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How Do People Learn Abstractions?
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Key idea: We can quickly and reliably generalize to novel situations



In contrast, artificial neural networks seem to require
HUGE amounts of training data to learn and they struggle
to generalize out-of-distribution...
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S0 what's missing
from neural network
architectures?






... Perhaps aspects of symbolic computing!

Symbolic Computing Connectionism
%  Pro: By design, s_ymbols are abstracted from %  Pro: Very efficient at representing
the content to which they refer o high-dimensional continuous information
%  Pro: Accounts for systematicity, productivity, % Pro: Provides a neural implementation
and compositionality (Fodor & Pushlyn, 1988) - Frovi uratimp ' o
% Con: Faces a combinatorial explosion of %  Con: Often need huge amounts of training data

possibilities to account for (curse of
dimensionality), and does not shed light on
neural implementation
A possible solution:
* Merge the flexibility of symbolic computing with the efficiency of neural
networks...
% ... by building in the right kinds of inductive biases that allow for efficient

abstraction



Outline

1. Introduce the relational bottleneck
2. Look at concrete neural architectures that use the relational bottleneck, and
explore connections to LLMs

3. Connect the relational bottleneck to biological neural computation



The Relational Bottleneck as an Inductive Bias
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We want a compression of the data that only preserves abstract
relational structure!

(Fig. 1 from Webb et al., 2024)



The Relational Bottleneck as an Information Bottleneck

% The relational bottleneck is a manifestation of a deeper principle in

information theory known as the information bottleneck (Tishby et al., 2000)

o An abstract framework in which we seek to produce a maximal compression of input
information that is still sufficient to produce some downstream output

o Mathematically, for an input X and output Y, we produce an optimally compressed variable R

R = {r(z;,z;) p%%‘}?()l(X;R) —BI(Y;R)  r(zy_1,zN)}



A Key Construction: Inner Products

% We can filter out the second-order relational information by converting
specific object representations into the pairs of inner products between them

Q)|

i-a | adab|a¢ a-d
B B b-a |55 B¢ | b-d
= Downstream
b ¢ d j>
I I B . Task
c-a | ¢-b c-C ¢-d

Uy
Ql

Uy
S
Uy
ol

Uy
Uy




Neural Structure Implementations

(A)

C

Emergent Symbol Binding
Network (Webb et al., 2021)
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Isolating perceptual and abstract processing components

e External memory (similar to Episodic Memory)
e Two separate pathways:
e Perceptual: keys & queries

e Abstract: values & controller

Taylor, Webb, et al. "Emergent symbols through binding in external memory." International Conference on Learning Representations (ICLR) 2021.



Neural Structure Implementations
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CoRelNet (Kerg et al., 2022)
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forming a relation matrix
Downstream processing only relies on

the relation matrix

Kerg, Giancarlo, et al. "On neural architecture inductive biases for relational tasks." arXiv preprint arXiv:2206.05056 (2022).



Neural Structure Implementations

(C) Abstractor (Altabaa et al., 2024)
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Altabaa, A. et al. “Abstractors and relational cross-attention: An inductive bias for explicit relational reasoning in Transformers.” ICLR 2024.



Standard Attention Mechanisms in Transformers

- - Relation tensor
ij = {Pq(x0), Pi(x)))
/‘—/> Inner Product
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Standard Attention Mechanisms in Transformers
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Relation tensor

Rij = (g (x), P (7))

X Input Sequence




Standard Attention Mechanisms in Transformers

Relation tensor

Rij = (g (x), P (7))
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= Relational Cross-Attention

Relational
Relation tensor Bottleneck

R;j = (g (xp), Pr (%))

Abstract states e Output embeddings only encode

the relational information without
any semantic information

e Positional symbols

e Position-relative symbols

Input sequence



Standard Attention Mechanisms

Encoder states

Relation tensor
Rij = (¢q(x1), dr (%))
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= Relational Cross-Attention

Encoder states

Relation tensor

Rij = (Pq(x0), P (x;))

Input sequence

Relational

Abstract states

Bottleneck

Relation tensor
Rij = (Pq(x;), P (/)
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Advantages of Relational Bottleneck

e Better out-of-distribution generalization

Identity Rules
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Advantages of Relational Bottleneck

e Data-efficient Learning
e Faster Learning

Random Object Sorting
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No explicit inductive bias

/

Does relational bottleneck emerge in general-purpose neural
architectures (Large Language Models)?



Generic Large Language Models (LLMs) Show Abstract Reasoning Abilities
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"Emergent analogical reasoning in large language models." Nature Human Behaviour 7.9 (2023): 1526-1541.




Emergent Symbolic Processing Mechanism in LLMs

e (Generative Identity Rule Tasks e Pretrained Language Model:
Llama 3.1

70B parameters
Trained on ~15 trillion tokens

K/ K/
LS X4

ixe ks

e Performance:

95% accuracy with 2 in-context
examples

Yang, Yukang, et al. "Emergent symbolic mechanisms support abstract reasoning in large language models." arXiv preprint arXiv:2502.20332 (2025).



Emergent Symbolic Processing Mechanism in LLMs
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Yang, Yukang, et al. "Emergent symbolic mechanisms support abstract reasoning in large language models." arXiv preprint arXiv:2502.20332 (2025).



Emergent Symbolic Processing Mechanism in LLMs
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Yang, Yukang, et al. "Emergent symbolic mechanisms support abstract reasoning in large language models." arXiv preprint arXiv:2502.20332 (2025).



Emergent Symbolic Processing Mechanism in LLMs
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Yang, Yukang, et al. "Emergent symbolic mechanisms support abstract reasoning in large language models." arXiv preprint arXiv:2502.20332 (2025).



Emergent Symbolic Processing Mechanism in LLMs
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Yang, Yukang, et al. "Emergent symbolic mechanisms support abstract reasoning in large language models." arXiv preprint arXiv:2502.20332 (2025).



Layer

Using Causal Mediation Analyses to identify significant heads
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The Relational Bottleneck in the Mind and Brain

% The relational bottleneck can model inductive transitions in early

development

o Ex. children learning to gradually count to ~4 and then rapidly learning to count much higher

o Atransition from memorization — abstraction
% At aneural level, the relational bottleneck may arise as a consequence of
episodic memory (e.g. hippocampus)

o Relates to deeper underlying computational principles of conjunctive versus compositional

coding that could explain the tradeoff between processing and representational efficiency



EM as a Hetero-associative Modern Hopfield Network
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EM as a Hetero-associative Modern Hopfield Network



The Case-Letter Task

Case Outputs: Z = ygcase + (1 _ y)gletter
1 0 0<y<l1
e Grs

|
(lowercase) (uppercase) Output Case, Letter, or Both
Letter Outputs:

bDAaEB bDAaEB

Context Window Query Time



Nonlinearity

.
Linear Softmax ReLU Tanh
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Thank you! Any
questions?



