units in the part of their activation

function that renders them sensitive to their inputs (see Simulation 6 and Figure 13 in

J. D. Cohen et al., 1990). Critically, this is the same mechanism that is used to provide

greater sensitivity to units in relatively weaker pathways when they are competing with

stronger ones. In this respect, the same mechanism of control can be thought of as

licensing the performance of all non-reflexive overt tasks, while insuring that if more

than one is performed, they do not conflict with one another, with such reliance on

control greater for tasks that rely on weaker pathways.

From this perspective, processes might be categorized loosely into three ranges

along a spectrum, according to the strength of the pathways on which they rely, from

strongest to weakest: reflexes, that occur obligatorily whenever the relevant stimulus is
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present; automatic, that rely on some allocation of control for execution, but are strong

enough to prevail against interference from any (or at least most) other processes with

which they share representations; and control-dependent, that require control not just

for execution but for protection against conflict from competing, stronger pathways.

This categorization is “loose” as the latter two are defined with respect to the strength

of processes relative to others with which they share representations (that is, with

which they have the potential to conflict), and thus is dependent on the context in

which they are executed (for a formal, information-theoretic analysis of this

categorization, see Zenon, Solopchuk, & Pezzulo, 2019).

4.3.2 The Trajectory From Control-Dependence to Automaticity.

The spectrum outlined above aligns with the forms of control discussed in the preceding

section and the learning mechanisms responsible for the transition from dependence on

control to automaticity with practice. Performance of novel tasks requiring the rapid

formation of new associations should rely either on episodic memory and/or

co-activation of compositional representations in semantic memory which, as discussed

above (see Section 4.2.4 “Episodic Memory and Control”), should rely heavily on

control. For novel tasks, practice should lead to consolidation and the formation of

relevant associations in semantic memory. While there has been relatively little work

using neural network modeling that addresses this transition in the context of skill

acquisition, modeling of consolidation processes in the context of CLS theory should be

highly relevant (Atallah, Frank, & O’Reilly, 2004; Paller, Mayes, Antony, & Norman,

2020; Ranganath, Libby, & Wong, 2012), as well as work on the role of “replay” in

reinforcement learning (Mattar & Daw, 2018; Piray & Daw, 2021; Vanseijen & Sutton,

2015). To the extent that the initial associations formed in semantic memory by these

processes are relatively weak, and/or rely on existing compositional representations,

then performance still relies on control for execution, even as it becomes less reliant on

episodic memory. With sufficient motivation and the appropriate training, additional

practice can then lead progressively to automaticity through the strengthening of

connections among existing representations in the network (e.g., J. D. Cohen et al.,
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1990; O’Reilly, Herd, & Pauli, 2010; Verguts, 2017), as well as the formation of

task-dedicated, conjunctive representations as elaborated in Part II of this article.

These two factors—strength of processing, and reliance on conjunctive versus

compositional representations—distinguish the account of practice effects provided by

neural network models from how practice leads to automaticity in symbolic

architectures, such as ACT-R. The latter suggests that this occurs through improved

scheduling of task processes by the central executive (Kieras et al., 2000), improved

memory retrieval of task-relevant information (Logan & Bundesen, 2003), and/or the

compilation of subprocesses into specialized task-dedicated rules that no longer rely on

these centralized scheduling and retrieval mechanisms (Newell & Rosenbloom, 1981;

Rosenbloom et al., 1993; Salvucci & Taatgen, 2008; Taatgen & Anderson, 2002; Taatgen

& Lee, 2003). These models suggest that interference-free task execution is primarily

achieved by gradually reducing temporal overlap between task processes in a given

resource. This is distinct from the explanation offered in Part II of this article, which

focused on the formation of new, task-dedicated (conjunctive) representations. As noted

in the Discussion of Part II, recent neuroimaging work is consistent with this

mechanism, suggesting that multitasking improvements positively correlate with the

degree of representation separation (Garner & Dux, 2015). Future models of skill

acquisition may therefore benefit from combining mechanisms that underlie reductions

in temporal overlap, as proposed by production system architectures, that may still play

an important role in strategic control of processing, with learning mechanisms for

reducing overlap in task representations as suggested here. More generally, we discussed

above what knowledge may be required about these factors to support such strategic

control (see Section 4.2.3 “Semantics and Control”). Below, we consider how the system

may use this knowledge to make decisions about whether and how to invest the time

and effort to acquire automaticity (see Section 4.6 “Bounded Rationality, Normative

Models of Control Allocation and the Costs of Control”).

4.3.3 An Integrated View of Task Switching and Multitasking. The

continuum outlined above also provides an integrated framework within which to
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consider task switching and multitasking in common terms. Previously, these have been

addressed by distinct literatures that have focused on different explanatory factors (for

a review, see Koch et al., 2018). As discussed above, studies of multitasking have

focused largely on the extent to which the tasks involved rely on control, the capacity of

the mechanisms responsible for control (see Section “Relationship to Existing Theories

of Dual-Task Limitations”), and performance accuracy as a measure. In contrast,

studies of task switching have focused largely on switch costs (Allport et al., 1994;

Jersild, 1927; R. D. Rogers & Monsell, 1995), focusing on the cost of configuring each

task (Logan & Bundesen, 2003; Logan & Schneider, 2006; R. D. Rogers & Monsell,

1995) and/or carry-over effects from having configured previous ones (Waszak et al.,

2004; Wylie & Allport, 2000; Mayr & Keele, 2000; Allport et al., 1994), and reaction

time as a measure. While in some cases, theories of task configuration have taken into

account representational relationships among tasks, to our knowledge this has not been

directly related to multitasking capabilities. In this article, we have argued that the

same underlying mechanisms can explain both multitasking and task-switching

performance, and above we outlined how these can be viewed as operating along a

continuum that defines whether processing can be purely parallel or demands serial

execution, as determined by the degree of representational sharing among tasks, the

relative strengths of connections in their processing pathways, and the persistence

characteristics both of those representations and the ones on which the tasks rely for

control. This provides a common framework that integrates multiple-resource theory

from the multitasking literature (which assumes that interference from shared

representations between tasks pose a limit on the number of tasks that can be executed

concurrently (Allport et al., 1972; Navon & Gopher, 1979; Wickens, 1991), with the

task-set inertia hypothesis (Allport et al., 1994) from the task-switching literature

(which assumes that persistence of representations can produce cross-task interference

when switching from one task to another).

It should be noted that the assumption that representations persist in time and

that this can explain the performance benefits of repeating relative to switching tasks,
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is not unique to neural network models. Symbolic models—for example, ones based on

ACT-R (Anderson & Lebiere, 2014)—explain at least one component of switch costs in

terms of repetition priming of task-relevant information in declarative memory:

Recently activated task-sets53 are more likely to be retrieved from a declarative memory

buffer, leading to a facilitation of task repetitions (Altmann & Gray, 2008; Sohn &

Anderson, 2001). In this framework, however, the direct effects of persistence are only

facilitative, whereas, in neural network models, persistence can lead directly to the

inhibition of competing representations, which is likely to have consequences for the

dynamics of processing. We return to a discussion of the relative importance of

interference versus facilitation in the next Section 4.4 (“Interference Versus

Facilitation”). Another important difference between symbolic and neural network

models is that, in the latter, the effects of persistence can interact with distributed

representations and thus have graded effects determined by the degree of

representational sharing—a characteristic that is ripe for investigation in domains where

distributed representations have played a critical explanatory role, such as semantics

(see above, Section 4.2.3 “Semantics and Control”). That said, within the scope of

neural network models, there can be important differences in how persistence is

implemented that have functional consequences. For example, some neural network

models of task switching assume that task sets persist in the form of stimulus-response

associations that are updated each trial (J. W. Brown et al., 2007; Flesch, Nagy, et al.,

2023; Gilbert & Shallice, 2002), while others attribute this to the persistence of

task-related patterns of activity (e.g., Herd et al., 2014, and the model we report here).

This can have important functional consequences that are tightly linked to

representation sharing, such as the ability to flexibly learn and implement novel tasks

(again, see Section 4.2.3 “Semantics and Control”). Accordingly, distinguishing between

different forms of persistence and their contribution to switch costs is an important

direction for future work.

53 In symbolic architectures, a task-set often corresponds to task-relevant chunks (e.g., chunks that

map stimuli to particular responses) in declarative memory.
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4.4 Interference Versus Facilitation

As suggested above, interference in neural networks plays a role in processing that

is at least as important as facilitation. In this article, we have focused on the deleterious

effects on processing efficiency that can arise from interference due to shared

representations. This assumes that when two or more tasks make use of shared

representations, the specific representations they require differ (e.g., the response

representations for an incongruent Stroop stimulus), and thus they interfere with one

another. However, it is also possible that different tasks may require the same

representation (e.g., a congruent stimulus), in which case shared representations should

produce facilitation rather than interference.

