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Abstract 

Semantic similarity plays an ambiguous role in models of human cognition. On the one hand, it 

is often viewed as a foundational construct that shapes how we categorize, learn, and make 

inferences about objects and their properties. On the other hand, a host of behavioral evidence 

suggests that similarity is too rigid to explain the flexibility of inductive inference. We present 

the Integrated Semantics and Control — Context Inference (ISC-CI) model to resolve this 

tension, proposing that flexible inference emerges within a system that dynamically reshapes 

represented semantic similarities amongst stimuli depending upon the immediate context. The 

ISC-CI model builds on prior models of semantics and control that learn how to build and 

flexibly access semantic knowledge from observing the statistical relationships between 

objects, their properties, and the contexts in which these occur. Critically, it introduces a new 

mechanism that infers a suitable representation of context for both familiar and novel 

scenarios, without any direct labeling in the environment. The inferred context allows the 

system to selectively weight different dimensions within its representational space depending 

on the items being processed. Through simulations and experiments, we demonstrate that the 

ISC-CI model provides a coherent account of performance across inductive inference and 

semantic similarity tasks, including classic tasks that have long challenges theories of 

induction, offering a unified account of these cognitive processes that highlights the 

importance of context. We conclude by considering the implications of these findings for 

broader questions in cognitive science and artificial intelligence. 

2



Introduction 

Cognitive psychologists have long been interested in understanding the representations 

and processes that support inductive inference: a form of generalization that allows us to 

generate correct and context-appropriate inferences about unobserved properties of named or 

perceived items and events. A central tension has marked models of inductive inference. On 

the one hand, both classic and contemporary work suggests that such inferences are based on 

similarity within a continuous, fixed, and domain-general representational space. On the other 

hand, classic behavioral findings contradict the rigidity of this proposal, suggesting that 

similarity-based generalization must be augmented with additional representational constructs 

(often involving discrete structure and specialized processes) to explain the flexibility of 

inductive inference. In this article, we attempt to resolve the apparent paradox between 

“similarity-only” and “similarity-plus” approaches to modeling inductive inference, proposing 

that flexible inference can arise as an emergent property of a system that is based on similarity 

within a dynamic, context-sensitive representational space.


Our approach builds on prior work from both similarity-only and similarity-plus approaches. 

Similarity-only approaches emphasize generalization based on proximity within a continuous 

semantic representation space, so that properties known to be true of one item (e.g., robins 

can fly) are inferred to also be true of nearby items (therefore sparrows can fly). This idea stems 

from Shepherd’s (1987) foundational work framing generalization in terms of similarity in metric 

spaces, and it undergirds many of the best-known models of semantic induction such as 

exemplar (Kruschke, 1992; Nosofsky, 1986), prototype (Rosch, 1975), and Rational (Jurafsky, 

1996) models and their contemporary cousins (e.g. kernel density estimation; Tibshirani & 

Hastie, 1987; Gaussian mixture models; Reynolds, 2009; and latent Dirichlet allocation; Blei et 

al., 2003). Recent work demonstrates that this approach, when applied to conceptual similarity 

derived from a transformer trained on human-generated feature norms, provides the best 

current account of several core behavioral findings in a range of induction studies (Bhatia, 

2023).
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Although similarity-only models explain a wide range of behavioral findings, a set of 

exceptions suggests that similarity alone is insufficient to fully explain human inductive 

inference. For example, induction of novel category labels is sensitive to the distribution of 

labeled examples (Xu & Tenenbaum, 2007): When shown a single green pepper with the label 

“Fep,” most adults extend the label to other varieties of peppers; however, when shown three 

green peppers all labeled “Fep,” adults limit the label extension only to other green peppers. 

This result is difficult to explain solely from the conceptual similarity between the items, which 

should be near-identical for one versus three green peppers. Furthermore, judgments of 

similarity themselves appear to violate axioms of the similarity-only approach: People produce 

asymmetric similarity ratings for pairs of items depending on the order they are listed, in ways 

that reflect typicality (e.g., generating higher ratings when asked how similar donkeys are to 

horses than when asked how similar horses are to donkeys), and multi-alternative similarity 

judgments can result in preference reversals (e.g., when asked which of Paris, Berlin, or York is 

most similar to London, most people choose York, suggesting that York is more similar to 

London than is Paris; but when given the options of Paris, Liverpool, or York, most people 

choose Paris, suggesting the opposite conclusion; Tversky & Gati, 1978).


Such findings are often interpreted as illustrating that human induction requires qualitatively 

different kinds of representations and processing mechanisms in addition to similarity-based 

generalization alone. For instance, Osherson’s influential Similarity-Coverage Model combines 

a similarity score with a “coverage” term derived from discrete, mutually-exclusive, 

taxonomically-defined category representations (Osherson et al., 1990). Similarly, Xu and 

Tenenbaum’s (2007) Bayesian inference model, designed to account for category label 

induction, relies on the similarity between objects, but it calculates these similarities using 

discrete categories situated within a taxonomic hierarchy. Tversky’s feature contrast model, 

devised to account for asymmetric similarity judgments, calculates similarity, but it does so by 

representing the features of concepts as discrete sets that then receive different weightings in 

the final judgment depending on how the question is framed (Tversky, 1977; Tversky & Gati, 
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1978). Each of these models has been successful in accounting for the data they were meant 

to address, but it is not clear how these different models relate to one another, or to the many 

other empirical observations of human behavior for which similarity alone does seem to be a 

sufficient account. To our knowledge, no single approach has accounted for the full variety of 

relevant phenomena, and some phenomena, such as preference reversal in multi-alternative 

similarity judgments, have not been explained by any prior formal model.


In this article, we propose that the tension between similarity-only and similarity-plus 

approaches can be reconciled under an account of human inductive inference in which: a) 

inferences are always supported by similarity within a continuous, metric conceptual 

representational space; but b) the distance between representations within the space, and 

hence their relative similarities to one another, is context-sensitive and subject to dynamic 

cognitive control. Variants of this idea have abounded, including in Tversky's own thinking on 

the question (Tversky, 1977), but the structure of the context representations needed to 

modulate semantic relationships has never been made clear, nor is it clear how these might be 

acquired, how and under what circumstances they are deployed, or how participants can infer 

the appropriate context representations to use “on the fly” without special instruction in a given 

task setting — that is, how context relates to control. We show how a neural network model, 

based on statistical learning of both semantic and context representations, that is subject to 

control through both the learning and online construction and use of context representations, 

can address these questions and explain the range of phenomena listed above. We then report 

new experiments designed to test specific predictions of the model that contrast with other 

classic and contemporary models.


Our approach builds on foundational work on neural network models of semantics (Rogers 

& McClelland, 2004; Rumelhart & Todd 1993) and recent efforts to integrate such models with 

similarly cast models of cognitive control (Giallanza et al., 2024; Lambon Ralph et al., 2017). 

The basic premises of this work are that: a) semantic knowledge is acquired through statistical 

learning; b) it is shaped in use by the influence of context representations that reflect current 
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instructions and/or behavioral demands; and c) these context representations are themselves 

subject to the same mechanisms of statistical learning, spanning multiple levels of abstraction, 

and driven by behavioral affordances together with perceptual statistics.


Recent work has suggested how a model of such an integrated semantic and control 

system might acquire representations of both conceptual structure and of task contexts 

through learning, and how the two forms of representation might jointly contribute to the 

representational structure that ultimately drives overt, semantically informed and contextually-

appropriate behaviors in a given task (Giallanza et al., 2024). However, that model, and 

previous ones on which it was based (e.g., Rogers & McClelland, 2004), all made the critical 

simplifying assumption that the “tasks” the system carries out are somehow labelled in the 

input; that is, the system is externally “instructed” about the kind of information it is to report.


This assumption is reasonable for understanding behavior in tasks for which the 

environment provides such information directly—for instance, when a parent asks a child "what 

is that called?" or an experimenter instructs the participant to respond only to the color of a 

stimulus and ignore its other properties. In the phenomena listed above, however, the key 

effects cannot arise from such externally-provided information. Nobody instructs a participant 

to give different similarity ratings for two items depending on the order in which they are 

presented, or to use different features when judging the similarity between two items 

depending on which other items appear in the display. Instead people appear to figure out for 

themselves when and how to make systematic use of such contextual information, without 

special instruction. Moreover, this phenomenon does not reflect an unusual edge case special 

to these laboratory-designed demonstrations. Behavior is subject to contextual constraints in 

many everyday situations for which the environment does not provide an obvious or direct task 

instruction, and agents must work out, on their own, what the “right” task representation is for 

successful action.


Here, we develop a mechanistic hypothesis about how an integrated semantic/control 

system can acquire useful task/context representations without these being directly labeled by 
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the environment, and how such a system can then infer which context representations are 

most useful on the fly without such instruction. We begin with a brief review of the Integrated 

Semantics and Control (ISC; Giallanza et al., 2024) model on which the present work builds. 

We next explain how the ISC framework can be extended to learn and inter context 

representations on its own, without requiring direct labeling of task contexts in the input. We 

then describe a neural network model that extends the ISC framework by inferring a useful 

contextual representation in a given situation: the ISC Context-Inference model, or ISC-CI.


In a series of simulations, we compare the effectiveness of the ISC-CI model against other 

classic and contemporary models for capturing human patterns of behavior on several 

foundational tasks. We show that the ISC-CI model is the only one to perform comparably to 

humans on all prior tasks. The central insights from these simulations suggest additional 

experimental scenarios in which the ISC-CI model makes qualitatively different predictions 

from other models that we then test in new experiments. Together the results suggest a 

mechanistic account of human inductive inference that explains both sensitivity to and 

deviations from pure similarity-based accounts, and that connects to a broader theory of 

integrated semantics and control.  It may also provide a useful framework for understanding 

how artificial systems may implement capabilities similar to human inductive inference.


Integrating Semantics and Control 
through Contextual Inference 

Background: Integrated Semantics and Cognition 

Our proposal extends prior work that takes a statistical approach to understanding how 

semantic knowledge is acquired, structured, accessed, and used (Giallanza et al., 2024; 

Hinton, 1981; 1986; Rogers & McClelland, 2004; Rumelhart & Todd, 1993). This work proposes 

that semantic knowledge is acquired by observing patterns of co-occurrence across objects 

and their properties, as well as the appropriate actions to take in response to them, under 
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different scenarios and contexts throughout development. Learning these patterns results in 

knowledge about how items relate to one another and to associated actions, because item 

properties are not distributed at random, but tend to co-occur together within similar types of 

things or in similar settings (Rosch, 1975). For example, the properties has a beak, has-

feathers, and has-wings tend to all be present together in items we label “bird,” but not in other 

items. This tendency for many properties to co-occur together across concepts has been 

termed coherent covariation, and prior work has shown that learning such patterns can support 

inferences based on partial information (e.g., if a new item has a beak and feathers, it is 

probably a bird) and relational judgments between objects (e.g., if two different objects both 

have beaks and feathers, they are probably similar to one another overall; Rogers & McClelland 

2004; 2005).


In many neural network models of semantics, knowledge about objects, their properties, 

and the coherent covariation among these is implicitly encoded within the weights of a network 

that learns to generate correct inferences about an item from a subset of its observed 

properties. Perception of an item’s name or other properties gives rise to distributed patterns of 

activation over units that serve as learned internal representations; this activation then 

propagates forward to generate outputs representing the system’s inferences about and/or 

overt responses to the item’s unobserved properties. After learning to generate correct 

inferences for many items, the internal representations capture important elements of semantic 

structure: items that are semantically related give rise to similar internal patterns of activation 

so that the ensemble of units can be viewed as capturing, within a distributed and 

multidimensional representational space, information about the semantic similarity relations 

amongst concepts. Items possessing similar properties will be represented with similar 

patterns of activity; put differently, semantically similar items will be nearby in the 

representational space. Proximity in the representational space in turn supports both inductive 

generalization (properties known to be true of one item will tend to generalize to nearby items) 
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and relational judgments (people will judge items nearby in the space to be similar kinds of 

things).


While many neural network models of semantic representation share these characteristics 

(e.g. McClelland & Farah, 1991; McRae et al., 1997; Plaut & Shallice, 1993; Seidenberg & 

McClelland, 1989), the Integrated Semantics and Control (ISC; Giallanza et al., 2024) 

framework (and related prior approaches; e.g., Rogers & McClelland, 2004) additionally 

suggests that the semantic space governing inference can be selectively warped or controlled 

by mechanisms responsive to current goals or task demands (a critical function of cognitive 

control; Miller & Cohen, 2001), so as to ensure that inferences and/or overt behaviors are suited 

to the corresponding task or context. This proposal was motivated by the long-standing 

observation that people discern and deploy different similarity relations amongst a given set of 

concepts depending on the current task (Saffran et al., 1996). For example, consider that 

ravens, robins, skunks, and foxes vary in both taxonomy (birds vs mammals) and color (black 

vs red/brown). The taxonomic relations guide inference for many kinds of properties: The 

observed shape, parts, behaviors, diet, category label, or genes of a raven should generalize 

more strongly to a robin than to a skunk, for instance. In some contexts, however, color is more 

important than taxonomy: when designing the composition of a painting, the raven and skunk 

might be represented as similar to one another and distinct from the robin or fox by virtue of 

their shared color. In the ISC framework, the controlled semantic system resolves the tension 

between these two representational structures (taxonomic vs color-based) by allowing a 

representation of the current task (which may be external, such as instructions from an 

experimenter to classify objects by color, or internal, such as a goal to finish a painting) to 

reshape the similarity relations expressed within the semantic representation space so as to 

emphasize similarities encoded by task-relevant properties and de-emphasize similarities 

encoded across features not relevant to the current task. Thus for designing the composition of 

a painting, the task representation might warp the expressed semantic representations so that 

similarity in color is more strongly expressed than is taxonomic similarity.
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Giallanza et al. (2024) recently demonstrated how these principles are expressed in a 

simple feed-forward neural network model (Figure 1A) implemented within the ISC framework, 

that scales historical work on both semantics (e.g., Rogers & McClelland, 2004; Rumelhart & 

Todd, 1993) and control (e.g., Cohen et al., 1990) to a large, naturalistic dataset. The ISC model 

learns about objects and their properties in various contexts, producing representations that 

encode cross-context semantic structure in a context independent layer, information about the 

current context/task in a context layer, and context-relevant semantic structure in a context 

dependent layer. The model then uses this information to output properties that are true of a 

given object and relevant to the given task.


As shown in Figure 1A, the model receives as input the current object (e.g., crow, raven, 

etc.) and task (e.g., report name, report behavior, etc.), represented as one-hot encodings. It 

produces as output a binary vector indicating all of the properties (e.g., is-red, can-fly, etc.) that 

are both true of the object and relevant to the task. For example, given the input object crow 

and the task report category, the model activates the output unit corresponding to is-bird and 
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Figure 1. The ISC and ISC-CI models. A. The ISC model takes pre-specified item and task/
context representations as input and learns to activate the features that are both true of the 
item and appropriate for the current context. It learns to represent cross-context item 
properties (context independent layer), information about the current context (context layer), 
and information about the context-relevant properties of the current item (context dependent 
layer). B. Building on the ISC model, the ISC-CI model takes a set of support items and a set of 
query items (only one of which is shown in the figure) as input. It learns to use the mean of the 
items in the support set to predict both what context it is in and, for each item in the query set, 
whether it can be expected to occur in that context.



no other output units. When given crow with the task report parts, the model activates the 

output units corresponding to has-wings, has-feathers, and has-beak, but not context-

irrelevant outputs like is-bird. The model is trained in a supervised fashion with the 

backpropagation algorithm on a large dataset of objects, properties, and tasks derived from 

human feature norms (De Deyne & Storms, 2008).


In summary, the ISC model demonstrates how learning about the patterns of co-

occurrence across objects and their properties using a neural network results in richly 

structured representations that support a variety of behaviors (see Giallanza et al., 2024 for 

examples). It further explains how the system accesses sub-components of its knowledge 

depending on the current task or context: The model learns that certain semantic features are 

relevant in certain contexts, and it uses a representation of the current task/context (in the 

context layer) to selectively accesses its knowledge in a way that emphasizes the relevant 

features (in the context dependent layer). 


A major limitation of the ISC model, however, is that it can only do so for contexts it has 

already experienced and about which it has been instructed—those that are directly labeled as 

inputs in the environment. For example, the model learns to warp representations to emphasize 

color information in the report color context, but this requires experiencing that context 

throughout development (learning) and processing an explicit instruction to report color 

information, implemented by activation of the corresponding task unit. The ISC model lacks the 

ability to infer on its own that color is relevant in a new context. In the next section, we 

describe an extension of the ISC model that provides this ability.


A Model of Context Inference 

The ISC-CI model (Figure 1b) extends the ISC model by introducing a mechanism for 

context inference, based on the key assumption that temporal co-occurrence provides a useful 

basis for inferring shared context. Specifically, it assumes that (1) objects occurring together in 
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a given context tend to share the properties elicited by that context; (2) these co-occurrence 

statistics are learned over the course of development; and (3) this implicit knowledge provides 

a basis for inferring, from a few examples of objects encountered in a new context, both which 

features are relevant in that context and what other objects are likely to occur in that context. 

