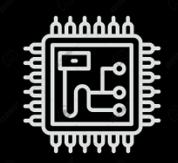
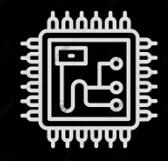
Abstraction: Symbolic Processing in the Brain



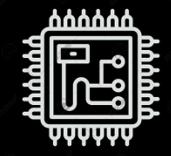
• Miracle of traditional symbolic computing:

- Le Computationally general: maximum flexibility
 - existence proof of flexibility of human cognitive ability

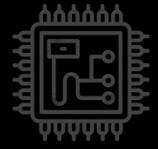


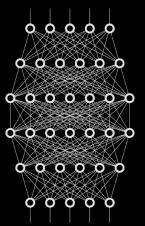
• Miracle of traditional symbolic computing:

- Computationally general: maximum flexibility
 - existence proof of flexibility of human cognitive ability
- Inefficient and/or difficult to configure for complex domains
 - vision, natural language

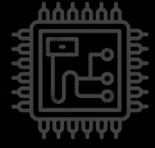


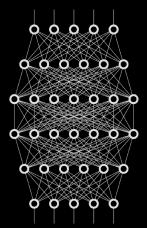
- Miracle of traditional symbolic computing:
 - Computationally general: maximum flexibility
 - existence proof of flexibility of human cognitive ability
 - Inefficient and/or difficult to configure for complex domains
 - vision, natural language
- Miracle of deep learning:
 - Computationally efficient: automated function approximation



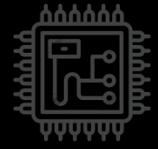


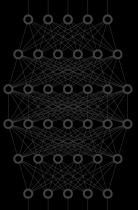
- Miracle of traditional symbolic computing:
 - Computationally general: maximum flexibility
 - existence proof of flexibility of human cognitive ability
 - Inefficient and/or difficult to configure for complex domains
 - vision, natural language
- Miracle of deep learning:
- Computationally efficient: automated function approximation
- Inflexible:
 - sample-inefficient
 - domain-specific

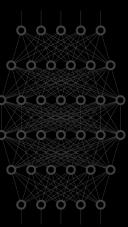




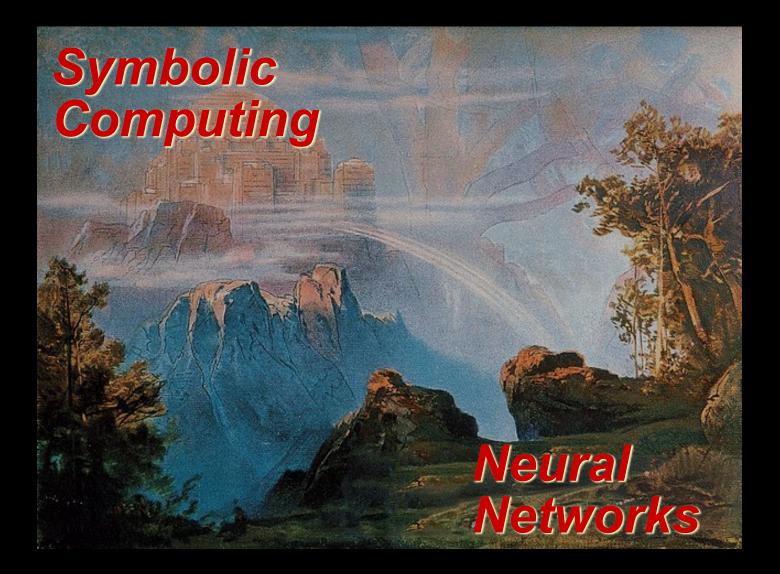
- Miracle of traditional symbolic computing:
 - **Computationally general: maximum flexibility**
 - existence proof of flexibility of human cognitive ability
- Miracle of deep learning:
 - **Computationally efficient: automated function approximation**
- So where are we?