Our focus on interference was guided by the observation that, in general, the

conditions under which shared representations give rise to interference are far more

likely than those that produce facilitation, on the assumption that, in general, the

features along different dimensions of a stimulus are statistically independent of one

another. For example, consider a Stroop stimulus in which the two relevant dimensions

(colors and words) may each take on one of three features (e.g., red, green or blue).

Assuming uniform, independent sampling along each dimension, stimuli are twice as

likely to be incongruent as congruent (2/3 vs. 1/3). This asymmetry grows

exponentially as both the number of dimensions and features within each dimension

grows. Thus, it seems reasonable to assume that, in realistically rich environments, the

likelihood of congruence among tasks that share representations is low. Furthermore, it

has often been observed that facilitation effects due to congruence are substantially

smaller in magnitude than those of interference (D. S. Lindsay & Jacoby, 1994; Macleod,

1998). Although the reasons for this are beyond the scope of this article (for potential

accounts, see J. D. Cohen et al., 1990; Herd, Banich, & O’Reilly, 2006; Logan, 1980),

this, too, suggests that it is reasonable to consider the potential costs of interference

due to shared representations as outweighing, on average, the potential for facilitation.

Nevertheless, there are some conditions under which shared representations can

lead to facilitation that is relevant not only to single-task and task-switching
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performance, but also to multitasking performance. For example, Townsend and

Nozawa (1995); Townsend and Wenger (2004) have shown that, under certain

conditions, a task process can execute faster if performed in conjunction with other task

processes compared to when it is performed alone and referred to this as “super

capacity”. Formally, a parallel processing system is assumed to reach super-capacity if

the probability PAB(TA ≤ t AND TB ≤ t) of reaching a response for two processes TA

and TB before time point t exceeds the probability min[PA(TA ≤ t), PB(TB ≤ t)] of

responding to the slower of the two processes before time point t.54 The work presented

in this article suggests that such super-capacity can arise from shared representations in

the same way that stimulus congruence can produce facilitation in single-task

performance. In the latter, the features of the stimulus relevant to the task to be

performed and another one are both associated with the same representation within the

set that is shared so that any partial activation provided by the irrelevant task reinforces

the representation needed to perform the relevant task (e.g., J. D. Cohen et al., 1990).

In the context of dual-task performance, such facilitation will produce performance that

is better than when each task is performed in isolation of the other; that is when no

information is available along the other dimension (e.g., naming the color of patch or

the letter string “XXX”). Such circumstances may arise for activities that involve

coordinated (sub)tasks, such as singing and playing a musical instrument, or jugglging.

4.5 Shared Representations and Associational Processes

4.5.1 Inductive Inference. The homologous effects of shared representation

in semantic cognition and control also extend to associational processes. For example,

the role that shared representations play in promoting the rapid acquisition of novel

tasks in studies of control and automaticity can be seen as an expression, in the domain

of skill acquisition, of the same role that shared representations play in semantic

cognition, promoting the transfer of concepts (i.e., inductive inference) across stimulus

54 This condition represents a violation of an inequality formulated by Colonius and Vorberg (1994).

The violation of this inequality is sufficient but not necessary for super-capacity.
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modalities and inferential contexts (e.g., reasoning from multiple instances of birds that

all birds lay eggs; Abel et al., 2015; Ralph, Jefferies, Patterson, & Rogers, 2017;

T. T. Rogers & McClelland, 2004; Rumelhart & Todd, 1993). In recent work, Jackson

et al. (2021) showed that such transfer is facilitated in networks that allow information

from different modalities to converge in the same “hub”, inducing them to use shared

representations for different forms of information about the same object (e.g., the image

and sounds of a dog). Furthermore, the acquisition of such semantic concepts appears

to follow a developmental trajectory of representational learning that closely resembles

the trajectory from controlled to automatic processing discussed above: Children are

observed to learn broad semantic distinctions (e.g., between living and non-living

things) earlier than more fine-grained distinctions (e.g., between a sheep and a goat;

Mandler, Bauer, & McDonough, 1991; Pauen, 2002). Neural network models similar in

architecture to the ones described in this article (Rumelhart & Todd, 1993;

T. T. Rogers & McClelland, 2004) suggest that this behavioral trajectory underlies a

transition from the same representations shared across categories to the separation of

category-dedicated representations (T. T. Rogers & McClelland, 2004), a transition that

reflects the progressive extraction of the statistical structure of features shared by

objects (Saxe et al., 2019). In this article, we have presented work showing that the

same principles apply to the acquisition of simple sensorimotor tasks. For example, in

Simulation Study 4 (Section 3.2 “Conditions for Learning of Shared Versus Separated

Representations” in Part II), we demonstrated neural networks are more likely to

acquire shared representations between cognitive tasks if they overlap in terms of

task-relevant stimulus features (e.g., the same set of visual features relevant for task

performance; Musslick & Cohen, 2021; Yang, Joglekar, Song, Newsome, & Wang, 2019;

Musslick et al., 2017).

4.5.2 Creativity. The role of shared representations, and in particular their

impact on facilitation, may also have relevance to associational processes used as

measurements of creativity. The latter has been operationalized in the form of the

Remote Association Test (RAT, Mednick, 1962), in which participants are presented
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with three cue words (e.g., “home”, “sea”, “bed”) and are asked to identify a solution

word that relates to all of the three cue words (e.g., “sick”). Performance on this task

has been interpreted in terms of a semantic graph, in which nodes represent individual

words and the edges between nodes represent the semantic association between them

(Kajić et al., 2017; Schatz et al., 2018). The ability to retrieve the solution word is

assumed to depend on how effectively activity spreads from nodes representing the cue

words to the node representing the solution word and, in particular, to ones that are

not directly connected. This might be viewed as a form of associative facilitation

(semantic priming) that arises from chains of shared representations that introduce

functional dependence. If so, the graph theoretic methods we described for evaluating

functional dependence may provide a formal approach to quantifying such effects in

neural networks. In such networks, concepts are generally represented as distributed

patterns of activity rather than discretely as individual nodes. However, the methods

we described for constructing a bipartite graph from a neural network (see Section 2.2

“Graph-Theoretic Analyses” in Part I) could, in principle, be used to construct a

semantic graph from semantic neural networks such as those described above (e.g.,

Hinton et al., 1986; Kajić et al., 2017; Schatz et al., 2018; T. T. Rogers & McClelland,

2004); and, from that, to construct an interference graph that could be used to

determine functional dependence—that is, the prevalence of indirect sharing that could

be used for inference. That, in turn, could be used to predict scores in the RAT,

providing a bridge from detailed process models of semantic cognition to measures of

associative abilities and creativity.

4.6 Bounded Rationality, Normative Models of Control Allocation and the

Costs of Control

The formal account of cognitive control that we have provided in this article—in

terms of a trade-off between shared and separated representations—provides not only a

mechanistic account of how capacity constraints are related to control, but also a

foundation for a normative theory about why these constraints can be so severe: when
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confronted with a novel task, the flexibility to rapidly be able to perform it (i.e., by the

sharing of existing representations) outweighs the cost of reliance on control to serialize

processing, and/or having to form new, task-dedicated representations that would

support the higher capacity of parallel processing. This approach falls squarely within

the broader theoretical framework of “bounded rationality:” the proposition that

human cognition and behavior can be explained in rational terms (e.g., utility

maximization) when taking account of the constraints under which the system operates

(Gershman et al., 2015; Gigerenzer, 2008; Griffiths et al., 2015; Griffiths & Tenenbaum,

2006; Lewis, Howes, & Singh, 2014; Simon, 1957; Todd & Gigerenzer, 2012).55 Here, we

consider in greater detail how the work presented in this article situates our

understanding of cognitive control within this framework.

4.6.1 Opportunity Costs and the Expected Value of Control. Recently,

there has been a renewed effort to frame cognitive control as an optimization problem

(Musslick & Cohen, 2021; Shenhav et al., 2013, 2017) inspired by early work on control

theory in engineering (Wiener, 2019), its application to psychology (Atkinson &

Shiffrin, 1968; G. A. Miller, Galanter, & Pribram, 1960), as well as work in computer

science on bounded optimality (S. J. Russell & Subramanian, 1994). In the context of

natural agents, the optimization problem can be cast as the maximization of reward per

unit time, given the limitations of its computational capabilities (e.g., Bogacz et al.,

2006; Gold & Shadlen, 2002). With respect to cognitive control, the primary limitation

has been assumed to be constraints on its allocation. Kurzban et al. (2013) proposed

that these constraints impose an opportunity cost on the allocation of control, which

may help explain subjective phenomena with which it is associated, such as mental

effort and fatigue: These may reflect internal signals that signify the cost of allocating

55 Closely related ideas have been referred to using other terms, such as “satisficing,” “resource

rationality,” and “bounded optimality.” While these reflect some differences in approach and/or

emphasis, those differences are beyond the scope of the present article. Here, we focus on the

fundamental idea they have in common: that a consideration of the constraints under which the system

operates can lead to a normative understanding of the determinants of its function in terms of rational

optimization.
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control to one process with respect to the opportunities that are forgone for others (see

M. Agrawal et al. (2021); Shenhav et al. (2017) for formal treatments of this idea).

This, in turn, has led to the development of theories that formulate the allocation of

control allocation in terms of a cost-benefit analysis that selects, among candidate

tasks, the one(s) that promise the greatest returns by weighing the expected value of

investing in each against the costs of doing so (i.e., forestalling or foregoing others).