To make these ideas clear, consider the contexts in which you might encounter different kinds 

of birds: a bird-watching field trip in science class, a visit to the bird section of the zoo, and a 

picture book about birds. Each situation involves multiple types of birds (e.g., robins, crows, 

and ravens) and exposure to multiple bird-related properties (e.g., can-fly, eats-worms, is-bird) 

in various combinations. After these experiences, encountering a new context in which birds 

are relevant birds (e.g., learning that crows and ravens have hollow bones in the bird section of 

the Natural History museum) is likely to be interpreted as relating specifically to birds and their 

properties, implying that other birds like robins may also occur in this new context, and that 

they will share similar properties (e.g., robins also have hollow bones). Conversely, contexts 

such as a science lesson on aerodynamics, a visit to a flight exhibit at a science museum, and 

a film on the history of flight are likely to involve multiple types of flying things (e.g., crows, 

airplanes, and butterflies) and flight-related properties (e.g., can-fly, has-wings, seen-in-the-

sky). This suggests that a new context involving flying objects such as crows and airplanes 

(e.g., learning that crows and airplanes are associated with Bernoulli’s principle) likely relates to 

all things that can fly, implying that other flying things like butterflies may also occur in this new 

context and, again, share similar properties (e.g., butterflies are also associated with Bernoulli’s 

principle). Thus the properties shared by items encountered in a situation can provide a clue 

about what the current context is, what properties are currently important, and what other 

items are likely or unlikely also to be observed.


The central hypothesis embodied by the ISC-CI model is that learning such environmental 

structure can support future inferences about which features might be relevant in novel 

contexts, based on the distribution of items that co-occur in those contexts. That is, observing 

that a new context involves a certain set of objects (e.g., both robins and airplanes) provides 
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evidence that certain features will be context-relevant (e.g., can-fly and has-wings), but not 

others (e.g., lays-eggs), based on past experience. Importantly, this process is graded and 

probabilistic rather than absolute, as any given set of objects can co-occur in different contexts 

at different frequencies. In particular, features that are broadly true of many objects are less 

likely to be relevant in a new context than features that are true of the more limited set of 

objects seen in that context (Griffiths et al., 2010; Xu & Tenenbaum, 2007). This is because 

there is a low likelihood of observing any particular set of objects in a broad context: there are 

many animals, but few Corvidae, so it is more likely that a context involving both crows and 

ravens relates to Corvidae specifically than it is that this context relates to animals in general.


In the remainder of this section, we describe the ISC-CI model’s training environment and 

architecture in greater detail.


Training Environment 

We designed a training environment that simulates experiencing object co-occurrences 

throughout learning under the key assumption noted just above. The environment consisted of 

a series of episodes corresponding to different contexts. Each context involved a set of objects 

that share a common semantic feature (e.g., things that are birds, things that can fly, things that 

are found in the zoo, etc.), with each feature represented by a single output unit as 

implemented by the feature labels in the ISC-CI model. The model was trained on two 

objectives in each episode. First, it had to predict the feature label given the set of objects. For 

example, given the set {robin, canary}, the model should predict that is_a_bird is the semantic 

feature shared by items in the current context. Accordingly, we refer to this as the “bird” 

context. Second, the model had to predict which additional objects are likely to also occur in 

that context. For example, when in the “bird” context, the model should predict that sparrow is 

likely to occur but jaguar is not. We refer to the objects observed in the context (e.g., {robin, 

canary}) as the support set and the objects about which the model needs to make predictions 
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in that context (e.g., {sparrow, jaguar}) as the query set (following terminology from meta-

learning; Thrun & Pratt, 1998).


We generated the episodes using the objects and features in the Leuven Concepts 

Database (De Deyne & Storms, 2008; Storms, 2001; Ruts et al., 2004). That database contains 

a matrix of binary judgments provided by human raters indicating, for each object-feature 

pairing, whether or not the object possess the feature (e.g., does a bear weigh more than 100 

lbs? Are kangaroos found in zoos?). After removing duplicate features and features that are 

only true of 2 items or fewer, the dataset contained 293 objects and 385 features. We 

constructed a set of episodes by uniformly sampling from the set of features with replacement, 

so that each episode involved one shared semantic feature that defined the associated 

context. Given this feature, we generated a support set by uniformly sampling two items 

sharing the feature, and a query set by uniformly sampling one additional item sharing the 

feature and one that not sharing the feature. For example, one episode consisted of the “zoo” 

context with the support set {zebra, elephant} and the query set {lion, rat}. In this episode the 

model had to first process {zebra, elephant} to infer that it was in the “zoo” context (ie, 

activating the zoo semantic feature as the important shared property of zebras and elephants 

in the current context). It then had to process the query set {lion, rat} to infer that lions occur in 

the context but rats do not.


The model was trained in a supervised fashion to activate the important shared semantic 

feature for support items encountered in the episode, and to generate a binary yes/no 

prediction for each object in the query set indicating whether or not that object belongs in the 

context. Importantly, each episode involved a single semantic feature shared by the support 

set and relevant to the inferred context that served as the target output for the model. That is, 

even though the support set may have shared many features, only one of these was relevant to 

the to-be-inferred context in a given episode. For instance, the support set {crow, robin} could 

have been sampled from the “bird” context (i.e., is_a_bird as the context-relevant shared 
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property) or the “animal” context (i.e., is_an_animal as the context-relevant shared property. If 

occurring in the “bird” context, the semantic feature is_a_bird received a target of 1 and the 

feature is_an_animal received a target of zero, and vice-versa if the same two items occurred in 

the “animal” context. This ambiguity encouraged the model to learn a probability distribution 

over the possible contexts that could be correct given the support set.


Model Architecture and Implementation 

We designed the model to infer the context from the objects in the support set and use this 

to make predictions about objects in the query set. The model’s architecture (Figure 1B) is 

similar to the ISC model (Figure 1A), with a context independent layer that encodes cross-

context information, a context layer that encodes information about which features are relevant 

in the given context, and a context-dependent layer which selectively encodes context-relevant 

information. Unlike the ISC model, however, the ISC-CI model does not receive a context label 

as input; instead, it processes the items in the support set and uses this both to generate an 

internal representation of context and provide a predicted context-specific shared semantic 

feature label as output.


The ISC-CI model makes inferences about the current context using objects in the support 

set by sequentially observing each object in the support set, encoding each in the context 

independent layer, and integrating these representations by taking their average. This can be 

viewed as a very simple form of recurrence that accumulates (by linearly integrating and 

normalizing) activity across the items in the support set in the context independent layer. For 

simplicity, Figure 1B depicts an “unrolled” version of this mechanism, in which the objects in 

the support set appear to be encoded simultaneously in the context independent layer.


A second extension of the ISC model is that the ISC-CI model makes predictions about 

which items in the query set occur in the current context. It does so by forming a context 

dependent representation that takes into account the context inferred from the support set 
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together with the context-independent representation of each query set item. The model then 

uses this context dependent representation to activate the binary yes/no output units indicating 

the likelihood that the query set item occurs in the current context.


Model parameters. We implemented the three layers of the ISC-CI model following the 

architecture of the ISC model, using 64 units for the context independent layer, 128 for the 

context layer, and 128 for the context-dependent layer. We initialized the weights and biases in 

the context and context-dependent layers using PyTorch defaults (Kaiming normal, or He, 

initialization; He et al., 2015). For the context independent layer, we copied the incoming 

weights and unit biases from the ISC model (Giallanza et al., 2024) so that each one-hot input, 

corresponding to one of the items in the Leuven dataset, elicited a pre-trained distributed 

pattern of activation over units. In Giallanza et al. 2024, we showed that these distributed 

representations explain human semantic similarity judgments among the Leuven items with 

remarkably good precision. After copying the weights and biases into the context-independent 

layer, these were frozen (i.e., transfer learning; Pan & Yang, 2009), as we found this increased 

the performance of the model and the stability of training. The model used the ReLU 

nonlinearity in the hidden layers and was implemented in PyTorch (Paszke et al., 2019). 

Parameters for the trained model, along with the training data and code used to run the 

simulations in this article, can be found at https://github.com/tylergiallanza/

IntegratedSemanticsControlContextInference. 


Training procedure. The model was trained to predict: (a) which semantic feature was 

important for the current context given the support set; and (b) whether or not each object in 

the query set could also be encountered in the current context. Accordingly, we measured the 

model’s prediction error by calculating: (1) the categorical cross entropy between the model’s 

semantic-feature label prediction and the true label; and (2) the binary cross entropy between 

the model’s response predictions and the true response labels for each query item. The overall 

loss function for the model was the sum of these two error terms. We trained the model using 
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the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001 for a total of 500,000 

episodes, by which point the loss converged.


Summary 

The ISC-CI model extends the ISC framework with a mechanism that can infer which 

semantic features are relevant in a given context. It does so by learning the co-occurrences 

between objects and contexts over the course of training and using this knowledge to infer a 

new context representation by observing a few examples of objects that co-occur in that 

context. The ISC-CI model also infers the likelihood that other objects in the query set will also 

be encountered in the current context; or equivalently, whether these objects also share the 

property common to the items in the support set and relevant to the inferred context.


These behaviors allow the model to simulate a wide range of behaviors involving inductive 

inference and judgement of similarity. For example, it can be tasked with the inductive 

inference problem “Robins and crows have hollow bones. On the basis of this information, how 

likely is it that ravens also have hollow bones?” by providing it with the support set {robin, 

crow} and the query set {raven} as inputs. The model will produce an inference about how 

likely it is that ravens occur in the same context as robins and crows. It can also be tasked with 

similarity judgments, such as “how similar are crows to robins?” by providing the support set 

{crow} and the query set {robin} as inputs. This results in a prediction about how likely robins 

are to occur in a context that contains crows, which in turn provides an index of how similar 

the model considers these items to be. The reverse question—how similar are robins to crows

—can be asked by reversing the support and query sets, allowing for the possibility of 

asymmetric answers.


In the remainder of this article, we  examine the model’s ability to carry out inductive 

inference and similarity judgments in greater detail. In each domain, we first show that the ISC-

IC model can account for human data collected in prior work about as well as prior models in 
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the literature — both ones specifically designed to address these phenomena as well as more 

general large language models (LLMs) — providing a single, integrated account of classic 

empirical observations across both inductive inference and similarity judgment. We then 

consider cases in which the ISC-CI model makes predictions that are very different than prior 

models, and adjudicate the various models using  new behavioral experiments that highlight 

the use of context-dependent processing.


Part 1: Inductive Inference 

Overview 

In this section we report the ISC-CI model’s ability to account for human behavior in 

inductive inference tasks, which involve determining if a property, response, or class label 

common to one set of objects does or does not extend to another object. Several influential 

models propose that inductive inference relates closely to similarity: The more similar objects 

are to one another, the more likely they are to share properties, responses, and class labels 

(Bhatia, 2023; Osherson et al., 1990; Sloman, 1993). Such models often provide a strong fit to 

human data, insofar as their predictions correlate well with human judgments, and they provide 

a basis for distinguishing high-confidence inferences from low-confidence ones. Study 1 

evaluates how well the ISC-CI model explains human behavior in these such tasks, comparing 

it to a set of similarity-based models using behavioral data collected in prior studies.


While similarity may be important for inductive inference, this can be complicated by the 

multi-dimensional relationships between objects (Tversky, 1977) and the possibility that 

different dimensions may be important in different contexts. For example, ravens, robins, 

skunks, and foxes vary in both their taxonomic categories and their colors. In some cases, 

taxonomy is more important for making inductive inferences (e.g., learning that robins and 

ravens have hollow bones), while in other cases color is more important (e.g., learning that the 

Spanish word “rojo” applies to robins and foxes). In general, the similarities among items in 
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similarity-only models, like the feature overlap model, are fixed for all contexts, rendering them 

unable to account for these cases where the relevance of similarity among different dimensions 

varies by context.


Several similarity-plus models, such as the SCM (Osherson et al., 1990), attempt to 

address this problem by introducing additional constructs such as hierarchical taxonomic 

category structures that operate in tandem with similarity. This allows the SCM to effectively 

weigh the importance of taxonomic categories differently in different contexts, for example by 

prioritizing bird-related information when learning about robins and ravens but more generic 

animal-related information when learning about robins and foxes. This approach is limited, 

however, in the need to assume and rely on a pre-specified taxonomic structure, making the 

SCM unable to recognize cases in which other simple semantic features, such as color, 

become more relevant for induction.


The ISC-CI model’s ability to both infer and use context to address this problem may help 

explain sensitivity of inductive inference to both taxonomic and other kinds of structure, all of 

which are assumed to reflect similarity along potentially different feature dimensions. When a 

set of items occur together in a task, these induce a representation of the context that reflects 

the aspects of semantic structure the items tend to share. This context then shapes the 

representation of query items in the context-dependent layer so that those also sharing the 

same semantic structure elicit a positive response, while those that do not elicit a negative 

response. Thus the model preserves reliance on similarity in two respects: (1) the support items 

share some dimensions of similarity, which are preserved in the context representation; and (2) 

the context warps the similarities among query item representations in the context-dependent 

layer. However, because the context representation itself and its influence on the context-

dependent representations both depend on the particular items appearing in the support set, 

the similarities that govern the model's ultimate decision change with context—providing a 

possible mechanism for understanding phenomena that seem to challenge similarity-based 
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approaches. Study 2 evaluates this possibility by comparing ISC-CI and other similarity-based 

models in their ability to consider different dimensions in different contexts.


Before reporting the results of these studies, we first briefly review the alternative models of 

induction we consider.


Prior Models of Inductive Inference 

Much of the prior work studying inductive inference has focused on modeling property 

induction (Rips, 1975). In property induction tasks, people are presented with a prompt such 

as: “Suppose that crows and ravens have property X. How likely is it that robins also have 

property X?” For brevity, and in keeping with convention, we refer to an inductive inference 

prompt as an argument, the objects in the first half of the argument (crows and ravens) as 

premises (equivalent to the support set in the ISC-CI framework), and the objects in the second 

half of the argument (robins) as the conclusion (equivalent to the query set in the ISC-CI 

framework). We represent an argument using the notation {crows, ravens} → robins, and we 

refer to the participant’s response as an argument strength rating.


We compared the ISC-CI model to two influential similarity-based models of property 

induction from the psychology literature: the feature overlap model (Bhatia, 2023; Sloman et al., 

1993) and the similarity coverage model (SCM; Osherson et al., 1990). These models account 

for human behavior across a wide range of experiments studying property induction. We also 

considered two LLMs, GPT-3.5 and GPT-4 (Achiam et al., 2023; Brown et al., 2020), that have 

been the target of recent work studying property induction (Bhatia, 2023; Han et al., 2022; 

2024).


The Feature Overlap Model 

The feature overlap model proposes that people judge the strength of a property induction 

argument by measuring the degree to which the conclusion shares features with the premises. 
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There are multiple versions of the feature overlap model (e.g., Bhatia, 2023; Sloman et al., 

1993; see Bhatia, 2023 for a discussion of the differences between these models); we focus on 

Bhatia’s (2023) model as this version showed strong performance across a wide set of 

behavioral data. To calculate the strength of an argument, the feature overlap model first 

represents each object as a feature vector, with each element in the vector representing the 

probability that the given object possesses the feature associated with that element. The 

model then measures the cosine similarity between the sum of the premise vectors and the 

conclusion vector, which results in a score between 0 and 1 indicating the strength of the 

argument. (Note that the cosine is bounded by 0 rather than -1 because only positive values 

are allowed in the feature vector). For example, consider evaluating the strength of the 

argument {crows, ravens} → robins. If crow is represented as [0,1,0,1], raven is represented as 

[0,1,0,0], and robin is represented as [0,1,1,0], the model first takes the sum of the crow and 

raven vectors, yielding [0,2,0,1]. It then calculates the cosine similarity between this vector and 

the vector for robin, yielding a score of 0.63.


The feature overlap model requires feature vector representations of objects.  Bhatia 

generated these vectors by using the Feature-BERT model (Bhatia & Richie, 2024) to estimate 

the probability that each of 25,797 features are true for a given object. To maintain parity with 

the ISC-CI model, which was trained on data derived from human feature norms in the Leuven 

Concepts Database (De Deyne & Storms, 2008; Ruts et al., 2004; Storms, 2001), we 

implemented a version of the feature overlap model using the Leuven features . Critically, it is 1

worth noting that, like other feature overlap models, the values of each vector are always used 

“as is,” without any influence of other arguments or any other elements of the context in which 

a judgment is made.  In this respect, they rely on a fixed metric space for all judgments.


