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To explain human behavior, most
general theories of cognition assume,
rather than explain, limitations in:
(i) the number of control-dependent
tasks that can be performed simulta-
neously (i.e., multitasked); and (ii) the
amount of cognitive control that can
be allocated to a single task.

Limitations in the capability to multitask
can be explained by representation
sharing between tasks. Computational
Humans are remarkably limited in: (i) how many control-dependent tasks they
can execute simultaneously, and (ii) how intensely they can focus on a single
task. These limitations are universal assumptions of most theories of cognition.
Yet, a rationale for why humans are subject to these constraints remains elusive.
This feature review draws on recent insights frompsychology, neuroscience, and
machine learning, to suggest that constraints on cognitive control may result
from a rational adaptation to fundamental, computational dilemmas in neural
architectures. The reviewed literature implies that limitations in multitasking
may result from a trade-off between learning efficacy and processing efficiency
and that limitations in the intensity of commitment to a single task may reflect a
trade-off between cognitive stability and flexibility.
modeling suggests that neural systems
trade the benefits of shared representa-
tion for rapid learning and generalization
(a mechanism increasingly exploited in
machine learning) against constraints on
multitasking performance.

Experimental studies posit a trade-off
between cognitive stability and cognitive
flexibility. Computational analyses of this
trade-off suggest that adaptations to
high demands for flexibility limit the
amount of control that can be allocated
to a single task.
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The role of capacity constraints in human cognition
One of the most remarkable features of human cognition is the ability to rapidly adapt behavior in
a changing world. This is often attributed to the capacity for cognitive control: the ability to flexibly
direct behavior in pursuit of a goal (Box 1). Cognitive control is engaged by all of the higher mental
faculties that distinguish humans from other species, including reasoning, problem solving,
planning, and the use of symbolic language [1]. Yet, humans are strikingly limited in how many
control-demanding tasks (see Glossary) they can perform simultaneously (e.g., reading a
document while listening to a friend) or how intensely they can focus on a single task
(e.g., parsing a mathematical equation in a noisy environment). The significance of these limita-
tions is not only apparent in daily life. They are also a fundamental premise of general theories
of human cognition (e.g. [2–7],). These theories posit that the exertion of cognitive control is
associated with a cost, and that humans consider this cost when making decisions about how
to allocate control [7–9]. The notion of a cost and concomitant constraints on control, can help
integrate a wide range of empirical findings concerning the allocation of mental effort [10–13],
the selection between cognitive heuristics [5], planning [14,15], or cognitive impairments in
depression [16]. Yet, none of these theories provides an explanation for why control-dependent
processing would be subject to these limitations in the first place.

Here, we review two fundamental, computational dilemmas that arise in neural systems and
suggest that these provide a rational account of constraints on cognitive control. First, we review
empirical and computational evidence suggesting a trade-off between the rapid acquisition of
novel tasks (learning efficacy), that is promoted by sharing representations across tasks, on
the one hand; andmultitasking capability (processing efficiency) that is achieved by separating
representations and dedicating them to individual tasks, on the other hand. The work reviewed
suggests that limitations in the ability to simultaneously execute multiple tasks may reflect a
preference to learn tasks more quickly. Immediate rewards associated with quickly acquiring a
task may often outweigh greater but later rewards associated with the ability to execute that
task in parallel with others. On this view, a purpose of cognitive control is to prevent the simulta-
neous execution of tasks that share representations, to avoid interference that could arise if those
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Box 1. Cognitive control and the mitigation of conflict

Cognitive control can be defined as the collection of mechanisms responsible for flexibly adapting information processing
in the service of task goals. While most theories of cognitive control comport with this definition, they differ in their
assumptions about how cognitive control is implemented. Traditionally, psychological theory (and most, though not all
symbolic architectures used to model cognitive function) has assumed that control relies on a common, centralized set
of mechanisms responsible for coordinating task execution (e.g., either goal representations [149] or production rules
[2]) that are assumed to have an intrinsic capacity limitation. By contrast, in connectionist systems, control is not assumed
to rely on a centralized, dedicated, or necessarily capacity limited set of mechanisms. Rather, it is considered to be a more
distributed and functional characteristic of the system, that reflects the influence that one set of units (often representing
more abstract forms of information) can have over another set of units (representing more specific forms of information)
in a processing pathway, biasing them in a manner that supports execution of a task (see Box 3) [51,83–85,150,151].
In a given context, these sets of units can be viewed, respectively, as supporting ‘control representations’ or ‘task repre-
sentations’, and process(es) relying on the former as ‘control-dependent’. However, we emphasize that these designa-
tions are relative rather than absolute, that depend on the particular tasks being performed. Thus, a representation that
serves as control in one context (e.g., of the dimension ‘color’ in the Stroop task) may be a task representation in another
(e.g., when reporting whether two objects differ along the dimension of color or shape).

Another point of distinction is that, in connectionist architectures, a fundamental purpose of control is the avoidance of
conflict that arises when two tasks compete for the same resource (i.e., task representations; see Figure 1 in main text
and Box 3) [51,83,84], by limiting the engagement of shared representations to a single task (see Figure 2 and section ‘Trad-
ing the costs and benefits of shared representations’ in main text). This may explain why tasks that rely on ‘general-purpose’
representations (e.g., those required for the processing of language) are so closely associated with control: the very nature of
being ‘general-purpose’ means they are accessible to (i.e., shared by) many tasks. The more general a representation, the
more potential for conflict it poses among tasks and, thus, the greater the demand for control to mitigate this conflict by
limiting processing to use by one task at a time (see Box 4). The avoidance of conflict aligns with another function of cognitive
control: the flexible scheduling of task processes over time [40,41,152]. This coordination function plays a crucial role in more
complex tasks, such as problem solving or planning, but a specific treatment of those is beyond the scope of this article.
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Glossary
Cognitive flexibility: the ability to
quickly adapt information processing to
changing task demands.
Cognitive stability: the ability to
successfully pursue a task in the face of
distraction.
Dual-task interference: decrements
in task performance when an attempt is
made to execute a task at the same time
as another task, relative to when it is
performed alone.
Multitasking: the simultaneous
execution of two or more tasks. We
distinguish this use of the term from
broader uses, such as the switching
between multiple tasks.
Resource: a cognitive commodity
(e.g., a set of representations) that are
required to execute a task. It is often
assumed that resources are limited in
some way (e.g., that only one or a
restricted subset of representations of a
given type can be engaged at a single
time).
Task: a consistent mapping from the
features of a stimulus along a given
dimension (e.g., the color of a word) to a
set of actions along a given response
dimension (e.g., verbal responses).
Task representation: the full
representation of all information (e.g.,
perceptual, contextual, and response)
needed to execute a particular task.
tasks required conflicting representations to be active at the same time. It is thus the sharing of
representations that makes tasks control-dependent, forcing people to allocate control to only
one such task at a time and requiring them to flexibly switch between tasks in order to achieve
more than one. This need to switch between tasks gives rise to a second dilemma, the trade-
off between cognitive stability and cognitive flexibility: Greater allocation of control to one
task (e.g., parsing a mathematical equation) results in greater activation of the neural representa-
tions needed to perform that task; but, due to persistence of this neural activity, thismakes it more
difficult to switch to another task (e.g., responding to a phone call) [17–19]. In the second part of
this article, we review evidence for the hypothesis that constraints on the amount of control allo-
cated to a single task result from a bias in this trade-off, toward the ability to flexibly switch be-
tween tasks. Finally, we discuss how the two dilemmas may account for limitations in other
domains of human cognition, such as constraints on working memory and visual attention.