This idea has been expressed in general form as the Expected Value of Control theory

(EVC; Shenhav et al., 2013; Musslick et al., 2015), and formalized in a number of

settings, including the selection between cognitive heuristics (Lieder & Griffiths, 2017),

model-based planning (Kool et al., 2017), and the learning of the value of control

(Bustamante et al., 2021; Ho et al., 2022).

The EVC Theory, and related approaches, provide a rational account of control

allocation under the assumption that capacity is bounded; that is, the allocation of

control carries opportunity costs. However, it does not provide an account of the bound

itself ; that is, why the allocation of control limited. The work presented in this article

offers an answer to that question, that suggests a more nuanced formulation of the

optimization problem faced by the control system and its relationship to mechanisms of

learning. Constraints on the allocation of control, and attendant opportunity costs,

arise from a rational adaptation to another set of costs: proximally, the risk of

interference associated with shared representations that, in turn, reflects another form

of adaptation, favoring the efficacy of learning over the efficiency of processing. This

account not only provides a mechanistic understanding of the conditions under which

control is required (when the tasks under consideration share representations) and a

normative account of its engagement (to optimize performance by minimizing the risk

of conflict) but also ties this to a normative account of when and why such conditions

may arise in the first place (i.e., as a result of a bias toward the efficacy of learning over

the efficiency of processing). From this “rational boundedness” perspective, capacity

constraints associated with control-dependent processing are a bound rationally

imposed by control, necessitated by the use of shared representations in the service of
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more effective learning and generalization (Musslick & Masis, 2023). To impose this

bound rationally, the brain may rely on meta-control mechanisms for estimating its

constraints on multitasking capability (as discussed above, under Section 4.2.3

“Semantics and Control”, the study of which remains an important goal for future

research (Eppinger, Goschke, & Musslick, 2021). Such meta-control mechanisms could

also play a role in balancing the trade-off between learning efficacy and processing

efficiency–that determines the need for bound in the first place–as an intertemporal

choice between their estimated payoffs. We reviewed possible mechanisms for this in

Section 3.4 (“Summary and Discussion of Part II”). These suggest that it can be

optimal, under finite time horizons, for neural agents to harvest immediate rewards

from the rapid implementation of tasks using shared representations, even at the cost of

having to execute them in serial; while, over more extended horizons, it may pay to

defer immediate reward and invest the time and effort to acquire automaticity in favor

of gains accrued by processing efficiency over the longer term (see Section 3.3.4 “A

Normative Theory of Automaticity: Optimization of the Trade-off between Shared and

Separated Representations as an Intertemporal Choice”; Ravi et al., 2020).

4.6.2 Intensity Costs and the Stability-Flexibility Trade-Off. While

the work presented in this article addressed constraints on the number of tasks to which

control can be safely allocated, there also appear to be costs associated with the

intensity of control allocated to a task. This is evidenced by the observation that people

can exhibit aversion to the allocation of control even to a single task (Manohar et al.,

2015; Padmala & Pessoa, 2011). This is puzzling from a normative perspective: Why

would a system refrain from allocating maximal control to a task to which it is already

committed, assuming that performance scales with the intensity of control allocated?

One proposed answer to this question is that this reflects another trade-off faced by

control mechanisms, sometimes referred to as the stability-flexibility dilemma (Goschke,

2000): Increasing control allocated to a task not only improves performance but also

“commitment” to the task, making it harder to switch to another. This has been

formalized in terms of the dynamics of processing in neural networks, in which
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increasing the activity of the representation(s) responsible for the control of a task

improves performance by making it more robust to interference, but also induces greater

persistence of activity of those representation(s) (and ones in the pathways responsible

for task execution), thereby increasing the potential for interference when switching

tasks (Durstewitz & Seamans, 2008; Musslick et al., 2017, 2019; Ueltzhöffer et al., 2015).

As discussed in Section 2.4.5 (“Performance Costs Associated with Task Switching”) in

the Summary, Discussion and Conclusions for Part I, such switch costs will impair

performance in settings requiring the flexibility to rapidly switch between tasks.

Musslick et al. (2019, 2018) have illustrated these effects and their ability to

reproduce empirically observations concerning human performance using a model that

implemented control representations as attractors in the recurrent layer of a neural

network. In this model, the intensity of control could be adapted by regulating the

depth of the attractors through gain modulation in the control layer of the network.

The authors showed that, by adapting gain to optimize performance (i.e., maximize

overall reward rate), lower values of gain—associated with shallower attractors and thus

weaker control signal intensity—improved performance in environments requiring more

frequent switching between tasks. These observations suggest that constraints on the

intensity of control can be a rational response in environments that require flexibility,

and that this may be signaled by the costs associated with the intensity of control

allocation. Importantly, as we showed in Simulation Study 3, such effects scale with the

extent to which representations are shared among the tasks involved, and thus with

dependence on control and inversely with the number of tasks that can be executed at

once. Accordingly, the framework presented in this article provides a unified approach

to an understanding of the costs associated with control—both in the number of tasks

to which it is allocated and the intensity allocated to each—showing how these relate to

(and scale with) the use of shared representations, and the corresponding flexibility to

acquire new tasks as well as the flexibility to switch between them.
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4.7 Relevance to Machine Learning and Communications Engineering

4.7.1 Shared Representations and the Bias-Variance Trade-Off in

Machine Learning. As noted throughout this article, the observation that shared

representations promote more rapid learning and generalization has become an

important foundation of machine learning methods that make use of neural network

architectures. Such methods are largely concerned with building artificial agents that

can generalize what they learn from observed (training) data to unseen (test) data. One

challenge in doing so has been characterized as the bias-variance trade-off, which is

closely related to the trade-off between shared and separated representations. The

bias-variance trade-off refers to the problem that can arise from overfitting, in which

generalization and transfer performance are impaired if a learner is too flexible, as can

be the case for neural network architectures (Geman, Bienenstock, & Doursat, 1992). It

is assumed that the prediction error of a model (e.g., a neural network) arises from at

least two sources of error: bias and variance. Bias (systematic) error results from

simplifying assumptions (constraints) made by the learning algorithm. Generally, a

higher bias yields simpler models that can be trained faster but are less flexible and

subject to error if the biases are not aligned with the structure of the data. For

instance, linear learning algorithms can have a higher bias than non-linear learning

algorithms, yielding models that are faster to train but more prone to systematic error

(e.g., the inability to capture non-linear relationships between inputs and outputs in the

training data). Variance (unsystematic) error arises from variation across the training

data. Training algorithms with low bias can yield high variance error because the

resulting model can be strongly influenced by the specifics of the training data, making

it susceptible to overfitting (i.e., capturing unsystematic variation in the training data).

Thus, the more constrained a model, the higher its bias error but the less susceptible it

is to unsystematic variance (noise) across training sets, resulting in the bias-variance

trade-off (but see d’Ascoli, Refinetti, Biroli, & Krzakala, 2020).

The bias-variance trade-off can help provide insight into the factors that influence

the development of shared representations. For example, In Appendix D, we initialized
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networks with small weights and trained them on multiple tasks. Such multi-task

learning can be seen as an inductive bias that restricts the network to learning shared

structures across tasks. When learning tasks together, the shared structure reduces

random differences in the learned representations that could happen if tasks were

learned separately, by smoothing out these differences across the training sets for each

task (Caruana, 1997; Ruder, 2017). The preference for a small number of shared

representations can be expressed as a bias in the hypothesis space, which is the

collection of all possible strategies that a learner can adopt to master new tasks (Baxter,

1995). In Appendix D, we show that a small number of shared representations facilitates

transfer to new tasks, but this results in an initial systematic error when the network

has to learn to perform multiple tasks simultaneously. This error can be avoided by

initializing the network with orthogonalized initial weights, which biases the network

towards developing separate representations and reduces systematic error, but makes it

more susceptible to noise and increases the time taken to learn each task individually.