 We focused on the Leuven features because these are entirely derived from human 1

judgments and prevalent in the literature. To ensure that the feature overlap model performed 
well given the Leuven features, we ran a pilot study comparing how well the Leuven and 
Feature-BERT versions of the model predict property induction argument strength ratings and 
pairwise similarity judgments. The results, reported in the Appendix, demonstrate similar 
performance across the two methods.
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The Similarity Coverage Model (SCM) 

Like the Feature Overlap Model, the Similarity Coverage Model (SCM; Osherson et al., 

1990) proposes that people judge the strength of a property induction argument by measuring 

the similarity between the conclusion and the premises; the more similar the conclusion is to 

the premises, the stronger the argument. However, it uses the maximum rather than average 

similarity between the conclusion and premises. Furthermore, motivated by empirical findings 

such as diverse premises resulting in stronger arguments, the SCM includes an additional 

coverage term that indicates the degree to which the premises are representative of the most 

specific taxonomic category that includes all premises. Note that, in this sense, SCM is not a 

pure similarity model, but requires use of an additional representational construct, namely a 

taxonomic hierarchy of discrete categories. We will return to this point when we compare this 

to the ISC-CI model.


The SCM estimates the strength of an argument by taking a weighted average of the 

similarity and coverage terms (throughout our studies, we use an even weighting between the 

two terms, though we found in a pilot study that the value of the parameter has only a small 

effect on the results). The SCM calculates the similarity term by measuring the similarity 

(typically defined as mean similarity judgments from human participants) between each 

premise and the conclusion and taking the maximum of these similarities. Next, the SCM 

calculates the coverage term by first determining the covering category, which is the most 

specific taxonomic category that contains all of the premises and the conclusion (e.g., the 

covering category for {crows, ravens} → robins is birds, while the covering category for {crows, 

alligators} → goldfish is animals). It then measures the similarity between the premises and all 

objects in the covering category, taking the average of these similarities to form the coverage 

score. For example, the coverage for the argument {crows, ravens} → robins would be 

determined by calculating the similarity between crows, ravens, and sparrows; then calculating 
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the similarity between crows, ravens, and storks; and so on for all possible birds. The coverage 

term is the average of these similarity scores. 


Note that the coverage term rests heavily on strong assumptions about taxonomic 

structure: For the premises {robin, cardinal}, categories like red things or things that fly are 

excluded, because they do not appear in the taxonomic hierarchy. So too is the category 

animals because, although it appears in the hierarchy, it is not the most specific category that 

includes both robins and cardinals. Moreover, premises like {robin, helicopter} are only 

common to a very broad taxonomic class (e.g. “things”) since the category of things that fly is 

not a node in the taxonomy; as a consequence, such premises will always have very low 

coverage scores (i.e., high mean distances to other items in the shared taxonomic category) 

even if they are highly representative of an alternative, non-taxonomic category. In this sense, 

the deviation from pure similarity arising from the coverage term is explained via a strong and 

largely qualitative assumption that must be made about the structure of taxonomic categories.


The SCM requires, as input, pairwise similarities between all the objects that may occur in 

an argument. Gathering pairwise similarities from human raters for all of the objects used in our 

dataset would be prohibitive, so we instead estimated similarity by calculating the cosine 

similarity between the Leuven feature vectors representing each object. We found in a pilot 

study that this produced results similar to those that directly use human similarity judgments 

(see Supplementary Information).


Large Language Models 

The final model class we consider is LLMs (Achiam et al., 2023; Brown et al., 2020). LLMs 

can judge the strength of a property induction argument directly by processing a prompt. Prior 

work (Bhatia, 2023; Han et al., 2022; 2024) has found that the performance of LLMs on this 

task is mixed, with models such as DeBERTa (He et al., 2020) and GPT-3.5 failing to capture 

certain aspects of human inductive reasoning. More recent work (Han et al., 2024), however, 

showed that GPT-4 provides a fairly close fit to human behavior when given an appropriate 
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prompt, suggesting that LLMs are a useful benchmark against which to compare psychological 

theories of induction. We therefore included GPT-3.5 and GPT-4 as comparisons to our model. 

We presented property induction arguments to the LLMs following the best-performing 

prompting strategy outlined in Han et al. (2024).


Study 1: Analyses of Semantic Effects in Property Induction 

Study 1a: Argument Strength Ratings 

We first measured how the ISC-CI model compares to others in accounting for human 

argument strength ratings studied in prior work. Such studies asked participants to rate the 

strength of an inductive argument given its premises and conclusion. For instance, consider 

the argument {robin, crow} → chicken, i.e., robins and crows have hollow bones, therefore 

chickens have hollow bones. On a scale of 0-100, how good is this argument? In  our first 

analysis, we aggregated data from five such experiments, then considered how well argument 

strengths predicted by each model correlated with observed ratings.


More specifically, we aggregated human ratings across several prior studies: one 

experiment from Rips (1975), consisting of 42 single-premise arguments involving mammals; 

one experiment from Osherson et al. (1990), consisting of 36 two-premise arguments each of 

which used the conclusion “horses;” two experiments from Bhatia (2023), the first consisting of 

300 single-premise arguments and the second consisting of 300 two-premise arguments, both 

sampled from six categories (birds, fruits, vegetables, clothing, furniture, and vehicles); and one 

experiment from Han et al. (2024) , consisting of 1,168 one- or two-premise arguments from 2

three categories (mammals, birds, and vehicles). In each study, participants were presented 

with a series of property induction arguments and asked to indicate the strength of each 

 We limited our consideration to datasets involving “specific” arguments, which involve basic-2

level categories such as dogs and cats, rather than “general” arguments, which involve a mix 
of basic-level categories such as dogs as well as superordinate categories such as mammals, 
because our model was only trained on basic-level categories. In the Discussion of Part 1 we 
consider how our model may be extended to account for general arguments in future work.

24



argument on an interval scale (that we rescaled to the range [0,1]). Each argument involved 

objects from a common taxonomic category (e.g., in one argument the premises and the 

conclusion were all mammals, while in another argument the premises and conclusion were all 

vehicles) with one to three premises and a single conclusion. We removed arguments involving 

objects that do not occur in the Leuven Concepts Database, resulting in a final aggregate 

dataset of 1,067 arguments.


We generated strength estimates for these arguments using the feature overlap model, the 

SCM, GPT-3.5, and GPT-4 following the procedures outlined above. We generated strength 

estimates using the ISC-CI model by including the premises in the support set and the 

conclusion in the query set and measuring the response (yes/no) label output provided by the 

model (see Figure 1B). This resulted in a score between 0 and 1 for each model and for 

humans, indicating the estimated strength of each argument. We then measured the Pearson 

correlation between each model’s argument strength predictions and human argument strength 

ratings, grouped by dataset (Figure 2). Error bars indicate the 95% confidence interval of the 

correlations (at the argument level). 


Across all datasets, the ISC-CI model consistently correlates significantly (p < 0.001 vs. 

null) with human judgments, with performance roughly comparable to the feature overlap 

model and the SCM in all datasets. GPT-4 also performed comparably across four datasets but 

was not reliably above chance for the Rips dataset; GPT-3.5 performed at chance for three out 

of the five datasets.
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Figure 2. Correlations of model and human performance. Bars indicate the Pearson 
correlation between each model’s argument strength predictions and human argument 
strength ratings for each of the 5 datasets. Error bars represent the 95% confidence interval of 
the correlations, measured at the argument level.



Study 1b: Argument Strength Factors 

We next considered several behavioral findings that challenge similarity-only models and 

motivated the development of the SCM. We focused on the results from Osherson and 

colleagues (1990), who denoted a set of general factors hypothesized to underlie human 

judgments of argument strength: for instance, that people produce higher ratings for 

arguments that have more premises, or whose premises involve examples more representative 

of their category. While this proposal has been highly influential, it was based on comparatively 

few example arguments and relatively small sample sizes, and at least some factors have been 

challenged by more recent findings (e.g., Han et al., 2024). We are unaware of prior work 

systematically comparing how well different models of induction capture these phenomena 

when fit using a large, ecologically valid and representative set of concepts. We therefore 

conducted such a comparison, evaluating how well each model captures each of several 

factors.


Specifically, we focused on five factors from Osherson’s (1990) work — some of which align 

with the similarity-only approach, and some of which challenge it : premise-conclusion 3

similarity, conclusion typicality, premise diversity, monotonicity, and cross-category non-

monotonicity. We also evaluated within-category non-monotonicity phenomena initially 

reported by Medin et al. (2003) and closely related to patterns of name-induction studied by Xu 

& Tenenbaum (2007) in their Bayesian model of word learning. Thus, in total, we investigated 

the extent to which phenomena associated with six factors thought to govern human 

argument-strength ratings, described in more detail below, also arise in simulations with the 

ISC-CI model, the feature overlap model, the SCM, GPT-3.5, and GPT-4.


 We focused on the factors involving “specific” arguments outlined in Osherson et al. (1990) 3

and omitted “general” arguments, which involve category labels rather than individual item 
labels (e.g., robins and crows have hollow bones. Do all birds have hollow bones?). The ISC-CI 
model in its current form is unable to simulate general arguments because it is trained only on 
individual items and not category labels (e.g., there is no way to provide “all birds” as input to 
the model), though this could be remedied in future work.
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If a particular factor influences model induction, the model should produce ratings that are 

on average higher for arguments that possess that factor as compared to arguments that do 

not (e.g., arguments with typical conclusions should have higher ratings than arguments with 

atypical conclusions). To test this, we constructed six datasets consisting of strong and weak 

arguments for each of the six factors. For each, we generated 500 “strong” arguments that 

possess the factor and 500 “weak” arguments that do not, using items from the Leuven 

Concepts Database and following the argument generation methodology in Bhatia (2024). We 

did so for each of the six factors, as described below.


Premise-conclusion similarity. As discussed above, people tend to find an argument strong 

when the conclusion is similar to the premises. For example, the argument {crows} → ravens is 

stronger than the argument {crows} → robins because ravens are more similar to crows than 

are robins. Note that this factor depends only on similarity and thus is consistent with 

similarity-only models. To test this factor, we generated each argument by randomly sampling a 

category, then randomly sampling a premise and a conclusion from the 10 most typical objects 

in the category (following Bhatia, 2023). We then calculated the similarity between the premise 

and the conclusion for each of the arguments (as rated by humans), labeling an argument as 

strong if its similarity was above the median and weak if it was below the median. 

Conclusion typicality. People tend to find an argument stronger when the conclusion is an 

object typical of its superordinate category. For example, the argument {crows, ravens} → 

robins is generally rated as stronger than the argument {crows, ravens} → penguins because 

robins are typical birds whereas penguins are not. Note that, consonant with the SCM, this 

factor relies on an additional representational construct beyond pure similarity, namely the 

taxonomic reference category used to evaluate typicality. We generated each argument by 

randomly sampling a category from the Leuven Concepts Database, then randomly sampling 

three objects within that category without replacement (two premises and one conclusion). If 

the typicality of the conclusion (as rated by humans) was greater than the median typicality 
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rating for objects in that category, the argument was predicted to be strong, otherwise it was 

predicted to be weak.


Premise diversity. In Osherson et al.’s (1990) study, people found multi-premise arguments 

stronger when the premises were relatively distal to one another. For example, the argument 

{crows, robins} → sparrows is stronger than the argument {crows, ravens} → sparrows 

because crows and robins are more dissimilar than are crows and ravens. However, more 

recent empirical work using large datasets with objects from diverse categories has yielded 

more mixed results. For example, Han et al. (2024) found no significant diversity effect for 

arguments involving birds, no significant effect for vehicles, and an effect in the opposite 

direction for mammals. Other studies have found that diversity effects only hold under certain 

types of instructions (Hayes et al., 2019) and for certain populations (Choi et al., 1997). 

Moreover, no prior work has assessed whether models of induction systematically show a 

beneficial effect of premise diversity when fit to a representative sample of items from a large, 

ecologically realistic dataset.


We generated arguments to evaluate premise diversity by randomly sampling a category, 

then randomly sampling two premises and a conclusion from the 10 most typical objects in the 

category. From these we calculated the dissimilarity between the two premises for each 

argument, classifying the argument as strong if its premise dissimilarity was above the median 

and weak if it was below the median.


In-category monotonicity. People tend to find arguments stronger when an additional 

premise from the same category as the conclusion is added to the argument. For example, the 

argument {crows, robins} → sparrows is stronger than the argument {crows} → sparrows. This 

finding is likely consistent with most similarity-only models, provided that the similarity in those 

models aligns with the taxonomic categories used to generate the arguments. We generated 

each argument by randomly sampling a category, then randomly sampling a conclusion and 
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either a single premise (for weak arguments) or two premises (for strong arguments) from the 

10 most typical objects in the category.


In-category non-monotonicity. Some studies find that in-category monotonicity reverses 

under certain conditions, such that adding a premise to an argument makes it weaker. One 

such condition is when the additional premise is strongly related to the existing premises but 

not to the conclusion. For example, Medin et al. (2003) found that the argument {brown bears} 

→ buffalo was rated as stronger than the argument {brown bears, grizzly bears} → buffalo. This 

phenomenon is closely related to patterns of name learning that motivate Bayesian approaches 

to induction (Xu & Tenenbaum, 2007): After learning to name a single item (e.g., a green 

pepper) with a novel label (e.g., “dax”), participants extend the label to other items in the same 

basic category (e.g., other peppers, but not other vegetables). If, however, the name is 

observed to apply to three items from the same highly specific category (e.g., three green 

peppers), it generalizes only to the narrower category (green peppers but not other peppers). 

Similarity-only models struggle to explain this pattern, because the similarity of the labeled 

items (one vs three green peppers) to the test items (other peppers and vegetables) is 

essentially the same in these two cases. Thus the phenomenon seems to require additional 

representational constructs beyond similarity alone.


To evaluate within-category non-monotonicity, we generated each argument by randomly 

sampling a basic-level category, then randomly sampling a conclusion and a single premise 

from this category (for strong arguments). For weak arguments, we generated a second 

premise from the same category by measuring, for each object in the category, how similar that 

object is to the premise and how dissimilar it is to the conclusion. We then selected the object 

with the largest sum of premise similarity and conclusion dissimilarity.


Cross-category non-monotonicity. Other studies have found non-monotonicity effects when 

arguments span taxonomic categories: Adding a premise to an argument may weaken that 

argument when the new premise broadens the lowest-level taxonomic category that includes 
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all of the premises and the conclusion. For example, Osherson et al. (1990) found that the 

argument {flies} → bees was rated as stronger than the argument {flies, orangutans} → bees, 

despite it having an additional premise, arguing that the inclusion of orangutans widens the 

relevant category from insects to animals. This decreases the “coverage” term in Osherson’s 

SCM, since {flies, orangutans} provides low coverage of the animal category, thereby 

decreasing the model’s overall score for the argument. We generated each argument by 

randomly sampling a category, then randomly sampling a conclusion and a single premise from 

this category (for strong arguments). For weak arguments, we sampled a second object from a 

distinct taxonomic category to use as an additional premise.


Results
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Figure 3. Ratings for strong and weak arguments according to six factors. Bars indicate 
each model’s averaging ratings for the arguments in a given factor, divided into strong (solid 
shading) and weak (striped shading) groups. Star values above each set of bars indicate p-
values from t-tests comparing ratings across the two groups, where n.s. indicates p>=.05, one 
star indicates p<.05, two stars indicates p<.01, and three stars indicates p<.001. Significant 
values in the same direction as human ratings are shown in black, while significant values in 
the opposite direction are shown in red.



Figure 3 shows the performance of the models across the six factors, divided into strength 

ratings for arguments in the strong and weak groups. Models that show an effect in the 

predicted direction should provide significantly higher argument ratings for strong arguments 

(solid bars) than for weak arguments (striped bars). We measured significance with unpaired t-

tests for each of the six factors: premise-conclusion similarity, conclusion typicality, and 

premise diversity, and with paired t-tests for in-category monotonicity, in-category non-

monotonicity, and cross-category non-monotonicity. We found that all models showed a 

significant effect in the predicted direction for premise-conclusion similarity, conclusion 

typicality, and monotonicity. In contrast, the models diverged in their predictions for premise 

diversity and the various forms of non-monotonicity, each of which we consider below.


Premise diversity. Only one model (GPT-4) showed a premise diversity effect in the direction 

predicted by Osherson et al.’s original work. ISC-CI and the feature overlap model showed no 

significant effect, whereas the SCM and GPT-3.5 showed an effect in the opposite direction of 

that predicted (i.e., they preferred arguments with less diverse premises). These results are 

surprising given that the SCM was specifically introduced to account for initial observations of 

the premise diversity effect (Osherson et al., 1990).


The failure to replicate Osherson’s original model results may reflect interactions between 

premise diversity and other factors such as premise-conclusion similarity; for instance, 

arguments with high premise diversity may tend to also have low premise-conclusion similarity. 

To evaluate this possibility, and following Bhatia (2023), we controlled for these confounds by 

removing atypical objects from the diversity arguments; nevertheless, no effect was observed 

in the predicted direction for any model except GPT-4. These results, together with the mixed 

findings from recent empirical studies (Choi et al., 1997; Han, 2024; Hayes et al., 2019), 

suggest that premise diversity may be less robust than other effects.


