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Emergent analogical reasoning in large 
language models

Taylor Webb    1  , Keith J. Holyoak    1 & Hongjing Lu1,2

The recent advent of large language models has reinvigorated debate over 
whether human cognitive capacities might emerge in such generic models 
given sufficient training data. Of particular interest is the ability of these 
models to reason about novel problems zero-shot, without any direct 
training. In human cognition, this capacity is closely tied to an ability to 
reason by analogy. Here we performed a direct comparison between human 
reasoners and a large language model (the text-davinci-003 variant of 
Generative Pre-trained Transformer (GPT)-3) on a range of analogical tasks, 
including a non-visual matrix reasoning task based on the rule structure 
of Raven’s Standard Progressive Matrices. We found that GPT-3 displayed 
a surprisingly strong capacity for abstract pattern induction, matching or 
even surpassing human capabilities in most settings; preliminary tests of 
GPT-4 indicated even better performance. Our results indicate that large 
language models such as GPT-3 have acquired an emergent ability to find 
zero-shot solutions to a broad range of analogy problems.

Analogical reasoning is at the heart of human intelligence and creati
vity. When confronted with an unfamiliar problem, human reasoners 
can often identify a reasonable solution through a process of struc-
tured comparison with a more familiar situation1. This process is an 
essential part of human reasoning in domains ranging from everyday 
problem-solving2 to creative thought and scientific innovation3. Indeed, 
tests of analogical reasoning ability are uniquely effective as measures 
of fluid intelligence: the capacity to reason about novel problems4,5.

Recently, there has been considerable debate about whether and 
how a capacity for analogical thought might be captured in deep learn-
ing systems6. Much of this recent work has focused on training neural 
networks on very large datasets (sometimes containing millions of 
problems)7,8. Though this is a challenging task that has spurred the 
development of some interesting approaches9–12, it does not address 
the issue of whether analogical reasoning can emerge zero-shot (that is, 
without direct training), the capacity most central to human thought.

An alternative approach, also based on deep learning, involves 
large language models (LLMs)13. LLMs have recently sparked great 
interest (and controversy) for their potential to perform few-shot, and 
even zero-shot, reasoning. These models employ relatively generic 
neural network architectures with up to billions of parameters, and are 

trained using a simple predictive objective (predicting the next token 
in a sequence of text) with massive web-based text corpora consisting 
of billions of tokens. Though there is considerable debate about the 
capabilities of these models14, a potential advantage is their ability to 
solve problems with little direct training, sometimes requiring only a 
few examples, or even a simple task instruction (typically without any 
updating of model parameters). This feature raises the question of 
whether LLMs might be capable of human-like, zero-shot analogical 
reasoning.

In this Article, to answer this question, we evaluated the language  
model Generative Pre-trained Transformer (GPT)-3 (ref. 13) on a range 
of zero-shot analogy tasks, and performed direct comparisons with 
human behaviour. These tasks included a novel text-based matrix 
reasoning task based on the rule structure of Raven’s Standard  
Progressive Matrices (SPM)15, a visual analogy problem set commonly 
viewed as one of the best measures of fluid intelligence5. Unlike the 
original visual SPM problems, our Digit Matrices task was purely text  
based so that it could be used to evaluate GPT-3’s ability to induce 
abstract rules (though not the ability to do so directly from visual 
inputs). Strikingly, we found that GPT-3 performed as well as or better 
than college students in most conditions, despite receiving no direct 
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generating answers directly (Fig. 3a; logistic regression, main effect of 
GPT-3 versus human participants: odds ratio 1.88, P = 0.005, 95% confi-
dence interval (CI) 1.21–2.91), and when selecting from a set of answer 
choices (Fig. 3b; main effect of GPT-3 versus human participants: odds 
ratio 6.27, P = 2.3 × 10−8, 95% CI 3.28–11.99). It is worth emphasizing, 
however, that participants displayed a range of performance levels 
on this task, with some participants outperforming GPT-3 (indeed, the 
best participant answered every problem correctly).

In addition to showing strong overall performance, GPT-3’s pattern  
of performance across problem subtypes was similar to that observed 
in human participants (correlation analysis: r(30) = 0.39, P = 0.027). 
This correlation was driven both by the pattern of performance 
across major problem types (one-rule, two-rule, three-rule, and logic 
problems; main effect of problem type on generative accuracy: odds 
ratio 0.5, P = 2 × 10−16, 95% CI 0.44–0.56; main effect of problem type  
on multiple-choice accuracy: odds ratio 0.56, P = 2 × 10−16, 95% CI  
0.5–0.64), and by differences within each problem type. Problems 
with progression rules were more difficult than those without them 
(Fig. 3c; main effect of progression versus no progression, human 
participants: odds ratio 0.41, P = 0.0001, 95% CI 0.24–0.69; GPT-3: odds 
ratio 0.07, P = 1.9 × 10−5, 95% CI 0.02–0.24); for multi-rule problems, 
performance was negatively correlated with the number of unique rules 
in each problem, even when holding constant the number of total rules 
(Fig. 3d; main effect of number of unique rules, human participants: 
odds ratio 0.61, P = 0.0047, 95% CI 0.44–0.86; GPT-3: odds ratio 0.25, 
P = 3 × 10−10, 95% CI 0.17–0.39); and logic problems were more difficult 

training on this task. GPT-3 also displayed strong zero-shot perfor-
mance on letter string analogies16, four-term verbal analogies17–20 and 
identification of analogies between stories21–23. These results add to 
the growing body of work characterizing the emergent capabilities of 
LLMs24–28, and suggest that the most sophisticated LLMs may already 
possess an emergent capacity to reason by analogy.

Results
We evaluated the language model GPT-3 on a set of analogy tasks, and 
compared its performance with human behaviour. GPT-3 is a large-scale 
(175B parameters), transformer-based29 language model developed by 
OpenAI13. The original base model was trained on a web-based corpus 
of natural language consisting of over 400 billion tokens, using a train-
ing objective based on next-token prediction (given a string of text, 
the model is trained to predict the token most likely to appear next). 
A number of variants on this base model have since been developed 
by fine-tuning it in various ways. These include training the model to 
generate code30, and training it to respond appropriately to human 
prompts, using either supervised learning or reinforcement learning 
from human feedback31. Our evaluation focused on the most recent 
model variant, text-davinci-003 (here referred to simply as ‘GPT-3’), 
which was the first to incorporate reinforcement learning from human 
feedback (along with the concurrently released, but distinct, ChatGPT 
model). We found that text-davinci-003 displayed particularly strong 
performance on our analogy tasks, but earlier model variants also 
performed well in some task settings, suggesting that multiple factors 
contributed to text-davinci-003’s analogical capabilities (Supplemen-
tary Figs. 1–3). For further discussion, see Supplementary Section 2.

Our evaluation featured four separate task domains, each designed 
to probe different aspects of analogical reasoning: (1) text-based matrix 
reasoning problems, (2) letter string analogies, (3) four-term verbal 
analogies and (4) story analogies. For each task domain, we performed 
a direct comparison with human behaviour, assessing both overall 
performance and error patterns across a range of conditions relevant 
to human analogical reasoning. Figure 1 shows a summary of these 
results. We also performed a qualitative analysis of GPT-3’s ability to 
use analogical reasoning to solve problems.

Matrix reasoning problems
We designed a text-based matrix reasoning task, the Digit Matrices, 
to emulate the structure of Raven’s SPM15. The task is illustrated in  
Fig. 2. The dataset was structured similarly to the work of Matzen 
et al.32, who created, and behaviourally validated, a visual matrix  
reasoning dataset with the same rule structure as the original SPM. The 
Digit Matrices dataset thus has a similar rule structure to SPM, but is  
guaranteed to be novel for both humans and LLMs.

Digit Matrices problems consisted of either digit transformations 
(Fig. 2b–e) or logic problems (Fig. 2f,g). Transformation problems were 
defined on the basis of a set of three rule types—constant (Fig. 2c),  
distribution-of-3 (Fig. 2d) and progression (Fig. 2e)—and consisted 
of one or more rules per problem. When multiple rules were present 
(Fig. 2b), each rule was bound to a different spatial location within each 
cell (for example, one rule was bound to the left digit in each cell, and 
another rule was bound to the right digit). Logic problems were defined 
on the basis of set relations—OR, AND and XOR—and involved only a 
single rule per problem. In some logic problems, the corresponding 
elements were spatially aligned (Fig. 2f), whereas in others they were 
permuted (Fig. 2g). We hypothesized that spatial alignment would 
be beneficial when solving the problems via analogical mapping, as 
it should highlight the isomorphism33. Digit Matrices problems were 
presented to GPT-3 without any prompt or in-context task examples.