Understanding factors that influence the bias-variance trade-off (such as initial

weights and forms of regularization during learning; see Appendix D), and how these

impact the formation of shared versus separated representations, may also be valuable

for understanding the architecture of the brain from both evolutionary and

developmental perspectives. For example, work in machine learning has shown that

initializing the weights of a network with small random values produces a bias toward

the development of shared representations (Saxe et al., 2019). Small initial weights

seem neurobiologically plausible and are a factor that we exploited in our simulations

(e.g., Simulation Studies 6 and Appendix D). These can be thought of as starting with

a single (albeit uninformative) representation that is segregated into a greater number

only under the pressure of the evidence (i.e., learning); that is, it favors the use of fewer

representations shared over more inputs unless pressured to do otherwise. Conversely,

an understanding of how the brain manages the bias-variance trade-off may provide

insights into the uniquely adaptive character of human cognitive function that may

prove useful in the design of more powerful artificial agents. For example, the work
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discussed in Section 3.4 (“Summary and Discussion of Part II”) and above in

Section 4.6.1 (“Opportunity Costs and the Expected Value of Control”), concerning

optimization of the trade-off between the flexibility of control-dependent processing

(using shared representations) and the efficiency of automaticity (requiring the

acquisition of separated representations) may inform efforts to design artificial systems

that are capable of more sophisticated forms of adaptation: For example, wouldn’t it be

nice if a computer had the ability to use flexible, general-purpose (e.g., “interpreted”)

methods to recognize and interact with novel devices, but also develop more efficient

routines (“compiled drivers”) for devices with which it continued to interact regularly,

and be able to recognize when it was worth it to do so, and to do so on its own?

Similarly, within the specific context of neural network architectures, there is growing

emphasis on the design of architectures that can perform as many different tasks as

possible using the most efficient possible architectures, by relying as heavily on shared

use of representations (e.g., X. Chen et al., 2022). However, while these focus on the

capacity to perform multiple different tasks through representational sharing, to date,

little if any attention seems to be paid to whether and how such systems can perform

multiple tasks at the same time—a critical factor for optimizing the efficiency of agents

that must act under time constraints often confronted in real-world situations.

Understanding how the human brain manages this challenge should be of considerable

use in the design of such systems.

4.7.2 Multitasking and Shared Communication Channels. Multitasking

capability, as considered in this article, bears a close relationship to, and thus may be

be informed by issues that arise in the design of electronic communication systems that

seek to optimize the efficiency of transmission through distributed, parallel

communications while avoiding the risks of cross-talk introduced by shared

communication channels (Alon, Moitra, & Sudakov, 2012; Birk, Linial, & Meshulam,

1993; Chlamtac & Kutten, 1985). Communication channels require balancing channel

capacity (the number of messages that can be simultaneously transmitted between

senders and receivers) and structural efficiency (sharing connections between senders
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and receivers). Shared communication channels are deployed when it is too expensive or

prohibitive to build point-to-point communication channels between senders and

receivers, as is the case for the standard computer bus, cellular systems, or local area

networks (Birk et al., 1993). Thus, analogous to the way in which neural architectures

exploit shared representation for the purpose of learning efficiency, shared

communication channels rely on shared connectivity in the service of structural

efficiency.

Analyses of communication systems may be useful for analyzing and

understanding multitasking capability in neural networks, and vice versa. For example,

one implementation of shared communication channels is the shared directional

multichannel (SDM), which obeys the following protocol: (1) a message transmitted to

a sender is broadcast to all receivers connected to the sender, and (2) a message is

considered correctly retrieved by a receiver if no other messages are transmitted to the

receiver (Birk, 1987). The SDM can be viewed as a special case of the bipartite task

graph introduced in Part 1 of this article, in which a sender corresponds to a stimulus

dimension (input node), a receiver corresponds to a response dimension (output node),

and the transmission of a message from a sender to a receiver corresponds to the

execution of a task (directed edge). However, unlike in the SDM, stimulus dimensions

do not automatically broadcast information to all response dimensions connected to

them. Rather, we assume that executing a task requires cognitive control to engage

(activate) the stimulus and response dimensions relevant to that task. Thus, the SDM

corresponds to the special case of a multitasking agent whose control policy is to engage

all stimulus and response dimensions simultaneously. Analogous to the work we have

presented in this article, the capacity of an SDM can be assessed by formulating it as a

bipartite graph and then determining the largest subset of edges in the graph for which

none of the edges share a node (i.e., no structural dependence), and for which there

exists no other edge in the entire graph that connects an input node of an edge in the

subset to an output node of a different edge in the subset (i.e., no functional

dependence), which corresponds to the maximum independent set of its dependency
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graph (Birk et al., 1993). Thus, there is a close parallel between the analytic tools

developed for the study of communication channels and those we have described here for

studying multitasking capability in neural architectures, which may be useful to exploit

in each domain (for earlier, similar approaches to quantifying multitasking capability

see Craik, 1948; Welford, 1967; Townsend et al., 1983). For instance, theoretic analyses

of parallel processing capability in complex, multi-layered communication channels may

be useful for characterizing the multitasking capability of deep (i.e., multi-layered)

neural networks. Conversely, the control-centered perspective on multitasking

performance described in this article may inform the regulation of gated communication

channels. For instance, our framework of controlled representations for stimuli and

responses may be useful for the design of control systems that regulate which senders

get to communicate with which receivers in a given communication channel.

4.8 Limitations and Future Directions

4.8.1 Graded Effects. While we hope that the work presented in this article

advances the effort to lend formal rigor and quantitative precision to understanding the

mechanisms responsible for cognitive control, it has necessarily relied on a number of

simplifying assumptions. First, for the graph-theoretic analyses, we assumed that

representational sharing is a binary factor: either tasks share or don’t share

representations. Of course, the degree of sharing is a graded factor in neural networks

(including the ones used throughout this article). We did not address this in the

graph-theoretic analyses we reported, as it requires the analysis of weighted graphs,

which is considerably more complex (Alon et al., 2018). However, such graded overlap

among distributed representations is an important factor in determining the

multitasking capability of a neural system. For example, the simulations in Part I

showed that multitasking interference deteriorates in a graded fashion with the amount

of representational overlap between tasks. They also showed that multitasking

performance depends on other factors, such as the amount of conflict induced by shared

representation or persistence of neural activity, both of which are graded effects that
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scale with the extent of sharing. The discrete form of the graph-theoretic analysis

methods we described does not capture these effects. For all of these reasons, further

developing those methods to incorporate weighted graphs, which can express graded

effects of degree of overlap and temporal dynamics of neural activity, is an important

direction for future research.

4.8.2 Task Complexity. Another simplification is the focus on tasks that

involve simple direct mappings between inputs and outputs. In more realistic scenarios,

tasks are likely to involve multiple internal (re-)mappings and/or temporally extended

sequences of actions. Such tasks are well accommodated by symbol-oriented cognitive

architectures that decompose tasks into subtasks, or “chunks” (Meyer & Kieras, 1997b;

Salvucci & Taatgen, 2008). Neural network architectures can also accommodate such

tasks as a sequence of computations that are carried out using recurrent within layers

and/or over multiple layers. The latter allows a task to be implemented through

multiple paths through the network. However, as discussed in Section 2.2.3 (“Analysis

of Multitasking Capability”) in Part I and in related work (e.g., Alon et al., 2017), the

likelihood of interference between pathways implementing different tasks increases with

the number of intermediate layers (i.e., opportunities for intersection). As noted above,

this poses a challenge for approaches that seek to build multilayered systems designed

to implement many different tasks that make use of common representational resources.

Nevertheless, the use of multilayered and/or recurrent networks may be critical for

addressing another factor that is likely to be important in multitasking capability: the

extent to which the tasks involved, though distinguishable, involve some degree of

partial dependence and coordination (e.g., singing and playing an instrument), as

opposed to those that are either fully independent (e.g., talking and walking) or

dependent and incompatible (e.g., color naming and word reading). Work that extends

the framework presented here from tasks involving simple stimulus-response mappings

to ones with more complex structures and relationships to one another is an important

direction for future research.
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4.8.3 Scope of Phenomena. The work we have presented here provides, to

our knowledge, the broadest integration to date of phenomena associated with cognitive

control in terms of a neural network architecture that includes the classic Stroop, PRP,

and task-switching paradigms, as well as behavioral measures of parallel vs. serial

processing channels. Nevertheless, these represent only a subset of the wide array of

relevant empirical findings that remain to be addressed. We hope that the present work

offers insights and approaches that, together with other developments in computational

and cognitive neuroscience and machine learning (e.g., Badre, Bhandari, Keglovits, &

Kikumoto, 2021; Flesch, Balaguer, Dekker, Nili, & Summerfield, 2018; Graves et al.,

2014; Russin, Zolfaghar, Park, Boorman, & O’Reilly, 2022; Saxe et al., 2019; Saxe,

Nelli, & Summerfield, 2020; Townsend & Wenger, 2004), can contribute to the

construction of unified models of cognition using neural network architectures, that can

approach the scope of those that have been developed using symbol-processing

frameworks such as ACT-R and SOAR.