Non-monotonicity. For in-category non-monotonicity, ISC-CI was the only model to show 

an effect in the predicted direction; every other model showed an effect in the opposite 
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direction. In contrast, for cross-category non-monotonicity, ISC-CI showed no effect, while the 

feature overlap model, the SCM, and GPT-4 all showed an effect in the predicted direction (and 

GPT-3.5 showed an effect in the opposite direction).


These differences in performance reflect fundamental differences in how each model 

incorporates additional premises when evaluating the strength of an argument: The feature 

overlap model rigidly adheres to a fixed similarity structure; the SCM considers pre-defined 

taxonomic categories in its coverage term; and the ISC-CI model relies on context-dependent 

similarity informed by the co-occurrences of the premises and the conclusion.


More specifically, for the feature overlap model, adding a new premise to an argument 

increases the strength of that argument when the new premise is more similar to the 

conclusion than is the existing premise. Since items within taxonomic categories are usually 

similar to one another, adding a new within-object category tends to increase the feature 

overlap model’s predicted argument strength. It therefore does not exhibit in-category non-

monotonicity, but it does exhibit cross-category non-monotonicity.


For the SCM, adding a new premise to an argument changes the coverage term: The 

coverage of the argument increases when the new premise remains within the initial covering 

category (e.g., when the existing premise, the conclusion, and the new premise are all 

mammals), but it decreases when the new premise broadens the covering category (e.g., when 

the existing premise and the conclusion are mammals, but the new premise is a reptile, the 

new premise broadens the covering category to animals). In other words, the model predicts 

that arguments always get stronger when adding a within-category premise and that they 

always get weaker when adding a cross-category premise. This prediction supports cross-

category non-monotonicity but fails to capture in-category non-monotonicity, just like the 

feature overlap model.


For the ISC-CI model, adding a new premise increases argument strength when it aligns 

with patterns of coherent covariation among the terms of the argument that give rise to the 
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context representation; that is, when the joint co-occurrence of the existing premise, the new 

premise, and the conclusion is more likely than the co-occurrence of the existing premise and 

the conclusion alone. This is why the ISC-CI model, unlike the feature overlap model and the 

SCM, demonstrates in-category non-monotonicity: When adding a new premise (e.g., grizzly 

bears) that is highly similar to an existing premise (e.g., brown bears), the model infers that it is 

in a narrow context specific to those premises (e.g., bear-related contexts), decreasing the 

argument strength for non-bear conclusions (e.g., buffalo). This can be viewed as in some ways 

similar to both the feature overlap model and the SCM. Like the feature overlap model, 

arguments become stronger when the new premise is similar to the existing premise; however, 

the basis for determining similarity changes, with the new premise introducing new dimensions 

of similarity that are captured by the ISC-CI model’s context inference mechanism. Like the 

SCM, arguments become stronger when the “category” formed by the premises better 

matches that of the conclusion. However, the ISC-CI model can infer which category/context is 

relevant on a case-by-case basis by constructing a context representation that varies 

parametrically based on the arguments, rather than relying on qualitative, pre-specified 

taxonomic categories.


The reliance of the ISC-CI model on statistical structure that may include, but can also 

extend beyond, strict taxonomic categories may explain not only within-category non-

monotonicity, but also the absence of cross-category non-monotonicity in some cases. In 

particular, there may be cases in which adding a premise from a different taxonomic category 

nonetheless increases the alignment between the premise context and the conclusion. For 

example, consider the arguments {sharks} → sardines and {sharks, flies} → sardines. By itself, 

the premise “sharks” may cue specific contexts (e.g., danger, carnivores, predators, large 

animals, etc.) that are not often associated with sardines. Adding the new premise “flies”, 

however, cues broader contexts that are associated with sardines (e.g., animals, living things, 

etc.), thereby increasing the strength of the argument, even though flies are from a different 

taxonomic category than are sharks. This would not be the case, however, when the premise 
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and the conclusion are well-aligned; consider the arguments {sharks} → lions and {sharks, 

flies} → lions. Here, broadening the context decreases the strength of the argument, because 

the context induced by sharks alone is more fitting of lions than is the context induced by both 

sharks and flies. In other words, when there is poor alignment between the first premise and 

the conclusion, adding a second premise (i.e., broadening the context) likely increases 

argument strength, but when there is already strong alignment between the first premise and 

the conclusion, adding a second premise likely decreases argument strength.


We tested this prediction quantitatively by dividing the cross-category non-monotonicity 

arguments into a high similarity and a low similarity group (divided evenly into 500 arguments 

each using the median similarity between the initial premise and the conclusion as the cutoff 

point). As Figure 4 shows, the results confirm our hypothesis: In the high similarity condition, 

adding a new premise reliably weakens the argument (p<.01), whereas in the low similarity 

condition it is strengthened (p<.001). In contrast, the feature overlap model, which lacks 

context sensitivity, and the SCM, which lacks context inference mechanisms, are governed 

primarily by pre-defined taxonomic categories. They therefore show non-monotonicity in both 

conditions (p<.001; the LLM results are mixed, with GPT-3.5 showing no significant effect in the 

high similarity condition but a reversed effect in the low condition, p<.001, and GPT-4 showing 
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Figure 4. Argument ratings for cross-category non-monotonicity. Bars depict strength 
ratings for arguments in the cross-category non-monotonicity condition, divided into 
arguments for which the conclusion is similar to the same-category premise (left) versus 
arguments for which the conclusion is dissimilar to the same-category premise (right). The 
primary result is that the ISC-CI model is the only one to demonstrate significant effects in the 
correct direction across the two conditions.



a significant effect in the high similarity condition, p<.001, and no significant effect in the low 

condition).


In summary, testing in-category and cross-category non-monotonicity effects on a large-

scale, ecologically validated dataset reveals interesting differences between the models based 

on subtle statistical relationships among terms (such as the similarity among the premises and 

with the conclusion) that may provide a more accurate account of inductive inference than 

previously described qualitative or discrete factors, such as predefined category relationships 

and/or taxonomy. We test the extent to which these can explain human judgments in Study 2.


Discussion


Study 1 established that the ISC-CI model provides at least as good an account for a range 

of prior argument-strength data as prior models, including the SCM designed specifically to 

account for these data and the feature overlap model shown by Bhatia (2023) to explain many 

such phenomena. Across 5 studies, predicted strength ratings from ISC-CI correlated 

significantly with human judgments, with the magnitude of this correlation qualitatively similar 

to those of the SCM and feature overlap model in all cases. In contrast, predictions of both 

large language models showed non-significant correlations with human judgments on at least 

one dataset. 


Considering six factors proposed to undergird human ratings of argument strength 

— concerning semantic relationships among premises and conclusion — the three 

psychological models performed similarly, showing the predicted effect for four factors and null 

or reversed effects for two. The ISC-CI model showed null results of premise diversity and 

cross-category non-monotonicity, with subsequent analyses suggesting that model behaviors 

depend critically on similarity relations among premises and conclusions in these tasks. The 

SCM showed reliable effects in the wrong direction for both premise diversity and in-category 

non-monotonicity—a surprising result given that the coverage mechanism was invoked 

specifically to explain deviations from pure similarity in such tasks. The feature overlap model 
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showed no reliable effect of premise diversity, like the ISC-CI model, and a reversed effect for 

in-category non-monotonicity, like the SCM.


LLMs also showed mixed patterns of performance across factors, with GPT-3.5 showing 

reliably reversed patterns on three of the six factors, and GPT-4 showing the predicted effect 

on five but a reversed effect on the sixth (in-category non-monotonicity). Interestingly, GPT-4 

was the only model showing the predicted effect of premise diversity—a questionable 

achievement given the uncertain empirical status of this effect. ISC-CI was the only model to 

show the predicted in-category non-monotonicity effect, which we emphasize due to the 

important role this phenomenon has had in Bayesian accounts of name induction (Xu & 

Tenenbaum, 2007).


Overall, the simulations of property induction demonstrate that all the different modeling 

formalisms produce comparably good fits to well-known phenomena in the literature, with a 

few subtle differences. While the subtleties could be worth investigating in future work, one 

conclusion from these simulations is that the prior empirical record does not cleanly adjudicate 

the different models. For this reason, Study 2 describes new experiments designed to test 

explicit predictions of the ISC-CI model that distinguish it from other models.


Study 2: Empirical Tests of Context Effects in Inductive Inference 

Rationale 

We next tested the key hypothesis that distinguishes the ISC-CI model from the feature 

overlap model and the SCM: Does the relevance of different semantic features in shaping 

inductive inferences vary depending on the context formed by the items involved?


A core feature of the ISC-CI model is that the stimuli present in a given setting are 

combined to generate a context representation that warps the semantic space, shaping how 

new items are processed by shifting “attention” toward the semantic features or dimensions 

that they share in common. This can lead to dramatic differences in argument strength ratings 
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depending on the particular items involved in an inductive inference problem. For example, the 

items {robin, crow} share the is-bird feature in common, while the items {robin, cardinal} share 

both the is-bird and is-red features, implying that both features are important for making 

judgments in that context. The ISC-CI model should therefore show a much stronger rating for 

the argument {robin, cardinal} → fox than for the argument {robin, crow} → fox, since in the 

former case the model attends to the color shared by the premises and the conclusion.


The feature overlap model makes a different prediction, proposing instead that the 

relevance of a given semantic feature does not change across contexts. This is due to its 

reliance on a static feature vector used to calculate the similarity between objects. In an 

inductive inference argument, this means that the similarity between a premise of an argument 

and the conclusion of that argument does not change regardless of the context in which that 

premise occurs: the similarity between robin and fox is the same for the arguments {robin, 

cardinal} → fox and {robin, crow} → fox. The feature overlap model should therefore assign 

very similar ratings for these two arguments.


Unlike the feature overlap model, the SCM augments similarity judgments with a 

“coverage” term that captures the taxonomic relationships between the premises and the 

conclusion. The coverage term in effect implements a limited form of attention that achieves a 

similar effect to the ISC-CI model, emphasizing the importance of the narrowest taxonomic 

category that spans the items in the argument (e.g., prioritizing the importance of the is-bird 

feature when the premises and the conclusion are all birds). The coverage term is limited, 

however, in that it only takes into account this rigid, qualitative, pre-specified taxonomic 

structure. It is therefore not sensitive to other forms of semantic structure that may be shared 

by the items in an argument, such as their color. As is the case with the feature overlap model, 

the SCM therefore should produce similar strength ratings for the arguments {robin, cardinal} 

→ fox and {robin, crow} → fox, since in both cases the taxonomic relationships among the 

items are the same.
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As this example demonstrates, the ISC-CI model is uniquely sensitive to the covariation 

among the particular items in a given argument, warping its semantic representations to 

emphasize the features that are relevant in the current context. Like the SCM, the ISC-CI model 

is sensitive to semantic features shared by the items involved in the argument, selectively 

emphasizing shared features. However, the taxonomies/categories that shape attention in the 

SCM are a discrete, pre-specified structure, enabling only a limited form of adaptation that 

always prioritizes the processing of such taxonomic information. The ISC-CI model instead 

implements attention in a way that is sensitive to the graded, statistical structure of the co-

occurrences between items and their properties, attending to any form of semantic structure 

shared by the items in the argument. In other words, the ISC-CI model essentially forms a 

context-specific category, such as “things that are red”, that shapes inductive inferences as 

strongly as taxonomic categories such as “birds”.


Motivated by these considerations, we designed two experiments that manipulated non-

taxonomic semantic features in inductive reasoning tasks to test the different predictions made 

by the SCM, feature overlap, and ISC-CI models. More specifically, drawing on the differences 

in model performance observed for cross-category non-monotonicity in Study 1, Study 2a 

tested whether non-monotonicity effects emerge for context-specific categories: Does adding 

a premise to an argument weaken that argument when the new premise lacks a feature shared 

by the first premise and the conclusion? For example, the ISC-CI model predicts that the 

argument {robins} → bees will be rated as stronger than the argument {robins, spiders} → 

bees, since adding the premise spiders implies that can-fly and has-wings are no longer as 

context-relevant as being an insect. In contrast, the feature overlap model and the SCM make 

the opposite prediction, because spiders are more similar to bees both overall and 

taxonomically, than are robins. Study 2b directly contrasted taxonomy with context-specific 

semantic features in a categorization task: Do people actively prefer context-specific 

categories over taxonomic ones when forced to choose? For example, consider a prompt such 

as “An unknown category includes sparrows and airplanes. Which is the category more likely 
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to also include: bats, or penguins?” The ISC-CI model predicts that people will choose bats 

instead of penguins, because bats, sparrows, and airplanes can all fly, whereas penguins 

cannot. In contrast, the feature overlap model and the SCM make the opposite prediction 

because penguins, like sparrows, are all birds but airplanes are not.


Study 2a: Context-Dependent Non-Monotonicity 

We first considered whether the non-monotonicity effects examined in Study 1 apply to 

context-specific but non-taxonomic semantic categories. We did so by selecting a semantic 

feature, can-fly, that applies to objects across taxonomic categories (i.e., birds, insects, and 

vehicles), and using this to generate pairs of arguments among which participants had to 

choose.


Methods


Stimuli. We generated argument pairs by: 1) first randomly sampling an object from the 

Leuven dataset that has the feature can-fly as the first premise (e.g., robins); 2) identifying an 

object that also can fly but is from a distinct taxonomic category as the conclusion (e.g., bees); 

and 3) an additional object from any taxonomic category that cannot fly as the second premise 

(e.g., spiders).  This yielded a strong and weak version of each argument (e.g., {robins} → bees 

vs {robins, spiders} → bees). To better distinguish between the ISC-CI model and the SCM and 

feature overlap model, we first generated all possible argument pairs using the Leuven stimuli, 

then selected pairs for which the ISC-CI model chose the single-premise argument while both 

alternative models chose the two-premise argument, resulting in a set of 80 total argument 

pairs.


Procedure. At the start of the experiment, each participant was given instructions indicating 

that they would be asked to make a series of independent decisions concerning the relative 

strength of arguments. They were then given an example argument demonstrating the structure 

of the trials that contrasted a single-premise argument with a two-premise argument, such as 
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“Which of the two arguments is more likely to be true: zebras and donkeys have property X, 

therefore horses have property X; or zebras have property X, therefore horses have property 

X?” Each participant then completed a series of 35 decisions, randomly sampled without 

replacement from the 80 argument pairs, with 5 randomly interleaved attention checks 

(participants were informed during the instructions that these always had an unambiguous 

answer, e.g.: {robins} → bees vs {robins} → robins). Participants were asked to make a binary 

indication of which of the two arguments they felt was stronger on each trial.


Participants. The study was approved by the Princeton Internal Review Board (Protocol 

6079). 30 participants were recruited from Prolific, and 1 was excluded due to failed attention 

checks.


Simulation. We also simulated the experiment using GPT-3.5 and GPT-4. The LLMs were 

provided with the same instructions as human participants, and we measured the binary 

preferences for each of the LLMs on each of the 80 argument pairs.


Results


We evaluated the performance of humans and the LLMs by measuring, within participant, 

the percentage of trials for which the single-premise argument was chosen in favor of the two-

premise argument (i.e., the percentage of trials for which non-monotonicity was demonstrated; 

Figure 5). Consistent with the prediction of the ISC-CI model, we found that the median 

participant chose the single-premise argument 85% of the time, and 21 out of the 29 

participants chose the single-premise argument more often than they chose the two-premise 

argument. The preference for the single-premise argument was significant by binomial test at 

both the participant level (p=.012) and the argument level (p<.0001). In contrast, both LLMs 

showed a preference for the two-premise argument, with GPT-3.5 choosing the single-premise 

argument only 3.75% of the time and GPT-4 choosing it 1.25% of the time (both significant by 

argument-level binomial test). Overall, these results support the ISC-CI model’s hypothesis that 
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non-monotonicity effects extend to non-taxonomic semantic features, effects that are neither 

predicted by the SCM or feature overlap model, nor exhibited by either of the LLMs.


Study 2b: Context-Dependent Categorization 

We next evaluated the extent to which non-taxonomic semantic features that are 

nonetheless context-relevant are directly prioritized over taxonomy in a categorization task. 

Furthermore, we extended the previous experiment by considering a wider set of semantic 

features, selecting features from the Leuven dataset that crosscut taxonomic categories, were 

true of at least 20 items, and were frequently generated by participants. This resulted in six 

context-specific features: can-fly, is-a-pet, is-a-carnivore, is-an-animal, is-commonly-eaten-by-

humans, and is-dangerous.


Methods


Stimuli. Using the six context-specific features, we constructed categorization questions by 

selecting two target objects, one context-specific choice object, and one taxonomic choice 
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Figure 5. Human and LLM choices for context-dependent non-monotonicity. The x axis 
indicates the percentage of trials for which humans and the LLMs chose the single-premise 
argument (agreeing with the ISC-CI model) over the two-premise argument (agreeing with the 
overlap and SC models). The human data indicate participant-level results, showing the 
distribution over how often each participant chose the single-premise argument.



object. We selected targets by randomly sampling two objects that possessed the same 

subordinate feature (e.g., pets) but were from different superordinate taxonomic categories 

(e.g., hamsters and goldfish, which are both pets but from different superordinate categories, 

mammals and fish). We then selected the context-specific choice by sampling an additional 

object that possessed the context-specific feature but was from a third taxonomic category 

(e.g., parrot, which is a pet like hamsters and goldfish, but is neither a mammal nor a fish). 