Constraints on multitasking capacity
One of the key characteristics of cognitive control is a limitation in the number of control-
demanding tasks that humans can execute simultaneously. This constraint is intuitively obvious
(e.g., the inability to carry out a mathematical calculation while planning a grocery list). This has
been defined as a core characteristic of cognitive control [20,21] and used to distinguish
control-dependent from automatic processes: the former are assumed to rely on control for
execution, and therefore must be performed in serial (i.e., one at a time), whereas the latter do
not rely on control and can operate in parallel (i.e., be multitasked). The distinction between serial
versus parallel execution is literally paradigmatic. Dual-task interference is universally used to
operationalize (experimentally ‘diagnose’) control-demanding processes in the laboratory: a
task is considered to be control-dependent if it cannot be executed in parallel with another
control-dependent task without interference [20–22,148]. Thus, understanding the constraints
associated with cognitive control amounts to understanding the inability to execute tasks in
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Trends in Cognitive Sciences
OPEN ACCESS
parallel and requires identifying the cause of dual-task interference. A number of paradigms are ame-
nable to the systematic study of dual-task interference, the most prominent of which is the psycho-
logical refractory period (PRP) paradigm (Box 2). Others include visual search [23], perceptual
discrimination [24], or short-term memory search [25]. However, in the latter paradigms it can be dif-
ficult to infer from reaction times (RTs) and accuracy alone whether participants are processing tasks
in serial or parallel. This issue has been interpreted as ‘model mimicry’: a parallel processing model
canmimic the behavior of a serial processingmodel, for example, in visual search (see section ‘Visual
attention and the binding problem’) [26]. To dissociate serial versus parallel processing in these par-
adigms, researchers developed mathematical tools relying on cumulative RT distributions [27,28].

The most common explanation for the processing constraints associated with control is that
these reflect a limitation intrinsic to the mechanisms responsible for control itself (e.g., reliance
on a single, centralized, and capacity-limited control mechanism [20,21,29–31], akin to the
central processing unit (CPU, or core) of a traditional computer. However, this analogy is prob-
lematic, given the enormous capacity that the brain holds for parallel processing in other domains
(e.g., the simultaneous integration of hundreds of visual features into an object, or simply walking
Box 2. Measuring dual-task interference in the laboratory

Perhaps the most thoroughly studied marker of dual-task interference is the psychological refractory period (PRP) [153]. In the PRP paradigm, participants are asked to
respond as quickly as possible to two tasks within the same trial. Each trial begins with the presentation of a stimulus relevant to the first task (Task 1), followed by an exper-
imentally manipulated delay [the stimulus onset asynchrony (SOA)] and then the stimulus for the second task (Task 2; Figure IA). The critical observation is that response times
to the second stimulus progressively increase as the SOA is reduced [143,153]. This increase in response time is referred to as the PRP (Figure IB) and commonly interpreted
as evidence of a structural bottleneck (see Figure 1A in main text) that delays execution of Task 2 while Task 1 is still being processed [31,32,143]. This bottleneck has been
ascribed to the limited capacity of a central control mechanism responsible for executing both tasks. By contrast, connectionist (and some symbolic) models suggest that the
PRP reflects strategic adjustments by control in response to processing interference that is induced by task-specific resources (e.g., representations; see Box 3) that are
shared by both tasks [44,54]. To prevent ongoing or residual processing of Task 1 from interfering with Task 2, processing of the latter is strategically delayed. It is important
to note that sharing need not be directly between the two tasks (i.e., due to structural overlap), but can also arise from indirect sharing (i.e., functional dependence)mediated by
a third task, as shown in simulations using connectionist models described in Figure 2C in the main text [54].

A growing number of studies demonstrate that dual-task performance can improvewith dual-task practice relative to single task practice [87,154–156]. Such effects can
reduce [154,155] or even eliminate [157] the PRP. Proponents of the structural bottleneck hypothesis suggest that, with dual-task practice, two tasks can get compiled
into tasks-specific productions, or even a ‘super-task’ processed more efficiently by a central resource [154,158] (for a review, see [156]). However, this fails to explain
the observation that improvements with dual-task practice can transfer to other, related tasks [155,159]. The strategic bottleneck hypothesis suggests this results from
improvements in the allocation and scheduling of resources [157,160]. By contrast, connectionist models suggest that improvements with dual-task practice result from
the separation of resources (i.e., task representations; see Box 3) [54]. The latter conforms with observations that transfer is restricted to similar tasks [161] and that
separation of neural representations is predictive of dual-task improvements with practice [87].
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Figure I. The dual-task interference with the psychological refractory period (PRP). (A) The PRP paradigm. (B) Reaction time (RT) of the second task as a
function of stimulus onset asynchrony (SOA). The unbroken line indicates the presence of a psychological refractory period. The broken line serves as a reference for
the RT of Task 2 with long SOA. Dual-task practice can eliminate the PRP (cf. broken line).
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and talking at the same time). This analogy also seems outdated, since even the most basic of
computers now almost always use more than one core. Alternative accounts align more closely
with the idea that control reflects a response to, rather than the source of, constraints imposed
on processing. In the section that follows, we review primary theories concerning constraints
on human multitasking performance and their relationship to cognitive control.