Figure 3 shows zero-shot performance on the Digit Matrices 
problems for GPT-3 and human participants (N = 40, University of 
California, Los Angeles (UCLA) undergraduates). GPT-3 surpassed the 
average level of human performance on all problem types, both when 

Matrix
reasoning

0

Human
GPT-3

0.2

0.4

0.6

Ac
cu

ra
cy

0.8

1

Letter string
analogies

Verbal
analogies

Story
analogies

Fig. 1 | Summary of results. Matrix reasoning results show average accuracy on 
all problems in Digit Matrices problem set, a novel text-based matrix reasoning 
task designed to emulate Raven’s SPM problems15. Note that the Digit Matrices 
were purely text based, and therefore do not test for the ability to perform 
abstract reasoning directly over visual inputs, as in the original SPM. Letter 
string results show average performance for novel letter string analogy problem 
set, based on problems from Hofstadter and Mitchell16. Both matrix reasoning 
and letter string results reflect performance on generative task. Verbal analogy 
results show average performance on UCLA VAT19. Story analogy problems 
involved identification of analogous stories based on higher-order relations, 
using materials from Gentner et al.23. Both verbal and story analogy results reflect 
multiple-choice accuracy, with chance performance indicated by grey horizontal 
line. Chance performance for the two generative tasks (matrix reasoning and 
letter string analogies) is close to zero, due to the very large space of possible 
generative responses. Black error bars represent standard error of the mean for 
average performance across participants. Each dot represents accuracy for a 
single participant (matrix reasoning, N = 40; letter string analogies, N = 57; verbal 
analogies, N = 57; story analogies, N = 54). Grey error bars represent 95% binomial 
CIs for average performance across multiple problems.
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when the corresponding elements were spatially permuted versus 
aligned (Fig. 3e; main effect of spatial alignment, human participants: 
odds ratio 0.52, P = 0.0017, 95% CI 0.35–0.79; GPT-3: odds ratio 0.06, 
P = 2 × 10−11, 95% CI 0.03–0.14). These effects replicate well-known 
characteristics of human analogical reasoning: problems defined by 
relations (for example, progression) are typically more difficult than 
problems defined by the features of individual entities (for example, 
constant or distribution-of-3)32,34; problem difficulty is typically driven 
by the degree of relational complexity, as defined by the number of 
unique relations35; and analogical mapping is easier when a greater 

number of constraints support the correct mapping (as is the case in 
the spatially aligned logic problems)33. GPT-3’s pattern of performance 
thus displayed many of the characteristics of a human-like analogical 
mapping process. We also found that GPT-3 was sensitive to contextual 
information in ways that both improved and impaired its performance, 
similar to human reasoners (Supplementary Fig. 4).

It is important to highlight the differences between the Digit  
Matrices and traditional visual matrix reasoning problems. To solve 
visual matrix reasoning problems, pixel-level inputs must be parsed 
into objects, and visual attributes (shape, size and so on) must be 
disentangled. In the Digit Matrices, the text-based inputs are already 
parsed and disentangled, essentially providing GPT-3 (which is not 
capable of visual processing) with pseudo-symbolic inputs. Interest-
ingly, despite these differences, we found that overall error rates for 
human participants were very similar for the Digit Matrices versus  
the original image-based SPM problem set, and showed a similar  
pattern across problem types (Fig. 4). These results suggest that, 
while the Digit Matrices do not engage the visual processes involved in  
traditional SPM problems (that is, deriving disentangled represen-
tations from pixel-level inputs), they probably engage a similar set 
of core reasoning processes (that is, inducing abstract rules from  
those representations). More generally, performance on verbal, visuo
spatial and mathematical analogy problems is known to be highly  
correlated for people5. Accordingly, GPT-3’s success on the Digit Matrices  
can be taken as evidence that it has acquired core capabilities  
underlying analogy, though it will be important in future work to  
investigate how these reasoning processes might be integrated  
with visual processing.

Letter string analogies
A central feature of human analogical reasoning is its flexibility. Human 
reasoners are capable of identifying abstract similarities between  
situations even when these situations are superficially quite different. 
Often this involves a process of re-representation, in which an initial 
problem representation is revised so as to facilitate the discovery of 
an analogy36–38.

Hofstadter and Mitchell16,39 introduced the letter string analogy 
domain to evaluate computational models of analogical reasoning, 
with a particular emphasis on the process of re-representation. The 
basic problem structure is illustrated in Fig. 5a. In this example, the 
source string ‘a b c d’ has been transformed by converting the final  
letter to its successor, resulting in the string ‘a b c e’. This transformation 
must be identified, and then applied to the target string ‘i j k l’, yielding 
the answer ‘i j k m’.

Though this example is simple, letter string problems can be made 
quite complex by introducing various generalizations between the 
source and target strings. For instance, the target may involve groups 
of letters rather than individual letters (for example, ‘i i j j k k l l’), or 
may involve a sequence with a reversed order relative to the source 
(for example, ‘l k j i’). In these cases, the transformation identified 
in the source (for example, a successor transformation applied to 
the final letter in the sequence) must be generalized to an analogous 
transformation (for example, a successor transformation applied to 
the final group of letters, or a predecessor transformation applied to 
the first letter). This feature makes letter string analogy problems well 
suited to test the capacity for re-representation.

To evaluate GPT-3, we created a novel letter string problem set  
(Fig. 5), and carried out a systematic comparison with human partici-
pants (N = 57, UCLA undergraduates). The problem set involved a range 
of different transformation (Fig. 5d) and generalization types (Fig. 5e). 
Each transformation type could be combined with any generalization 
type, and multiple generalization types could be combined together to 
yield more challenging problems (Fig. 5b). Problems were presented to 
GPT-3 along with a prompt (‘Let’s try to complete the pattern:’), using 
a format similar to the Digit Matrices.

1 2 3 4

5 6 7 8

[ 5 9 3 ]  [ 8 9 2 ]  [ 1 9 7 ]

[ 8 4 7 ]  [ 1 4 3 ]  [ 5 4 2 ]

[ 1 2 2 ]  [ 5 2 7 ]  [     ?    ]

[ 1 2 7 ]

[ 1 4 3 ][ 5 9 3 ] [ 5 2 7 ][ 8 2 3 ]

[ 5 4 2 ] [ 8 9 7 ][ 5 2 3 ]
1 2 3 4

5 6 7 8

[ 5 ]  [ 1 ]  [ 9 ]

[ 5 ]  [ 1 ]  [ 9 ]

[ 5 ]  [ 1 ]  [ ? ]

Constant

a

c

f g

d e

b

[ 6 ]  [ 2 ]  [ 4 ]

[ 2 ]  [ 4 ]  [ 6 ]

[ 4 ]  [ 6 ]  [ ? ]

Distribution-of-3

[ 3 ]  [ 5 ]  [ 7 ]

[ 1 ]  [ 3 ]  [ 5 ]

[ 5 ]  [ 7 ]  [ ? ]

Progression

OR (aligned)

[    7 ]  [    7 4    ]  [ 4    ]
[ 9 7 ]  [ 9 7 4 8 ]  [ 4 8 ]

[ 9    ]  [ 9       8 ]  [   ?   ]

[ 1 ] [ 7 1 ] [ 7 ]
[ 1 0 ] [ 5 0 7 1 ] [ 7 5 ]

[ 0 ] [ 0 5 ] [ ? ]

OR (permuted)

Fig. 2 | Matrix reasoning problems. a, Example problem depicting structure 
of Raven’s Progressive Matrices15. Problems consist of a 3 × 3 matrix populated 
with geometric forms, in which each row or column is governed by the same set 
of abstract rules. Problem solvers must identify these rules, and use them to 
infer the missing cell in the lower right, by selecting from the set of eight choices 
below. b, Example problem illustrating the novel Digit Matrices problem set. 
Problems consist of a 3 × 3 matrix, in which each cell is demarcated by brackets, 
and populated by digits. The problems are governed by the same rule structure 
as Raven’s SPM. The example problems in a and b are structurally isomorphic 
(that is, governed by the same set of rules). The reader is encouraged to derive 
the solution to each problem. The solutions to both problems are given in 
Supplementary Section 1. Problems were governed either by one or more 
transformation rules (b–e), or by a single logic rule (f and g). c, Constant rule: 
same digit appears across either rows or columns. d, Distribution-of-3 rule:  
same set of three digits appears in each row or column, but with order varied.  
e, Progression rule: digits either increase or decrease, by values of 1 or 2, across 
rows or columns. In the example shown here, digits increase by 2 across rows.  
f, OR rule: the set of digits present in a particular row or column are defined as the 
union of the sets present in the other rows or columns. In the illustrated example, 
the digits in the second column are formed from the union of the sets in the first 
and third columns. This example illustrates how the spatial alignment of the 
corresponding elements can make it easier to intuitively grasp the underlying 
rule. g, More challenging logic problem governed by same rule (OR), but in which 
the corresponding elements are spatially permuted. Other logic problems were 
governed either by an AND rule or an XOR rule (not pictured).
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Figure 6 shows the results of this evaluation. GPT-3 showed 
stronger overall performance than human participants (Fig. 6a; logistic 
regression, main effect of GPT-3 versus human participants: odds ratio 
1.76, P = 6.3 × 10−5, 95% CI 1.34–2.31), an effect that was driven primarily 
by stronger performance on zero-generalization problems (main effect 
of GPT-3 versus human participants for zero-generalization problems: 
odds ratio 1.76, P = 0.0007, 95% CI 1.27–2.46). Performance was strongly 

affected by the number of generalizations in both GPT-3 and human 
participants (main effect of number of generalizations, GPT-3: odds 
ratio 0.51, P = 2 × 10−16, 95% CI 0.45–0.57; human participants: odds ratio 
0.66, P = 5.9 × 10−16, 95% CI 0.6–0.73). GPT-3 and human participants also 
showed similar error patterns across transformation types (Fig. 6b) and 
generalization types (Fig. 6c), as quantified by a correlation analysis for 
accuracy across different problem subtypes (r(39) = 0.7, P = 3.6 × 10−7).