We also hope that the work presented here motivates new, more detailed,

theoretically-guided empirical studies of the neural mechanisms underlying skill

acquisition and automaticity. One straightforward prediction that derives from this

work is that improvements in multitasking should be accompanied by a separation of

representations that are responsible for cross-task interference—a prediction that has

recently received preliminary empirical support (Garner & Dux, 2015). Looking

forward, imaging method could be used at a finer grain level of analysis, to diagnose

functional dependence from the similarity of patterns of neural activity observed during

single-task performance, which could then be used to predict multitasking performance

when they are combined. Furthermore, real-time imaging methods using closed-loop

feedback (in which online decoding of neural activity is used to adapt the training

regime) could be applied, as they have in other domains (e.g. Iordan, Ritvo, Norman,

Turk-Browne, & Cohen, 2020; Stoeckel et al., 2014), to more directly determine the

causality of changes in neural representations and performance, and to implement

feedback-guided training methods that may help augment the acquisition of
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multitasking capabilities.

4.9 Conclusion

This article has presented a formal framework for understanding the constraints

associated with control-dependent processing in neural architectures, that suggests

these reflect a rational response to the bounds on processing imposed by the use of

shared representations, rather than an intrinsic limit in the capacity of the mechanisms

responsible for executing control. Analyses carried out within this framework indicate

that learning in neural network architectures, both natural or artificial, is subject to a

tension between: on the one hand, the use of shared representations that exploit

similarity structure between tasks in the service of more rapid acquisition and flexible

generalization, but are constrained to serial execution to avoid cross-task interference;

and, on the other hand, the development of separated, task-dedicated representations

that support concurrent parallelism of execution and thereby efficient processing, but

take longer to acquire and are domain-specific. This computational trade-off between

shared and separated representations, and its interaction both with the relative strength

of competing pathways and the persistence characteristics of representations, can help

explain a number of fundamental principles of cognitive function and associated

phenomena, many of which may also have application in machine learning research.

Here, we focused on the implications of this trade-off for control-dependent processing

and argued that the limitations thereof reflect a function rather than a deficit of the

mechanisms responsible for control. This work helps explain the commonly-observed

trajectory from control-dependent to automatic processing, as a rational optimization of

the trade-off between shared and separated representation: an initial bias toward shared

representations affords the flexibility of rapidly acquiring new tasks, but at the expense

of serial processing and dependence on control; while an investment in the additional

training required to develop separated representations affords the efficiency and

robustness to interference of automaticity for those tasks that are deemed to require

this. This provides a formally rigorous framework for furthering our understanding of
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how and why people choose to rely on control-dependent processing versus investing in

automatization, and may also inform the design of more intelligent artificial agents, that

are capable of more sophisticated forms of adaptation and can function over a wider

range of tasks and environments.
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Appendix A: Graph Theory Preliminaries

Throughout the main text and the appendix, we make extensive use of some basic

definitions and notation from graph theory. In this section, we review these. Additional

background and information concerning graph theory can be found in Diestel (2005)

and D. B. West et al. (2001).

An directed graph G is composed of a finite set of vertices, V and a set of edges,

E which is a subset of the family of all 2-tuples of V . Namely each edge is an ordered

pair (u, v) where both u, v ∈ V . We write G = (V,E) to signify a graph G that consists

of a vertex set V and edge set E. We say that a vertex y is an neighbor of x if

(x, y) ∈ E. Alternatively, we say that y is adjacent to x.

The degree of x is defined as the number of neighbors of x. Given a list of vertices,

v1, v2, ..., vr the degree sequence of these vertices is simply the list of the degrees of

v1, v2, ..., vr. The average degree of a graph is simply the sum of the degrees normalized

by the number of vertices.

A simple path is a set of distinct vertices v1, v2, ..., vk such that for every 1 ≤ i < k

, vi is a neighbor to vi+1. The length of the path is the number of vertices in the path

minus one (that is, k − 1).

An independent set is a subset I of vertices that contains no edges. We refer to an

independent set of maximal cardinality as an MIS (standing for maximal independent

set). G = (V,E) is bipartite if the vertex set of V is the union of two disjoint

independent sets.

A matching is a set of edges M that are pairwise disjoint. Namely, no two edges in

M share a vertex as an endpoint. A matching M ′ is induced if no two edges in M ′ are

connected by a third edge.

The line graph L(G) of a graph G = (V,E) is a graph whose vertex set is the

edges of G and two vertices in L(G) are connected by an edge in L(G) if the edges

corresponding to them in G share a vertex (observe that the line graph may have

parallel edges, namely if v(e) and v(f) are two edges corresponding to the edges e and f

in G then the line graph may contain both the (v(e), v(f)) edge as well as the
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(v(f), v(e)) edge. The square of a graph G = (V,E) denote by G2 has the same vertex

set V as G. Two vertices in G2 are connected if and only if there is a path of length at

most 2 connecting them in G. It can be verified a set of vertices in the square of the line

graph L(G) is an independent set if and only if the edges in G, that correspond to these

vertices in L(G), form an induced matching.

Appendix B: Multitasking Capability in Deep Networks

Here, we derive an upper bound for the multitasking capability in deep networks.

Recall from Section 2.2.3 (“Analysis of Multitasking Capability”) in the main text that

we assume that we are given a network G that has r ≥ 2 layers L1, ..., Lr where each

layer is of size n. Every layer is an independent set and for every i < r , every vertex in

Li is connected to every vertex in Li+1 independently with probability p . In other

words, for every i < r, the graph connecting Li and Li+1 is a random bipartite graph

where every u ∈ Li is connected to Li+1 with probability p independently of all other

edges. Observe that we assume there are no “skip connections": there are no edges

connecting Li and Lj if |i− j| > 1.

Recall that a family of induced paths of size k is a set of k paths from L1 to Lr

that are vertex disjoint and furthermore, for any two vertices u, v belonging to two

different paths, there is no edge in G connecting u to v. We use the first moment

method commonplace in random graph theory to upper bound the likely size of k. We

first upper bound the expected number of families of k induced paths going from the

first layer to the rth layer. The expected number of such paths is

(
n

k

)r
pk(r−1)((1− p)2(r−1))k(k−1)/2 (13)

.

Indeed, there are
(
n
k

)r
ways to choose the vertices in the k induced paths (observe

that the k induced paths intersect Li at exactly k vertices for every 1 ≤ i ≤ r), the

probability all these paths appear is pk(r−1) and the probability no two paths are

connected by an edge is ((1− p)2(r−1))k(k−1)/2. Here, we use the assumption that there
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are no “skip connections”: Every layer i has connection only to the i+ 1 or i− 1 layers.

Using the inequalities
(
n
k

)
≤
(
en
k

)k
and 1− p ≤ e−p, we get that the expected number of

families containing k induced paths is at most

enp r−1
r

k

rk e(−p(r−1)k+p(r−1))k =
enp r−1

r

k

r e−p(r−1)k+p(r−1)

k . (14)

.

To prove the expectation is negligible (tending to zero with n), it suffices to find k

such that the term inside the bracket is at most 1
e
. Taking logarithms (all logarithms

are to the base of e) we get,

k =
(

1 + 1
r − 1

)( log en− log k
p

)
− log(1/p)

p
+ 1

(r − 1)p + 1. (15)

By Markov’s inequality, we get that with high probability (probability tending to

1 as n tends to infinity) the a family of t induced paths in G satisfies

t ≤ f(r, p, n) =
(

1 + 1
r − 1

)( log en
p

)
− log(1/p)

p
(16)

plus some low-order terms (e.g., terms whose asymptotic growth is much lower

than log en
p

). Looking at this calculation, we see that for p ≥ w(n) lgn
n

where

limn→∞w(n) = 0, the largest number of tasks that can be multitasked is sublinear in n

confirming our simulations and predictions in the main text (for r = 2). Assuming that

p ≥ 1/n, we can also see that f(r, p, n) decays in r, and rate of the decay is lower

bounded (when compared to the r = 2 case) by 1/2(r − 1). Namely, we have that

f(r, p, n)
f(2, p, n) ≥

((
1 + 1

r − 1

)( log en
p

)
− log(1/p)

p

)
/(2 log(en)/p) ≥ 1

2(r − 1) . (17)

Our bound on the expectation implies that with high probability there is no

family of induced paths in G containing significantly more than f(r, p, n) paths. One

may ask whether our result is tight: is it true that there exist a family of induced paths
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with (1− δ)f(r, p, n) paths (where δ is an arbitrary positive constant smaller than 1)

with high probability. While we believe that this is indeed the case, a formal proof or

disproof is left for future work.