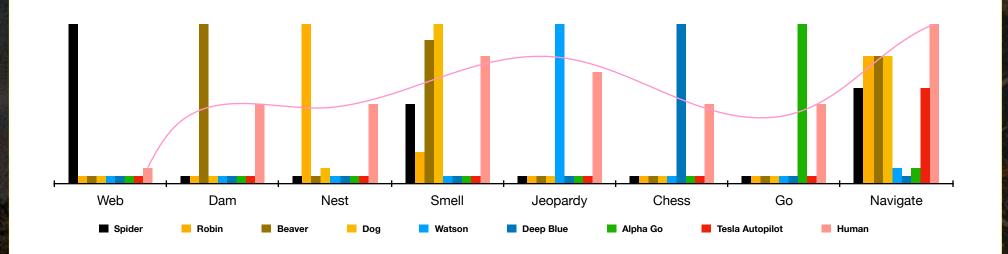


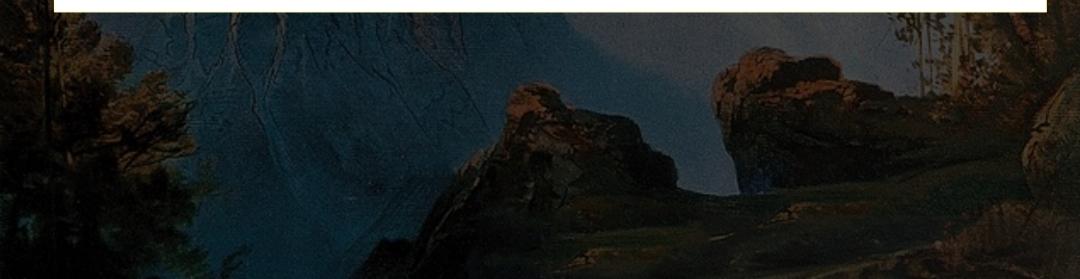


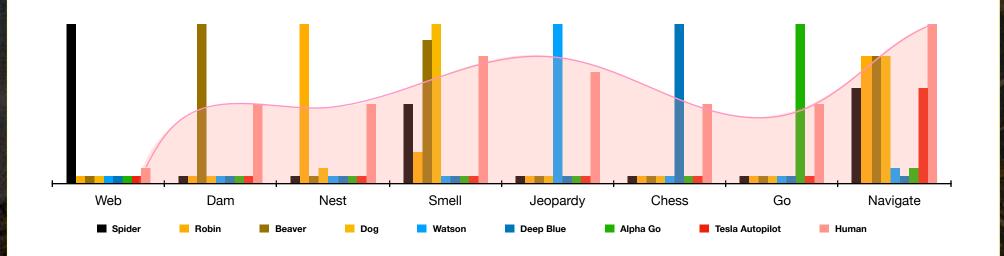


Clash of the Titans



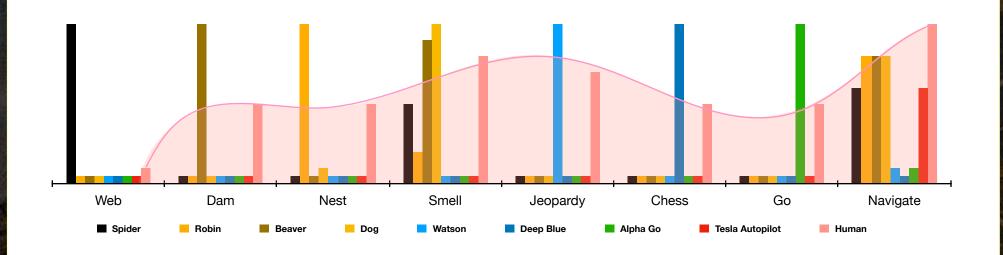






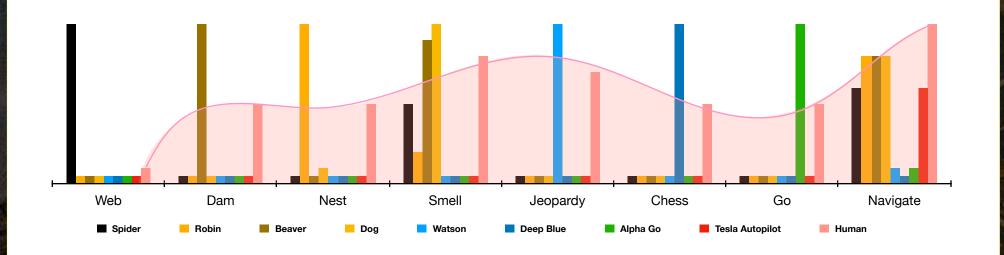
"Sweet spot" between flexibility and efficiency

- Near limitless range of tasks at adequate performance - flexibility



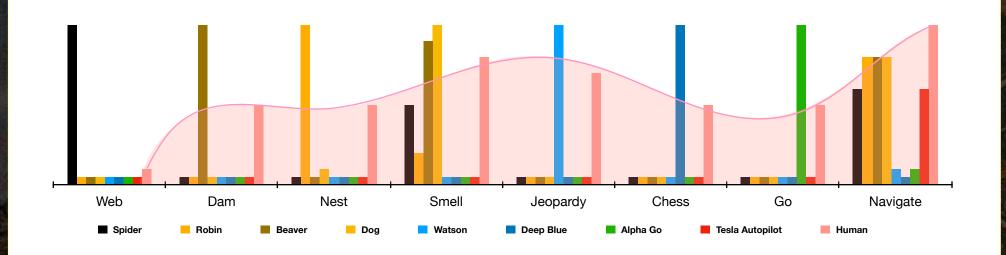
"Sweet spot" between flexibility and efficiency

- With reasonable amounts, and often little or no training - sample efficiency



"Sweet spot" between flexibility and efficiency

- ~20 watts, often with parallel performance - processing efficiency



How does it accomplish this?

• Challenge:

- Integrate *flexibility* of symbolic processing in traditional architectures
- with efficiency of function approximation in neural networks

• Current efforts:

- Neuro-symbolic approaches:
 - <u>start</u> with pre-specified <u>symbolic primitives</u> ("core knowledge")
 - use <u>deep learning</u> to <u>combine these</u> (e.g., "program induction")

• Current efforts:

- "Neo-connectionist" approaches:

use <u>deep learning</u> for "<u>end-to-end</u>" training of neural networks

• Current efforts:

– "Neo-connectionist" approaches:

inductive biases that favor abstraction

- training: curricular learning, meta learning
- architecture & processing: attention, external memory

• Still not there...

Neural Networks.

Symbolic Modeling

Abstraction and Autonomy

Neural Networks.

Symbolic Modeling

Symbolic Modeling

Self-Reconfiguration

Neural Networks

Relational Bottleneck and

Neural

Networks.

Symbolic Modeling

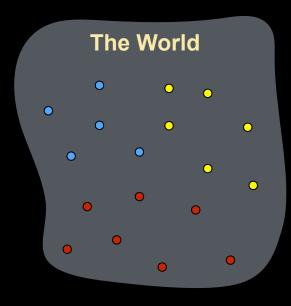
The search for (low dimensional) structure

• Usually evaluated by capacity for generalization:

Abstraction The search for (low dimensional) structure

 Usually evaluated by capacity for generalization:

• Train (experience)

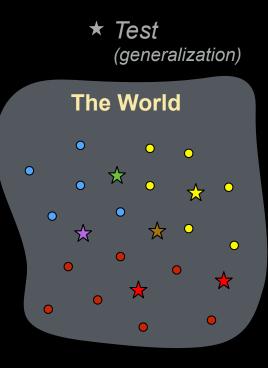


Abstraction The search for (low dimensional) structure

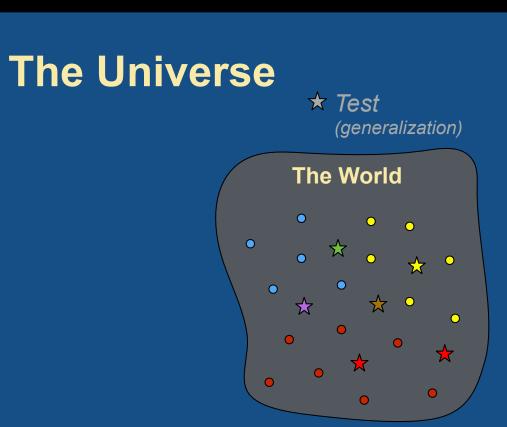
• Usually evaluated by capacity for generalization:

Test \star (generalization) The World \bigcirc 0 \bigcirc 0 \bigstar 0 0 \star 0 0 \mathbf{O} \star \mathbf{O} \bigstar \mathbf{O} igodol0 \bigstar \mathbf{x} 0 0 igodol

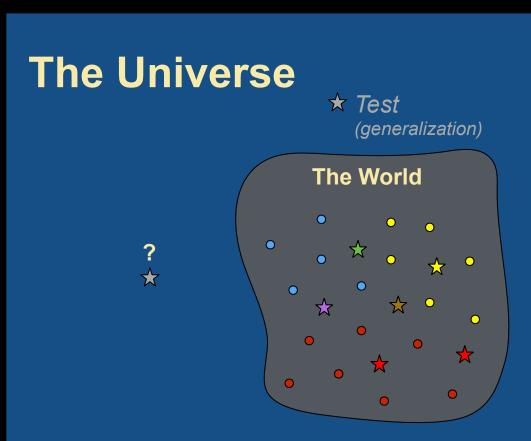
- Usually evaluated by capacity for generalization:
 - Interpolation (out of sample)



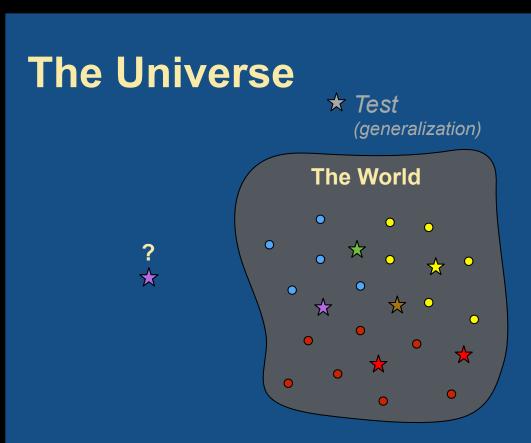
- Usually evaluated by capacity for generalization:
 - Interpolation (out of sample)