Conversely, we selected the taxonomic choice by sampling an object that did not possess the 

context-specific feature but did belong to the same taxonomic category as one of the targets 

(e.g., swordfish, which is a fish but not a pet). Finally, we created a categorization task using 

the objects with a prompt such as “… the category includes hamsters and goldfish. Which of 

the following is the category more likely to also include: parrots, or swordfish?” We generated 

all possible unique questions given these constraints.


Procedure. At the start of the experiment, each participant was given instructions indicating 

that they would be asked to make a series of independent categorization decisions involving 

novel categories. They were then given an example argument demonstrating the structure of 

the trials, that contrasted a dominant and task-specific answer (which was always: “The 

category includes horses and motorcycles. Which is the category more likely to also include: 

zebras, or bicycles?”). Each participant then completed a series of 35 categorization questions, 

randomly sampled without replacement from the 84 total questions, with 5 randomly 

interleaved attention checks (participants were informed during the instructions that these 

always had an unambiguous answer, e.g.: “The category includes horses and zebras. Which is 

the category more likely to also include: horses, or fruit flies?”).  On each trial, participants were 

asked to make a binary indication of which of the two answers they felt was stronger.


Participants. The study was approved by the Princeton Internal Review Board (Protocol 

6079). 54 participants were recruited from Prolific, and 4 were excluded due to failed attention 

checks.
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Simulation. We also simulated the experiment with GPT-3.5 and GPT-4. We provided the 

models with prompts that closely matched the experimental instructions (see Supplementary 

Information), providing a binary measure for each LLM on each of the 84 questions indicating 

whether the LLM preferred the taxonomic or task-specific match.


Results


We evaluated the performance of humans and the LLMs by measuring, within participant, 

the percentage of trials for which the context-specific match was chosen in favor of the 

taxonomic match (Figure 6). If humans have a preference for the context-specific match, as 

predicted by the ISC-CI model, each participant should choose the context-specific match 

more often than the taxonomic match. Consistent with this prediction, we found that the 

median participant chose the context-specific match 84% of the time, and 43 out of 50 

participants chose the context-specific match more often than they chose the taxonomic 

match. The preference for the context-specific match was significant by binomial test at both 

the participant level, p<.0001, and the argument level, p<.0001. In alignment with human 

ratings, GPT-4 chose the context-specific match 71% of the time (significant by argument-level 

binomial test, p<.0001), while, in contrast, GPT-3.5 chose the context-specific match only 24% 

of the time (significantly in favor of the taxonomic match by argument-level binomial test; 

p<.0001). Overall, these results demonstrate that people can categorize objects on the basis of 

less prominent semantic features, rather than the generally more prominent taxonomic 

categories, when those features are shared by items encountered in a given context (and that 

the same behavior arises in state-of-the-art LLMs).


Discussion 

Study 2 demonstrates how the central mechanism in the ISC-CI framework—inferring a 

context representation from blended representations of the items encountered in the context—

can explain and predict patterns of human behavior in inductive inference tasks. After learning, 
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the model can generate context representations elicited by a novel combination of objects 

(premises) to identify the properties they share, and use this to shape processing of another 

object (a conclusion) by “directing attention" to dimensions along which the premises are most 

similar. We showed that this mechanism produces responses that closely correspond to those 

of humans in both property induction and categorization judgments.


The primary novel contribution of the ISC-CI model in inductive inference is this ability to 

dynamically shape processing based on context provided by the combination of premises. In 

contrast, both the SCM and the feature overlap model use a fixed representational space 

regardless of the particular premises appearing in a given problem. In the case of the SCM, the 

model relies on separate pairwise similarity judgments between each premise and the 

conclusion. This means that the model evaluates the relationship between robins and foxes in 

the exact same way for the arguments {robin, crow} → fox and {robin, cardinal} → fox. 

Although the SCM provides a marginally greater score for the second argument — because 

cardinals are marginally more similar to foxes than crows are to foxes — it lacks the ability to 
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Figure 6. Human and LLM choices for taxonomic vs context-specific categorization. The 
x axis indicates the percentage of trials for which humans and the LLMs chose the context-
specific match (agreeing with the ISC-CI model) over the taxonomic match (agreeing with the 
overlap and SC models). The human data indicate participant-level results, showing the 
distribution over how often each participant chose the context-specific match.



infer that color-based relationships matter more in the second argument than in the first, and 

that robins and foxes are more similar in the context of the second argument than they are in 

the context of the first argument.


The feature overlap model suffers from a similar limitation: It treats all features as equally 

important regardless of the particular premises. This means that its argument strength scores 

are always dominated by the number of features shared by the premises and the conclusion, 

not by the types of features that are shared . The arguments {robin, crow} → fox and {robin, 4

cardinal} → fox thus receive very similar scores because only a single additional feature (is-red) 

overlaps in the second argument compared to the first argument. Since objects belonging to 

the same taxonomic category tend to share large numbers of features in common, taxonomy 

exerts a strong influence on the feature overlap model’s processing across all arguments.


The ISC-CI model blends aspects of the SCM and the feature overlap model. Like the 

SCM, it prefers arguments in which the “category” induced by the premises is consistent with 

that of the conclusion. The critical difference, however, is that the ISC-CI model dynamically 

parametrically shapes the induced “category” based on the particular premises, rather than 

defaulting to the narrowest taxonomic category encompassing them, as does the SCM. Like 

the feature overlap model, the ISC-CI model prefers arguments in which the conclusion shares 

features with the premises (because objects that share features tend to co-occur in the same 

contexts). The critical difference is that the ISC-CI model is also sensitive to feature co-

occurrences among the premises, and warps representational similarities to strongly weight 

features they share. The ISC-CI model thus strongly prefers the argument {robin, cardinal} → 

fox to the argument {robin, crow} → fox because in the former case the objects share the 

feature is-red (or, equivalently, co-occur in contexts involving red things), whereas in the latter 

argument the objects do not share many features and therefore rarely co-occur. 


 In principle, the feature overlap model could weigh features unevenly, emphasizing the impact 4

of certain features while diminishing others. This weighting, however, would remain static 
across all contexts.
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In contrast to the SCM and the feature overlap model, GPT-4 showed sensitivity to shared 

properties among premises in categorization tasks, preferring the task-specific over the 

taxonomic choice in the majority of trials (though it did not show a similar effect for context-

dependent non-monotonicity; we consider why this might be the case in the general 

discussion). It is possible that this is because, like the ISC-CI model, GPT-4 learns that items 

with context-relevant shared properties tend to occur together within a given window of time. 

This is consistent with the model’s transformer-based architecture, which is explicitly designed 

to model the influences that words have on one another within a given context window. Thus, 

like the ISC-CI model, GPT-4 is capable of modulating its representation of a given object 

depending on the context, representing robin differently for the arguments {robin, crow} → fox 

and {robin, cardinal} → fox. Interestingly, GPT-3.5 also possesses these same characteristics, 

and yet it did not show human-like patterns of judgments in this task. Since the differences 

between GPT 3.5 and 4 are not publicly known, the qualitatively different patterns of behavior 

remain mysterious. We further consider the relationship between the ISC-CI model and LLMs in 

the General Discussion.


Summary of Part 1. In the introduction we emphasized a critical tension in theories of 

human inductive inference: while semantic similarity appears to explain many phenomena, a 

range of classic results has suggested that similarity alone is not sufficient to adequately 

explain human behavior. Alternative models thus invoke additional representational structure to 

explain such phenomena, such as discrete categories situated within a taxonomic hierarchy, 

which are used to compute critical information during inference such as the “coverage” term in 

the SCM (Osherson et al., 1990), or the prior probabilities in Bayesian approaches (Xu & 

Tenenbaum, 2007). We proposed an alternative view, in which systems of semantic 

representation and control are integrated within the same representational space shaped by 

statistical learning, so that representations of contextual information can reshape the semantic 

similarity structures deployed in a given task or trial. This view reconciles “similarity-only” and 

“similarity-plus” theories by proposing that: (a) inference judgments are always shaped by 
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semantic similarities within some representational space; but (b) the space can be warped by 

representations of context to amplify task-relevant semantic structure and minimize task-

irrelevant structure.


The studies reported in this section compare a model implementation of this proposal (ISC-

CI) to other models in the literature, with three important conclusions. First, without any task-

specific tuning or emphasis, the ISC-CI model accounts about as well as other models for data 

from prior studies of human inductive inference. Second, as Bhatia (2023) has also argued, 

prior work may have mischaracterized the limitations of similarity-based models. In our 

simulations, a pure similarity (feature overlap) model provided as good a fit to human 

judgments as did the similarity-coverage model, even for phenomena thought to demonstrate 

the need for additional mechanisms beyond similarity (e.g. conclusion typicality, cross-

category non-monotonicity). Moreover, a key phenomenon motivating the similarity-coverage 

proposal—premise diversity—was not actually captured by the SCM, which in fact showed the 

reverse pattern. In general, Study 1 suggested that prior results do not strongly differentiate the 

various models when these are fit to a large and representative corpus of semantic feature 

norms.


Third and critically, the ISC-CI model suggests one important way that semantic similarity, 

either alone as in the feature overlap model or together with “coverage” information in the 

SCM, is insufficient to explain human inductive inference. Specifically, the model predicts that 

people can discern elements of semantic relatedness amongst a collection of premise items 

even when these cross-cut taxonomic or other generally important elements of similarity, and 

can direct “attention” to this common structure in order to judge whether novel items do or do 

not share the same context-relevant properties. Study 2 provided strong evidence that people 

behave as predicted by the ISC-CI model, and in contradiction to the predictions of both 

overlap and SC models, in such cases.


The patterns of inference we have considered, however, provide only part of the historical 

case challenging similarity as a construct for understanding induction. A remaining part 
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concerns studies of similarity judgments themselves, which sometimes reveal puzzling 

properties that challenge the coherency of similarity as an explanatory principle. We turn to 

these phenomena in Part 2. 

Part 2: Similarity 

Overview 

Many influential models of similarity judgments, like models of semantic cognition more 

generally, propose that people represent objects as patterns of activity over a set of 

representational units (i.e., vectorial representations). These representations can be viewed as 

points in a multi-dimensional feature space, in which the distance between points 

corresponding to different objects reflects the semantic similarity between those objects. Both 

historical work (Attneave, 1950; Shepard, 1974), and recent studies using large-scale datasets 

with many objects and features (Hebart et al., 2020; McRae et al., 2005), demonstrate the 

success of this approach in accounting for many aspects of human similarity judgments. 

Additionally, the same principle has driven many recent advances in natural language 

processing, such as semantic search (Huang et al., 2013), content recommendations 

(Covington et al., 2016; Tang et al., 2015; Wang et al., 2015), and Retrieval-Augmented 

Generation (RAG; Lewis et al., 2020).


Despite the intuitive appeal and success of distance-based similarity models, several long-

standing critiques still present a challenge to this approach. In particular, Tversky (1977; 

Tverksy & Gati, 1978) outlined a series of behavioral phenomena that seem to contradict the 

underlying premises of distance-based models. These phenomena demonstrate how changes 

in the framing of a similarity judgment or the context in which the judgment occurs produces a 

systematic bias in human behavior, resulting in judgments that violate fundamental axioms of 

distance-based approaches that rely on fixed representational spaces (such as symmetry). As 

with inductive inference, these findings motivated the introduction of additional 
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representational structure beyond similarity alone. For instance, Tversky proposed a model of 

similarity judgments that uses set representations rather than vector representations and 

introduces additional parameters meant to capture the effects of framing and context. 

Tversky’s model accounts for some of the phenomena that challenge traditional distance-

based approaches while providing an intuition for the remaining phenomena.


In this section we consider how the ISC-CI model can address these phenomena, through 

the same use of context-modulated distance that allowed it to address the phenomena 

associated with inductive inference considered above. This provides a reconciliation of 

traditional distance-based views with the context-dependencies identified by Tversky’s work 

That is, like standard distance models, our approach assumes that objects have vector 

representations and that distances between these representations determines similarity 

judgments. However, in contrast to standard distance models, the ISC-CI model constructs 

and uses representations of context to warp these distances by differentially weighting different 

dimensions based on the current context, thereby  shaping the similarity relations that drive 

similarity judgments. Accordingly, we show that the same mechanisms accounting for patterns 

of induction in Part 1 allow the ISC-CI model to account for both standard pairwise similarity 

judgments (Study 3), which are well-explained by distance-based models, and the specific 

biases observed by Tversky (Study 4).


Models of Similarity 

We compared the ISC-CI model to two prior models of similarity judgments from the 

psychology literature: the feature overlap model (representative of standard distance-based 

models; Sloman, 1993) and the feature contrast model (representative of Tversky’s approach; 

Tversky, 1977). As discussed in Part 1, the feature overlap model proposes that objects are 

similar to the extent that they share features with one another, which can be calculated by 

representing each object with a feature vector and measuring the cosine similarity as a 

measure of the distance between the two vectors.
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The feature contrast model also builds on the idea that objects are more similar when they 

share features in common and less similar when they possess unique features. However, it 

does so with set representations rather than vectorial ones. This allows for greater flexibility 

relative to feature overlap model, by dissociating shared features from features unique to one 

of the objects. Specifically, the model represents each object a as a the set of binary features A 

that are true of that object. The intersection of two set representations, , contains the 

features that the objects share, while the differences between the sets,  and , 

contain the features unique to one of the objects. A weighted combination of the cardinality of 

these sets provides a measure of object similarity: The similarity between the objects a and b is 

, with scalar weight parameters . 

Tversky showed that modulating these weight parameters in different contexts can account for 

some of the biases in human judgments that cannot be captured by distance based models. 

For example, Tversky (1977; Tversky & Gati, 1978) showed that setting  produces 

asymmetric similarity judgments in the same direction as humans. We set the parameters 

following Tversky for the simulations in Study 3 and Study 4.


The ISC-CI model proposes that objects are similar to the extent that they co-occur with 

one another across different contexts. We can measure this by combining two factors: how 

often item B occurs in contexts that involve item A, and how often item A occurs in contexts 

that involve item B. Analogous to the methods in Part 1, we can compute how often B occurs 

in contexts involving A by using A as the premise item and B as the query item. The strength of 

the “yes” response unit then provides a numerical measure of co-occurrence. Like the feature 

contrast model, combining these two terms allows ISC-CI the flexibility to produce different 

similarity judgments depending on how the question is framed, for example by producing 

different similarity scores for the questions “how similar is A to B?” and “how similar is B to 

A?”. When similarity judgments are presented bidirectionally, such as “how similar are A and B 

A ∩ B

A − B B − A

S(a, b) = θ |A ∩ B | − α |A − B | − β |B − A | θ, α, β ≥ 0

α ≠ β
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to one another?”, we first compute the two directional similarity scores, then take the average 

of these scores.


Finally, we also measured similarity using GPT-3.5 and GPT-4. We did so by presenting the 

models with prompts similar to those provided to human participants, which included any 

changes in framing or context across the different experiments.


Study 3: In-Category Similarity 

Rationale 

We first compared how well the different models accounted for standard similarity 

judgments. By “standard,” we refer to judgments that are pairwise, bidirectional (e.g., using a 

prompt such as “How similar are crows and ravens to one another?” rather than a directional 

prompt such as “How similar are crows to ravens?”), and involve two objects within the same 

taxonomic category (e.g. mammals, birds, vehicles, furniture, etc). If a given model provides a 

strong account of these similarity judgments, its judgments should correlate with human 

similarity ratings within the bounds of human cross-subject reliability.


Methods 

We tested how well the models account for the human similarity judgments provided in the 

Leuven Concepts Database. These consist of pairwise, bidirectional similarity ratings between 

all pairs of objects within the same superordinate category. Each pair was presented to 

between 2 and 4 participants, and each participant judged between 15 and 25 objects, 

indicating the similarity between the objects on a scale of 1 to 20. We normalized the similarity 

ratings within-participant by subtracting from each rating the participant’s mean rating and 

dividing by the standard deviation of the participant’s ratings, resulting in z-scored ratings for 

each participant. We then measured cross-subject reliability by correlating each participant’s 

normalized ratings with the average normalized ratings.  Finally, we simulated similarity 

judgments using each of the models, calculated the Pearson correlation between the models’ 
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similarity judgments and the normalized human similarity ratings averaged across participants 

(for the feature contrast model, we used the parameters , though the 

results were robust across a reasonable range of parameter values), and used cross-participant 

reliability to determine the significance of the relationship between each model and human 

performance.