Appendix C: Trade-Off Between Learning Efficiency and Multitasking

Capability in Gated Deep Linear Networks

Here, we derive the trade-off between learning efficacy and processing efficiency

introduced in Section 3.3.1 (“Mathematical Analysis: Trade-off Between Learning

Efficacy Versus Processing Efficiency in Linear Networks”) in Part II. Consider the

setting with M stimulus dimensions xi ∈ RN , i = 1, · · · ,M and M response dimensions

yi ∈ RN , i = 1, · · · ,M where each dimension consists of N neurons (processing units in

a neural network). There are M2 single tasks to perform, corresponding to all

combinations of linking a stimulus dimension to a response dimension. Given a stimulus

dimension m and response dimension n, the task to be performed is a function f linking

only the specified stimulus dimension to the specified response dimension, yn = f(xm),

and all other response dimensions should be zero, yk = 0, k 6= n. That is, the

transformation applied from stimulus dimension to response dimension is identical for

different tasks, which differ only in which dimensions are relevant. The transformation

is learned based on a dataset of P inputs X ∈ RN×P and associated desired outputs

Y ∈ RN×P where examples are placed in columns. Learning speed will depend on the

second order statistics Σyx = Y XT and Σxx = XXT , and for simplicity, we assume that

the inputs are whitened, Σxx = I.

To implement the mapping from input to output, we use a gated deep linear

network containing a single hidden layer of neurons (Fig. 26). In this network, signal

propagation is linear, except that individual neurons in the hidden and output layers

are gated on or off on each example. The gating scheme is hand-specified, and different

gating schemes will cause different learning dynamics and multitasking behavior. To

describe the gating schemes we consider, it is useful to subdivide the hidden layer of

neurons as follows. We divide the hidden layer into Q groups of neurons that will
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project to different response dimensions, described below; and each group is further

subdivided into M sets of N neurons, one for each of the M stimulus dimensions. The

overall hidden layer is thus of size QMN , and to foreshadow, the number of groups Q

will interpolate between the minimal basis set representation (Q = 1) and the tensor

product representation (Q = M). We denote the hidden units devoted to stimulus

dimension i, group j as the vector hj,i ∈ RN . We denote the weights from stimulus

dimension i to its bank of hidden units in group j as W j,i
hs , i = 1, · · · ,M, j = 1, · · · ,M .

Similarly, we denote the output weights from the ith stimulus dimension’s set of hidden

units in group j to the kth response dimension as W k,j,i
oh .

With these definitions, we now describe how the output of the gated deep linear

network is computed for a given input. The network’s hidden activity in response to an

input is given by

hj,i = gh(i, j, c)W j,i
hsxi, i = 1, · · · ,M, j = 1, · · · , Q (18)

where the scalar hidden gating function gh(i, j, c) is either one or zero (turning on or off

this bank of hidden units) and is allowed to depend on the current task c, i.e., the

relevant stimulus dimension and response dimensions. This gating function will be

hand-chosen as described subsequently. The network’s output is then

yk =
Q∑
j=1

M∑
i=1

go(k, c)W k,j,i
oh hj,i, k = 1, · · · ,M (19)

where similarly the output gating function go(k, c) is either one or zero (turning on or

off this bank of output units) and may depend on the task c. In this network, the

impact of nonlinearity is to gate on or off certain sets of hidden and output neurons,

depending on task context, via the gating functions gh and go.

To train the network, all weight parameters are adjusted using gradient descent to

minimize a loss function, which we choose to be the sum of squared error. The error for

a task c is

SSE(c) = 1
2

P∑
µ=1

M∑
k=1
‖ȳk(µ, c)− yk(µ, c)‖2

2 (20)

(21)
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where ȳk(µ, c) ∈ RN is the correct output for example µ on task c, and we have made

the dependence of the network’s output on µ and c explicit.

Learning Single Tasks

When the network is trained on the set S of all M2 single-tasking tasks, we have

the total loss

L =
∑
c∈S

SSE(c). (22)

Every weight parameter w in the network is updated via continuous time gradient

descent,

τ
d

dt
w = −∂L

∂w
. (23)

Taking the derivative for a single task c with respect to the hidden-to-output

weights, we have

∂SSE(c)
∂W q,r,s

oh

= ∂

∂W q,r,s
oh

1
2

P∑
µ=1

M∑
k=1
‖ȳk(µ, c)− yk(µ, c)‖2

2 (24)

= ∂

∂W q,r,s
oh

1
2

P∑
µ=1

M∑
k=1

∥∥∥∥∥∥ȳk(µ, c)−
Q∑
j=1

M∑
i=1

go(k, c)W k,j,i
oh gh(i, j, c)W j,i

hsxi(µ)
∥∥∥∥∥∥

2

2

(25)

= 1
2

P∑
µ=1

∂

∂W q,r,s
oh

∥∥∥∥∥∥ȳq(µ, c)−
Q∑
j=1

M∑
i=1

go(q, c)W q,j,i
oh gh(i, j, c)W j,i

hsxi(µ)
∥∥∥∥∥∥

2

2

(26)

=
P∑
µ=1

eq(µ, c)go(q, c)gh(s, r, c) [W r,s
hs xs(µ)]T (27)

=
P∑
µ=1

ȳq(µ, c)− Q∑
j=1

M∑
i=1

go(q, c)W q,j,i
oh gh(i, j, c)W j,i

hsxi(µ)
× (28)

go(q, c)gh(s, r, c) [W r,s
hs xs(µ)]T (29)

(30)

Hence the derivative will be zero if the response dimension to which these weights

project is gated off (go(q, c) = 0), or if the hidden group for this output and stimulus

dimension is gated off (gh(s, r, c) = 0). When the task c is a single-tasking scenario in

which stimulus dimension γ and response dimension ν are relevant,
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Now we use the fact that ȳq(µ, c) and go(q, c) are both zero unless response

dimension q is on in task c. Let ν be the response dimension for task c. Then we have

∂SSE(c)
∂W q,r,s

oh

= 0 if q 6= ν (31)

and if q = ν,

∂SSE(c)
∂W q,r,s

oh

=
P∑
µ=1

ȳν(µ)−
Q∑
j=1

M∑
i=1

W ν,j,i
oh gh(i, j, c)W j,i

hsxi(µ)
 gh(s, r, c) [W r,s

hs xs(µ)]T . (32)

In single task training, the hidden gating function gh(i, j, c) is zero unless i corresponds

to the desired stimulus dimension γ. Hence ∂SSE(c)
∂W q,r,s

oh
= 0 if s 6= γ, and otherwise,

∂SSE(c)
∂W q,r,s

oh

=
P∑
µ=1

ȳν(µ)−
Q∑
j=1

W ν,j,γ
oh gh(γ, j, c)W j,γ

hs xγ(µ)
 gh(γ, r, c) [W r,γ

hs xγ(µ)]T . (33)

Finally, gh(γ, j, c) is zero unless group j projects to response dimension ν. Let ξ be the

group index for response dimension q. Then we have

∂SSE(c)
∂W q,r,s

oh

=


∑P
µ=1

[
ȳν(µ)−W ν,ξ,γ

oh W ξ,γ
hs xγ(µ)

] [
W ξ,γ
hs xγ(µ)

]T
if q = ν, r = ξ, s = γ

0 otherwise
(34)

Using the fact that all tasks require the same input-output mapping, this can be

rearranged to

∂SSE(c)
∂W q,r,s

oh

=


(
Σyx −W ν,ξ,γ

oh W ξ,γ
hs Σxx

) (
W ξ,γ
hs

)T
if q = ν, r = ξ, s = γ

0 otherwise
(35)

Hence, when training in single-tasking context, only the hidden-to-output weights which

project from the relevant hidden input group to the relevant response dimension, and

are part of a group which are active for this response dimension will change. The form

of this change is exactly the same as in a deep linear network, a fact that we will exploit

below.

Summing the contributions from all single tasks yields the learning dynamics for

the overall loss L for single task training,

∂L
∂W q,r,s

oh

=


(Σyx −W q,r,s

oh W r,s
hs Σxx) (W r,s

hs )T if r = v(q)

0 otherwise
(36)
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where v(q) is a function mapping an response dimension to its associated hidden unit

group. Hence, under single task training, the hidden-to-output weights between a

hidden unit group and its associated output dimension change according to standard

dynamics in a deep linear network, and connections from other groups to the relevant

output remain unchanged.

We now calculate the derivative for a single task c with respect to the input

weights,

∂SSE(c)
∂W r,s

hs

= ∂

∂W r,s
hs

1
2

P∑
µ=1

M∑
k=1
‖ȳk(µ, c)− yk(µ, c)‖2

2 (37)

= ∂

∂W r,s
hs

1
2

P∑
µ=1

M∑
k=1

∥∥∥∥∥∥ȳk(µ, c)−
Q∑
j=1

M∑
i=1

go(k, c)W k,j,i
oh gh(i, j, c)W j,i

hsxi(µ)
∥∥∥∥∥∥

2

2

(38)

=
P∑
µ=1

M∑
k=1

go(k, c)
(
W k,r,s
oh

)T
[ȳk(µ, c) (39)

−
Q∑
j=1

M∑
i=1

go(k, c)W k,j,i
oh gh(i, j, c)W j,i

hsxi(µ)
 gh(s, r, c)xs(µ)T (40)

(41)

Under the single tasking gating scheme where task c links input dimension m to

output dimension n, this simplifies to

∂SSE(c)
∂W r,s

hs

=
P∑
µ=1

(W n,r,s
oh )T

[
ȳn(µ, c)−W n,v(n),m

oh W
v(n),m
hs xm(µ)

]
gh(s, r, c)xs(µ)T (42)

= (43)

where in the first step we have used the fact that go(k, c) is zero unless k = n and

gh(i, j, c) is zero unless i = m, j = v(n) (v(n) is the hidden group associated with output

group n). Hence the update will be zero, unless s = m and r = v(n). Notably, this

means the update can be nonzero for tasks with different output dimensions n.