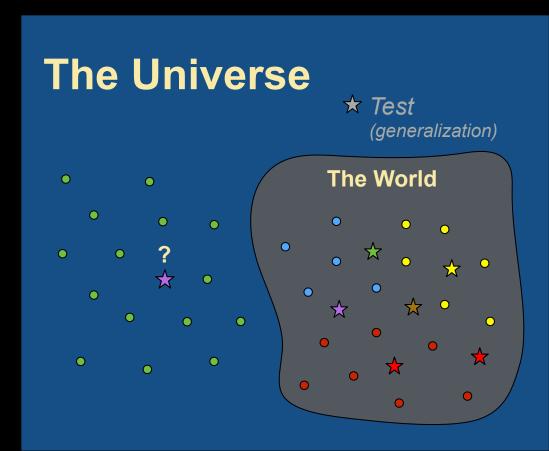
- Usually evaluated by capacity for generalization:
 - Interpolation (out of sample)
 - Extrapolation (out of distribution)



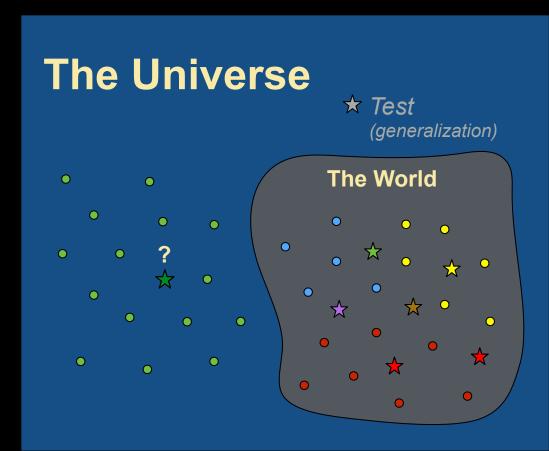
- Usually evaluated by capacity for generalization:
 - Interpolation (out of sample)
 - Extrapolation (out of distribution)



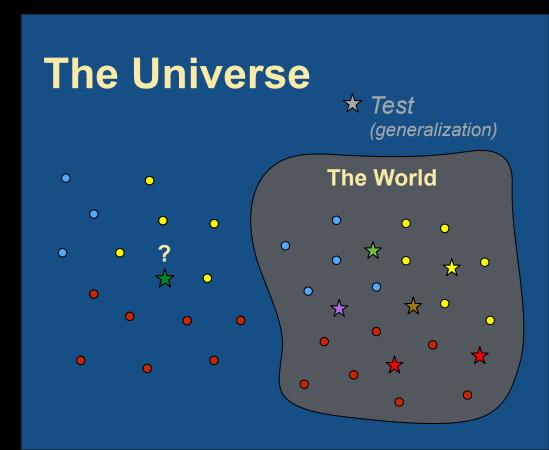
- Usually evaluated by capacity for generalization:
 - Interpolation (out of sample)
 - Extrapolation (out of distribution)



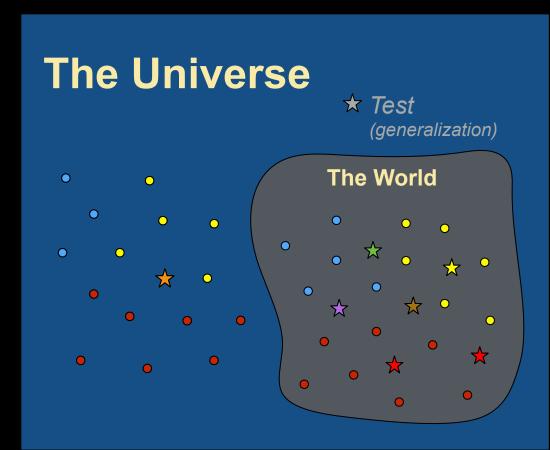
- Usually evaluated by capacity for generalization:
 - Interpolation (out of sample)
 - Extrapolation (out of distribution)



- Usually evaluated by capacity for generalization:
 - Interpolation (out of sample)
 - Extrapolation (out of distribution)

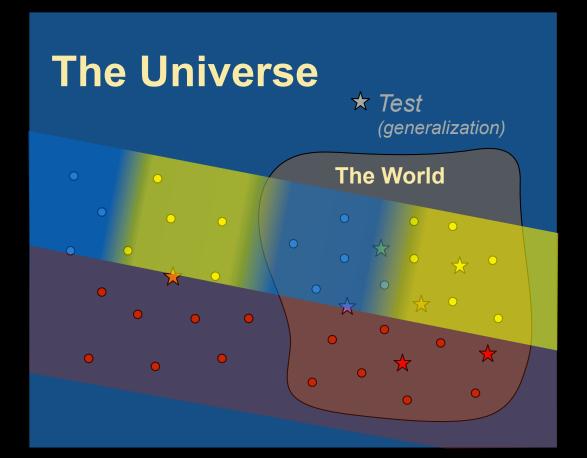


- Usually evaluated by capacity for generalization:
 - Interpolation (out of sample)
 - Extrapolation (out of distribution)

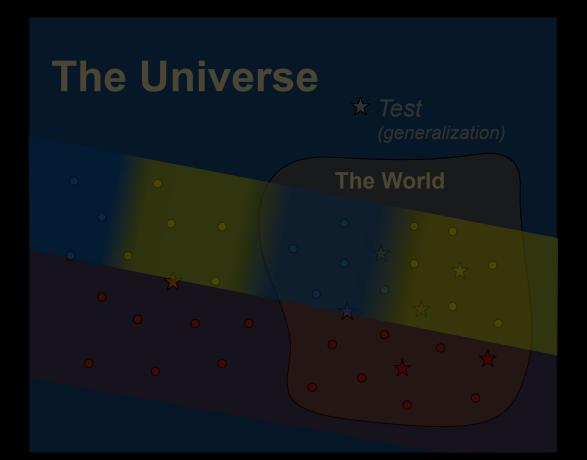


The search for (low dimensional) structure

- Usually evaluated by capacity for generalization:
 - Interpolation (out of sample)
 - Extrapolation (out of distribution)
 - recognition of structure



- Usually evaluated by capacity for generalization:
 - Interpolation (out of sample)
 - Extrapolation (out of distribution)
 - recognition of structure
 - "Cognitive" example...



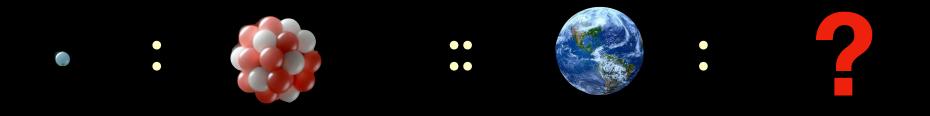
The search for (low dimensional) structure

The search for (low dimensional) structure

electron *is to* nucleus

The search for (low dimensional) structure

Analogy



electron *is to* nucleus *as* earth *is to* ?