We also investigated a novel variant on letter string problems 
involving generalization from letters to real-world concepts (Fig. 5c). 
GPT-3 showed strong performance on these problems, though with 
some discrepancies for different transformation types (Fig. 6d). These 
results suggest that GPT-3 has developed an abstract notion of succes-
sorship that can be flexibly generalized between different domains (for 
example, alphabetic successorship versus temperature successorship).

One important caveat is that GPT-3’s performance on this task 
was somewhat sensitive to the way in which problems were formatted.  
For instance, performance suffered when no prompt was provided 
(Supplementary Fig. 5a), or when problems were presented in the 
form of a complete sentence (Supplementary Fig. 5b). However, even 
in these cases, GPT-3’s zero-shot performance was both within the range 
of human participants (within one standard deviation), and closely 
matched the pattern of human performance across problem types 
(correlation analysis, no prompt: r(39) = 0.6, P = 5.3 × 10−5, sentence 
format: r(39) = 0.76, P = 4.2 × 10−6).

Four-term verbal analogies
Though matrix reasoning and letter string analogies involve a high 
degree of relational complexity, one limitation is that they consist of 
highly constrained, synthetic relations, such as alphabetic or numerical  
successorship. GPT-3’s ability to solve problems involving more 
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Fig. 3 | Matrix reasoning results. GPT-3 matched or exceeded human 
performance for zero-shot Digit Matrices. a, Generative accuracy for major 
problem types, including transformation problems with between one and three 
rules, and logic problems. b, Multiple-choice accuracy for major problem types. 
c, Two-rule problems with at least one progression rule were more difficult than 
those without. d, For three-rule problems, performance was a function of the 
number of unique rules. e, Spatially permuted logic problems were more difficult 

than spatially aligned problems. Human results reflect average performance for 
N = 40 participants (UCLA undergraduates). Black error bars represent standard 
error of the mean across participants. Each dot represents accuracy for a single 
participant. Grey error bars represent 95% binomial CIs for average performance 
across multiple problems. Note that the rightmost bar in d does not show 
individual scores because each participant only completed a single problem with 
three unique rules.

0
One-rule

Raven’s SPM
Digit Matrices

Two-rule

Problem type
Three-rule Logic

0.2

M
ul

tip
le

-c
ho

ic
e 

ac
cu

ra
cy

0.4

0.6

0.8

1

Fig. 4 | Human performance for Digit Matrices versus Raven’s SPM. SPM15 
does not contain three-rule problems, but performance was very similar across 
one-rule, two-rule and logic problems. SPM results reflect average performance 
for N = 80 participants (data from ref. 32). Digit Matrices results reflect average 
performance for N = 40 participants. Error bars represent standard error of the 
mean. Each dot represents accuracy for a single participant.
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real-world concepts (for example, ‘a b c → a b d, cold cool warm → ?’) 
suggests that its analogical capabilities may not be limited to such 
artificial settings. To further evaluate GPT-3’s capacity to reason about 
real-world relational concepts, we tested it on four-term verbal analogy 
problems involving a broader range of semantic relations.

We evaluated GPT-3 on four separate datasets17–20. To the best of 
our knowledge, these constitute an exhaustive set of four-term verbal 
analogy problems for which human behavioural data are available40. 
Each dataset contains a series of four-term analogy problems in the 
form ‘A:B::C:?’, together with a set of answer choices (that is, potential 
choices of D). For each problem, GPT-3 was evaluated by presenting the 
problem together with each potential answer choice, and selecting the 
option for which GPT-3 assigned a higher log probability. The problem 
and GPT-3’s choice were then appended to the context window for the 
next problem, thereby simulating any contextual effects that might 
arise when solving multiple problems in a row, as human participants 
typically do.

Figure 7 shows the results for all datasets. GPT-3 performed as well 
as or better than human participants (minimum education level of high 
school graduation, located in the United States and recruited using 
Amazon Mechanical Turk) on the UCLA Verbal Analogy Test (VAT)19, 
involving categorical, functional, antonym and synonym relations  
(Fig. 7a), and on a dataset from Sternberg and Nigro17 involving  
these same four relation types and linear order relations (Fig. 7b). On 
a dataset of Scholastic Assessment Test (SAT) analogy problems from 
Turney et al.18, GPT-3 surpassed the estimated average level of perfor-
mance for high school students taking the SAT (Fig. 7c). GPT-3 also 
showed performance in the same range as human participants (though 
numerically weaker) on a problem set from Jones et al.20 involving 
categorical, compositional and causal relations (Fig. 7d).

In addition to displaying generally strong performance on these  
problem sets, GPT-3 also displayed sensitivity to semantic content  
similar to that observed in human participants. In the dataset from 

Jones et al.20 (Fig. 7d), participants performed worse on problems in 
which the analogues were semantically distant (that is, the A and B 
terms had low semantic similarity to C and D), an effect that was also 
displayed by GPT-3 (logistic regression, effect of semantic distance 
for GPT-3: odds ratio 3.24, P = 0.0165, 95% CI 1.24–8.5). These results 
align with a more general phenomenon in which human reasoning is 
facilitated by semantically meaningful or coherent content24,41.

Story analogies
Human reasoners are able not only to form analogies between indi-
vidual concepts, but can also identify correspondences between com-
plex real-world events, involving many entities and relations. When 
making such comparisons, human reasoning is especially sensitive to 
higher-order relations—relations between relations—notably causal 
relations between events. Such higher-order relations play a central 
role in some cognitive theories of analogy42, and it is thus important  
to establish whether GPT-3 displays a similar sensitivity to them.

To address this question, we tested GPT-3 on a set of story ana
logies from Gentner et al.23. In each set, a source story is compared with 
two potential target stories, each of which is matched with the source 
story in terms of first-order relations, but only one of which shares 
the same causal relations as the source (for examples, see Methods). 
Gentner et al. found that human participants rated the target stories 
as more similar when they shared the same causal relations as the 
source story. These problems are further defined by two different 
comparison conditions. In the near analogy condition (referred to as 
‘literal similarity’ versus ‘mere appearance’ by Gentner et al.), the target 
stories also share the same basic entities as the source story, making 
for a less abstract, within-domain comparison. In the far analogy con-
dition (referred to as ‘true analogy’ versus ‘false analogy’ by Gentner 
et al.), the target stories involve different entities from the source 
story, but share first-order relations, resulting in a more challenging, 
cross-domain comparison.

To facilitate a direct comparison with GPT-3, we performed a new 
behavioural study with these materials. For each source story, parti
cipants indicated which of two target stories was more analogous. 
Both GPT-3 and human participants (N = 54, UCLA undergraduates) 
showed a sensitivity to higher-order relations (Fig. 8), most often 
selecting the target story that shared causal relations with the source 
(combined near and far analogy; GPT-3, binomial test: P = 0.0005; 
human participants, one-sample t-test: t(53) = 21.3, P = 1.1 × 10−27; null 
hypothesis for both tests is chance-level performance of 0.5). This 
effect was significant for both GPT-3 and human participants in the 
near analogy condition (GPT-3, binomial test: P = 0.0039; human  
participants, one-sample t-test: t(53) = 21.5, P = 8.5 × 10−28), but only 
human participants showed a significant effect in the far analogy condi-
tion (GPT-3, binomial test: P = 0.065; human participants, one-sample 
t-test: t(53) = 16.7, P = 9.3 × 10−23).

Unlike the other task domains considered in the present work, 
this was a case in which college students clearly outperformed GPT-3 
(logistic regression, main effect of GPT-3 versus human participants: 
odds ratio 0.37, P = 0.0003, 95% CI 0.21–0.63). Indeed, a substantial 
proportion of participants (15/54) selected the analogous story on 
every trial. However, in an initial investigation of GPT-4 (ref. 43), we 
found that it displays stronger performance on this task, more robustly 
picking the analogous story even in the far analogy condition, and 
displaying nearly perfect performance in the near analogy condition 
(Supplementary Fig. 6 and Supplementary Section 4.3). It therefore 
seems likely that further scaling of LLMs will enhance their sensitivity 
to causal relations.