Results 

Figure 7 shows the results, grouped by category. Across all categories, the ISC-CI model’s 

similarity ratings correlate fairly well with human similarity: they are above the lower fence of 

the human reliability for all categories, and within or above the inter-quartile range for every 

category except insects. The other models also correlated well with human similarity ratings, 

showing a qualitatively similar pattern to the ISC-CI model. Overall, the results indicate that 

both the ISC-CI model and all other models provide a reasonable fit to human standard 

similarity judgments, and thus that such judgments are not useful for adjudicating among them.


θ = 1,α = 0.5,β = 0.5
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Figure 7. Pearson correlations between model and human similarity scores. Correlations 
are between each model’s predicted similarity scores and the average similarity score reported 
by participants for each pair of objects within each domain. The box plot for human responses 
(pink) represent cross-subject reliability, showing a distribution over how strongly each 
individual participant’s responses correlate with the average response across participants.



Study 4: Context Effects in Similarity Judgments 

Rationale 

In this study, we focused on two cases in which human similarity judgments have been 

reported to contradict axioms of metric spaces (Tversky, 1977; Tversky & Gati, 1978). In one, 

Tversky & Gati (1978) showed that people can exhibit asymmetry in directed similarity 

judgments; for example, producing different ratings for “North Korea is like China” than for 

“China is like North Korea.” If similarity judgments are governed by a fixed distance between 

the two items within a metric space, participants should give the same answer regardless of 

the direction of comparison. Second, they showed that in multi-alternative similarity tasks 

people can make decisions that imply very different distances between the same two items. 

For instance, when asked to decide whether England, Iran, or Syria is the most similar to Israel, 

people typically choose England, suggesting it is closer to Israel than is Iran. However, when 

asked to decide whether England, Iran, or France is the most similar to Israel, people choose 

Iran—suggesting it is closer to Israel than is England. This discrepancy could not arise if, in 

making their decisions, people are consulting fixed distances within a common metric 

representational space.


Each of these effects can be understood as reflecting the influence of context on similarity 

judgments. In the case of asymmetry, the item that is presented first provides a context for 

processing the item that is presented second, while in the case of multi-alternative judgments, 

the three choice options each provide context for one another. Since the ISC-CI model can 

warp the semantic similarities represented based on the particular objects that occur in a given 

context, we hypothesized that the model could explain the puzzling patterns of behavior 

across these tasks. We tested this hypothesis by collecting new behavioral data that replicated 

the asymmetry and multi-alternative context effects, originally observed by Tversky, using 

objects in the Leuven Concepts Database, and then simulating the corresponding similarity 

judgments using the ISC-CI model, the feature contrast model, and the LLMs. We did not 
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include the feature overlap model since, by definition, it cannot generate asymmetric or 

mutually-inconsistent judgments across the conditions of interest.


Study 4a: Asymmetry 

Rationale


We first considered asymmetry in directed similarity judgments: the finding that people 

generate consistently higher ratings between items when they are presented in one order 

versus the reverse order (e.g., people generally rate “donkeys are like horses” with a high 

similarity score but “horses are like donkeys” with a lower similarity score). In the ISC-CI 

model, the first item in the comparison can be viewed as the premise item, and the second can 

be viewed as the query item. The premise item provides a context in which the similarity of the 

query item is judged, and the two different orderings can be simulated by manipulating which 

item serves as the premise and which as the query. Similarity ratings were taken to be 

proportional to the activity over the response units:  the more similar the query item was to the 

premise, the more activation should accrue on the yes response unit.


We predicted that the ISC-CI model would produce asymmetric similarity judgments for 

cases in  which the co-occurrence statistics on which the model was trained were themselves 

asymmetric. For example, donkeys have many properties also possessed by horses (e.g., both 

are Equus, both have hooves, both have pointed ears, etc.), so both will be encountered in 

contexts that emphasize donkey features. Horses, however, have many features not possessed 

by donkeys (e.g., humans frequently ride horses, often race horses, and horses are often the 

subject of films, etc.). Therefore, it is more likely that horses occur in a context involving 

donkeys than donkeys occur in a context involving horses. As a consequence, the ISC-CI 

model is expected to produce a higher similarity rating for the statement “donkeys are like 

horses” than for the statement “horses are like donkeys”.


Methods
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We began by finding pairs of objects in the Leuven Concepts Database that yield reliably 

asymmetric similarity judgments, complementing (and extending) prior empirical data for 

directed judgments that have generally been restricted to pairs of countries (Aguilar & Medin, 

1999; Johannesson, 2000; Tversky, 1977; Tversky & Gati, 1978), narrative stories (Bowdle & 

Gentner, 1997), or non-literal similes (Ortony et al., 1985). We first chose the 50 object pairs in 

the Leuven Concepts Database that exhibited the greatest bidirectional similarity with one 

another (as measured by bidirectional human similarity judgments), then used these in a 

behavioral experiment in which participants were presented with two directional similarity 

statements involving the same pair of objects and asked to make a binary decision about 

which statement seems stronger. For example, on a given trial a participant might be asked: 

“Which of the two statements seems stronger — synthesizers are like pianos, or pianos are like 

synthesizers?” Experimental instructions emphasized that there was no correct answer to the 

questions and that the statement should be chosen that “seems stronger.” Each participant 

completed 35 such judgments, with 5 randomly interleaved attention checks that had an 

unambiguous answer (e.g., which of the two statements seems stronger: horses are like 

zebras, or horses are like horses?). We collected data from 55 participants on Prolific, 

excluding five due to failed attention checks. The study was approved by the Princeton Internal 

Review Board (Protocol 6079).


This procedure produced data for each of the 50 object pairs, indicating how many raters 

chose each of the two directions (e.g., how many people chose “donkeys are like horses” vs. 

how many people chose “horses are like donkeys”). The pairs varied in their level of 

asymmetry, which we quantified by taking the larger of the two percentages for each pair and 

then using a binomial test with a significance level of 0.05 to determine which pairs showed a 

significant asymmetry effect.  For example, 50% of participants chose that “sparrows are like 

robins” and 50% chose that “robins are like sparrows,” which was not significantly asymmetric;  

conversely, 91% of participants chose “donkeys are like horses” and only 9% chose “horses 

are like donkeys,” which was significantly asymmetric.
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For the 34 pairs that showed a significant asymmetry effect in humans, we next measured, 

for each model, how often it produced asymmetric judgments in the same direction as 

humans. For the ISC-CI and feature contrast models, we calculated an asymmetry score by 

subtracting the similarity score in one direction from the similarity score in the opposite 

direction. This required changing the parameters of the feature contrast model to 

, which emphasizes the directionality of the comparison (following Tversky & Gati, 

1978). We applied a similar analysis  to performance of the LLMs, which were given the same 

prompt as human participants.


Results


We found that the ISC-CI model, the feature contrast model, and GPT-4 all reliably 

produced asymmetric judgments in the same direction as humans (Figure 8), agreeing with 

humans on 76%, 88%, and 85% of the 34 pairs, respectively (all significant by pair-level 

binomial test; ISC-CI: p=.0014; feature contrast: p<.0001; GPT-4: p<.0001). In contrast, 

GPT-3.5 performed at chance levels, agreeing with humans 56% of the time. We next tested 

how well the models account for the magnitude of the asymmetry effect by regressing the 

models’ asymmetry scores against the human asymmetry scores. We found that both the ISC-

CI and feature contrast models predicted the magnitude of asymmetry at well above chance 

levels, with R2 scores of 0.31 and 0.60, respectively (Figure 8; GPT-3.5 and GPT-4 were 

excluded from this analysis given that they produced binary, rather than scalar, predictions for 

each argument pair). Taken together, the directional and regression results demonstrate that 

both the ISC-CI and feature contrast models can account for asymmetry in similarity 

judgments.


Study 4b: Multi-Alternative Context Effects 

Rationale


We next considered the apparent contradictions in perceived similarities elicited by multi-

alternative judgments. Specifically, Tversky & Gati (1978) found that the relative similarity 

α = 1,β = 0
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between a target and two alternative options can change depending on the other alternatives. 

While the authors did not propose a formal account, they hypothesized that the phenomenon 

arises because the fourth alternative changes the salience of different semantic features. 

Specifically, they proposed that semantic features become salient when they help to cluster the 

choices into discriminable sets. For example, when asked to decide which of England, Iran, 

and Syria is the most similar to Israel, people choose England because there  is a salient 

semantic feature shared by Iran and Syria (religion) that differentiates these from England and 

Israel. However, given the options England, Iran, and France, England and France now cluster 

together based on a feature (geographic location) that excludes both Iran and Israel, leading 

people to choose Iran. This proposal is very similar to the ISC-CI model’s mechanism for using 

context to amplify task-relevant semantic dimensions, with provides both a quantitative and 

mechanistic basis for the effect.  Accordingly, we tested the model’s ability to account for 

empirically observed patterns of similarity-judgments in multi-alternative displays. 
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Figure 8. Agreement between model and human asymmetries in directed similarity 
judgments. Left: The percentage of pairs for which each model’s directional preference 
matches human directional preferences. Right: Correlations between the magnitude of the 
asymmetry scores produced by the ISC-CI and feature contrast models and human asymmetry 
scores.



Note that, whereas prior tasks involved generating a single decision (How good is this 

argument?) or a two-alternative forced choice decision (Which of the two items belongs to the 

same category?), this task requires the model to decide among three possible options. To 

simulate multi-alternative judgments in the ISC-CI model, we built on prior work using neural 

network models to address human performance in multi-alternative, multi-attribute value-

based decision making tasks (e.g., Usher & McClelland; 2004; see also Callaway et al., 2021; 

Jang et al., 2021). This work suggests that people serially attend to different features, weighing 

the alternatives with respect to their value along that particular feature. For example, in 

deciding between three cars to purchase that differ in their purchase price and fuel efficiency, 

the purchase price may first be considered — weighing the prices of the cars against one 

another and accumulating evidence for which car is preferred — after which fuel efficiency is 

considered using the same process, and continuing to switch back and forth between the 

features until enough evidence has accumulated in aggregate to determine which car is 

preferred overall.


One feature of this work, however, is that the dimensions to be considered were explicitly 

instructed, and limited in number. This contrasts with the tasks used by Tversky & Gati (1987), 

in which the dimensions to be considered were not instructed and potentially numerous (e.g., 

geography, religion, politics, history, language, culture, etc.). It is unlikely that people randomly 

switch their attention between such a large number of features when judging similarity; instead, 

people are more likely to switch between the subset of features most relevant to that particular 

set of items (i.e., geography and religion in the example above). The ISC-CI model’s context 

inference mechanism provides a means of inferring which features are relevant based on the 

items appearing in question. Combining this with the attention switching approach just outlined 

provides a means of simulating multiple-alternative similarity judgments involving complex 

objects.


Methods
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We combined the ISC-CI model with the neural network model used in Usher & McClelland 

(2004). That model involves three components of processing: attentional selection, input 

preprocessing, and leaky competing accumulators (LCA; Usher & McClelland, 2001) used for 

decision making. The attentional selection mechanism randomly selects a semantic feature for 

processing on each time step. The input preprocessing mechanism then represents each 

option using its feature value along the selected feature dimension, calculates the differences 

between the values of the different options along that dimension, then passes those through a 

nonlinearity. Finally, the LCA decision-making mechanism accumulates evidence over time 

steps for each of the three options. The option with the highest accumulated evidence after a 

certain period of time is selected as the model’s decision.


For incorporation into the ISC-CI, we implemented a variant of the Usher & McClelland 

(2004) model that replaces the random attentional selection mechanism with the model’s 
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Figure 9. Models of multi-alternative choice. A. Usher & McClelland’s (2004) model of multi-
alternative multi-attribute value-based decision making In the example, the decision maker is 
choosing between purchasing a Honda, Ford, and Tesla automobile, each of which varies in 
price and fuel efficiency. At each time step of processing, an attentional selection mechanism 
randomly decides between price and efficiency, and the relative value of each option along that 
dimension is accumulated, with the decision determined by which of the options (Ai) is most 
active after a fix amount of time has elapsed (or, alternatively, one of the options either crosses 
a fixed activity threshold or prevails over the others by some margin). B. The ISC-CI model of 
multi-alternative similarity judgments. Here, the decision maker is choosing which of England, 
Iran, or France is most similar to Israel. On each time step the attentional selection mechanism 
randomly selects between the context formed by the target (Israel) and one of the three 
countries, and that context is used to determine the similarity between the target and each of 
the items, which is then passed to the decision making mechanism.



context inference mechanism to determine feature attentional weightings in the input (Figure 9). 

Rather than randomly selecting a semantic feature on each time step, the model randomly 

selects a context formed by the target item and one of the choice items. For example, when 

deciding if England, Iran, or France is the most similar to Israel, the ISC-CI model switches 

between three contexts: first, the context formed by Israel and England; second, the context 

formed by Israel and Iran; and finally, the context formed by Israel and France. In each of these 

three contexts the model measures the similarity between the target and each of the options 

with respect to that context. For example, in the Israel/England context, the model estimates 

the similarity between Israel and England, Israel and Iran, and Israel and France. The model 

then takes the softmax over the context-dependent similarity scores and presents these as 

inputs to the input preprocessing stage, and then to the LCA decision stage.


Finally, we made one additional change to the Usher & McClelland (2004) model, by using a 

different nonlinearity when evaluating the differences between the option values. Their model 

used a non-linearity that included loss aversion because they were modeling value-based 

decision making, in which people demonstrate loss aversion (Khaneman & Tversky, 1979). 

Since our model simulates similarity and not value-based judgments, instead we used a simple 

rectified linear function (i.e., ReLU) that did not include any value-based bias. 


In summary, the implementation of our model can be seen as an augmentation of the Usher 

& McClelland (2004) model applied to similarity-based decision making, using empirical data 

concerning feature values (provided by the Leuven data) and the ISC-CI’s context-inference 

mechanism to guide attentional selection. Details of the full implementation are provided in the 

Supplementary Information.


To test the model empirically, we designed an experiment to measure human-like context 

effects in multi-alternative similarity judgments using objects from the Leuven data set. 

Following Tverksy & Gati (1978), we generated paired sets of objects to test how changing one 

of the options affects choice preferences between the other two options. We denoted a pair of 
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sets as {t, a, b, ca} and {t, a, b, cb}, where the sets differed only in their final object. Each set 

was used to evaluate which of the three choice options (a, b or c) was judged to be most 

similar to the target object t. We designed the sets such that people were likely to choose 

object a when the choice set contained ca and object b when the choice set contained cb. For 

example, one set pair consisted of blackbirds as the target and either the options {mice, 

airplanes, buses} or {mice, airplanes, hamsters}. Consistent with Tversky’s initial intuition, the 

former set creates distinct clusters by animacy as the relevant feature, placing “mice” closer to 

the target, whereas the latter set creates distinct clusters by flight as the relevant feature, 

placing airplane closer to the target. Thus, we anticipated that people should judge mice more 

similar to blackbirds than airplanes in the first set, but should make the reverse decision in the 

second set.  We predicted that our model of similarity judgment should show the same 

tendency.


We generated the set pairs using a multi-step process. First, we sampled a large number of 

object sets {t, a, b, da, db} such that all of the following object pairs were similar to one another 

along distinct semantic dimensions: t and a, t and b, a and db, and b and da. For example, 

blackbirds (t) and mice (a) are similar because they are both animals; blackbirds (t) and 

airplanes (b) are similar because both can fly; mice (a) and hamsters (cb) are similar because 

they are both rodents; and airplanes (b) and buses (ca) are similar because they are both 

vehicles. Second, we selected from the candidate object sets those object sets that produced 

context effects using Tversky & Gati’s (1978) clustering method (see Supplementary 

Information for a more detailed procedure). This resulted in 41 object sets that we used to 

construct the experimental stimuli. 


We presented human participants with the generated object sets and elicited similarity 

judgments. On each trial of the experiment, participants were presented with a multi-alternative 

similarity question of the form “Which of the following is the most similar to blackbirds: mice, 

airplanes, or buses?” Each participant completed 35 similarity judgments, randomly sampled 
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from the 41 object sets. Each participant either saw the version of the object set that included 

ca or the version that included cb. We collected data from 53 participants on Prolific, excluding 

3 due to failed attention checks. The study was approved by the Princeton Internal Review 

Board (Protocol 6079).


We measured the context effect for each of the object sets following the procedure in 

Tversky & Gati (1978). The context effect was defined as , 

where  represents the percentage of participants that chose option a as being the most 

similar to target t when the choice set included the option ca. 38 out of the 41 object sets 

demonstrated context effects by this definition. 


We then tested whether the ISC-CI model makes the same choices as humans for these 38 

object sets by simulating multi-alternative similarity judgments with the modified model 

described above, following the procedure in Usher & McClelland (2004). This resulted in 

probability scores for how likely the model was to choose each of the three choices for each 

similarity judgment. We used these probability scores to calculate a context effect following the 

same procedure used for the human data.


(a |ca − b |ca) + (b |cb − a |cb)

a |ca
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Figure 10. Comparison of model and human choices in multi-alternative similarity 
judgments. Agreement represents the percentage of object sets for which each model 
produces context effects in the same direction as humans.