The search for (low dimensional) structure

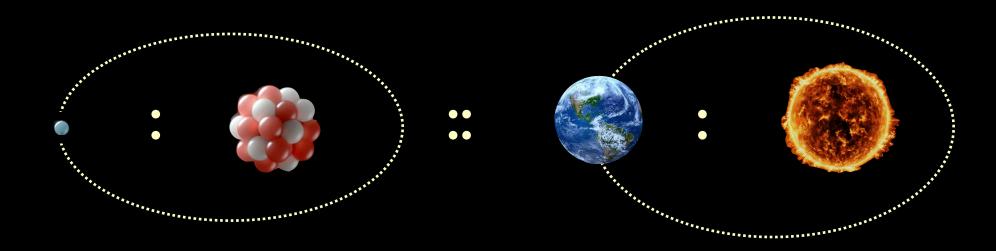
Analogy



electron *is to* nucleus *as* earth *is to SUN*

The search for (low dimensional) structure

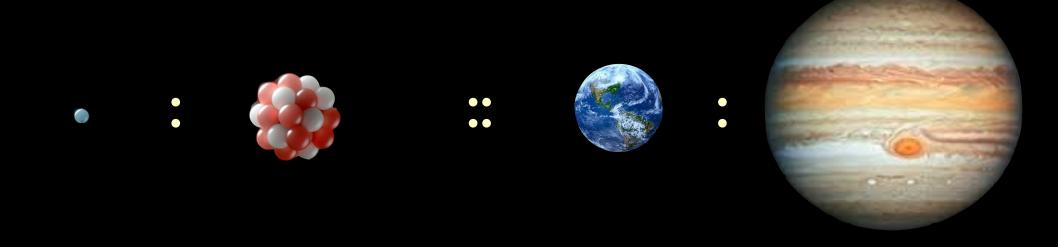
Analogy



electron *is to* nucleus *as* earth *is to SUN*

The search for (low dimensional) structure

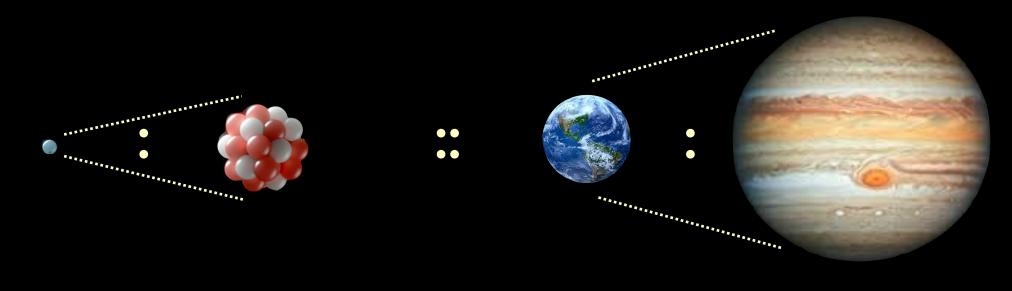
Analogy



electron *is to* nucleus *as* earth *is to Jupiter*

The search for (low dimensional) structure

Analogy



electron *is to* nucleus *as* earth *is to Jupiter*

The search for (low dimensional) structure

The search for (low dimensional) structure

electron : nucleus

The search for (low dimensional) structure

electron : nucleus :: earth : ?

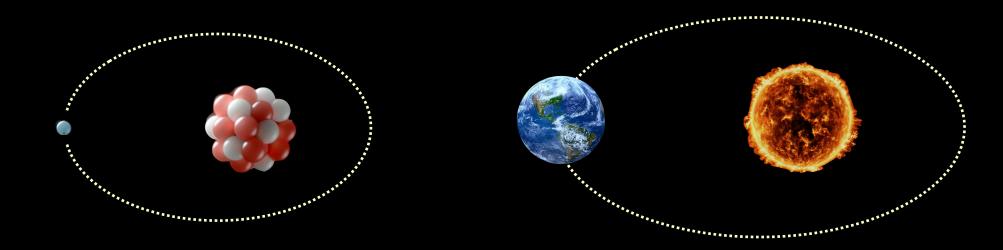
The search for (low dimensional) structure

Analogy

electron : nucleus :: earth : SUN

The search for (low dimensional) structure

Analogy



electron : nucleus :: earth : SUN

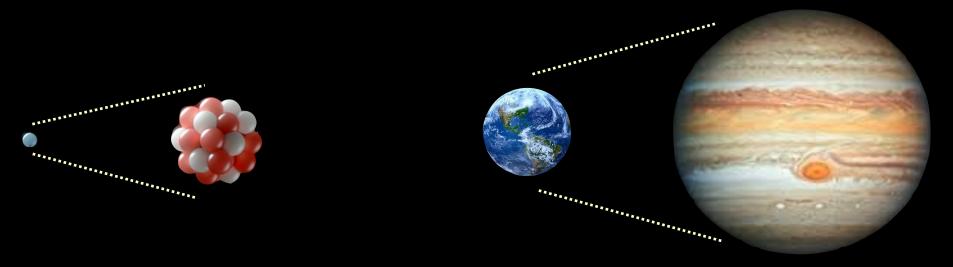
The search for (low dimensional) structure

Analogy

electron : nucleus :: earth : Jupiter

The search for (low dimensional) structure

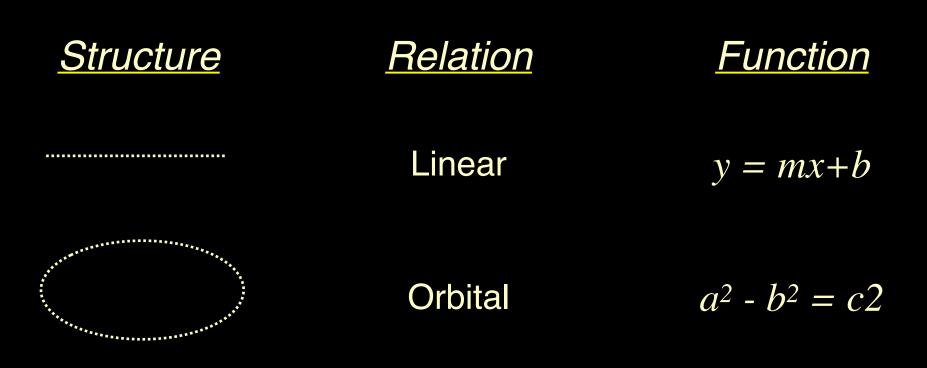
Analogy

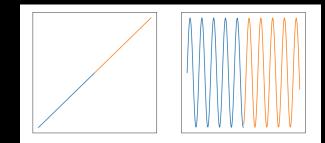


electron : nucleus :: earth : Jupiter

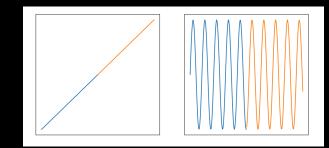
The search for (low dimensional) structure

Analogy

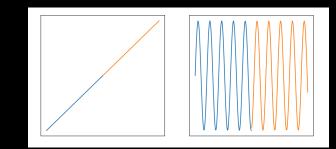




• Function learning and extrapolation

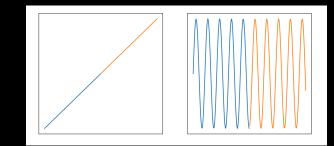


- Function learning and extrapolation
 - Neuro-symbolic approach:
 - Gaussian process models (Schultz et al., Cog Pay 2017)
 - must pre-specify basis functions