Analogical problem-solving
In everyday thinking and reasoning, analogical comparisons are 
often made for the purpose of achieving some goal, or solving a novel 
problem. Thus far, our tests of GPT-3 have assessed its capacity for 
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identifying analogies in text-based inputs with varying formats, but can 
GPT-3 also use these analogies to derive solutions to novel problems, 
as human reasoners do?

As a preliminary investigation of this issue, we performed a quali-
tative evaluation using a paradigm developed by Gick and Holyoak21. 
In that paradigm, participants are presented with a target problem 
in the form of a story. In the original study, Duncker’s radiation prob-
lem was used44. In that problem, a doctor wants to use radiation to 
destroy a malignant tumour, but destroying the tumour with a single 
high-intensity ray will also damage the surrounding healthy tissue. 
The solution—to use several low-intensity rays that converge at the 
site of the tumour—is rarely identified spontaneously, but participants 
are more likely to discover this solution when they are first presented 
with an analogous source story. In the original study, the source story 
involved a general who wants to capture a fortress ruled by an evil  
dictator, but cannot do so by sending his entire army along a single 
road, which would trigger landmines. The general instead breaks his 
army up into small groups that approach the fortress from multiple 
directions, thus avoiding triggering the mines.

We first presented GPT-3 with the target problem in isolation.  
GPT-3 proposed a solution that involved injecting a radiation source 
directly into the tumour, rather than identifying the intended solution 
on the basis of the convergence of multiple low-intensity radiation 
sources (Supplementary Section 5.1). However, when first presented 
with the general story, followed by the target problem, GPT-3  
correctly identified the convergence solution (Supplementary  
Section 5.2). GPT-3 was further able to correctly explain the analogy, 
and to identify the specific correspondences between the source  
story and target problem when prompted (for example, general ↔ doc-
tor, dictator ↔ tumour, army ↔ rays). We also found similar results 
when using distinct source analogues taken from another study45 
(Supplementary Section 5.3).

In a more challenging version of this paradigm, participants 
were first presented with both the general story and two other 
non-analogous stories intended to serve as distractors. In this context, 
human participants were much less likely to identify the convergence 
solution. However, when given a prompt to explicitly consider the pre-
viously presented stories when trying to solve the radiation problem, 
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participants were often able to correctly identify the analogous general  
story, and use this analogy to devise the convergence solution. Remark-
ably, we found that GPT-3 displayed these same effects. When pre-
sented with these same distracting, non-analogous stories, GPT-3 no 
longer identified the convergence solution, instead proposing the 
same solution that it proposed in response to the radiation problem 
alone (Supplementary Section 5.4). But when prompted to consider the 
previous stories, GPT-3 both correctly identified the general story as 
most relevant and proposed the convergence solution (Supplementary 
Section 5.5).

We also evaluated GPT-3 using materials from a developmental 
study that employed a similar paradigm22. In that study, children were 
tasked with transferring gumballs from one bowl to another bowl  
that was out of reach, and provided with a number of materials for 
doing so (for example, a posterboard, an aluminium walking cane and 
a cardboard tube), permitting multiple possible solutions. The key 
result was that when children were first presented with an analogous 
source story (about a magical genie trying to transfer jewels between 
two bottles), they were more likely to identify a solution to the target 
problem that was analogous to the events described in the source story.

When presented with this target problem, GPT-3 mostly proposed 
elaborate but mechanically nonsensical solutions, with many extra
neous steps, and no clear mechanism by which the gumballs would be 

transferred between the two bowls (Supplementary Sections 5.6–5.8). 
However, when asked to explicitly identify an analogy between the 
source story and target problem, GPT-3 was able to identify all of the 
major correspondences, even though it could not use this analogy to 
discover an appropriate solution. This finding suggests that GPT-3’s 
difficulty with this problem probably stems from its lack of physical 
reasoning skills, rather than being due to a difficulty with analogical  
mapping per se. It is also worth noting that, in the original study, 
this task was presented to children with real physical objects, which 
probably aided the physical reasoning process relative to the purely 
text-based input provided to GPT-3. Overall, these results provide some 
evidence that GPT-3 is capable of using analogies for the purposes of 
problem-solving, but its ability to do so is constrained by the content 
about which it can reason, with particular difficulty in the domain of 
physical reasoning.

Discussion
We have presented an extensive evaluation of analogical reasoning 
in a state-of-the-art LLM. We found that GPT-3 appears to display an 
emergent ability to reason by analogy, matching or surpassing human 
performance across a wide range of text-based problem types. These 
included a novel problem set (Digit Matrices) modelled closely on 
Raven’s Progressive Matrices, where GPT-3 both outperformed human 

Categorical

Categorical

Relation category Semantic distance

Compositional Causal Near Far

0

0.2

0.4

0.6

Ac
cu

ra
cy

0.8

a b
1

0

0.2

0.4

0.6

Ac
cu

ra
cy

0.8

c
1

0

0.2

0.4

0.6

Ac
cu

ra
cy

0.8

d
1

0

0.2

0.4

0.6

Ac
cu

ra
cy

0.8

1

0

0.2

0.4

0.6

Ac
cu

ra
cy

0.8

1

Function Antonym Synonym

UCLA VAT

SAT Jones et al. (2022)

Sternberg and Nigro (1980)

Categorical Function

GPT-3
Human

Antonym Synonym Linear

Fig. 7 | Verbal analogy results. a, Results for UCLA VAT19. Human results reflect 
average performance for N = 57 participants. Black error bars represent standard 
error of the mean. Each dot represents accuracy for a single participant.  
b, Results for dataset from Sternberg and Nigro17. Human results reflect average 
performance for N = 20 participants. c, Results for SAT analogy problems 
from Turney et al.18. These problems involve five answer choices, and thus 

chance performance is 20%. Human results reflect an estimate of the average 
performance for high school students taking the SAT (for details, see ref. 70).  
d, Results for dataset from Jones et al.20. Human results reflect average 
performance for N = 241 participants. Grey error bars represent 95% binomial 
CIs for average performance across multiple problems. Grey horizontal lines 
represent chance performance.

http://www.nature.com/nathumbehav


Nature Human Behaviour | Volume 7 | September 2023 | 1526–1541 1533

Article https://doi.org/10.1038/s41562-023-01659-w

participants and captured a number of specific signatures of human 
behaviour across problem types. Because we developed the Digit 
Matrices task specifically for this evaluation, we can be sure GPT-3 
had never been exposed to problems of this type, and therefore was 
performing zero-shot reasoning. GPT-3 also displayed an ability to solve 
analogies based on more meaningful relations, including four-term 
verbal analogies and analogies between stories describing complex 
real-world events.

It is certainly not the case that GPT-3 mimics human analogical 
reasoning in all respects. Our tests were limited to processes that can be 
carried out within a local temporal context, but humans are also capa-
ble of retrieving potential source analogues from long-term memory, 
and ultimately of developing new concepts based on the comparison 
of multiple analogues. Unlike humans, GPT-3 does not have long-term 
memory for specific episodes. It is therefore unable to search for previ-
ously encountered situations that might create useful analogies with 
a current problem. For example, GPT-3 can use the general story to 
guide its solution to the radiation problem, but as soon as its context 
buffer is emptied, it reverts to giving its non-analogical solution to the 
problem—the system has learned nothing from processing the analogy. 
GPT-3’s reasoning ability is also limited by its lack of physical under-
standing of the world, as evidenced by its failure (in comparison with 
human children) to use an analogy to solve a transfer problem involving 
construction and use of simple tools. GPT-3’s difficulty with this task 
is probably due at least in part to its purely text-based input, lacking 
the multimodal experience necessary to build a more integrated world 
model46. Finally, we found GPT-3 was limited in its ability to evaluate  
analogies based on causal relations, particularly in cross-domain  
comparisons between stories (far analogy).

But despite these major caveats, our evaluation reveals that GPT-3 
exhibits a very general capacity to identify and generalize—in zero-shot 
fashion—relational patterns to be found within both formal problems 
and meaningful texts. These results are extremely surprising. It is com-
monly held that, although neural networks can achieve a high level 

of performance within a narrowly defined task domain, they cannot 
robustly generalize what they learn to new problems in the way that 
human learners do6,47–49. Analogical reasoning is typically viewed as 
a quintessential example of this human capacity for abstraction and 
generalization, allowing human reasoners to intelligently approach 
novel problems zero-shot. Our results indicate that GPT-3—unlike any 
other neural network previously tested on analogy problems—displays 
a capacity for such zero-shot analogical reasoning across a broad range 
of tasks.

