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– Threshold:  speed-accuracy trade-off

• Control as global gain (NE) adjustment:
explore / exploit
flexibility / stability

• Control as conflict management:
serialization of processing to avoid interference

• Its all about reward rate optimization
requires monitoring for reward, i.e., performance
we’ve considered reward, but what about conflict?
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• Hypothesis integrates a wide body of findings:

Conflict Monitoring and ACC
(Botvinick et al., 2001)
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Conflict Monitoring and the ERN  
Yeung, Botvinick & Cohen (under review)

• Model explains dynamics of electrophysiological findings:
– Pre-response “negativity” for correct incompatible trials (N2C) 

     (Kopp, Rist & Mattler, 1996)

– Larger ERN for congruent than incongruent stimuli on error trials 
   (Scheffers & Coles, 2000)

Incongruent trials 
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• DDM: 
– Frequency: threshold adjustment 

• Conflict monitoring: 

– Laming, Rabbitt effects:  threshold adjustment 

– Gratton, Logan effects:  attentional (internal drift rate) adjustment

Speed-accuracy tradeoff:  optimize reward rate

Speed-accuracy tradeoff:  optimize reward rate

Attentional enhancement:  optimize reward rate
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– Choose less demanding strategy (Lieder et al., 2014)
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– Discount reward associated with more effortful tasks…
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• 3 components to the control system (executive function): 

– Monitoring (encode behavioral values) 
evaluate outcomes of performance of a given task 
(e.g. ,verbal feedback, material rewards and/or punishments) 
evaluate internal states relevant to demands for control 
(e.g., conflict,  internally detected errors, task difficulty) 

– Specification (select behaviors) 
computation of EVC for candidate control signals 
(i.e., those corresponding to current set of available tasks) 
selection of signal(s) with maximum EVC, within budgetary constraints 

– Regulation (implement selected behaviors) 
“top-down” biasing of cortical pathways require to perform task 
(e.g., “attentional selection”, facilitation) 
systemwide changes in parameters (neuromodulation) 

• changes in learning rate, gating of new control signals into regulatory system 
• noise/gain modulation, explore/exploit tradeoff 
• threshold modulation
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♦ evaluate outcomes of performance of a given task 

(e.g. ,verbal feedback, material rewards and/or punishments)
♦ evaluate internal states relevant to demands for control 

(e.g., conflict,  internally detected errors, task difficulty)

– Specification (select behaviors)
♦ computation of EVC for candidate control signals 

(i.e., those corresponding to current set of available tasks)
♦ selection of signal(s) with maximum EVC, within “budgetary” constraints

– Regulation (implement selected behaviors)
♦ “top-down” biasing of cortical pathways require to perform task 

(e.g., “attentional selection”, goal maintenance, motor control)
♦ systemwide changes in parameters (neuromodulation)

• changes in learning rate, gating of new control signals into regulatory system
• noise/gain modulation, explore/exploit tradeoff
• threshold modulation

Expected Value of Control Theory



Heart of EVC:  Specification

PFC
colors words



Heart of EVC:  Specification
•Formalize EVC in terms of “control signals” 

– Control signals are defined by two parameters: PFC
colors words



Heart of EVC:  Specification
•Formalize EVC in terms of “control signals” 

– Control signals are defined by two parameters:
♦ Identity — the task optimized by the signal 

                      (e.g., color naming or word reading)

PFC
colors words

Color
Word



Heart of EVC:  Specification
•Formalize EVC in terms of “control signals” 

– Control signals are defined by two parameters:
♦ Identity — the task optimized by the signal 

                      (e.g., color naming or word reading)
♦ Intensity — the strength allocated to a given task

PFC
colors words

Strong
Weak



Toward a Formal Account



Heart of EVC:  Specification
•Formalize EVC in terms of “control signals”  

– Control signals are defined by two parameters: 
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                      (e.g., color naming or word reading) 
♦ Intensity — the strength allocated to a given task 
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•Assume standard functional forms for:
– COST:  accelerating (e.g., exponential)

– REWARD:  saturating, diminishing returns (e.g., logarithmic)

•Yields non-monotonic function for EVC that
   obey empirically observed effects of incentives:

EVC
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Heart of EVC:  Specification
•Formalize EVC in terms of “control signals” 

– Control signals are defined by two parameters:
♦ Identity — the task optimized by the signal 

                      (e.g., color naming or word reading)
♦ Intensity — the strength allocated to a given task

– Reward (probability of success) and cost  
scale monotonically with intensity

– The EVC for a given control signal is: 

– Of the candidate set of control signals  (≈ currently executable tasks),  
one(s) with highest EVC (that fall within budget) are selected for allocation

PFC
colors words

Strong
Weak
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•Electrical stimulation of dACC:
– patients recounted a sense of “challenge” or 

“worry” (also known as foreboding) but remained 
motivated and aware that they would overcome 
the challenge

– feeling worried and anxious about something 
negative that was going to happen, but 
simultaneously knowing that he had to fight to 
make it through and not give up.

– “like you’re headed towards a storm that’s on the 
other side, maybe a couple of miles away, and 
you’ve got to get across the hill and all of a 
sudden you’re sitting there going how am I going 
to get over that… you have to keep going 
forward”

Phenomenological Experience
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•Formal analysis of learning speed vs. processing efficiency 
  (Musslick, Saxe et al., 2017)

Rational Self-Reconfiguration

(training time)2 α
(multitasking capacit y)

(%shared representations)

•Bayesian optimal process model 
  (Sagiv, Musslick & Cohen, 2018)

•Deep learning applications 
(Ravi, Musslick & Cohen, under review)
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•Control-dependent processing:
– Cost: serialization of processing
– Overcome through automatization:

> learn separated, dedicated task representation

– Focused on simple stimulus-response mapping tasks

> What about tasks involving sequences of states and actions?

> Poses same problem of intertemporal choice, when to…
♦ reap immediate rewards of flexible but serial processing
♦ invest in longer term reward compilation

– Now, though, the representational problem is in time rather than “space”
– This too can be approached normatively with rational reconfiguration:

> use of EM to “flatten” time…

Longterm Adaptation

EGO and ISC-CI models!