The costs of shared representation for multitasking performance
Historically, there have been three classes of theories that address the limitations in human mul-
titasking and their relationship to cognitive control (see Table 1 for an alternative classification). All
of them assume that these limitations reflect some form of shared resource(s) (Box 3), but differ
Table 1. Classification of multitasking theories based on their assumptions about resources. In contrast to task-specific resources, central resources
are required to operate every task, and can be distinguished by the stage of processing they reside. Resources can be used either by one task (not
divisible) or multiple tasks (divisible) at the same time. Checkmarks indicate assumptions that are stated in the respective article. Circles indicate cases
where an assumption is not explicitly stated but is either (1) acknowledged as a possibility or (2) can be derived from other assumptions of the model/
theory. Theories are grouped by whether they are expressed in verbal or quantitative form (cf. Box 3 for a comparison of symbolic and connectionist ar-
chitectures). Note that the present list of references (Refs) is not meant to be complete, but rather representative of the range of theories in the literature.

Article Number and types of resources Divisibility of resources Refs

Central Task-specific Yes No

perception Response selection Response initiation

Verbal theories

Welford (1952) ✔ ✔ [143]

Broadbent (1957) ✔ ✔ [32]

Moray (1967) ✔ ✔ [144]

Smith (1967) ✔ ✔ [145]

Posner and Boies (1971) ✔ ✔ [146]

Allport, Antonis, and Reynolds (1972) ✔ ✔ [38]

Kahneman (1973) ✔ ✔ ✔ [30]

Keele (1973) ✔ ✔ [35]

Shiffrin and Schneider (1977) ✔ ✔ [21]

Kinsbourne and Hicks (1978) ✔ ✔ [147]

Navon and Gopher (1979) ✔ ✔ [42]

Navon and Miller (1987) ✔ ✔ [132]

Wickens (1991) ∘ ✔ ✔ [43]

DeJong (1993) ✔ ✔ ✔ [33]

Pashler (1994) ✔ ✔ [31]

Mathematical models

Logan and Gordon (2001) ✔ ✔ [95]

Townsend and Wenger (2004) ✔ ✔ [27]

Computational models based on symbolic architectures

Meyer and Kieras (1997) ✔ ✔ ✔ [40]

Byrne and Anderson (2001) ✔ ✔ ✔ [39]

Salvucci and Taatgen (2008) ✔ ✔ ✔ [41]

Computational models based on connectionist architectures

Feng et al. (2014) ∘ ✔ ✔ [50]

Musslick et al. (2016, 2020) ∘ ✔ ✔ [51,66]
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Box 3. Resource sharing in symbolic architectures and connectionist models

The terms ‘shared resource’ and ‘shared representation’ describe similar concepts in different models of human multitasking. Models based on symbolic architectures
[39–41], such as ACT-R [2] and EPIC [40,44], consist of different modules (e.g., for processing sensory information, retrieving semantic knowledge, etc.). A module can
be considered a ‘shared resource’ if it is required by two or more tasks. It is generally assumed that if two tasks require the samemodule (e.g., declarative memory) at the
same time, they interfere with one another (Figure IA). However, practice may result in the compilation of task processes (e.g., ones that rely on declarative memory) into
specialized, task-dedicated processes that are independent of shared modules [41,162], leading to improvements in multitasking (Figure IB).

In a connectionist model, a module can be thought of as a set of closely interconnected processing units (physical substrates corresponding to individual neurons
or populations of neurons) that are used to represent a particular type of information, that is represented as a pattern of activity over those units. Interactions
among modules are generally assumed to be more common, direct, fine-grained, and continuous than is assumed in most symbolic architectures. However,
as in symbolic models, a module can be considered a ‘resource’ in that it can support only one pattern of activity and thus represent only one item of information
at a time. Thus, interference can arise if a resource is shared by two tasks that require it to represent different (incongruent) information at the same time
(Figure IC). However, this raises the question of how the sets of processing units that constitute a resource are defined or identified, making it difficult to determine
the extent to which two tasks share resources [56]. Operationally, this can be addressed by correlating the average pattern of activities across all units for pairs of
tasks [51,62,66]. This operationalization of resource sharing exploits the graded and distributed nature of representations in connectionist models, by: (i) allowing
it to be treated as a continuous rather than all or nothing factor, and (ii) allowing it to change as a consequence of learning through connection modifications.
The reliance on shared representational resources initially during learning, that supports more rapid acquisition and generalization, may help explain reliance
on control early during acquisition; whereas the progressive development of separate task-dedicated representations may help explain the gradual development
of automaticity (i.e., diminished reliance on control) and greater capacity for multitasking that comes with extensive practice [54,66] (Figure ID and see Figure 2D in
the main text).
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Figure I. Resource sharing and separation in symbolic and connectionist models. (A) Depiction of a resource shared between Task 1 and Task 2 in a
symbolic architecture. Both tasks rely on the serial execution of general task production rules the implantation of which requires the retrieval of information from
declarative memory (shared resource, shown in purple). Processing of Task 2 is delayed as long as the shared resource is occupied with processing the
production rule associated with Task 1. (B) Improvements in multitasking can be achieved by compiling general production rules into specialized, task-dedicated
rules that no longer make use of the shared resource [41,162]. (C) In a connectionist model, Task 1 and Task 2 may use some of the same processing units
constituting a module (e.g., the three units shown in dark green), leading both tasks to share a representation. As we discuss in the Concluding remarks, this may
also occur in neural network layers responsible for encoding declarative memories (cf. [163]), paralleling (A). (D) Improvements in multitasking can be achieved by
separating representations between tasks [54,66].
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in where this occurs and the capacity for sharing. The first class, ‘structural bottleneck theories’,
assume the existence of a central resource and further assume that this resource can be used for
only one task at a time (Figure 1A). The bottleneck is often considered to be ‘amodal’ insofar as it
is required by all tasks, irrespective of their modalities (sensory, motor, or otherwise). Structural
bottleneck theories differ in where they locate this central resource, ranging from perceptual
processing [32] to response selection [31,33,34] or response initiation [33,35].

The second class of theories, ‘unitary resource theories’, share the assumption of a central,
limited resource. However, they posit that the central resource (sometimes labeled ‘attention’ [30])
can be divided between tasks (Figure 1B). Thus, unitary resource theories assume that tasks can
be executed in parallel, with the caveat that the unitary resource must be divided between them,
leading to a trade-off in performance between tasks [30,36,37]. In this sense, they represent a
graded version of structural bottleneck theories.