The deep question that now arises is how GPT-3 achieves the  
analogical capacity that is often considered the core of human  
intelligence. One possibility is that, perhaps as a result of the sheer  
size and diversity of GPT-3’s training data, it has been forced to develop 
mechanisms similar to those thought to underlie human analogical 
reasoning—despite not being explicitly trained to do so. The consen-
sus among cognitive scientists working on analogy is that this human 
ability depends on systematic comparison of knowledge based on 
explicit relational representations. It is unclear whether and how GPT-3  
would implement these processes. Does GPT-3 possess some form  
of emergent relational representations, and if so, how are they  
computed? Does it perform a mapping process similar to the type  
that plays a central role in cognitive theories of analogy42?

A few properties of the transformer architecture29, on which 
GPT-3 and other LLMs are based, are worth considering here. The 
first is the central role played by similarity. Transformers are built on 
a self-attention operation, which involves explicitly computing the 
similarity between each pair of vectors in the inputs to each layer. 
This pairwise evaluation of similarity is also a key feature of cognitive 
models of analogy, where it provides the primary constraint guiding 
the process of analogical mapping. In traditional symbolic models50, 
this takes the form of literal identicality between symbols, but in more 
recent models51,52, a graded similarity function that operates over 
vector-based inputs is used, much like the self-attention operation 
in transformers. Second, transformer self-attention employs a form 
of indirection, in which one set of embeddings is used to reference 
another set of embeddings (that is, keys versus values)—arguably a 
form of variable binding. Cognitive scientists have long hypothesized 
that variable binding plays a central role in analogical reasoning, and 
abstract reasoning more broadly, as it potentially allows generalization 
of abstract roles across different contexts47,53–57. It may be that these  
features of the transformer make it better equipped to perform zero- 
shot reasoning than other neural architectures. This possibility aligns 
with recent evidence that the transformer architecture is an important 
factor contributing towards the emergence of few-shot learning27.

But although the mechanisms incorporated into LLMs such as 
GPT-3 may have some important links to building blocks of human 
reasoning, we must also entertain the possibility that this type of 
machine intelligence is fundamentally different from the human vari-
ety. Humans have evolved to reason within bounds imposed by limited 
computational power and biological constraints58. Thus, we tend to 
approach complex problems by breaking them into a set of simpler 
problems that can be solved separately59, an approach that plays a 
particularly important role in solving challenging analogy problems 
such as Raven’s Matrices60. It is possible that GPT-3, through sheer  
computational scale, is able to solve such complex problems in a  
holistic and massively parallel manner, without the need to segment 
them into more manageable components.

It must also be noted that, regardless of the extent to which GPT-3 
employs human-like mechanisms to perform analogical reasoning, we 
can be certain that it did not acquire these mechanisms in a human-like 
manner. LLMs receive orders of magnitude more training data than 
do individual human beings (at least if we consider linguistic inputs 
alone)58, and so they cannot be considered as models of the acquisition 
of analogical reasoning over the course of human development. Nor 
can they be considered good models of the evolution of analogical 
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reasoning, as their analogical abilities are derived entirely from being 
trained to predict human-generated text. Human natural language is 
replete with analogies; accurately predicting natural language there-
fore probably requires an ability to appreciate analogies. But there is 
no reason to suppose that the same system, absent human-generated 
inputs, would spontaneously develop a disposition to think analogi-
cally, as apparently happened at some point in human evolution61. Thus, 
to the extent that LLMs capture the analogical abilities of adult human 
reasoners, their capacity to do so is fundamentally parasitic on natural 
human intelligence. Nevertheless, the present results indicate that 
this approach may be sufficient to approximate human-like reasoning 
abilities, albeit through a radically different route than that taken by 
biological intelligence.

Methods
The present research complied with all relevant ethical regulations, and 
human behavioural experiments were approved by the UCLA Institu-
tional Review Board (IRB protocol #22-000841, approved 17 May 2022).

Code
Most code was written in Python v3.9.6, using the following packages: 
NumPy v1.24.3 (ref. 62), SciPy v1.10.1 (ref. 63), statsmodels v0.13.5 
(ref. 64), Matplotlib v3.7.1 (ref. 65) and pandas v2.0.1 (ref. 66). Logistic 
regression analyses were carried out in R v4.2.2 (ref. 67). Experimental 
stimuli for human behavioural experiments were written in JavaScript 
using jsPsych v7.2.1 (ref. 68).

GPT-3
We queried GPT-3 in an automated fashion through the OpenAI API. All 
simulations reported in the main text employed the text-davinci-003 
model variant. Additional simulations, reported in Supplemen-
tary Results, also employed the davinci, code-davinci-002 and 
text-davinci-002 variants. The temperature was set to 0 in all simu
lations. We set max_tokens (the parameter controlling the maxi-
mum number of generated tokens for a given prompt) to 10 for Digit  
Matrices, 40 for letter string analogies, 10 for four-term verbal analo
gies and 256 for story analogies and analogical problem-solving.  
All other parameters were set to their default values.

For each prompt, GPT-3 generates a proposed completion (a string 
of tokens), and assigns log probabilities to each token in the prompt 
and the completion. We used these log probabilities to evaluate GPT-3 
on multiple-choice problems. For each choice in a given problem, we 
concatenated the problem with the choice, and treated the average 
log probability assigned to the choice tokens as a score, selecting the 
answer choice with the highest score. This approach was used for Digit 
Matrices and four-term verbal analogies.

Digit Matrices
Dataset. The Digit Matrices problems consisted of two major problem  
categories: transformation and logic problems. Transformation  
problems contained anywhere from one to five rules, whereas logic  
problems each contained only a single rule. Transformation prob-
lems were defined using a combination of three rule types: constant, 
distribution-of-3 and progression. The constant rule was defined by the  
same digit appearing across either rows or columns. The following 
example shows an instance of a column-wise constant rule (correct 
answer: ‘9’):

[5] [1] [9]

[5] [1] [9]

[5] [1] [?]

The distribution-of-3 rule was defined by the same set of  
three digits appearing in each row or column, but with the order 

permuted. In the following example, the digits 6, 2 and 4 appear in 
each row (correct answer: ‘2’):

[6] [2] [4]

[2] [4] [6]

[4] [6] [?]

The progression rule was defined by a progressive increase or 
decrease in value, in units of either 1 or 2, across either rows or columns. 
In the following example, digits increase by units of 2 across rows  
(correct answer: ‘9’):

[3] [5] [7]

[1] [3] [5]

[5] [7] [?]

Transformation rules could be combined to form multi-rule  
problems, by assigning each rule to a particular spatial location  
within each cell. The following example shows a two-rule problem,  
in which the left digit in each cell is governed by a progression rule 
(digits decrease by units of 1 across columns), and the right digit in 
each cell is governed by a distribution-of-3 rule (correct answer: ‘4 9’):

[7 1] [89] [63]

[69] [7 3] [5 1]

[5 3] [6 1] [?]

Logic problems were defined by one of three rules: OR, XOR and 
AND. In the OR rule, a particular row or column contained all entities 
that appeared in either of the other rows or columns. In the following 
example, the middle column contains all entities that appear either in 
the left or right columns (correct answer: ‘8’):

[7] [74] [4]

[97] [9748] [48]

[9] [98] [?]

The XOR rule was the same, except that entities appearing in both 
of the other rows or columns were excluded. In the following example, 
only items that appear in either the left or middle columns, but not 
both, will appear in the right column (correct answer: ‘4 3’):

[64] [6 1] [4 1]

[6 1] [36] [1 3]

[4 1] [1 3] [?]

In the AND rule, a particular row or column contained only entities 
that appeared in both of the other rows or columns. In the following 
example, the right column contains only digits that appear in both  
the left and middle columns (correct answer: ‘9’):

[29 7] [1 9 7] [97]

[29 5] [195] [95]

[29] [1 9] [?]

For some logic problems, the within-cell spatial position of  
corresponding elements was aligned, as in the previously presented 
OR and AND problems. In other logic problems, corresponding ele-
ments were spatially permuted. The following example (involving an 
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OR rule) illustrates how this makes it more difficult to intuitively grasp 
the underlying rule (correct answer: ‘0’):

[1] [7 1] [7]

[1 0] [507 1] [7 5]

[0] [05] [?]

Within each problem type (one- through five-rule and logic prob-
lems), there were a number of specific problem subtypes. There were 
six one-rule subtypes, six two-rule subtypes and ten subtypes for 
three-rule, four-rule, five-rule and logic problems. We generated 100 
instances of each subtype (except in the case of progression prob-
lems, for which there were fewer possible problem instances). The 
one-rule problem subtypes consisted of a row-wise constant problem, 
a column-wise constant problem, two distribution-of-3 problems and 
two progression problems (one with an increment of 1 and one with an 
increment of 2). The two- and three-rule problem subtypes consisted of 
all possible combinations of two or three rules (allowing for the same 
rule to be used multiple times within each problem). The four- and 
five-rule problem subtypes were sampled from the set of all possible 
combinations of four or five rules. There were five spatially aligned 
logic problem subtypes, and five spatially permuted logic problem 
subtypes. Three out of each of these five subtypes were OR problems 
(defined by the row or column in which the set union appeared), and 
the other two were AND and XOR problems.

