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• Miracle of deep learning:
👍 Computationally efficient:  automated function approximation

👎 Inflexible:
♦ sample-inefficient
♦ domain-specific

• So where are we?
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“Sweet spot” between flexibility and efficiency

Web Dam Nest Smell Jeopardy Chess Go Navigate

Spider Robin Beaver Dog Watson Deep Blue Alpha Go Tesla Autopilot Human

Human Brain = Existence Proof

How does it accomplish this?
- ~20 watts, often with parallel performance - processing efficiency

- Near limitless range of tasks at adequate performance - flexibility
- With reasonable amounts, and often little or no training - sample efficiency
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– “Neo-connectionist" approaches:
♦ use deep learning for “end-to-end” training of neural networks

♦ inductive biases that favor abstraction 
• training: curricular learning, meta learning 
• architecture & processing: attention, external memory

• Still not there…
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• Usually evaluated by 
capacity for generalization:

• Interpolation 
(out of sample)

• Extrapolation 
(out of distribution)

• recognition of 
structure

• “Cognitive" example…

Abstraction
The search for (low dimensional) structure



Abstraction
The search for (low dimensional) structure

Analogy



Abstraction
The search for (low dimensional) structure

electron is to nucleus         

Analogy



Abstraction
The search for (low dimensional) structure

?electron is to nucleus         earth    is toas   

Analogy

?



Abstraction
The search for (low dimensional) structure

sunelectron is to nucleus         earth    is toas   

Analogy



Abstraction
The search for (low dimensional) structure

sunelectron is to nucleus         earth    is toas   

Analogy



Abstraction
The search for (low dimensional) structure

Jupiterelectron is to nucleus         earth    is toas   

Analogy



Abstraction
The search for (low dimensional) structure

Jupiterelectron is to nucleus         earth    is toas   

Analogy



Abstraction
The search for (low dimensional) structure

Analogy



Abstraction
The search for (low dimensional) structure

electron    :   nucleus       

Analogy



Abstraction
The search for (low dimensional) structure

?electron    :   nucleus       earth      :::   

Analogy



Abstraction
The search for (low dimensional) structure

sunelectron    :   nucleus       earth      :::   

Analogy



Abstraction
The search for (low dimensional) structure

sunelectron    :   nucleus       earth      :::   

Analogy



Abstraction
The search for (low dimensional) structure

Jupiterelectron    :   nucleus       earth      :::   

Analogy



Abstraction
The search for (low dimensional) structure

Jupiterelectron    :   nucleus       earth      :::   

Analogy



Abstraction
The search for (low dimensional) structure

Analogy

Structure Relation Function

Linear

Orbital

y = mx+b

a2 - b2 = c2
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- Neuro-symbolic approach:
- Gaussian process models 

(Schultz et al., Cog Pay 2017)

- must pre-specify basis functions

- Connectionist approach:
- Autoregressive / Iterator (RNN) models 

(Segert & Cohen, TMLR 2022)

- function approximation - accumulation of errors

• What we really want is the 
discovery of symmetry functions…
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• The Search Symmetry:

“It is only slightly overstating the case to say that 
           physics is the study of symmetry”  
                (Anderson, Science 1978)

- It is doing so only a bit more to say so for cognitive science…

- function learning, analogies, stereotypes, schemas ⇒ 

Invariance / equivariance over transformations

- Genuine extrapolation requires the discovery of symmetry

- What inductive bias in learning will promote such discovery?

Abstraction
The search for (low dimensional) structure
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• Symmetries ≈

“relations” that obtain over the fundamental domain of a function,  
 that apply indefinitely (periodically) beyond it

– properly formalized in Group Theory (more on that if there is time)

key point: inducing the learning of relations ➞  
                                                 promote the discovery of symmetries

• Similarities in data are a place to start… (“correlations are all you need”)

Relations as Symmetry
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• Build on use of “external memory” in deep learning networks 
(Neural Turing Machine, Graves et al., 2014)

• External memory:

  Form of  “dictionary” (key-value pairs):

Rapid binding of arbitrary pieces of information
           +
Similarity-based retrieval (e.g., use of inner products)

⇒ implements episodic memory function of 
medial temporal cortex (e.g., hippocampus) 
 (Complementary Memory Systems, McClelland et al., 1995)

• Example…
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v
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Encoder
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Isolation

Isolation + similarity-based retrieval ⇒  
“Relational bottleneck”

Similarity-based Retrieval

Domain-Specific 
Embeddings

Emergent Symbols Through Binding Network (ESBN) 
(Webb et al., ICLR 2021)
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⇒ Genuinely symbolic processing 
using external (episodic memory) 
for variable binding
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External memory for isolation + similarity-based retrieval

 + variable binding

v = f(x, y, z)
⇒ learning of abstract functions

 ⇒ emergence of 
symbolic computation

⇒ relational bottleneck

Broad applicability…

Relational Bottleneck



Principle Applies Across Architectures…
(Webb et al., 2023)



…and Task Domains
Sequential Ordering 

(Altabaa, Webb, Cohen & Lafferty, 2023)

Prediction and Planning
(Giallanza, Campbell & Cohen, 2023)

Visual Relational Reasoning
(Mondal, Cohen & Webb, ICML 2023)
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Relational Bottleneck
and

Self-Reconfiguration

Symbolic  
Modeling

Neural 
Networks

Two critical ingredients:



•Formal analysis of learning speed vs. processing efficiency 
  (Musslick, Saxe et al., 2017)
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•Formal analysis of learning speed vs. processing efficiency 
  (Musslick, Saxe et al., 2017)

Rational Self-Reconfiguration

(training time)2 α
(multitasking capacit y)

(%shared representations)

•Bayesian optimal process model 
  (Sagiv, Musslick & Cohen, 2018)

•Deep learning applications 
(Ravi, Musslick & Cohen, under review)



Big Picture…
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Natural Intelligence
Symbolic  
Computing

Neural 
Networks

•Computational neuropsychiatry 
•Cognitively informed agent-based models  
• [Explainable AI] 
•Autonomous artificial agents 
•More humane-machine interactions…