To our knowledge, no other cognitive model has been developed to explain similarity 

decisions in multi-item arrays, so there was no prior basis against which to compare the ISC-CI 

model. We did, however, simulate the task with both GPT-3.5 and GPT-4, using the same 

instructions and protocol employed with human participants.


Results


As shown in Figure 10, the model predictions agreed with human decisions for 36 out of 

the 38 object sets, reliably better than chance responding by binomial test (p<.0001). GPT-3.5 

agreed with human decisions on 21 of the 38 object sets, not reliably better than chance, 

whereas GPT-4 agreed with human decisions on only 7 of the object sets—reliably worse than 

chance by binomial test (p < 0.0001).


Discussion 

Studies 3 and 4 demonstrate how the ISC-CI model explains human similarity judgments 

both when these are consistent with standard distance-based models and when they disagree 

with such models. For tasks that minimize the effect of context, such as pairwise bidirectional 

similarity rating (how similar are horse and zebra to one another?), judgments rely on context-

independent similarities that reflect the overall covariance structure of the environment, as in 

standard similarity-based models. For tasks in which context may influence the judgments to 

be made—for instance, directional comparisons (how similar is a zebra to a horse?), or multi-

option arrays (which of these options is most similar to a horse?)—the model’s context-

inference mechanism can establish which semantic dimensions are relevant to the immediate 

task, reshaping the similarities that ultimately drive the judgment. Thus the same mechanism 

that explains patterns of inductive inference in Part 1 also resolves the seeming discrepancy 

between distanced-based and other approaches to modeling human similarity judgments.


The ISC-CI can be seen as integrating critical features of each of the earlier models. With 

respect to the feature overlap model, it shares the fundamental assumption that semantic 
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representations provide a metric basis for inference and similarity judgements, which in that 

model is computed as the cosine similarity among feature vectors. However, the feature 

overlap model assumes that the same metric relationships apply in all contexts, This is 

sufficient to provide a strong fit to bidirectional pairwise similarity comparisons between 

objects in the same superordinate category, but cannot account for asymmetries in directional 

comparisons (because cosine similarity is a symmetric distance function) nor for context 

effects in multi-alternative choices (because its judgments are inherently pairwise and 

independent of which options appear in the choice array). The ISC-CI addresses this, by 

assuming that the metric relationships can be modulated, by warping the underlying space 

based on the current context. 


The feature contrast model complements the feature overlap model, by incorporating the 

flexibility of context-sensitivity, but applying this over a non-parametric (set-theoretic) 

computation of similarity. This is sufficient to account for asymmetries in directional 

comparisons under the assumption that people pay more attention to the features of object a 

than to the features of object b in a directed statement of the form “a is like b”. Given this 

differential attention, the model produces asymmetric judgments whenever 

, where  is the magnitude of the set of features unique to object 

a. The contrast model only makes pairwise similarity judgments, however, so it cannot easily 

account for multi-alternative choices without additional assumptions. Tversky & Gati (1978) 

provided one such assumption: People selectively attend to “diagnostic” features that help 

cluster objects into smaller groups. Although the diagnosticity principle is intuitively appealing, 

it does not explain how people determine which features have diagnostic value in any given 

setting (but see Kruschke, 1992; Nosofsky, 1986; 2011 for potential approaches), which 

becomes particularly complicated for high-dimensional inputs, nor does it explain why 

clustering is necessary in multi-alternative choice. The feature contrast model therefore cannot 

provide quantitative predictions about multi-alternative similarity judgments.


|A − B | ≠ |B − A | |A − B |
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The ISC-CI model combines features of both the feature overlap model and the feature 

contrast model, basing its processing on metric computations derived from features reflecting 

the statistics of object co-occurrences, while allowing sets of features (or dimensions) used to 

make a judgment to be differentially weighted in different contexts. Critically, these contexts 

are derived “online,” based on the stimuli that used to construct the argument and what it has 

previously learned about the co-occurrence of the stimuli. For directed judgments, the ISC-CI 

model produces asymmetries whenever two objects co-occur with one another at different 

rates (e.g., contexts involving donkeys usually involve horses, but many contexts involving 

horses do not involve donkeys). For multi-choice judgments, the ISC-CI model infers which 

semantic features are most relevant for evaluating each of the choice objects. It then serially 

attends to those features to weigh evidence about which choice is most similar to the target. 

This combines elements of Tversky & Gati’s (1978) diagnosticity principle with prior neural 

network models of multi-alternative choice (Usher & McClelland, 2001; 2004), providing a 

plausible process model for judgments involving multiple high-dimensional alternatives.


Finally, both GPT-3.5 and GPT-4 provided strong fits to bidirectional pairwise similarity 

judgments. GPT-4 was also able to account for asymmetries in directed similarity judgments, 

but it was unable to account for context effects in multi-alternative choices, which was 

surprising given its strong performance in the other studies.


In summary, the ISC-CI model’s account of similarity judgments builds on the same 

statistical learning and context inference mechanisms used to explain inductive inference. 

Furthermore, it accounts for both standard similarity judgments and context effects found in 

directed and multi-choice judgments, providing  the most complete account of these effects to 

date.


General Discussion 

In this article, we have presented a model of how people infer which parts of their semantic 

knowledge are relevant in a given context, how they use  that knowledge to guide their 

65



inferences and decisions, and how these capabilities emerge through statistical learning; that 

is, learning about the co-occurrences between objects, their semantic features, and the 

contexts in which these are used. The model extends the integrated semantics and control 

(ISC) model (Giallanza et al., 2024) — which suggests how semantic representations formed 

from such statistical learning can both shape and be shaped by systems that support attention 

and control — to provide a means for inferring which semantic features and which objects 

might be relevant in a given context, and directing attention to those features when making 

inductive inferences and judging object similarity. Critically, we showed in simulations and 

experiments that these ideas can resolve a long-standing tension between similarity-based 

approaches to induction (Bhatia, 2023; Sloman, 1993) and a variety of classic findings 

suggesting that context plays a critical role in both similarity judgements and inductive 

inference (Tversky, 1977; Tversky & Gati, 1978). On the one hand, the ISC-CI can be viewed as 

similar to other models that assume that both of these rely on the relative distances among 

representations in a metric space. However, it differs from previous models, which assume a 

fixed representational space, by allowing the space to be warped by context representations. 

This was a central tenet of the ISC model. Here, we show that this provides a mechanism by 

which inductive inference and similarity judgments can be impacted by context, similar in spirit 

to classic models that have been proposed to account for effects that can't be explained by 

similarity-based models that assume a fixed representational space.  At the same time, unlike 

previous models that invoke the influence of context in terms of intuitive accessible but pre-

specified, discrete, qualitative factors, the ISC framework grounds this in terms of 

quantitatively specified context representations, that arise from the same statistical learning 

mechanisms as the underlying semantic representations over which they preside. Based on 

this approach, the ISC-CI model accounted not only for standard findings about the factors 

that have been take the reflect the influence of context on inductive inference and similarity, but 

also for novel, subtle context effects in both domains that are difficult to explain using prior 

models.
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Critically, the ISC-CI model introduces a mechanism for inferring learned context 

representations without any external or direct labeling from its environment, and for doing so in 

novel contexts, that it has not previously encountered. This mechanism relies on three 

components: (1) the ability to exploit temporal co-occurrence in the training environment, (2) 

integration of item representations over time to infer context, and (3) the flexibility of processing 

that the use of such context for attention affords. In the remainder of this discussion, we 

consider these three factors in greater detail, then address the relationship between the ISC-CI 

model, other models of semantic cognition, and related concepts in machine learning and 

natural language processing.


Co-Occurrence, Coherent Covariation, and Control 

Temporal Structure and Co-Occurrence 

One of the key differences between the ISC-CI model and prior work on semantic cognition 

is the temporal structure of the environment used to train the model. Neural network models 

are typically trained in temporally interleaved environments, in which objects and their 

properties are presented in a random order. Interleaved training is motivated by the widely 

recognized problem of catastrophic interference (McCloskey & Cohen, 1989): Repeatedly 

presenting a partially trained network with a new fact (e.g., penguins are birds that cannot fly) 

can interfere with existing knowledge (e.g., most birds can fly), wherein the network begins to 

extend idiosyncratic properties of the new fact (cannot-fly) to all of the other objects in the 

dataset (i.e., forgetting that most birds can fly). Interleaving presentation of new information 

with other examples from the dataset (e.g., robins and sparrows, that can fly) reduces or 

eliminates this interference. Interleaved training has therefore become standard practice for 

neural network models of semantic cognition (following McClelland et al., 1995).


In contrast, the ISC-CI model is trained with a temporally blocked environment, in which 

objects and properties are presented in a series of contexts each of which involves a set of 
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objects that share a property. Despite the blocked training environment, the ISC-CI model 

nevertheless does not suffer from catastrophic forgetting for two main reasons. First, the ISC-

CI model is trained using relatively short blocks of information (i.e., each context contains only 

a few objects), and those blocks are themselves interleaved (i.e., the contexts are sampled 

independently of one another). Second, during training the model experiences all objects within 

the block in a single forward pass, with only one gradient update per block. In combination, 

these features of the training environment provide the ISC-CI model with enough diversity of 

training examples that it retains the benefits of interleaved training by mitigating the effects of 

catastrophic forgetting.


The ISC-CI model’s training environment comports with the temporal structure of events 

that has been observed in developmental populations (Slone et al., 2023), where objects 

sharing features with one another tend to cluster together in time. However, the training 

environment greatly simplifies the complexity a human learner is faced with by segmenting 

continuous experience into a set of discrete training blocks, each of which corresponds to a 

distinct context. Incorporating such segmentation directly into the model, rather than pre-

specifying it in the training data, is an important challenge for future work. One possibility, in 

keeping with the broader philosophy of the ISC framework, is that discrete segmentation into 

distinct contexts is a simplifying assumption that imposes too restrictive a structure on 

temporal co-occurrence. Instead, recent models suggest that temporal structure itself is 

subject to continuous, graded similarity between contexts that can be explained again by the 

same principle of coherent covariation underlying learning in the ISC and ISC-CI models 

(Giallanza et al., 2024b; Schapiro et al., 2013). Bridging between the context inference 

mechanism in the ISC-CI model and the temporal structure learning mechanisms in these 

recent models is an important challenge for future work.


In addition to mitigation of catastrophic interference, an important consequence of the 

blocked environment is that it exposes the model to temporal co-occurrence. Each context 

involves multiple objects that occur at the same time; the model learns to invert this process by 
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observing which objects co-occur (through integration in the context layer) and using that 

information to infer the context it is experiencing. This process builds on mechanisms present 

in prior models of semantic cognition, which learn about co-occurrences among objects and 

their properties, and use this to activate the properties that are associated with a given object. 

Since these properties tend to coherently covary, occurring together for similar types of things, 

the models learn representations of the objects that express relationships between the objects, 

representing similar objects with similar patterns of activity in the hidden layers (Rogers & 

McClelland, 2004). These representations in turn support inference based on partial information 

(as a form of pattern completion): After learning that a new object is a bird, that object will be 

represented with a pattern of activity similar to other birds, which supports the inference that 

the new object shares features with birds, such as having wings and being able to fly.


The ISC-CI model extends these effects of co-occurrence and coherent covariation to 

higher levels of representation (i.e., of contexts) by using the integration mechanism in the 

context layer to learn about the co-occurrences between objects and other objects within and 

across different contexts. This results in representations that express specific contexts, as well 

as relationships between the contexts, representing similar contexts — meaning contexts that 

involve the co-occurrence of similar objects — using similar patterns of activity in the context 

layer of the network. These representations in turn support pattern completion of a different 

kind: After learning that a new context involves both robins and ravens, the context will be 

represented with a pattern of activity similar to other contexts that also involve birds, which 

supports the inferences that: a) the new context involves bird-like features such as is-bird and 

can-fly; and b) the new context involves other birds such as bluejays and ravens.


Structured Context Representations and Cognitive Control 

The ISC-CI model extends work using the ISC model that addresses the relationship 

between semantics and cognitive control (Giallanza et al., 2024). Cognitive control involves the 

use of control representations, which encode information about the current task, goal, or 
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context, to guide processing of the current stimulus by selectively emphasizing context-

relevant semantic features for both inference and response selection. As in the ISC model, the 

representations in the context layer of the ISC-CI model act as control representations by 

shaping processing in the context-dependent layer of the network. The versatility and 

complexity of these representations  extends that of both classic models of cognitive control 

(e.g., Cohen et al., 1990; Miller & Cohen, 2001) and the ISC model (e.g., Giallanza et al., 2024) 

model in two important ways.


Representational structure. First, traditional models of cognitive control have generally 

involved simple forms of representation that directly encode the identity of the task. For 

example, in Cohen et al.’s (1990) model of the Stroop task context was represented as a pair of 

scalar control variables, that indicated whether the agent should attend to the color or 

orthographic content of the stimulus. Other models of cognitive control have generally relied on 

similar forms of orthogonal, low-dimensional representation (e.g. Gilbert & Shallice, 2002; 

Kalanthroff et al., 2018; Musslick et al., 2020). The ISC model (Giallanza et al., 2024) showed 

how more structured forms of representation that encode the relationships between tasks can 

be useful in models of semantic cognition. However, this model was still restricted to a small 

set of predefined tasks. The ISC-CI model extends this idea further, showing how richly 

structured, higher dimensional context representations, learned through experience, can 

capture nuanced differences between situations (e.g., a context that involves crows and ravens 

subtly differs from one that involves crows and robins) rather than the comparatively broad 

distinctions between tasks captured by the ISC model (e.g., the task “judge the weight of the 

objects” differs from the task “judge the size of the objects”).


Context Inference. Second, most prior models of cognitive control require an explicit signal 

or cue that indicates the current task. This pre-supposes that the system already knows all the 

relevant information about the current task, context, or goal ahead of time. However, this is 

generally not the case when making inductive inferences or similarity judgments, which may 

involve novel combinations of stimuli, and therefore contexts. The ISC model showed that 
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online adaptive mechanisms can help shape context representations to optimize processing for 

a given task (e.g., like human participants, after observing that all of the experimental stimuli 

involve animals, it can shift its context representation from “judge the size of the objects” to 

“judge the size of the animals”, that improves performance on the task). The ISC-CI model 

extends this idea by inferring a context representation given a set of objects that co-occur in 

that context. This allows the model to rapidly alter its context representation trial-by-trial (e.g., 

by attending to different semantic features in each trial of an inductive inference task). This 

mechanism provides the model with a considerable degree of flexibility, as it can potentially 

use a different context representation for each set of objects under consideration. It may also  

relate closely to, and thus provide a useful reference for understanding, the role of attention 

heads and “in context learning” in the transformer architectures underlying current LLMs — a 

topic to which return further on. 

Abstraction and Relational Representations 

Representational Averaging and the Relational Bottleneck


While the ISC-CI model builds on the idea that context representations used for control are 

shaped by the same statistical learning mechanisms that underlie the formation of semantic 

representations, the mechanisms it uses for context inference are different, and may provide 

useful insights into the relationship between statistical learning, inference and control.  

Specifically, the ISC-CI model uses a simple form of recurrence that takes the mean of the 

context-independent representations of the objects that co-occur in a given context. This 

averaging mechanism enforces a simple form of abstraction by obscuring the identity of 

individual objects, which highlights the relationships between the objects rather than the details 

of each object, minimizing the differences between the representations while emphasizing their 

similarities. Given the nature of the representations learned, this appears to be sufficient to 

account for the patterns of inference and reasoning modeled in this article.
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The abstraction induced by averaging can be viewed as a weak instance of the relational 

bottleneck principle (Webb et al., 2024), which describes a form of architectural bias that 

restricts the flow of information in a neural network to favor the processing of relations between 

objects rather than the specific values of their features. Strong forms of relational bottleneck 

transform object representations, which encode information about the perceptual or semantic 

features of each object, into relational representations, which encode relations among those 

features (such as how similar the objects are to one another), discarding the specific feature 

values themselves. This transformation promotes the efficient discovery of abstract structure 

that underlies perceptually or semantically distinct sets of stimuli (e.g., the sequences circle-

square-circle, chihuahua-elephant-retriever, and airplane-schoolbus-jet involve different stimuli 

but all adhere to an A-B-A pattern). However, eliminating any sensitivity to the particularities of 

the objects being processed compromises the capacity for semantic inference.