Finally, ‘multiple resource theories’ renounce the idea of a single, centralized, limiting resource.
Instead, they presume a multitude of independent, specialized (‘local’) resources. A task may
demand one or more of such resources in various combinations. Some propose that each
TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 1. Classification of resources in theories of human multitasking. Theories differ according to whether they
assume that tasks require the same, central resource, or local task-specific resources (central versus multiple) and the
way in which those resources can be allocated (indivisible or divisible). (A) Structural bottleneck. A central resource
constitutes a bottleneck in that it is required for execution of all tasks and can operate only one of those at a time; if the
resource is engaged by one task, it causes a delay in the processing of others. (B) Unitary resource. Tasks rely on a
unitary centralized resource, but it can be allocated to multiple tasks at the same time; task interference occurs if the
demands of those tasks exceed the available capacity of the unitary resource. (C) Multiple exclusive-use resources. Tasks
rely on local, task-specific resources, each of which can only be used for one task at a time; interference arises if two
tasks make simultaneous use of the same resource. (D) Multiple resources with shared capacity. Local, task-specific
resources can be shared; interference arises if the capacity of a local resource is exceeded by the number of tasks using i
at the same time.
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local resource can only be used by one task at a time [38–41] (Figure 1C), whereas others
propose that resources can be shared between tasks (Figure 1D), similar in concept to a unitary
resource but without assuming that such resources are required by all tasks [42,43]. Multiple-
resource theories [41,42,44,45] became increasingly successful in explaining multitasking
phenomena in laboratory tasks, such as higher dual-task interference for structurally overlapping
tasks [46,47], and in real-world scenarios, such as the effects of phone dialing on speed control
while driving [48,49]. In addition, these theories are supported by recent numerical and analytical
work, suggesting that even modest amounts of resource sharing between tasks can be sufficient
to drastically limit the multitasking capacity of a neural system [50–52] and that this effect scales
with the number of processing steps (layers) in the network [53]. Thus, even small amounts of
representation sharing are sufficient to induce constraints onmultitasking that may invite misinter-
pretation as a central bottleneck [54]. As illustrated in Figure 2C, connectionist implementations
of multiple-resource theory suggest that two tasks can interfere even if they rely on separate
representations. They can be ‘functionally’ dependent if the representations on which they rely
TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 2. Trade-off between learning efficacy and processing efficiency in a neural network. Tasks are implemented as mappings between stimulus features
(units in the input layer) and responses (units in the output layer), through an internal representation of stimulus features (units in the hidden layer). (A) The network
implements two tasks: mapping colors to verbal responses (color naming) and mapping words to verbal responses (word reading). All units are assumed to be
inhibited at rest, diminishing incidental flow of activity through the network. (B) To execute color naming (pathway highlights in red), the control mechanism (not shown)
engages representations for colors and verbal responses in the hidden and output layers, respectively. This favors color naming, diminishing interference from the word
reading task (gray pathway). (C,D) The network may learn a new task, for example, indicate the word with a manual response (word pointing), by mapping the existing
representations for words to manual responses (C) or, alternatively, by learning new representations dedicated to mapping from words to manual responses (D). The
former requires less time to learn but results in a shared representation between word reading and word pointing and thus dependence on control; when prompted to
multitask color naming with word pointing (red pathways), the control mechanism must engage representations for colors and words in the hidden layer, as well as
verbal and manual responses in the output layer. In (C), this results in an implicit engagement of the word reading task (broken red pathway) because word reading
and word pointing share a representation, leading to interference with color naming. Separated representations in (D) prevent such interference, but take longer to
learn. Unpublished work demonstrates that human behavior is consistent with (C), suggesting that humans are biased toward representation sharing early in training [66].
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can be recombined to form another (interfering) task [51,52]. However, despite growing empirical
and quantitative support, multiple-resource theories lack a principled explanation for why a neural
system, such as the human brain, would rely on shared resources between tasks at all, given the
constraints on multitasking that this imposes.

All three classes of theory outlined above ground their assumptions about resource sharing in
empirical evidence. If the simultaneous execution of two tasks reveals dual-task interference
then they are likely to share a common resource (whether central or local) [43]. However, to
avoid circularity, one needs more than behavioral criteria when deciding about the number and
types of resources [55,56]. This theoretical issue is exaggerated in theories that propose multiple
resources, as highlighted by Meyer and Kieras (1997, p. 11) [40]: ‘One [...] [concern] is that the
concept of multiple resources lacks sufficient principled constraints. In the absence of such con-
straints, there is a temptation to hypothesize new sets of resources whenever additional problem-
atic data are collected. This could lead ultimately to an amorphous potpourri of theoretical
concepts without parsimony or predictive power’. This criticism extends to central resource the-
ories: why would a central shared resource exist in the first place and what are the processes in-
voked by this resource [56]? In neural architectures, two tasks can be described as sharing a
resource if they rely on the same set of representations for processing (Box 3). From this perspective,
explaining multitasking limitations requires specifying when and why representations might be
shared. Computational investigations in the domains of semantic cognition and task acquisition,
as well as machine learning, have begun to provide insights into this, most of which identify benefits
of representation sharing for learning and generalization. Here, we present a mechanistic
implementation of multiple-resource theory in terms of neural network architectures, that
provides a quantitatively explicit and potentially normative interpretation of how and why
resources may be shared.

The benefits of shared representations for learning
The sharing of representations between tasks is evident in many domains of cognition, ranging
from visual processing [57] and numerical judgement [58] to language acquisition [59] and social
cognition [60]. Yet, little is known about when and why people acquire shared representations
across tasks. That is, what are the conditions under which neural systems develop shared repre-
sentations and what are their benefits for behavior? Answers to these questions arise from the
study of category learning in semantic cognition and are exploited in the form of machine learning
paradigms for the acquisition of multiple related tasks.