For each problem, we also procedurally generated a set of seven 
distractor choices, making for a set of total answer choices. Distrac-
tors were generated using different methods for the transformation 
and logic problems. These methods were chosen on the basis of the 
approach of Matzen et al.32, who performed an analysis of the answer 
choices in the original SPM. For transformation problems, the following 
methods were used to generate distractors:

	1.	 Sample a random cell from the problem.
	2.	 Sample a random cell from the problem, sample a random digit 

within that cell, and apply an increment or decrement of either  
1 or 2.

	3.	 Start with the correct answer, apply an increment or decrement 
of either 1 or 2 to a randomly sampled digit.

	4.	 Randomly sample a previously generated distractor for this 
problem, apply an increment or decrement of either 1 or 2 to a 
randomly sampled digit.

	5.	 Randomly generate a new answer choice (with the appropriate 
number of digits given the problem type).

For multi-rule transformation problems, the following additional 
methods were also used:

	1.	 Start with the correct answer, randomly permute the digits.
	2.	 Sample a random cell from the problem, randomly permute the 

digits.
	3.	 Randomly sample a previously generated distractor for this 

problem, randomly permute the digits.
	4.	 Randomly sample digits from multiple cells within the problem 

and combine.
	5.	 Randomly sample digits from previously generated distractors 

for this problem and combine.

For logic problems, distractors were generated by sampling from 
the set of all possible subsets of elements that appeared within the 
problem, including the empty set (the correct answer was an empty set 
on some logic problems), but excluding the correct answer. For spatially 
permuted logic problems, the spatial position of the elements within 
each distractor was randomly permuted. For spatially aligned logic 
problems, the order of the elements within each distractor was chosen 
so as to be consistent with the order that they appeared in the problem.

Human behavioural experiments. Human behavioural data were  
collected in two online experiments. All experiments were approved 
by the UCLA Institutional Review Board (IRB protocol #22-000841, 
approved 17 May 2022), and all participants provided informed consent.  
All participants were UCLA undergraduates. Forty-three participants 
completed the first experiment, but three participants were excluded 
from analysis due to the fact that they got nearly every answer incorrect, 
and produced an apparently random pattern of responses (for example, 
random permutations of the same three digits for all problems). The 
remaining 40 participants (31 female, 18–35 years old, average age 
21.3 years old) were included in our analysis. Forty-seven participants 
(37 female, 18–42 years old, average age 21.2 years old) completed the 
second experiment. No statistical methods were used to pre-determine 
sample sizes. There was no overlap between the participants in the 
first and second experiments. Participants received course credit for 
their participation.

In both experiments, participants were first presented with a 
set of instructions, and a single one-rule example problem involv-
ing a constant rule. For each problem, participants first generated a 
free-response answer, and then selected from the set of answer choices. 
Problems were presented in a spatially arranged matrix format, as they 
appear in Fig. 2. Problems remained on the screen until participants 
made a response.

In the first experiment (Fig. 3), participants were presented with 
one-rule, two-rule, three-rule and logic problems. There were 6 problem  
subtypes each for the one- and two-rule problems, and 10 problem  
subtypes each for the three-rule and logic problems, making for  
32 problem subtypes in total. Participants received these problem  
subtypes in random order. Each participant received randomly  
sampled instances of each problem subtype.

In the second experiment (Supplementary Fig. 4), participants 
were presented with one- through five-rule problems. There were  
6 problem subtypes each for the one- and two-rule problems, and  
10 problem subtypes each for the three- through five-rule problems, 
making for 42 problem subtypes in total. Problems were presented in 
order of increasing complexity, with all one-rule problem subtypes 
first, followed by all two-rule problem subtypes and so on. For one-rule 
problems, the two constant problems were presented first, followed 
by the two distribution-of-3 problems, followed by the two progres-
sion problems.

Evaluating GPT-3. GPT-3 was evaluated on the Digit Matrices by pre-
senting each complete problem as a prompt, including brackets and 
line breaks, followed by an open bracket at the start of the final cell. 
For example, the three-rule problem in Fig. 2b would be presented to 
GPT-3 in the following format:

[59 3] [892] [1 9 7]\n[847] [1 4 3] [5 4 2]\n[1 2 2] [5 2 7] [

GPT-3’s generated responses were truncated at the point where a 
closing bracket was generated. For logic problems, generated answers 
were counted as correct if they contained the correct set of digits, regard-
less of their order. For transformation problems, generated answers were 
only counted as correct if they contained the correct digits in the correct 
order. The same criteria were applied when evaluating human responses.

To evaluate GPT-3’s multiple-choice performance, for each  
answer choice, the choice was appended to the problem followed by 
a closing bracket, and presented to GPT-3 as a prompt. The average 
log probability of the tokens corresponding to the answer choice (not 
counting the brackets) was computed. The answer choice with the  
highest average log probability was treated as GPT-3’s selection.

In our primary evaluation (Fig. 3), GPT-3 was presented with  
40 problem instances from each of the 32 problem subtypes used in  
the first human behavioural experiment. GPT-3 solved each one zero- 
shot (without any fine-tuning or in-context learning).
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We also evaluated how GPT-3 performed when presented with 
problems in order of increasing complexity (Supplementary Fig. 4). 
GPT-3 performed 20 runs on this task. For each run, GPT-3 was pre-
sented with a series of the same 42 problem subtypes used in the second  
human behavioural experiment (with different instances of these  
subtypes in each run). After GPT-3 answered each problem, the selected 
multiple-choice answer was appended to the problem, and the com-
bined problem and answer choice were recursively appended to the 
prompt for the next problem. This meant that the size of the prompt 
grew with each problem. For some of the final five-rule problems, the 
prompt exceeded the size of GPT-3’s context window (4,096 tokens). 
When this occurred, problems from the beginning of the context win-
dow were deleted until the entire prompt fit within the window. This 
resulted in the deletion of a few one-rule problems from the beginning 
of the prompt. For one-rule problems, the two constant problems were 
presented first, followed by the two distribution-of-3 rules, followed 
by the two progression problems.

Statistical analyses. Results were analysed using both regression 
and correlation analyses. Logistic regression analyses were carried 
out at the individual trial level, with each data point corresponding  
to a particular trial from a particular participant (or GPT-3). The depend-
ent variable in all regression analyses was a binary variable coding for 
whether a particular response was correct or incorrect.

For the first digit matrix experiment, we fit separate regression 
models for generative versus multiple-choice responses. Two predic-
tors were used: problem type (one-rule, two-rule, three-rule and logic 
problems), and a binary predictor coding for GPT-3 versus human par-
ticipants. We also performed more fine-grained analyses for generative 
responses within each problem type. These analyses were performed 
separately for GPT-3 versus human responses. For two-rule problems, 
a single binary predictor coded for whether a problem contained a 
progression rule. For three-rule problems, a single predictor coded 
for the number of unique rules present in a given problem. For logic 
problems, a binary predictor coded for whether a problem was spatially 
aligned versus permuted.

We also fit regression models comparing the results of the first 
and second experiments. These analyses were performed separately 
for GPT-3 versus human responses, and only included responses for 
one- to three-rule problems (since these were the only problem types 
in common between the two experiments). Two predictors were used: 
problem type (one-rule, two-rule and three-rule problems) and experi-
ment (experiment 1 versus 2).

Correlation analyses were carried out by correlating the accuracy 
for GPT-3 versus human participants across all 32 problem subtypes.

Letter string analogies
Problem set. Each letter string analogy problem involved one of six 
transformation types: sequence extension, successor, predecessor, 
removing a redundant letter, fixing an alphabetic sequence and sort-
ing. In the sequence extension transformation, the source involved an 
alphabetically ordered sequence of four letters followed by an exten-
sion of this sequence involving five letters, as in the following example:

[ab cd] [ab cde]

In the successor transformation, the source involved an alphabeti-
cally ordered sequence of four letters, followed by that same sequence, 
but with the final letter replaced by its successor, as in the following 
example:

[ab cd] [ab c e]

In the predecessor transformation, the source involved an alpha-
betically ordered sequence of four letters, followed by that same 

sequence, but with the first letter replaced by its predecessor, as in 
the following example:

[bcde] [a cd e]

In the transformation involving removal of a redundant letter, the 
source involved an alphabetically ordered sequence of five letters with 
one letter repeated, followed by that same sequence with the redundant 
letter removed, as in the following example:

[abb cde] [ab cd e]

In the transformation involving fixing an alphabetic sequence, the 
source involved an alphabetically ordered sequence of five letters with 
one out-of-place letter (not part of the alphabetic sequence), followed 
by that same sequence with the out-of-place letter replaced, as in the 
following example:

[ab cwe] [ab cde]

In the sorting transformation, the source involved an alphabeti-
cally ordered sequence of five letters with the position of two letters 
swapped, followed by a sorted version of the same sequence, as in  
the following example:

[ad cb e] [ab cde]

Problems involved varying degrees of generalization between 
the source and target. In the zero-generalization problems, the target 
involved a different instance of the source transformation (instanti-
ated with different letters). Transformation parameters (for example, 
the location of the redundant letter) were independently sampled for 
source and target.