Summing over all single tasks, we have the update

∂L
∂W r,s

hs

=
P∑
µ=1

(W n,r,s
oh )T

[
ȳn(µ, c)−W n,v(n),m

oh W
v(n),m
hs xm(µ)

]
gh(s, r, c)xs(µ)T (44)

(45)

∂L
∂W r,s

hs

=


(Σyx −W q,r,s

oh W r,s
hs Σxx) (W r,s

hs )T if r = v(q)

0 otherwise
(46)
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We thus have the SSE

SSE = 1
2

M∑
µ=1

M∑
ν=1

∥∥∥Y µ,ν − Ŷ µ,ν
∥∥∥2

F
(47)

= 1
2

M∑
µ=1

M∑
ν=1
‖Y µ,ν −W µ

2 W
ν
1 X

µ,ν‖2
F (48)

The gradient is thus

∂SSE

∂W µ
2

= 1
2

M∑
ν=1

∂

∂W µ
2
‖Y µ,ν −W µ

2 W
ν
1 X

µ,ν‖2
F (49)

=
M∑
ν=1

(
Y µ,ν(Xµ,ν)T −W µ

2 W
ν
1 X

µ,ν(Xµ,ν)T
)
W νT

1 (50)

∂SSE

∂W ν
1

= 1
2

M∑
µ=1

∂

∂W ν
1
‖Y µ,ν −W µ

2 W
ν
1 X

µ,ν‖2
F (51)

=
M∑
µ=1

W µT

2

(
Y µ,ν(Xµ,ν)T −W µ

2 W
ν
1 X

µ,ν(Xµ,ν)T
)

(52)

Finally, assuming identical tasks and similar initializations W1 = W ν
1 , W2 = W µ

2

for all µ, ν, we have

∂SSE

∂W2
= M (Σyx −W2W1Σxx)W T

1 (53)

∂SSE

∂W1
= MW T

2 (Σyx −W2W1Σxx) (54)

Hence the impact of multitasking is simply to pick up a factor of M in the

learning rate, relative to learning each task independently. Using the usual SVD results

for linear networks, this means that each mode of the SVD will be learned in time

t = τ

Ms
ln(s/ε) (55)

where s is the singular value of the input-output mode, τ is the inverse learning rate,

and ε is a small cutoff (assuming whitened inputs; this can be relaxed).

Hence this input-output gating scheme learns in time roughly O(1/M), and sits as

a midpoint along a continuum: if we knew that all tasks were identical and parameter

updates could be fully shared, we could learn the task in time O(1/M2). If we used a

tensor product representation, we would learn each task as though it were completely

independent, yielding an O(1) learning time.
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Letting N = M2 be the total number of tasks, we can rewrite this as an O(1/
√
N)

advantage in learning speed over the tensor product representation.

There is also an advantage in terms of representational resources required. The

gating strategy requires O(MP ) neurons in its hidden layers to implement the

transformation where P is the number of input/output units per dimension. In contrast

the tensor product strategy requires O(M2P ); or rephrased in terms of the total

number of tasks, O(P
√
N) and O(PN) respectively. This can yield substantial savings.

Performing Multiple Tasks Simultaneously

Can multiple tasks be performed at the same time? One might hope that simply

setting the gating variables to allow two tasks to pass through would enable good

performance. However this idea fails completely because each task will linearly interfere

with the other in the minimal basis set representation. In particular, if tasks (µ1, ν1)

and (µ2, ν2) are attempted simultaneously, the output will be ŷ = W2W1(xµ1,ν1 + xµ2,ν2)

at both output locations.

In the tensor product representation, however, two tasks can errorlessly be

performed at the same time simply by activating the appropriate elements in the tensor

product. In fact, M tasks can be performed simultaneously (the maximum number

which can be accommodated given the M response dimensions).

Are there intermediate options between the O(1/M) learning but O(1)

multitasking of the input-output gating scheme and the O(1) learning but O(M)

multitasking of the tensor product? Suppose we wish to be able to perform just Q tasks

simultaneously. We may divide the M output task dimensions into Q groups, and apply

the input gating scheme to each group independently. Each group has M/Q response

dimensions which constitute it, and hence is learned in time O(Q/M). We thus have

the following trade-off:

t = τQ

Ms
ln(s/ε) (56)

or t ∝ Q/M . In words, this is learning speed = # of input/response dimensions

divided by # of concurrently executable tasks.
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Appendix D: Cognitive Flexibility and Transfer to Novel Tasks

In machine learning, the learned representations of pre-trained tasks are found to

improve the generalization performance on a primary, related task (Baxter, 1995;

Bengio et al., 2013; Caruana, 1997; Collobert & Weston, 2008; Zamir et al., 2018), such

as in computer vision (Girshick, 2015; Long & Wang, 2015; Lu, Li, & Mou, 2014),

natural language processing (Collobert & Weston, 2008; Duong, Cohn, Bird, & Cook,

2015), and speech recognition (Deng, Hinton, & Kingsbury, 2013). Similarly, prior

learning of simple task-related information was shown to facilitate the transfer to novel

tasks (Bengio, Louradour, Collobert, & Weston, 2009; Chang, Gupta, Levine, &

Griffiths, 2018; Elman, 1993; Flesch, Saxe, & Summerfield, 2023; Krueger & Dayan,

2009; Rohde & Plaut, 1999). Such transfer effects are often studied in the context of

“multi-task learning” paradigms (Caruana, 1997), in which an agent is be pre-trained

on a set of auxiliary tasks before it is trained on a primary (target) task. The training

on multiple tasks can be interpreted as an inductive bias that constrains the model to

learn shared structure across tasks. The learning of shared structure reduces

unsystematic variance in the learned representations which might otherwise occur if

tasks were learned in isolation of one another, by averaging any unsystematic variation

(i.e., noise) across task-specific training sets. Thus, multi-task learning promotes the

learning of shared representations that correspond to the structured shared across tasks

(Caruana, 1997; Ruder, 2017). This favoring of lower-dimensional representations can

be formalized as a bias of the learner’s hypothesis space (Baxter, 1995); that is, the set

of all hypotheses a learner may use to acquire new tasks.

Research in machine learning has primarily related the effects of pre-training to

improvements in performance on a primary task, we adopt the multi-task learning

paradigm to demonstrate that shared representations give rise to the computational

benefits of cognitive control in terms of the ability to rapidly acquire novel tasks. For

instance, building on a decision-theoretic framework for neural networks (Haussler,

1992), Baxter (1995) showed that the number of samples required to achieve good

generalization performance for a target task decreases with the number of auxiliary
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tasks on which a network is trained. Here, we test this hypothesis in the non-linear

networks used in the main text by studying the learning performance of a set of target

tasks as a function of the number of tasks that a network is pre-trained on. Specifically,

we investigate whether learned representations for stimulus dimensions in the hidden

layer of a network facilitate the learning of tasks that are associated with the same

stimulus dimensions.

Network architecture and task environment. The network architecture and

processing used in this simulation were the same as those reported in Simulation Study

6. However, features in each stimulus dimension were coded as one-hot vectors, as in

Simulation Studies 1-3. In addition, the number of units in the input and output layers

was adjusted to represent a task environment with three stimulus dimensions and six

response dimensions, and with three features in each dimension. Thus, the stimulus

input layer had nine units and the output layer had 18 units, so that the network could

support a total of 3 ∗ 6 = 18 possible tasks. However, as described below, the network

was trained initially on only a subset of those tasks, and then tested on how quickly it

could acquire others.

Training and analysis. 80 instances of the network were implemented and divided

equally into four groups, in which the networks were pre-trained either on no auxiliary

tasks, or one, two or three auxiliary tasks (see Fig. S1A, auxiliary tasks are depicted as

thin, dashed arrows). Networks in all groups were trained until they reached an MSE

criterion of 0.01. Each of the auxiliary tasks was associated with different stimulus and

response dimensions. After their initial training (in the groups that received

pre-training), networks in all four groups were trained on the same set of three target

tasks, each of which was (like the auxiliary tasks) associated with different stimulus and

response dimensions. Critically, target tasks shared the same relevant stimulus

dimensions as the pre-trained auxiliary tasks, whereas they were associated with a

different set of response dimensions. The networks were trained on all target tasks until

they reached an MSE criterion of 0.01. For each group of tasks, we assessed transfer

performance: the number of training iterations required to reach criterion on all target
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tasks. In order to visualize the the similarity between the hidden representations of

auxiliary tasks and target tasks, we used MDS to project the single task patterns for all

nine tasks in the hidden layer on a 2-dimensional plane, such that the Euclidean

distances between task representations were preserved (see Simulation Study 5, cf.