Studies in semantic cognition suggest that shared representations support the learning of
meaningful associations between object features. Learning a category can be a challenging
task, given that features defining that category may never co-occur. For instance, one never
observes that birds fly and lay eggs at the same time; Yet, both features define a bird [61]. To
associate features observed in different contexts into a single category, the cognitive system
must use a common representation across contexts [61,62]. The same principle applies to the
learning of relationships between categories. Computational studies suggest that neural systems
are likely to learn shared representations between semantic categories if they are statistically
related [63,64]. This idea was recently formalized in a mathematical theory of semantic cognition,
demonstrating that neural networks are biased toward learning shared representations between
two categories (e.g., trees and flowers) if the set of features defining each of the categories overlap
(e.g., trees and flowers have in common that they grow but are not motile) [65]. A similar observation
can be made for task acquisition: neural networks are more likely to acquire shared representations
between tasks if they overlap in terms of task-relevant stimulus features (e.g., visual features
relevant for task performance) [66–68]. These and other findings [61,62,69] suggest that
764 Trends in Cognitive Sciences, September 2021, Vol. 25, No. 9
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shared representations are not just a ‘byproduct’ of learning; they allow networks to learn more
rapidly and generalize better by capturing statistical regularities in the world and/or the actions
required to act within it (i.e., its affordances). For instance, network architectures that promote
the learning of shared representations across sensory modalities facilitate the acquisition of
novel concepts [61]. Similarly, architectural biases toward the learning of shared representation
between tasks can accelerate the sequential acquisition of these tasks [68,70]. This benefit of
representation sharing may also underlie advantageous effects of learning task-sets over indi-
vidual stimulus-response mappings. When learning a new task (e.g., mapping word stimuli to
manual responses), participants’ responses can be impacted by task-irrelevant information
(e.g., the stimulus color) [71]. The effect of task-irrelevant information diminishes if participants
are instructed to group novel stimulus-response mappings into response-relevant categories
(task sets, e.g., whether the word describes a moving or nonmoving object), as opposed to
memorizing them ‘by heart’ [72,73]. The benefit of grouping stimuli into categories may result
from representation sharing at the level of task-sets: representations for abstract categories
confer, by definition, insensitivity to category-irrelevant information.

Machine learning applications have begun to exploit the benefits of shared representations for learn-
ing. In that field, ‘multitask learning’ (as distinct from ‘multitasking’) refers to settings in which an agent
is trained on a set of auxiliary tasks that share representations with the task to be learned, exploiting
the fact that similarities among those tasks can lead to shared representations that can help improve
generalization and, thereby, acquisition of the target task [74–76]. This has produced significant im-
provements in computer vision [77], natural language processing [78], and speech recognition [79].

These converging lines of work all indicate that sharing of representations can improve the effi-
cacy of learning (i.e., speed of acquisition and generalization). However, as noted in the previous
section, this introduces the potential for interference in multitasking and thus may come at the
cost of efficiency of processing [68]. In the next section, we discuss how this trade-off can help
rationalize constraints associated with cognitive control, working memory, and visual attention.

Trading the costs and benefits of shared representations
The trade-off between learning efficacy and processing efficiency suggests that the benefits and
costs of control-dependent processing may be computationally intertwined (Figure 2). The
benefits of cognitive control are that it allows novel tasks to be acquired rapidly by exploiting
the advantages of shared representations while minimizing the risk of conflict that this introduces
[21,80,81]. For instance, participants can quickly learn to map familiar stimuli onto new responses
[76,82] (e.g., learning to map word stimuli to button presses). Biologically inspired models of
cognitive control suggest that the brain may achieve this by recombining existing representations
for task-relevant stimuli and responses [66,67,81,83]. This suggests that novel tasks may rely, at
least initially, on representations shared with other tasks and thus may be subject to interference
from those tasks (Figure 2C). However, this can be mitigated by the engagement of control, by
limiting the engagement of representations shared by multiple tasks to one task at a time
[83,84]. From this perspective, constraints on multitasking capability reflect the engagement of
control as a rational adaption to resource sharing, rather than an intrinsic limit in control mecha-
nisms themselves [51,66]. Furthermore, these constraints can be considered a cost incurred in
exchange for the benefits gained from shared representations: the repurposing of existing
representations for new tasks allow these to be acquired rapidly, but at the cost of constraints
on multitasking capability and dependence on control [66,85]. This hypothesis is supported by
a mathematical analysis of this relationship in linear networks [66,68], as well as artificial agents
that optimize the trade-off between learning efficacy and multitasking capability [70,86]. This
work suggests that representation sharing can pay off in learning single tasks more quickly, but
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at the cost of having to execute them in serial. However, once acquired, repeated multitasking
practice can lead to a separation of representations between tasks [87] (Box 3). The separation
of representations between tasks may be a crucial ingredient of automaticity in that it frees
tasks from interference, thereby reducing their reliance on control (cf. Figure 2D) [51,66]. The
trade-off between shared versus separated representations may also inform constraints in
cognitive functions related to cognitive control, such as working memory and visual attention.

Working memory
The costs and benefits of sharing may apply at all levels of representation, including task-relevant
representations that are maintained for extended periods of time (Box 4). This embraces repre-
sentations that are held in short-term buffers, such as contextual information, or ‘task goals’ in
working memory. Such abstract representations that influence processing at a broader level
(e.g, at the ‘task selection’ level) are traditionally considered to support control-dependent pro-
cessing [2,88]. The principle introduced earlier, that multitasking interference arises if two or
more tasks require engagement of different representations (cf. Box 3), may equally apply to
such abstract representations. Indeed, the limited capacity of short-term buffers, such as working
memory, is often attributed to interference between the representations they maintain [89–91] (for
a review, see [92]).

The role of shared representation for the active maintenance of information is nicely illustrated in
a recent network model of visual working memory [89]. That model consists of two layers: (i) a
‘sensory network’, which is composed of independent subnetworks, each dedicated to repre-
sent a visual stimulus; and (ii) a ‘random network’, which is randomly and reciprocally connected
to the sensory network. Representations for visual stimuli in the sensory network lead to corre-
sponding activations in the random network, which then engage, through feedback connections,
the same representations in the sensory network. This reciprocal connectivity ensures that repre-
sentations for visual stimuli are maintained, despite removal of external input (the visual stimulus)
Box 4. Mutual exclusivity and persistence of task representations

Both symbolic and connectionist architectures assume that processing components cannot be engaged for different pur-
poses at the same time (Box 3). This mutual exclusivity produces interference among tasks that share resources unless
they are regulated by control. In connectionist architectures, this involves the engagement of representations that favor
the processing of one task over others (Box 1). This implies that higher level representations favoring competing tasks
should themselves be mutually exclusive. The latter can arise in connectionist architectures, as the system learns that si-
multaneously activating representations that engage tasks sharing lower level representations results in interference and
poor performance. That is, the system may learn to implement mutual exclusivity at multiple levels of representation, from
more concrete ones (e.g., of competing stimulus features [17,127,164,165]) to more abstract ones (e.g., corresponding to
task goals [91,119–121,166]).