The ISC-CI model implements a weaker form of relational bottleneck, that retains semantic 

feature information, but shapes this by the extent to which features are shared by the objects 

under consideration. This allows it to capture graded relations (e.g., degrees of similarity) 

simultaneously along multiple dimensions. For example, the representation in the context layer 

for the set {robin, cardinal} will be similar to that for the set {robin, raven}, insofar as both 

involve birds; but at the same time it will differ insofar as robins and cardinals share colors that 

are similar whereas robins and ravens do not. The advantages and disadvantages of this 

approach are complementary to stronger forms of relational bottleneck, which have been used 

to capture simpler and more categorical forms of relations (e.g., Kerr et al., 2022;  Webb et al., 

2021; 2024; 2024b): The relational representations in ISC-CI are better suited to cases in which 

the precise identity of the objects matters, as in semantic inference, but are less applicable to 

cases in which abstract relationships matter more than the perceptual or semantic details, as in 

abstract reasoning tasks (such as Raven’s Progressive Matrices; Raven, 2003). Both 

capabilities are reflected in human cognition, suggesting that it relies on a combination of both 

types of mechanisms.
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Representational Subtraction and Analogical Reasoning 

The ISC-CI model’s use of integration to blend abstraction with sensitivity to semantic 

features is closely related to other simple operations that have proven useful in semantic and 

abstract reasoning tasks. For example, subtraction rather than averaging may be useful for 

identifying relational structure, such as that required for analogy formation. Rumelhart 

(Rumelhart & Abrahamson, 1973) provided an early demonstration of this, which was later 

applied to word embedding representations in models of natural language processing (Mikolov 

et al., 2013): Subtracting the representation of the word “king” from the representation of the 

word “queen” in word embedding models results in a vector that encodes gender-related 

information. This example demonstrates that the representations of word embedding models 

implicitly encode semantic dimensions that can be accessed through the subtractive method. 

The architecture of the ISC-CI model suggests that the same method can be used to form 

explicit representations of semantic dimensions by passing the subtracted representation 

through a context layer and predicting which semantic dimensions are context-relevant given 

this representation, which would allow the system not only to use such information for 

reasoning, but also explicitly identify which dimensions were relevant for a given problem. This 

could be explored in future work by training the ISC-CI model to predict a semantic 

relationship from a subtraction (rather than integration) of two representations of objects that 

differ along that feature, which might be useful for analogy formation. 


For example, if the model receives the objects bear and salmon as input, it could be trained 

to pass the subtracted representation ( ) through a context layer and predict 

from this representation that the relationship is eats. In contrast, if the model receives the 

objects frog and tadpole, it could be trained to predict that the relationship is parent. This form 

of relational inference may in turn support analogical reasoning; by processing a support set 

containing {bear, salmon} and a query set containing {bird}, the model can jointly predict that a) 

the most likely relation between bear and salmon is eats and b) when this relation is applied to 

bear − salmon
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bird the most likely resulting object is worm. This process simulates the analogy “bear is to 

salmon as bird is to what?” Given such explicit training on object relations, this method might 

not only be more successful in solving analogy problems than standard word embedding 

methods (Mikolov et al., 2013) but, critically, be able to explicitly report the dimensions used in 

doing so, much as people can do.


Relationship to Machine Learning Models of Natural Language 
Processing 

The ISC-CI model may provide a useful perspective on both longstanding and recent 

advances in the use of neural network architectures to model natural language processing. In 

particular, such models are built on mechanisms of statistical learning and the effects of co-

occurrence, and are sensitive to the effects of blocked curricula.


Co-Occurrence and Coherent Variation in Language Models


Many computational approaches to understanding semantic structure from natural 

language build on the idea that the lexical co-occurrences between words is closely tied to the 

meaning of those words (Wittgenstein, 1953). This approach was first applied successfully by 

cognitive scientists in the earliest recurrent neural networks (e.g. Elman, 1990; 1991), as well as 

closely related computational approaches such as latent semantic analysis (LSA; Landauer & 

Dumais, 1997; Dumais, 2005) and holistic analog to language (HAL; Lund & Burgess, 1996). 

Later, deep learning approaches such as Word2Vec (Mikolov et al., 2013) and GloVe 

(Pennington et al., 2014) scaled this approach to large text corpora, learning vector 

representations for each word that are used to predict which words co-occur within a fixed 

window of the target word. Although these models successfully capture some aspects of 

human semantic structure, they provide relatively poor models of human inductive inference 

(XX?) and similarity judgments (Iordan et al., 2022; Pereira et al., 2016). One reason for this 

limitation may be that these models lack the ability to determine which semantic features are 
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relevant in a given context: Since they only take into account pairwise relationships between 

words, they always use the same representation for a given word, regardless of the context.


More recently, LLMs based on the transformer architecture, including GPT-3.5 and GPT-4, 

have improved upon these models by introducing context sensitivity (commonly referred to as 

“attention”; Vaswani et al., 2017). Importantly, they do so by following the same underlying 

principle that lexical co-occurrence indicates word meaning. The critical difference between the 

transformer models and prior models based on co-occurrence is that transformers consider 

the joint co-occurrence between multiple words, for example by taking into account all of the 

words in a sentence when representing each word. A given word’s representation will therefore 

change depending on which other words co-occur with the target word in the given context 

window — an effect that has been referred to as coherent covariation (Rogers & McClelland 

2004; 2005). As with the ISC-CI model, training such models on a large dataset of word co-

occurrences allows the model to make pattern completion-like inferences in new contexts, 

using a set of words that occur in the context to predict which words are most likely to follow.


Although ISC-CI shares many similarities with LLMs based on the transformer architecture, 

these differ both in the particulars of the training datasets and their architectures. With respect 

to training, LLMs are trained on large datasets of natural language, from which they learn to 

represent words based on patterns of co-occurrence between words in articles, books, and 

posts on the internet. In contrast, the ISC-CI model is trained on a small dataset meant to 

represent natural contexts, and the model learns to represent objects based on patterns of co-

occurrence between those objects in natural contexts. This form of training significantly limits 

the flexibility of the ISC-CI model (e.g., it can only represent the concrete objects on which it 

was trained rather than a large set of words), but it allows the model to learn using a 

significantly smaller dataset that more closely matches human experience (e.g., the ISC-CI 

model experiences on the order 100,000 training episodes, whereas LLMs experience on the 

order of 1 trillion tokens). Furthermore, the ISC-CI model is trained with the dual objective of 

predicting which objects in the query set appear in the same context as objects in the support 
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set as well as the context shared by those objects (e.g., the “bird” context for the support set 

{robin, sparrow}). This helps the model more rapidly learn how to perform context inference, 

but it requires a dataset that contains context labels.


The models also differ substantially in their architectures. While both rely on context-based 

modulation of context-independent representations (i.e., attentional control; Cohen et al., 1990; 

Vaswani, 2017), the ISC-CI model relies on a simple averaging mechanism for extracting 

context rather than the more complex and powerful transformer architecture. We  implemented 

the averaging mechanism as the simplest possible method for extracting context from co-

occurring objects. This design choice allowed the model to learn significantly faster; in a pilot 

study, we found that training a transformer on the same objective as the ISC-CI model took ten 

times as many training episodes to converge to the same loss as the ISC-CI model. Integration 

is also a mechanism that is neurally plausible. Thus, its success suggests that it may capture 

important features of how the learning of context representations and their use for inference 

are implemented in the brain. Furthermore, the ISC-CI model develops an explicit 

representation of the context (in the context layer of the model). This allows it to report 

contexts explicitly, paralleling human capabilities. This also allows it to learn to represent the 

relationships among different contexts, and thereby the ability to share  knowledge between 

contexts. For example, if the model uses similar representations for the contexts formed by the 

sets {robin, sparrow} and {robin, canary}, the model can infer that a newly learned fact about 

one of those contexts (e.g., that can-fly is a useful semantic feature for the {robin, sparrow} 

context) likely applies to the other context as well (e.g., can-fly is also useful for {robin, 

canary}), greatly speeding learning. In contrast, transformer models represent context implicitly 

in the weights of the network, which may or may not demonstrate the same cross-context 

knowledge sharing.


76



Relationship to Bayesian models of induction 

The ISC-CI model shapes its inferences to a given context by first inferring, from a few 

examples, a representation of the context in which the observed examples are likely to occur. 

Put slightly differently, the model can be viewed as inferring which context is most likely to 

have generated the observed examples, with the key assumption that items encountered in a 

context share some important property. This framing highlights a conceptual link between the 

ISC-CI model and the Bayesian approach to name induction proposed by Xu and Tenenbaum 

(2007), which in turn exemplifies one kind of Bayesian approach to induction more generally 

(e.g. Kemp and Tenenbaum, 2009).


Under this approach, after observing k items that share a common label, the induction 

system estimates, for each of many hypothetical categories to which the label might refer, 

which one is most likely to have generated the labeled items (ie the posterior probability of the 

category given the items). Following Bayes’ Theorem (1763), this computation for a given 

category C depends on (a) the current likelihood of drawing the observed k items from C and 

(b) the prior probability of category C being labeled. The label is then understood as referring to 

whichever category has the highest posterior probability, based on both the likelihood and prior 

probabilities.  


For instance, observing a robin and a raven both labelled “fep,” to determine the category 

“fep” to which refers, the system will first compute the likelihood of sampling a robin and a 

raven from each of many possible categories—animals, vehicles, black things, insects, birds, 

etc. While many of these categories will have zero probability of generating the two items (e.g. 

vehicles, things made of metal, only robins and nothing else), a subset will have non-zero 

probability (e.g. animals, living things, birds, flying things, things with legs, etc); and, among 

those, some will have relatively high probability (e.g. the category containing small forest birds). 

Among all possible categories, one is guaranteed to have extremely high probability of 
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producing the two items—specifically, the category that contains just the observed robin and 

the observed raven and nothing else.


The system will also store or compute, for each possible category, a prior probability that it 

is a candidate for labeling. For instance, the category of all birds may have a fairly high prior 

probability (i.e., it is a relatively good candidate for labeling), whereas the category that 

contains one robin and one raven and nothing else may have a very low prior probability (ie it is 

unlikely there would be a label that refers only to that one robin and that one raven). 


The posterior probability that a label’s referent is a particular category is then proportional 

to the product of the two quantities (likelihood of the examples given the category x prior 

probability of the category). For instance, even though the category of one-robin-and-one-

raven has a very high probability of generating the two examples, because it also has a very 

low prior probability, a different category (such as birds) will win out. Even though the bird 

category is less likely to have generated the two examples (because it contains many other 

items in addition to the robin and raven), it has a higher prior, so can be the most likely 

category overall. The prior is critically important—without it, the category most likely to have 

generated the observed examples is always the category that includes just those items and 

nothing else.


This brief overview makes clear the important connection between the ISC-CI model and 

this Bayesian approach to induction: both make use of a few examples to infer a representation 

likely to have produced the observed evidence. Under the ISC-CI model, participants will 

extend an argument that includes butterflies and helicopters to robins because there is a 

particular context in which butterflies and helicopters will both be observed (i.e., flying). Under 

the Bayesian view, the same pattern arises because the category most likely to include 

butterflies and helicopters also includes birds with high probability. In this sense, the accounts 

are similar.
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There are, however, some important differences that arise from key representational 

commitments of the two frameworks. First, because the Bayesian approach computes 

posterior probabilities over all possible discrete categories, the computations required for 

naturalistic stimuli can become intractable. The number of possible ways of grouping n items 

into discrete categories is 2n -1 (excluding the null set). Thus for just 100 items there exist ~1.27 

x1030 possible categories. It is not clear how any computing system can tabulate such a huge 

distribution of probabilities. Second, the approach relies critically on explicit stipulation of prior 

probabilities over all categories, but it is not always clear where such priors come from or how 

they are set. For naming, Xu and Tenenbaum (2007) proposed that a conceptual taxonomy 

could be used to set priors: categories that align with nodes in the taxonomy would receive 

higher priors than those that do not, and within the taxonomy, categories at some levels might 

receive higher priors than those at others. This is similar in spirit to the SCM’s use of taxonomic 

structure for inference. Yet the current work (and much prior work) shows that people can 

deploy groupings that violate taxonomic structure—for instance, exploiting a category that 

includes butterflies and helicopters but excludes spiders and trucks. An explicitly Bayesian 

view can explain such patterns by postulating that the category of flying things has a 

sufficiently high prior that it can “win” over taxonomic categories even with quite sparse 

evidence, but this again raises the question of where such a prior comes from—why flying 

things gets a relatively high prior but many other possible groupings (say, things with a smooth 

rigid surface or things that can hover or concrete objects, all of which include both butterflies 

and helicopters) do not.


The Bayesian program has tackled both issues with substantive research over several years

—for instance, exploring compute-efficient ways of approximating large probability 

distributions (e..g, Levy et al., 2009), and considering hierarchical Bayesian methods for setting 

priors across a broader and more flexible variety of representational structures (Kemp & 

Tenenbuam, 2009). The current work suggests an alternative path toward a similar end. 

Because it eschews discrete category representations in favor of continuous representational 
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vector spaces, the framework does not encounter the combinatorial explosion of 

representational possibilities faced by the Bayesian approach, nor does it require setting and 

justifying explicit priors on the variety of possible categories. Instead, representational 

semantic and control structures sufficient to support flexible, context-sensitive inductive 

inference emerges via learning about the statistical structure of the environment—including 

patterns of coherent covariation amongst properties of objects (as in prior work — Giallanza et 

al., 2024; Rogers & McClelland, 2004, 2005) but also, importantly, tendencies for items sharing 

structure to occur together within particular temporally-extended scenarios. The framework 

arguably lacks the analytic clarity and guarantees that a formal Bayesian account offers, but, in 

keeping with broader trends in machine learning, the current work demonstrates that the 

combination of model architecture and learning from ecologically realistic data—in this case a 

set of semantic feature norms—leads to emergence of an integrated semantic and control 

system that shares many properties with Bayesian inference, is computationally tractable, and 

sufficient to reconcile many seemingly puzzling aspects of human behavior.


Relationship to classic models of induction 

The ISC-CI model also shares similarities and differences with classic computational 

models of induction, such as the Osherson’s SCM (Osherson et al., 1990) and Tversky’s 

feature-weighting model of asymmetric similarity judgments (Tversky, 1977; Tversky & Gati, 

1978). Both models note phenomena that cannot be explained by distances in a fixed metric 

space, and so invoke additional constructs to explain these deviations. For Osherson 

(Osherson et al., 1990), the added structure involves discrete categories organized within a 

taxonomy; this structure determines which category is used to determine “coverage.” For 

Tversky (1977; Tversky & Gati, 1978), the added structure involves grouping features of 

observed items into discrete sets that receive distinct weightings when judging similarity.  


These constructs serve a role similar to that of prior probabilities in the Bayesian approach, 

allowing both proposals to capture something important about human-perceived similarity and 
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its role in induction. The notion of “coverage” captures the observation that inductive profiles 

are influenced by the semantic distances among premise items, while the set-theoretic 

weightings of Tversky’s model provide a means of allowing the ordering of items in a similarity 

judgment to highlight different feature sets when judging similarity. The ISC-CI framework 

shows that both phenomena can be viewed as reflecting the effect of temporal context on 

current behaviors. Because the context in which a particular decision is made depends upon 

the learned temporal structure of the environment, the ultimate behavior produced can be 

influenced by both the distribution of premises observed (in an argument-strength study) and 

the ordering of the items judged (in a similarity-rating task).


Importantly, however, the ISC-CI model does not need to stipulate the nature or direction of 

such effects—the model is not directly constrained to yield asymmetric similarity judgments (as 

in Tversky’s approach) or to show different induction profiles depending on the semantic 

breadth of the premises (as in Osherson’s). Instead, these behaviors arise in the model when it 

is trained on the Leuven norms, in an environment involving “episodes” that reflect a key 

element of experience, namely the tendency for items sharing an important property to occur 

together in a given context. As noted earlier, there is a growing corpus of naturalistic data 

concerning the environments in which human language and concepts are learned that support 

this view (Slone et al., 2023). Thus, the ISC-CI model captures the core insights of the 

Osherson and Tversky approaches, but as emergent properties that arise from an interaction 

between naturalistic environments and statistical learning mechanisms that give rise to 

integrated semantics and control.


Conclusion 

Cognitive theories of both inferential induction and similarity judgments have long faced a 

conceptual puzzle: human behavior in tasks designed to probe these processes are often well-

explained by proximity within a metric semantic representation space, but a host of classic 

empirical findings suggest that similarity alone is not sufficient to explain a number of 
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seemingly anomalous behaviors. Prior efforts to resolve the paradox have invoked additional 

representational constructs beyond distance-based similarity, such as discrete category 

representations and taxonomic hierarchies, to afford a degree of flexibility to the systems that 

support induction and perceived similarity. We have shown that such flexibility can arise 

without the need to stipulate such constructors a prior, arising instead as an emergent property 

of an integrated semantics and control system that learns about the semantic and temporal 

structure of the environment. In this framework, perceived similarities and patterns of induction 

are always governed by proximities within a metric representational space, but the similarity 

relations arising in a given task are subject to control, which in turn reflects acquired 

knowledge about the temporal structure of situations and contexts. We have further shown 

how a control system shaped by such structure can infer, on the fly, novel context 

representations that guide task-appropriate behaviors, without explicit labeling in the input; and 

have demonstrated that such a system provides a unified, coherent explanation of those 

behaviors that accord well with similarity-based theories, as well as those that appear to 

challenge such theories. The insights gained from this work may be useful not only for 

understanding the mechanisms underlying human cognitive function, but also in designing 

artificial systems more closely aligned with it. 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