Fig. 25). Finally, we linearly regressed the number of tasks the network was pre-trained

on against the number of iterations it required to reached an MSE criterion of 0.01.

Results. Fig. S1B shows the MDS projections of the hidden layer patterns of

activity for the auxiliary tasks (shown as thin circles) and target tasks (shown as thick

circles) from an example network in each group. In each example, the representations of

the tasks cluster into three groups, one for each of the stimulus dimensions.

Furthermore, for networks that were pre-trained on auxiliary tasks, the representations

for the target task were close to those for the auxiliary task that shared the same

stimulus dimension. This suggests that target tasks re-use the representations for the

stimulus dimension that they share with a pre-trained auxiliary task. The average

learning curve for each group is shown in Fig. S1C. The learning curves indicate that

target tasks are acquired faster if the network is pre-trained the respective auxiliary

tasks. Without any pre-training, all tasks require the same amount of iterations to train

to criterion. However, when pre-trained on one, two or three auxiliary tasks, the

respective target tasks relying on the same stimulus dimension are learned faster. Thus,

the average amount of training iterations it takes to learn all tasks decreases with the

number of distinct pre-trained tasks, (F(2, 78) = 1590, p < .001, R2 = 0.953). Note that

the learning curves are steeper (the plateau occurs much later in training) for target

tasks that share the same input dimension with pre-trained tasks. This reflects the

learning benefit gained from existing representations of relevant stimulus dimensions, as

suggested by mathematical analyses of learning dynamics in linear networks (Saxe et

al., 2019). Altogether, these results support the conjecture that shared representation

do not just give rise to serial processing constraints, as explored in Part I of the main

text, but do also facilitate rapid transfer to novel tasks, i.e. cognitive flexibility.
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Figure S1 . Effects of pre-training on the acquisition of novel tasks. (A) Pre-training

conditions. Pre-training was performed in a network with three stimulus dimensions in the input layer

(shown in grey) and six response dimensions in the output layer (shown in green). The hidden layer is

shown in blue and depicts hypothesized learned representations of each stimulus dimension. Networks

were pre-trained on no, one, two, or three auxiliary tasks (thin, dashed arrows) before they were trained

on three target tasks (thick, solid arrows). (B) Projections of hidden representations for each task in a

trained example network onto a 2-dimensional plane while maintaining Euclidean distances between

the representations using MDS. Each plot in (B) corresponds to the pre-training condition shown above

in (A). Projections of auxiliary tasks are shown as thin circles and projections of target tasks are shown

as thick circles. Circles with the same color correspond to projections of tasks that share the same

stimulus dimension. (C) Mean squared error on the target tasks as a function of training iterations for

the different pre-training conditions. Each colored line depicts the mean squared error for the

respective target task shown in (A). The black line corresponds to the average mean squared error

across all tasks. Vertical bars represent standard errors of the mean across different networks.
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Appendix E: Formal Analysis of the Balance Between Compositional and

Conjunctive Coding for Learning and Multitasking

Here, we build on the formulation of rational decision-maker introduced in

Section 3.3.4 (“A Normative Theory of Automaticity: Optimization of the Trade-off

between Shared and Separated Representations as an Intertemporal Choice”) in Part II,

and derive conditions for an optimal balance between compositional and conjunctive

encoding of task representations in terms of short-term benefits for learning efficacy and

long-term benefits for processing efficiency. To accomplish this, we assume that the

agent has perfect knowledge about the task environment and learning rate, in order to

assess performance independently of noise that might be generated by an inference

process over these factors. This allows us to analytically derive equilibrium conditions

under which the agent should be indifferent between the compositional and the

conjunctive configuration. For this section, we let N < K so that N = min{N,K}

without loss of generality.

Observe that the expressions in Equation (12) of the main text reduce to:

Ecomp[R|t] = fcomp(t)E[g(α,C)]

Econj[R|t] = fconj(t)E[α]
(57)

where g(i, C) = ∑i−1
j=0(1− jC). Note that g(i, C) encodes the amount of reward accrued

by the agent for completing i tasks in a serial fashion with time cost C. Plugging

Equation (57) into the expression for the expected reward of both strategies we can

express the condition for which the agent should be indifferent between them:

E[α]
E[g(α,C)] =

∑τ
t=0 µ(t)fcomp(t)∑τ
t=0 µ(t)fconj(t)

(58)

An interesting property of this result is that agent-related and environmental

parameters are analytically separable. Observe that the expectation terms on the left

correspond to the agent’s expected reward at asymptotic performance levels, and that
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the sum terms on the right denote the number of expected successes in a critical time

period specified by the conjunction of the temporal discounting function and the

training function. The indifference point can be understood intuitively as a surface over

which the ratio of expected eventual rewards is equal to the ratio of times at which they

are likely to be accrued (discounted by time). That is, the left side contains the ratio of

the rewards the agent expects to earn if it is always correct, whereas the right side is a

ratio of functions that weight when the agent prefers to receive the rewards.

Recall that E[g(α,C)] corresponds to

E[∑i−1
j=0(1− jC)] = E

[
α
2

(
1 + [1− (α− 1)C]

)]
. Since C is a constant, it can be isolated

from the expectation in Equation (58) to get an expression for the precise value of the

serialization cost that characterizes the indifference surface. That is:

Ceq =
2E[α]

(
1−

∑τ

t=0 µ(t)fconj(t)∑τ

t=0 µ(t)fcomp(t)

)
E[α(α− 1)] (59)

Equation (59) provides a rigorous characterization of the trade-off between

compositional and conjunctive learning in multitasking environments described in

Simulation Study 6 in the main text:

1. As the average number of parallel tasks increases, the cost of serialization must

vanish for compositional representations to remain preferable:

E[α]→∞ =⇒ Ceq → 0.

2. As the learning benefit of shared representations diminishes, the value of shared

representations disappears. That is, as the ratio between the (discounted)

conjunctive and compositional training functions approaches unity, for the latter

to remain preferable the cost of serialization must tend toward zero:∑τ

t=0 µ(t)fconj(t)∑τ

t=0 µ(t)fcomp(t) → 1 =⇒ Ceq → 0.

3.
∑τ

t=0 µ(t)fconj(t)∑τ

t=0 µ(t)fcomp(t) → 0 =⇒ Ceq → 2E[α]
E[α(α−1)] : As the ratio of the discounted training

functions for the compositional and conjunctive reconfiguration approaches 0, the

equilibrium-defining serialization cost becomes a function of the number of tasks
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required to be performed. Particularly, Ceq is the serialization cost that sets

expected reward for the compositional configuration to 0. This implication is not

immediately obvious. Consider the task distribution P[α = 1] = P[α = 2] = 1/2.

In this environment, Ceq = 3 and at asymptotic performance levels, the agent

expects to win 1 reward unit when α = 1, or win −1 when α = 2. This makes

sense; if learning conjunctive configurations is so much slower than compositional

configurations that the ratio of the sums goes to 0, the agent is indifferent only if

the expected earnings are 0.

Finally, we note that we have used arbitrary reward functions for the analyses

above. However, it is possible to generalize the equilibrium condition in Equation (58)

to any stationary reward function (i.e. does not change over the course of the

experiment). Let gcomp(α, j, C) denote a reward function with arbitrary dependence on

the number of tasks currently being executed α, the index of the task currently being

executed j, or the serialization cost C; specifically, gcomp is the reward function used

when the tasks are being executed serially. Furthermore, let hcomp(i, C) be the total

reward gathered when gcomp is applied to each of the i assigned tasks so that

hcomp(i, C) = ∑i−1
j=0 gcomp(i, j, C). Finally, define gconj, hconj analogously for the case the

tasks are being processed concurrently. Then a generalized equilibrium condition is:

E[hconj(α,C)]
E[hcomp(α,C)] =

∑τ
t=0 µ(t)fcomp(t)∑τ
t=0 µ(t)fconj(t)

(60)

Observe that for gcomp = 1− jC and gconj = 1, hcomp = g and hT = α from

Equation (58). The existence of this generalized equilibrium condition allows a large set

of questions to be phrased within this framework. For example, it is easy to include an

explicit cost of cognitive control (e.g. Shenhav et al., 2013; Musslick et al., 2015) by

adding a term to the reward function for the compositional configuration that

implements a cost that increases with the number of tasks executed.
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Supplementary Figures
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Figure S2 . Net input from the task layer as a function of the number of tasks performed.

For every combination of tasks to be performed, and every relevant output unit, we computed the net

input that the unit receives from the task layer. The Net input was then averaged across relevant

output units, task combinations and networks. Error bars indicate the standard error of the mean

across networks trained in different task environments. The average net input decreases as the number

of tasks performed increases, indicating mutual inhibition at the output layer.