Mutual exclusivity associated with representational sharing, together with the graded nature of representations in
connectionist models [107], can also interact with the persistence of representations to produce a trade-off between
stability and flexibility of control [119,120]. On the one hand, strong mutual exclusivity and persistence favor robustness of
the current representation (i.e., state of activity) and, thereby, the influence of control on the execution of any task that de-
pends on it. However, for the same reasons, thismakes it more difficult to switch to another representation (and correspond-
ing task), owing to the greater persistence of the current representation and/or the greater extent to which it has suppressed
competing representations due to mutual exclusivity. Conversely, weaker mutual exclusivity and/or persistence compromise
robustness. On the other hand, this confers greater flexibility, by making it easier to switch between tasks. Thus, persistence
coupled with mutual exclusivity of resources between tasks (a consequence of shared representations in neural architec-
tures) induces a trade-off in the ability of control to confer cognitive stability (strong activation of a task-relevant
representation supporting high performance) and cognitive flexibility (the ability to rapidly switch between different task
representations). One solution to this trade-off may be the flexible ‘gating’ of task representations into the system, by dynamically
reducing persistence once a task switch is required [150,167]. However, this requires additional mechanisms to optimize the
persistence of individual representations over time [168] and appropriate learning mechanisms to implement it in an effective
form, an important current direction of research in both natural and artificial systems [70,117].
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to the sensory network. The random connectivity provides the network with the flexibility to store
any arbitrary item. However, the downside of this random connectivity are shared representations
in the random network between stimuli from different sensory subnetworks. That is, there need
not be any constraint on the number of units in (i.e., the structural capacity of) the random network
to induce capacity constraints; the latter may arise simply from the fact that, once two stimuli
share a representation in the random network they may interfere with one another, thereby limit-
ing working memory capacity. From this perspective, working memory can be viewed as an ex-
treme example of a set of representations shared by any task that requires sustained activity of a
stimulus and is in this respect subject to the same limitations, for the same reasons, as any other
control-dependent process. Further on (cf. ‘Concluding remarks and future directions’), we pres-
ent a similar view of mechanisms responsible for episodic memory.

Visual attention and the binding problem
An important consequence of shared representations in the visual system is the ‘binding prob-
lem’, that has been closely linked to the role of attention. The binding problem concerns the as-
signment of features to individual objects [93] and arises if different objects are represented by the
same (shared) set of feature representations. For example, in a display containing a red car and
gray house, if the two objects engage the same set of color representations (i.e., use the same
population of neurons to represent color), then it may be impossible to determine which one ac-
tivated red and which one gray. That is, the sharing of representations of features, sometimes re-
ferred to as ‘compositional coding’ [94], poses the risk of confusion if more than one object must
be identified at the same time [55]. This is exactly analogous to the problem posed by the sharing
of representations between tasks [95]. Figure 2 shows two ways in which the system can deal
with this problem in the task domain. If tasks share representations then control must be used
to limit processing to only one of them at a time (Figure 2C). However, the system may also, at
the expense of additional learning, commit separated, task-dedicated representations to the
mappings from the stimuli to the responses for each task (Figure 2D).

These two solutions correspond directly to ones that have been proposed to solve the binding prob-
lem in the visual system: use composition coding [94] and limit processing by allocating attention to
only one object at a time so that only the features associated with that object are active [55,95]; or
dedicate separate representations to the combinations of features for each object (‘conjunctive
coding’ [96]), thus binding those features directly to the object. The latter is observed for highly familiar
objects with combinations of features [97] (e.g., facial features of a familiar person). Individuals with
autism spectrum disorder (ASD) have been hypothesized to exhibit relatively greater reliance on
separated than shared representations [98]. Consistent with the aforementioned trade-off, individuals
with ASD outperform individuals without autism in visual search tasks [99,100] but, at the same time,
are less likely to abstract and synthesize information across experiences [101].

There is evidence that, despite the risk of interference, the visual system also makes use of
compositional coding (i.e., shared representations) of features such as line segments and letters
[102–104]. For instance, compositional neural codes of words based on neural responses to
letters have been found to explain behavioral and neural correlates of visual search [104]. It is
assumed that compositional coding supports spatial invariance (e.g., the ability to detect a letter
with the same population of neurons, irrespective of its location). As noted earlier, this approach
has been used in machine learning to improve efficacy of learning (e.g., to achieve object
recognition) [105,106]. Findings from classic studies of visual attention also provide strong
support for the use of compositional coding, evidenced by the binding problem that it poses,
and the serialization of processing used as a solution [55]. In such studies, participants must
detect an object composed of an arbitrary combination of features (e.g., a red T) in a field of
Trends in Cognitive Sciences, September 2021, Vol. 25, No. 9 767
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distractor objects that combine the same features in other ways (e.g., green Ts and red Ls). Errors
in such tasks often involve confusion over the assignment of features to objects; and RTs typically
scale linearly with the number of distractors, which is taken as evidence of serial allocation of
visual attention to each object individually. These observations inspired ‘feature integration
theory’, which proposed that the purpose of attention is to integrate percepts by serially binding
objects and their features [55], though the mechanism for this process was not specified.

An elaboration of this view is that binding is not implemented directly by attentional mechanisms,
but rather by the connections in the network that link objects with compositional representations
of their features (i.e., ones that are shared across objects); and that the role of attention is simply
to insure that only one object is represented at a time, to prevent the confusions that would arise if
the features of different objects were simultaneously represented over the same set of represen-
tations. This directly parallels the role of control in averting conflict among tasks that share repre-
sentations, and constraints in the number of representations that can be actively maintained in
working memory. The appeal of this view is that it provides a unified explanation of the conditions
under which the constraints of seriality arise and why these are associated with the engagement
of control (whether to select what to attend visually, represent in working memory, or task to per-
form), all in terms of a common set of fundamental principles of representation and processing in
neural systems [107]. All reflect a trade-off that favors the advantages of shared
(i.e., compositional) representations, whether for efficacy of learning, flexibility of processing,
and/or efficiency of representation, at the expense of the efficiency of execution afforded by the
ability to process separated (e.g., conjunctive) representations in parallel.

Constraints on control allocated to a single task
Models of cognitive control imply that higher amounts of control (e.g., increasing the activity of rel-
evant task representations; cf. Box 1) allocated to a single task lead to higher cognitive stability
[7,10–12,83]. Yet, participants generally refrain from allocating control in a cognitive task unless
they are rewarded to do so [11,108]. Thus, there appears to be a constraint on howmuch control
participants are willing to allocate [8]. This constraint seems puzzling from a rational perspective:
Why would a system refrain from allocating maximal control to a task to which it is already com-
mitted? One possible explanation is that there are opportunity costs associated with the dynam-
ics of allocating control: the greater the allocation of control to one task, the harder it is to switch to
others. Such dynamics can arise from competitive interactions between representations required
to allocate control in just the way they do for any other set of representations (Box 4) andmay help
explain the stability–flexibility dilemma that has been described for control and constraints ob-
served on the intensity of its allocation.