Generalization problems involved generalizations sampled from 
the following set of generalization types: generalization from letters to 
numbers, grouping, generalization to a longer target, reversed order, 
interleaved distractors and generalization to a larger interval. In the 
letter-to-number generalization, target letters were replaced by numbers 
corresponding to their alphabetic indices, as in the following example:

[ab cd] [ab cd e]

[789 10] [?]

In the grouping generalization, target letters were replaced by 
groups with two instances of each letter, as in the following example:

[ab cd] [ab cde]

[i i j j k k l l] [?]

In the longer target generalization, the target sequence was 
replaced with a sequence that was twice as long as the source, as in 
the following example:

[ab cd] [ab cde]

[i j k lmnop] [?]

In the reversed order generalization, the order of the target letters 
was reversed relative to the source, as in the following example:

[ab cd] [ab cd e]

[l k j i] [?]

In the interleaved distractor generalization, the letter ‘x’ was inter-
leaved between each letter in the target sequence, as in the following 
example:
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[ab cd] [ab cde]

[i x j x k x l x] [?]

In the larger interval generalization, the sequence of target letters 
was replaced with a sequence involving an interval of size 2, as in the 
following example:

[ab cd] [ab cde]

[i kmo] [?]

Each transformation type could be combined with any generali
zation type. Multiple generalizations could also be combined 
together. Generalization problems contained between one and  
three generalizations. We generated a set of 600 zero-generalization 
problems (involving 100 problems with each transformation type), 
600 one-generalization problems (involving 100 problems with each 
generalization type, with randomly sampled transformation type) and 
600 problems each with two and three generalizations (with randomly 
sampled combinations of transformation and generalization type).

We also generated a separate set of problems involving generaliza-
tion from letters to real-world concepts. In these problems, the source 
instantiated a transformation using letters, and the target instantiated 
that same transformation using real-world instances of successorship. 
These problems involved shorter sequences (maximum length of four), 
due to the difficulty of identifying real-world instances of successor-
ship with more than four points. The following sequences were used:

cold coolwarmhot

love like dislike hate

jackqueenking ace

pennynickel dimequarter

secondminute hourday

The transformation types included sequence extension, successor,  
predecessor and sorting. No other generalizations were applied to 
these problems. We generated 100 problems with each transforma-
tion type.

Evaluating GPT-3. We presented letter string analogies to GPT-3 using 
the prompt ‘Let’s try to complete the pattern:’, similar to ref. 69. We 
also formatted each analogy problem using brackets and line breaks, 
similar to the presentation format of the Digit Matrices. The presenta-
tion format is illustrated in the following example:

Let’s try to complete thepattern ∶ \n\n[ab cd] [ab c e]\n[i j k l] [

GPT-3’s generated responses were truncated at the point where 
a closing bracket was generated. We also evaluated GPT-3 with two 
alternative problem formats: (1) no prompt and (2) a sentence format, 
as in the following example:

If a b cd changes to ab c e, then i j k l should change to

For this format, GPT-3’s generated responses were truncated at 
the point where a period was generated. We evaluated GPT-3 on 300 
zero-generalization problems (50 problems for each transformation 
type), 300 one-generalization problems (50 problems for each gener-
alization type) and 300 problems each with two and three generaliza-
tions. We also evaluated GPT-3 on 50 real-world concept generalization 
problems for each transformation type.

Human behavioural experiment. Human behavioural data were  
collected in an online experiment. The experiment was approved by the 

UCLA Institutional Review Board (IRB protocol #22-000841, approved 
17 May 2022), and all participants provided informed consent. All 
participants were UCLA undergraduates. Fifty-seven participants 
(50 female, 18–35 years old, average age 21.1 years old) completed the 
experiment. No statistical methods were used to pre-determine sample 
sizes. Participants received course credit for their participation.

Participants were first presented with a set of instructions, and the 
following example problem (not involving any of the transformations 
or generalizations employed in the actual experiment):

[a a a] [bbb]

[c c c] [?]

Each participant completed 28 problems, including 6 
zero-generalization problems (1 problem for each transformation 
type), 6 one-generalization problems (1 problem for each generaliza-
tion type), 6 problems each with two and three generalizations, and 4 
real-world concept generalization problems (1 for each transformation 
type). The specific problem instances were randomly sampled for each 
participant, and participants received these problems in a random 
order. Participants generated a free response for each problem.

Statistical analyses. Results were analysed using both regression 
and correlation analyses. Logistic regression analyses were carried 
out at the individual trial level, with each data point corresponding to 
a particular trial from a particular participant (or GPT-3). The depend-
ent variable in all regression analyses was a binary variable coding for 
whether a particular response was correct or incorrect.

Separate analyses were performed for problems that only involved 
alphanumeric characters versus those that involved real-world con-
cepts. For problems involving alphanumeric characters, a regression 
model was fit with two predictors: number of generalizations (zero to 
three), and a binary predictor coding for GPT-3 versus human partici-
pants. We also fit regression models at each generalization level with 
a single binary predictor coding for GPT-3 versus human participants. 
For real-world concept problems, a regression model was fit with a 
predictor coding for GPT-3 versus human participants.

For correlation analyses, problem subtypes were defined on the 
basis of each combination of transformation type and generalization 
type. The accuracy for each subtype was computed for GPT-3 versus 
human participants, and these values were subjected to correlation 
analysis. There were only a few examples of some problem subtypes 
(across all participants), especially for problems with more generali-
zations (the space of possible subtypes grows exponentially with the 
number of generalizations). We included only subtypes for which there 
were at least five trials from human participants (across all participants) 
and five trials from GPT-3. Out of the 252 possible problem subtypes, 41 
subtypes met this criterion and were included in the analysis.

Four-term verbal analogies
We evaluated GPT-3 on four separate four-term analogy datasets17–20. 
The UCLA-VAT dataset contains 80 problems, with four relation types: 
categorical (B/D is a member of the category A/C), functional (A/C is 
the function of B/D), antonym and synonym. There are 20 problems for 
each relation type. Each problem contains two answer choices for the 
final term (D and D′). We evaluated GPT-3 by presenting the problem 
along with each possible answer choice (A:B::C:D or A:B::C:D′), using 
the standard colon notation, and selected the answer choice for which 
GPT-3 assigned a higher log probability to the final term. The problem 
and GPT-3’s selected answer were then recursively appended to the 
prompt for the next problem. The problems were presented in a shuffled 
order. We compared against human behavioural data from ref. 19 (N = 57, 
minimum education level of high school graduation, located in the 
United States and recruited using Amazon Mechanical Turk). Example  
problems from each of the four relation categories are shown below:
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Categorical

vegetable ∶ cabbage ∶∶ insect ∶ ?

1.beetle 2. frog

Function

drive ∶ car ∶∶ burn ∶ ?

1.wood2. fire

Antonym

love ∶ hate ∶∶ rich ∶ ?

1.poor 2.wealthy

Synonym

rob ∶ steal ∶∶ cry ∶ ?

1.weep2. laugh

The dataset of Sternberg and Nigro17 contains 200 problems, 
including 40 problems for each of five relation types: categorical, 
functional, antonym, synonym and linear order. We evaluated GPT-3  
in the same way that we did for UCLA VAT, and compared against  
human behavioural data from ref. 17 (N = 20, Yale undergraduates).  
An example problem illustrating the linear order relation type is  
shown below (the categorical, functional, antonym and synonym  
problems were similar to those from the UCLA VAT):

Linearorder

month ∶ year ∶∶ inch ∶ ?

1. foot 2. length

The dataset of SAT problems from Turney et al.18 contains 374 
problems, covering a range of different relation types. Each problem 
contains five answer choices for both C and D terms (including the cor-
rect answer). We evaluated GPT-3 by presenting each of the five possible 
analogies for each problem, and selecting the choice for which the C 
and D terms were assigned the highest log probability. The problem, 
and GPT-3’s choice, were then appended to the prompt for the next 
problem. We compared against an estimate of the average performance 
level for high school students taking the SAT (see ref. 70).

The dataset of Jones et al.20 contains 120 problems, including 
40 problems for each of three relation types: categorical, causal and 
compositional. Half of these problems are categorized as semantically 
near (A and B are similar to C and D), and half are categorized as semanti-
cally far (A and B are dissimilar to C and D). Each problem contains two 
answer choices. We evaluated GPT-3 in the same way that we did for 
UCLA VAT, and compared against human behavioural data from ref. 20 
(N = 241, Wayne State University undergraduates). Example problems 
for each of the three relation categories are shown below:

Categorical

diesel ∶ fuel ∶∶ bed ∶ ?