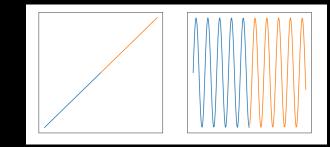
• Function learning and extrapolation

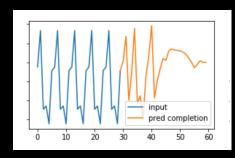
- Neuro-symbolic approach:
 - Gaussian process models (Schultz et al., Cog Pay 2017)
 - must pre-specify basis functions
- Connectionist approach:
 - Autoregressive / Iterator (RNN) models (Segert & Cohen, TMLR 2022)



Function learning and extrapolation

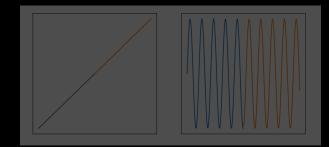
- Neuro-symbolic approach:
 - Gaussian process models (Schultz et al., Cog Pay 2017)
 - must pre-specify basis functions
- Connectionist approach:
 - Autoregressive / Iterator (RNN) models (Segert & Cohen, TMLR 2022)
 - function *approximation* accumulation of errors

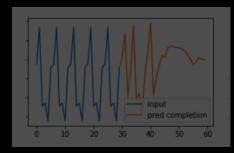




• Function learning and extrapolation

- Neuro-symbolic approach:
 - Gaussian process models (Schultz et al., Cog Pay 2017)
 - must pre-specify basis functions
- Connectionist approach:
 - Autoregressive / Iterator (RNN) models (Segert & Cohen, TMLR 2022)
 - function <u>approximation</u> accumulation of errors
- What we really want is the discovery of *symmetry* functions...





The search for (low dimensional) structure

The search for (low dimensional) structure

• The Search Symmetry:

"It is only slightly overstating the case to say that physics is the study of symmetry" (Anderson, Science 1978)

The search for (low dimensional) structure

• The Search *Symmetry:*

"It is only slightly overstating the case to say that physics is the study of symmetry" (Anderson, Science 1978)

- It is doing so only a bit more to say so for cognitive science...

The search for (low dimensional) structure

• The Search Symmetry:

"It is only slightly overstating the case to say that physics is the study of symmetry" (Anderson, Science 1978)

- It is doing so only a bit more to say so for cognitive science...
- function learning, analogies, stereotypes, schemas ⇒
 Invariance / equivariance over transformations

The search for (low dimensional) structure

• The Search Symmetry:

"It is only slightly overstating the case to say that physics is the study of symmetry" (Anderson, Science 1978)

- It is doing so only a bit more to say so for cognitive science...
- function learning, analogies, stereotypes, schemas ⇒
 Invariance / equivariance over transformations
- Genuine extrapolation requires the discovery of symmetry

The search for (low dimensional) structure

• The Search Symmetry:

"It is only slightly overstating the case to say that physics is the study of symmetry" (Anderson, Science 1978)

- It is doing so only a bit more to say so for cognitive science...
- function learning, analogies, stereotypes, schemas ⇒
 Invariance / equivariance over transformations
- Genuine extrapolation requires the discovery of symmetry
- What inductive bias in learning will promote such discovery?

• Symmetries ≈

"relations" that obtain over the fundamental domain of a function, that apply indefinitely (periodically) beyond it

• Symmetries ≈

"relations" that obtain over the fundamental domain of a function, that apply indefinitely (periodically) beyond it

– properly formalized in Group Theory (more on that if there is time)

• Symmetries ≈

"relations" that obtain over the fundamental domain of a function, that apply indefinitely (periodically) beyond it

– properly formalized in Group Theory (more on that if there is time)

key point: inducing the *learning of relations* → promote the *discovery of symmetries*

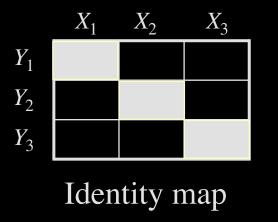
• Symmetries ≈

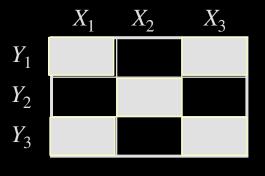
"relations" that obtain over the fundamental domain of a function, that apply indefinitely (periodically) beyond it

– properly formalized in Group Theory (more on that if there is time)

key point: inducing the *learning of relations* → promote the *discovery of symmetries*

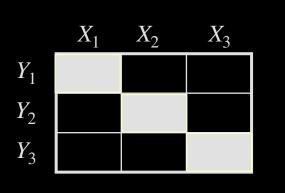
• Similarities in data are a place to start... ("correlations are all you need")



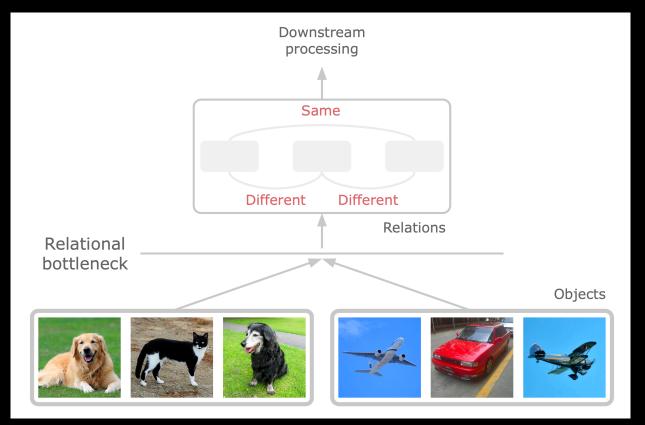


Sequence map (for ABA)

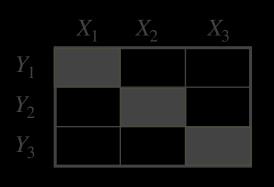
Relational Bottleneck



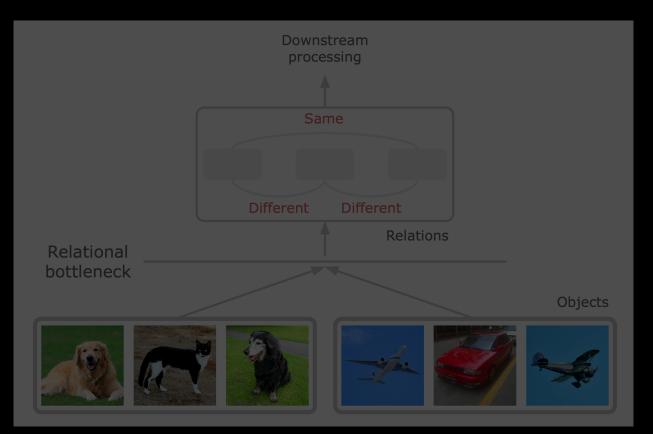
Identity map



Relational Bottleneck



Identity map



How do we build this in a neural network?