The stability–flexibility dilemma
Successful goal-directed action requires balancing antagonistic demands. On the one hand,
humans need to maintain and protect task goals in the face of distraction (cognitive stability);
on the other hand, they require quick and flexible reconfiguration to perform a different task
when the environment changes (cognitive flexibility) [17–19,109]. Cognitive stability can be quan-
tified in the laboratory, by instructing participants to perform a single task in the presence of
distractors and by measuring how much the distractors affect participants’ performance (Box
5). Cognitive flexibility can be assessed by measuring how fast participants can switch from
one task to another. Critically, there appears to be a trade-off between the two quantities across
participants. On the one hand, individuals with greater flexibility tend to be more distracted by
task-irrelevant information [110,111]; on the other hand, individuals with high resistance to dis-
traction tend to be cognitively inflexible [112,113]. In addition, reward and positive affect can
bias individuals toward greater flexibility, at the expense of cognitive stability [114,115]. A growing
768 Trends in Cognitive Sciences, September 2021, Vol. 25, No. 9



Box 5. Measuring cognitive stability and flexibility in the laboratory

There are multiple ways to measure cognitive stability and flexibility. Here, we describe how both can be operationalized in
tasks that demand cognitive control (also see Table 1 in [126]). Perhaps the most common performance metric used to
characterize cognitive stability is response-interference. A classic example of this is the Stroop task [169], in which
participants have to name the color in which a word is displayed. Participants are more error-prone and slower to respond
if the task-relevant feature (the color) and the task-irrelevant feature (the word) are associated with different (incongruent)
responses (e.g., say ‘red’ in response to the word ‘GREEN’ colored in red; Figure I), compared with trials in which the
responses associated with both features are congruent (e.g., the word ‘RED’ colored in red; Figure I). Cognitive stability
can be assessed as the difference in error rate and/or reaction time (RT) between incongruent and congruent trials: The
larger the congruency effect for an individual, the lower their cognitive stability. Cognitive flexibility is commonly assessed
in terms of an individual’s ability to switch from one task to another (e.g., switching between naming the color and reading
the word in the Stroop task). In task switching paradigms (Figure I), participants are asked either to repeat the task they
performed on the previous trial (repetition trials) or to perform a different task (switch trial). The switch cost for an individual
can be quantified as the difference in error rate and/or RT on switch trials versus repeat trials. The switch cost is taken as an
inversemeasure of cognitive flexibility: the less the switch cost, the greater the cognitive flexibility. Finally, unpublished work
suggests that the stability–flexibility trade-off can also be assessed in working memory tasks, in which cognitive stability is
measured as the ability to actively maintain items in the presence of distractors and cognitive flexibility is measured as the
ability to encode and maintain new items [170].

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure I. Cued task switching paradigm. Each trial consists of a task cue (e.g., either a circle or a square) that instructs par-
ticipants which task to perform (e.g., either color naming or word reading), followed by the stimulus to which they must respond.
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body of work suggests that the neuromodulatory transmitters dopamine and norepinephrine play
a role in regulating this balance (for comprehensive reviews, see [116–118]).

Optimizing the balance between cognitive stability and flexibility
Computational analyses of the trade-off between cognitive stability and flexibility suggest that
constraints on control may help optimize this trade-off. A number of biophysically inspired models
of task control [91,119–121] rely on the assumptions that: (i) representations for different tasks
compete with one another (due to representation sharing); and that (ii) the representation of
a task can persist in time, slowing representational reconfiguration for a subsequent task
(Box 4). These models describe competing task configurations as different minima (or wells) in
an energy landscape (Figure 3A,B). In these landscapes, the information that specifies which
task to perform (e.g., task instructions) is assumed to be represented as stable patterns of neural
activity that correspond to states with low energy, located at the bottom of an energy well in the
Trends in Cognitive Sciences, September 2021, Vol. 25, No. 9 769
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landscape (an ‘attractor’). When such task information is presented to the network, its pattern of
activity evolves such that the system moves to that attractor (analogous to a ball rolling along a
surface to the bottom of the nearest well). If the representation of the task information corre-
sponds to a deep attractor, then even with small perturbations (e.g., due to noise) the system
is most likely to settle back to the same state (akin to a ball bouncing around in a deep well).
Thus, deep attractors make the system robust to noise. Conversely, shallow attractors make
the system more susceptible to noise (i.e., make it easier for the ball to pop out of the well), but
also make it easier to switch from one state to another.

Restrictions on the depth of attractors for task representations, implementing constraints on control
intensity, can promote flexible task switching but come at the expense of robustness to distractors
(Figure 3C) [120]. Simulation work suggests that higher constraints on control allocation (shallower
attractors) yield a higher reward rate in environments with higher demand for (e.g., greater frequency
of) task switches (Figure 3D). Furthermore, the behavior of participants in environments with a high
rate of task switches can be best explained with higher constraints on control, compared with par-
ticipants in environments with a low rate of task switches [121]. This is in line with a growing number
of studies showing that participants shift their balance to favor cognitive flexibility over stability if task
switches becomemore likely [122–125] (for a review, see [126]). Together, these computational and
empirical results suggest that it can be useful to limit the amount of control allocated to a single task,
given that this facilitates flexible switching between tasks.
TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 3. Modeling the stability–flexibility trade-off. (A) Two-unit network used to illustrate the stability–flexibility trade-off
[119–121]. Each unit represents a control signal for one of two tasks. The activity of each unit corresponds to the amount of
control allocated to the corresponding task, that is determined by a recurrent excitatory input from itself and an inhibitory
input from the other unit, as well as external input such as a task cue (not shown). (B) The network implements a dynamical
system the state of activity of which (x-axis) is determined by its energy (y-axis; cf. [17,119,120,127]). The system has two
stable states (attractors), one for executing each of the two tasks. The network’s parameters determine the depth of the
attractors. Deep and shallow attractors correspond to networks with high and low amounts of control allocated to each task,
respectively. Thus, deep attractors implement cognitive stability due to stronger activation of the control representation;
whereas shallow attractors implement greater flexibility, making it easier to switch from one state to another (green arrow).
(C) Simulated activation trajectories [120] for shallow (left) and deep (right) attractors are shown as a series of connected light
green dots, evolving from the control attractor for Task 1 (black) to the control attractor for Task 2 (green). Contour lines and
arrows indicate the energy and shape of the attractor landscape after a task switch from Task 1 to Task 2. With more
control allocated to Task 1, the network requires more time steps to switch to Task 2. (D) Simulations show that the amount
of control allocated to a single task yielding the highest reward rate decreases with the frequency of task switches [120].
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Outstanding questions
How does the brain assess the risk of
interference in the presence of shared
representation, and which biophysical
signals does it rely on to guide
interference-free allocation of cognitive
control? Moreover, how does it bal-
ance the benefits and costs of shared
versus separate representation over
its lifetime?