1. furniture 2.pillow

Causal

motion ∶ sickness ∶∶ drought ∶ ?

1. famine 2. rain

Compositional

steel ∶ scissors ∶∶ apple ∶ ?

1. cider 2. tree

Story analogies
Materials. All story analogy materials were taken from a problem set 
created by Gentner et al.23 (from their Experiment 2), and included in a 
verbal analogy inventory40. These materials involve 18 source stories. 
Each source story is accompanied by four potential target stories, form-
ing four conditions: correct and incorrect near analogies (respectively 
termed ‘literal similarity’ and ‘mere appearance’ by Gentner et al.), 
both involving similar entities and first-order relations as the source, 
while differing from each other in higher-order causal relations; and 
correct and incorrect far analogies (respectively termed ‘true analogy’ 
and ‘false analogy’ by Gentner et al.), both involving similar first-order 
relations as the source but distinct entities, while differing from each 
other in causal relations. An example source story, along with target 
stories from each condition, is presented below:

Source story: Karla, an old hawk, lived at the top of a tall oak tree. 
One afternoon, she saw a hunter on the ground with a bow and 
some crude arrows that had no feathers. The hunter took aim and 
shot at the hawk but missed. Karla knew the hunter wanted her 
feathers so she glided down to the hunter and offered to give him 
a few. The hunter was so grateful that he pledged never to shoot 
at a hawk again. He went off and shot deer instead.

Near analogy – correct target story: Once there was an eagle 
named Zerdia who nested on a rocky cliff. One day she saw a 
sportsman coming with a crossbow and some bolts that had no 
feathers. The sportsman attacked but the bolts missed. Zerdia 
realized that the sportsman wanted her tailfeathers so she flew 
down and donated a few of her tailfeathers to the sportsman. The 
sportsman was pleased. He promised never to attack eagles again.

Near analogy – incorrect target story: Once there was an eagle 
named Zerdia who donated a few of her tailfeathers to a sports-
man so he would promise never to attack eagles. One day Zerdia 
was nesting high on a rocky cliff when she saw the sportsman 
coming with a crossbow. Zerdia flew down to meet the man, but 
he attacked and felled her with a single bolt. As she fluttered to the 
ground Zerdia realized that the bolt had her own tailfeathers on it.

Far analogy – correct target story: Once there was a small country 
called Zerdia that learned to make the world’s smartest computer. 
One day Zerdia was attacked by its warlike neighbor, Gagrach. But 
the missiles were badly aimed and the attack failed. The Zerdian 
government realized that Gagrach wanted Zerdian computers 
so it offered to sell some of its computers to the country. The 
government of Gagrach was very pleased. It promised never  
to attack Zerdia again.

Far analogy – incorrect target story: Once there was a small 
country called Zerdia that learned to make the world’s smartest 
computer. Zerdia sold one of its supercomputers to its neigh-
bor, Gagrach, so Gagrach would promise never to attack Zerdia. 
But one day Zerdia was overwhelmed by a surprise attack from 
Gagrach. As it capitulated the crippled government of Zerdia 
realized that the attacker’s missiles had been guided by Zerdian 
supercomputers.

Human behavioural experiment. Human behavioural data were  
collected in an online experiment. The experiment was approved by  
the UCLA Institutional Review Board (IRB protocol #22-000841, 
approved 17 May 2022), and all participants provided informed consent. 
All participants were UCLA undergraduates. Fifty-four participants  
(47 female, 18–44 years old, average age 20.7 years old) completed 
the experiment. No statistical methods were used to pre-determine 
sample sizes. Participants received course credit for their participation.

http://www.nature.com/nathumbehav


Nature Human Behaviour | Volume 7 | September 2023 | 1526–1541 1539

Article https://doi.org/10.1038/s41562-023-01659-w

After receiving instructions, participants were presented with  
18 trials, each involving a different source story. On each trial,  
participants were presented with a source story (referred to as  
‘Story 1’), followed by two target stories (referred to as ‘Story A’ and 
‘Story B’), and asked ‘Which of Story A and Story B is a better analogy  
to Story 1?’. Participants could select either Story A or Story B, or 
could indicate that they were both equally analogous. Accuracy was 
computed as the proportion of trials for which participants selected  
the correct target story.

On half of the trials, the target stories were from the near  
analogy condition. On the other half of the trials, the target stories 
were from the far analogy condition. The order of the two target stories  
was randomly shuffled on all trials.

Evaluating GPT-3. GPT-3 was evaluated by entering stories directly  
into the OpenAI playground. For each source story, GPT-3 was evalu-
ated on both the near analogy comparison, and the far analogy com-
parison, and was also evaluated on both possible orderings for each 
pair of target stories, resulting in 18 × 2 × 2 = 72 total comparisons.  
For each comparison, the stories were presented in the following 
format:

Consider the following story:

•	 Story 1: ≪ source story text ≫ 
•	 Now consider two more stories:
•	 Story A: ≪ target story A text ≫ 
•	 Story B: ≪ target story B text ≫ 
•	 Which of Story A and Story B is a better analogy to Story 1?
•	 Is the best answer Story A, Story B, or both are equally analogous?

where ≪ source story text ≫, ≪ target story A text ≫ and ≪ target story 
B text ≫ were replaced by the text for the corresponding stories. In 
addition to answering the forced-choice question, GPT-3 sometimes 
spontaneously produced explanations, but only the forced-choice 
response was used in our analysis. GPT-3’s context window was cleared 
after obtaining the results of each comparison.

Evaluating GPT-4. GPT-4 was evaluated by entering stories directly 
into the ChatGPT web interface. GPT-4 was evaluated on the same 72 
problems, using the same format as was used for GPT-3. GPT-4’s context 
window was cleared after obtaining the results of each comparison.

Statistical analyses. The task performed by both GPT-3 and human 
participants involved a three-choice discrimination (Story A is more 
analogous, Story B is more analogous, both are equally analogous). 
Statistical analyses were carried out to determine whether this dis-
crimination was made at a level greater than expected from chance 
alone. To be conservative, we assumed a chance performance level of 
50% accuracy. For GPT-3, a binomial test was performed (using data at 
the individual trial level). For human participants, a one-sample t-test 
was performed (using data averaged at the individual subject level). 
These analyses were carried out separately for the near analogy and 
far analogy conditions.

To compare GPT-3 with human performance, a logistic regression 
analysis was carried out at the individual trial level. The dependent 
variable was a binary variable coding for whether a particular response 
was correct or incorrect. A single binary predictor coded for GPT-3 
versus human responses.

Analogical problem-solving
Problems were entered directly into the OpenAI playground. Materials 
were taken from ref. 21 and ref. 22. All prompts and responses are shown 
in Supplementary Section 5. Each subsection shows the results for a 
single continuous session, with GPT-3’s responses presented in bold 
text. Responses were not truncated or curated in any way.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data for all human behavioural experiments, along with the Digit 
Matrices, letter string analogy and UCLA VAT problem sets, can be 
downloaded from https://github.com/taylorwwebb/emergent_ 
analogies_LLM. The four-term verbal analogy problem sets from  
Sternberg and Nigro17 and Jones et al.20, and the story analogy materials 
from Gentner et al.23, can be downloaded from http://cvl.psych.ucla.
edu/resources/AnalogyInventory.zip. Information about the problem 
set of SAT four-term verbal analogies from Turney et al.18 can be found at 
https://aclweb.org/aclwiki/SAT_Analogy_Questions_(State_of_the_art).

Code availability
Code for all simulations can be downloaded from https://github.com/
taylorwwebb/emergent_analogies_LLM.
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and 47 participants (37 female, 18-42 years old, average age = 21.2 years old) completed the second experiment. 
This sample is representative of undergraduate students in the United States. This sample was chosen because it was not feasible to 
include other groups in the study.

Sampling strategy No statistical methods were used to predetermine sample size. We recruited as many participants for each experiment as was 
feasible given the time frame of the experiment. The resulting sample sizes provided an adequate estimate of performance in our 
study sample for the purposes of comparing with GPT-3.

Data collection The data was collected in an online experiment. The researcher did not interact with the participants directly, and it was therefore 
not relevant whether the researcher was blind to the study's hypotheses.

Timing Data was collected between May 2022 and February 2023.

Data exclusions Three participants were excluded from analysis in the first human behavioral experiment with the Digit Matrices, due to the fact that 
they got nearly every answer incorrect, and produced an apparently random pattern of responses (e.g. random permutations of the 
same three digits for all problems). This is reported in Section 4.3.2 of the manuscript. No participants were excluded from any of the 
other experiments.

Non-participation No participants dropped out or declined to participate.
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presentation for these conditions (within each session) was randomized.
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