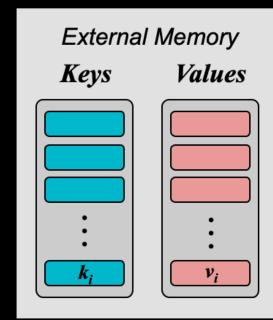
• Build on use of "external memory" in deep learning networks (Neural Turing Machine, Graves et al., 2014)

• Build on use of "external memory" in deep learning networks (Neural Turing Machine, Graves et al., 2014)

• External memory:

Form of "dictionary" (key-value pairs):

Bindings

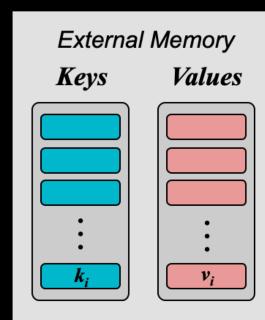


• Build on use of "external memory" in deep learning networks (Neural Turing Machine, Graves et al., 2014)

• External memory:

Form of "dictionary" (key-value pairs): Rapid binding of arbitrary pieces of information + Similarity-based retrieval (e.g., use of inner products)

Bindings



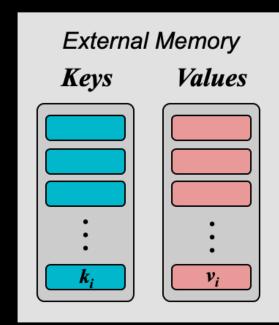
• Build on use of "external memory" in deep learning networks (Neural Turing Machine, Graves et al., 2014)

• External memory:

Form of "dictionary" (key-value pairs): Rapid binding of arbitrary pieces of information + Similarity-based retrieval (e.g., use of inner products)

⇒ implements episodic memory function of medial temporal cortex (e.g., hippocampus) (Complementary Memory Systems, McClelland et al., 1995)

Bindings



• Build on use of "external memory" in deep learning networks (Neural Turing Machine, Graves et al., 2014)

• External memory:

Form of "dictionary" (key-value pairs): Rapid binding of arbitrary pieces of information + Similarity-based retrieval (e.g., use of inner products)

⇒ implements episodic memory function of medial temporal cortex (e.g., hippocampus) (Complementary Memory Systems, McClelland et al., 1995)

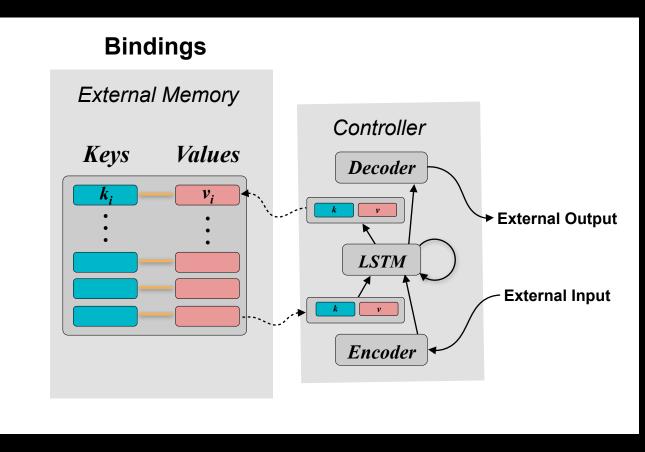
External MemoryKeysValuesImage: state of the stat

Bindings

• Example...

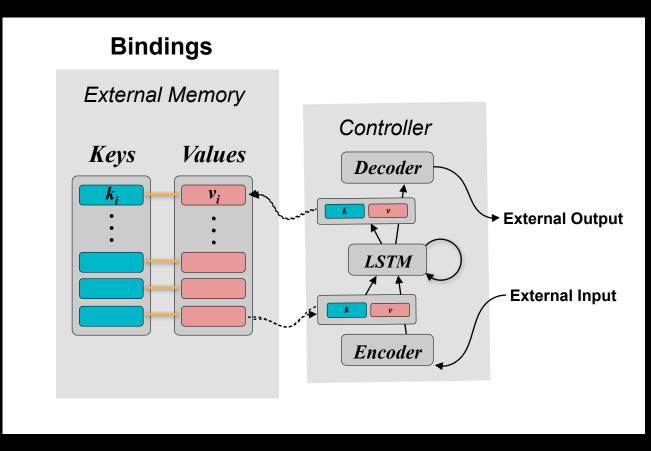
Neural Turning Machine (NTN)

(Graves et al., 2014)



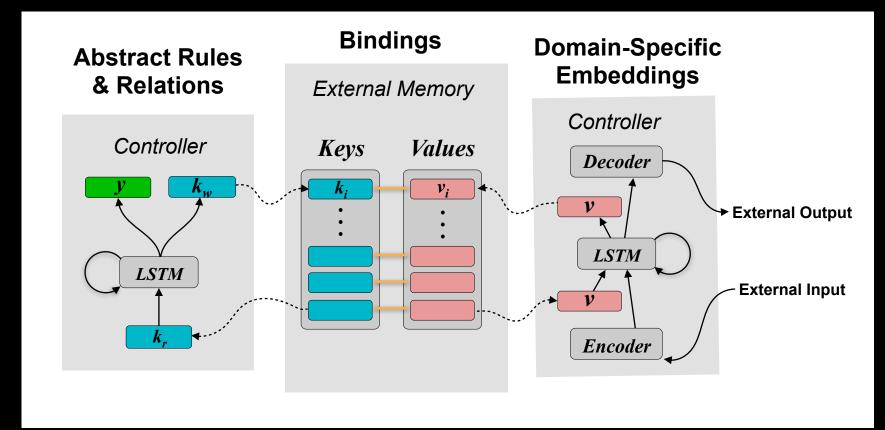
Emergent Symbols Through Binding Network (ESBN)

(Webb et al., ICLR 2021)



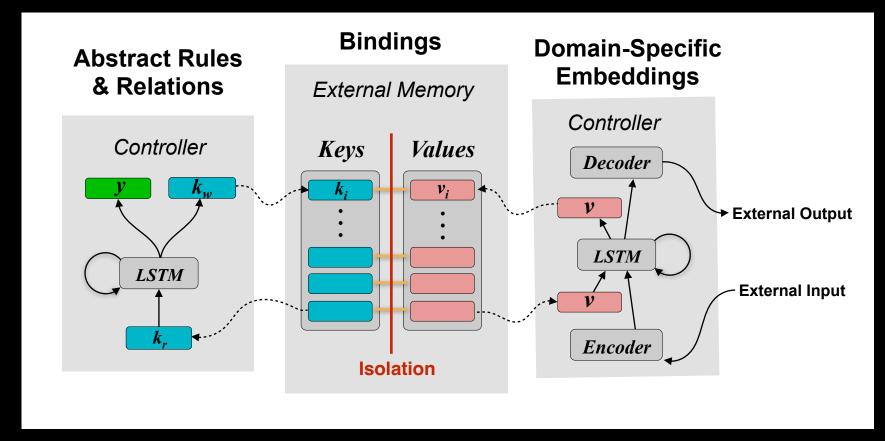
Emergent Symbols Through Binding Network (ESBN)

(Webb et al., ICLR 2021)