What are the neural mechanisms that
underlie improvements in our ability to
multitask? Symbolic models suggest
that multitasking improvements result
from more efficient use of task
representations and sophisticated
scheduling of tasks, whereas
connectionist models suggest that
multitasking improvements can be
achieved by separating representations
between tasks. Neurophysiological and
neuroimaging studies of multitask
training may be useful in testing these
hypotheses.

Are there meta-control mechanisms
for balancing the trade-off between
cognitive stability and flexibility, and
what are their computational and neu-
ral underpinnings? Humans have
been shown to adapt to changing de-
mands for cognitive flexibility. Yet, it is
still unknown what information they
use to regulate this balance, how they
make relevant adjustments, and over
what timescale they are able to do so.

Are there computational principles that
motivate constraints on the duration of
control allocation? This article focused
on constraints in parallel processing
(e.g., the number of tasks that can be
performed simultaneously) and in the
intensity of control allocation (i.e., to in-
dividual tasks). However, another uni-
versal observation is that control-
dependent tasks are experienced as
more effortful and therefore more read-
ily subject to fatigue, that can be
thought of as the loss of intensity over
time. To what extent does this also re-
flect rational adaptations to fundamen-
tal computational dilemmas (such as
the explore–exploit trade-off) as op-
posed to lower level, physical factors
such as energetic or metabolic
constraints?
Concluding remarks and future directions
Constraints on our capacity for cognitive control pervade all forms of human cognition that involve
control-dependent processes, ranging from lower-level processes such as perception, memory
retrieval, and action selection, to higher level ones such as reasoning, problem solving, and
language. Here, we considered constraints on: (i) the number of control-demanding tasks that
humans can execute simultaneously, as well as (ii) the amount of control that they allocate to a
single task, and reviewed recent work that suggests why the allocation of control might be sub-
ject to these constraints, in terms of a common set of principles concerning the representation
and processing of information in neural network architectures (Boxes 3 and 4). The literature
reviewed suggests two fundamental computational dilemmas that arise from these principles.
The first is reflected in recent insights from studies of category learning and task acquisition,
which suggest a trade-off between learning efficacy and processing efficiency. The former is promoted
by the sharing of representations across tasks, whereas the latter is achieved by separating represen-
tations between tasks thereby permitting parallel processing (i.e., multitasking). Findings concerning
working memory and visual attention suggest a similar trade-off between the representational effi-
ciency of compositional coding using shared representations but at the expense of serial processing,
and the efficiency of conjunctive coding that affords parallel processing but at the expense of dedicat-
ing separate representation to each item that must be represented. From this perspective, capacity
constraints and the requirement for serial processing arise not from limitations intrinsic to the mecha-
nisms responsible for control, but rather from the use of shared representations (whether for features of
visual objects, information actively maintained in working memory, or the mappings required to per-
form a task) that demand the allocation of control in order to avoid interference or confusion that
would arise from their use for different purposes at the same time. Furthermore, the competitive dy-
namics within a set of shared representations in a network can simultaneously account for the
trade-off between cognitive stability and flexibility and constraints in the intensity of control allocated
to any single task that arise because of this.

The principles of representation and processing reviewed in this article suggest a fundamental
relationship between the behavioral and neural correlates of learning, multitasking, and task
switching. A key prediction pertains to the use of shared representations early in task acquisition.
The extent to which novel tasks are control-dependent (i.e., subject to dual-task interference)
should depend on the extent to which they share representations. Furthermore, this should
determine performance costs associated not only with dual-tasking [such as the psychological
refractory period (PRP); Box 2] but also task switching (Box 5). To our knowledge, there has
not yet been a direct empirical test of this prediction, although the effects of structural overlap
between tasks in both dual-task and task switching paradigms suggest such a relationship
[46,128–130]. This prediction extends from structural overlap on which most previous instances
of multiple resource theory have focused [131], to the case of functional dependence addressed
by crosstalk models [27,47,51,52,132]. Even if two tasks do not directly share representations
(e.g., color naming and word pointing in Figure 2C), they may still interfere with one another by
means of another process (e.g., word reading). In addition, sharing may involve either task-spe-
cific representations (as in Figure 2C), or more general-purpose representations (such as
language [59]) and processes (such as cue retrieval from episodic memory [133]). The idea that
representations in episodic memory constitute a generally shared resource, reliance on which
requires the engagement of control, may provide a link to symbolic architectures, such as
ACT-R (Box 3), in which it is a central feature of declarative memory that is considered as a ‘bot-
tleneck’ in processing. The identification of neural substrates shared by multiple tasks, both di-
rectly and indirectly, may ultimately help identify the specific substrates of shared resources,
including more general sources of dual-task interference [134,135]. Neural measurements with
sufficient temporal resolution (e.g., electroencephalography and magnetoencephalography)
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may also permit themeasurement of persistence characteristics of neural representations at such
loci, that should predict the magnitude and timing of the PRP and adaptations in the stability–flex-
ibility trade-off during task switching. Finally, another key prediction of the presented framework is
that improvements in dual-task performance depend on the separation of representations be-
tween tasks with practice, a relationship that has been suggested by recent neuroimaging
work [136].

This review has focused on two trade-offs: learning efficacy versus processing efficiency, and
stability versus flexibility; however, there are of course others faced by cognitive systems
[18,137,138]. For example, another one concerns the decision between selecting actions that
yield known rewards (exploitation) and ones with unknown rewards but that may yield new infor-
mation that leads to greater rewards in the future (exploration) [139]. It has been hypothesized
that boredom may reflect an adaptive signal meant to manage the explore–exploit dilemma, by
leading agents to explore new options when current ones are highly predictable [140–142]. A
promising avenue for future research is to explore how other limitations on human cognition,
such as the inability to exert control over extended periods of time, may result from such trade-
offs (see Outstanding questions).

Constraints of cognitive control remain a crucial building block for general theories of cognition.
Thus, an improved understanding of these constraints may help understand their consequences
in other domains of cognition. The study of computational dilemmas, as reviewed here, presents
a novel approach to this matter and may help rationalize these constraints in neural systems and
relate them to the broad inventory of phenomena associated with cognitive function.
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