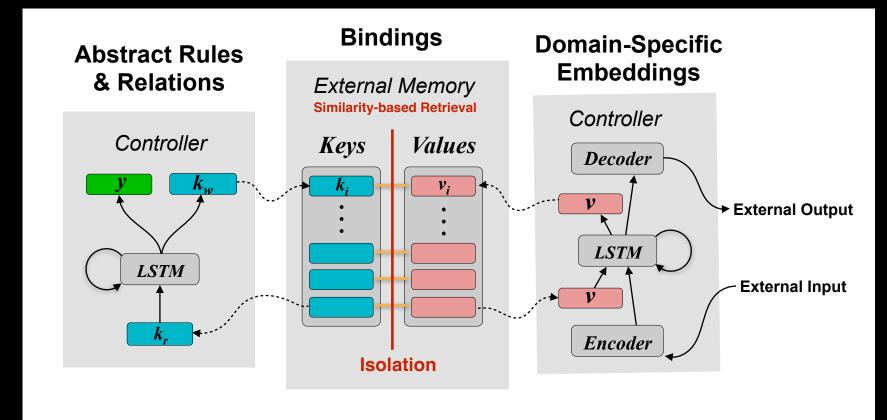
Emergent Symbols Through Binding Network (ESBN)

(Webb et al., ICLR 2021)



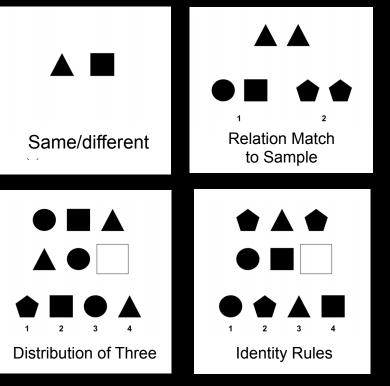
Emergent Symbols Through Binding Network (ESBN)

(Webb et al., ICLR 2021)



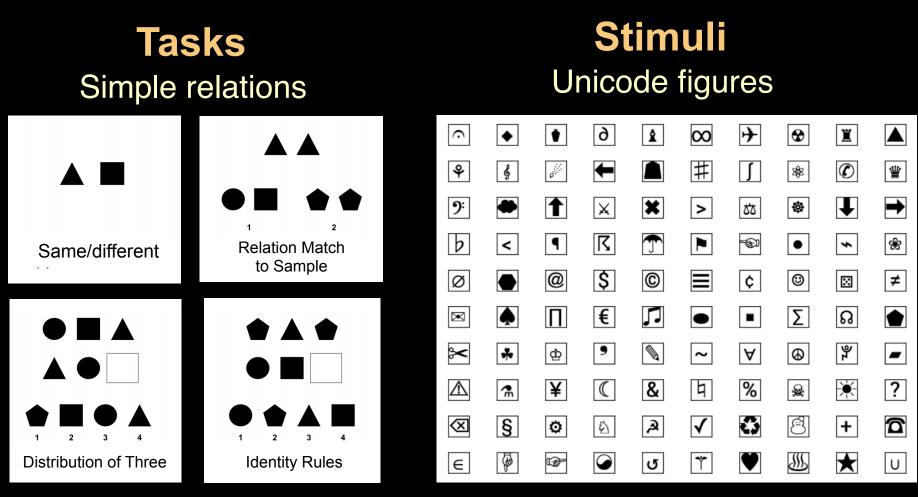
Isolation + similarity-based retrieval ⇒ "Relational bottleneck"

Tasks Simple relations



from Ravens Progressive Matrices

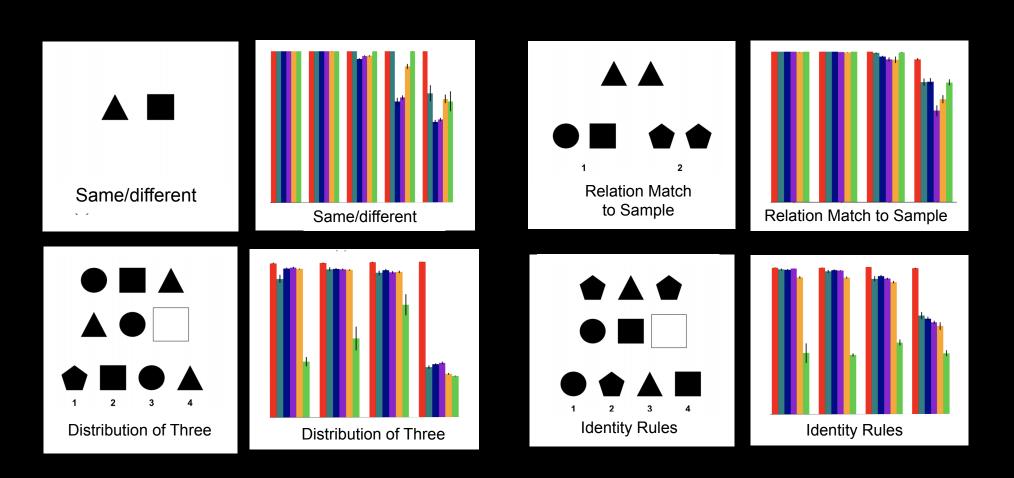
ESBN: Training (Webb et al., 2021)



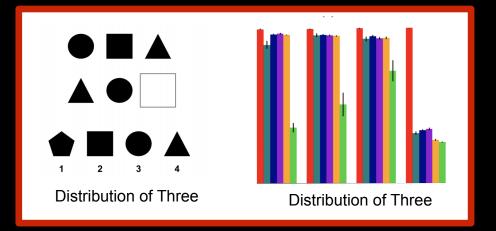
from Ravens Progressive Matrices

ESBN: Results

(Webb et al., 2021)



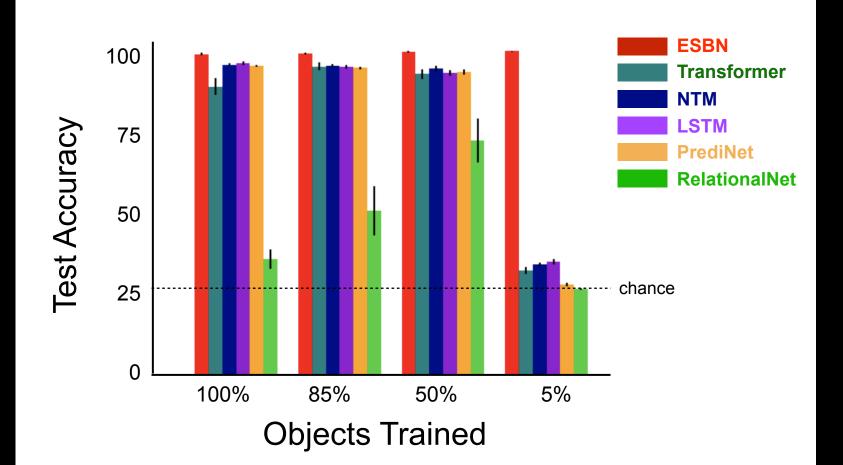
(Webb et al., 2021)

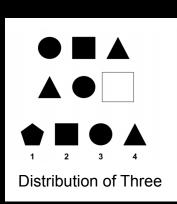


ESBN: Results

(Webb et al., 2021)

Extrapolation Performance

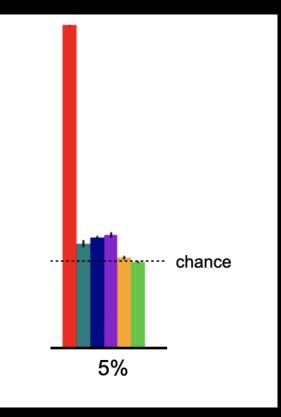




(Webb et al., 2021)

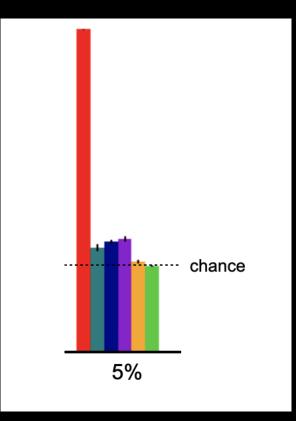
Extrapolation Performance

 Trained on *fewest number of items* needed to *exemplify the rule*



Extrapolation Performance

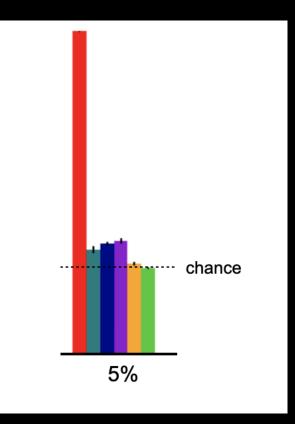
Can extrapolate use of rule to any set of items it can encode



(Webb et al., 2021)

Extrapolation Performance

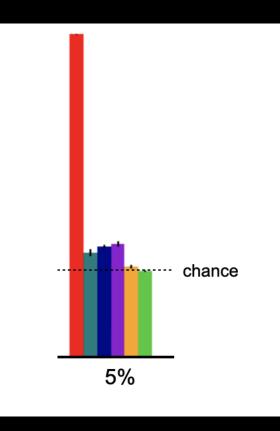
Learns single set of keys (roles) used for any set of items (fillers)



(Webb et al., 2021)

Extrapolation Performance

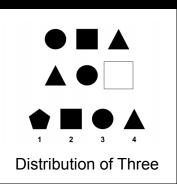
⇒ Genuinely symbolic processing using external (episodic memory) for variable binding

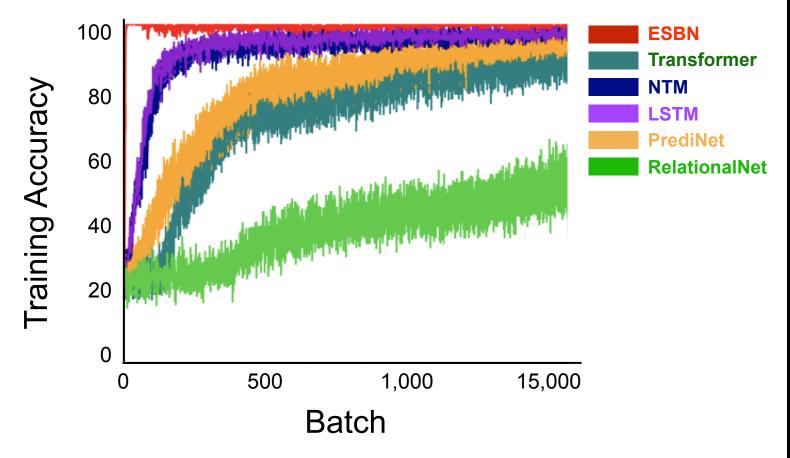


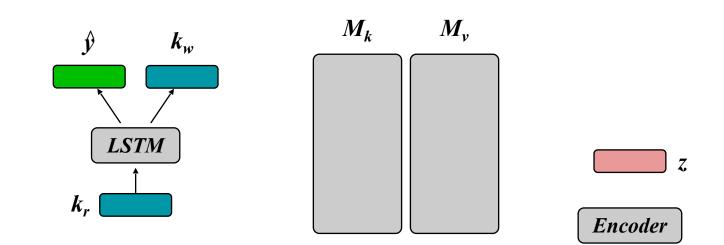
ESBN: Results

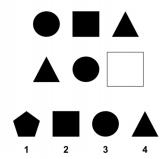
(Webb et al., 2021)

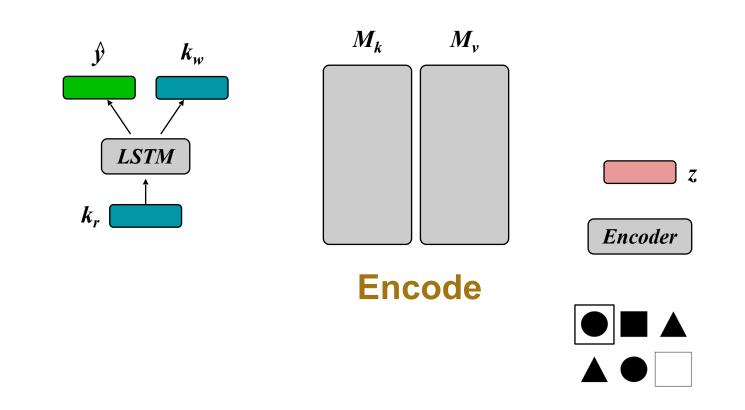
Sample Efficiency

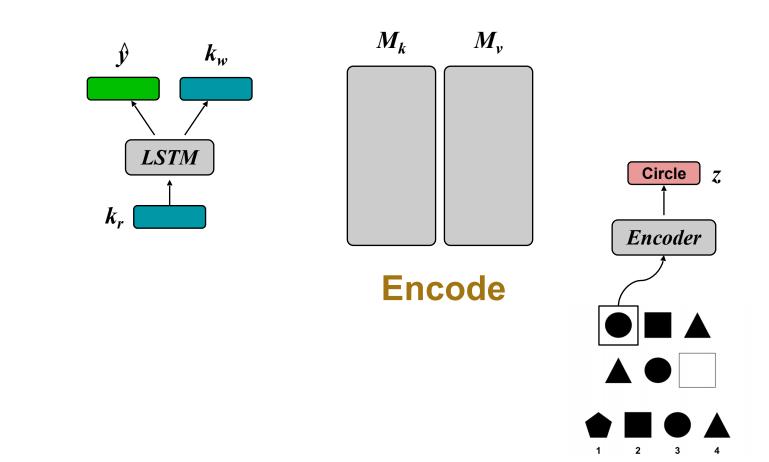


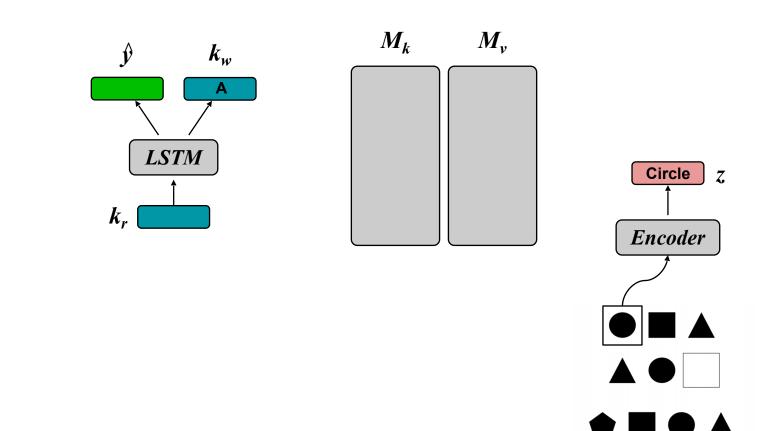




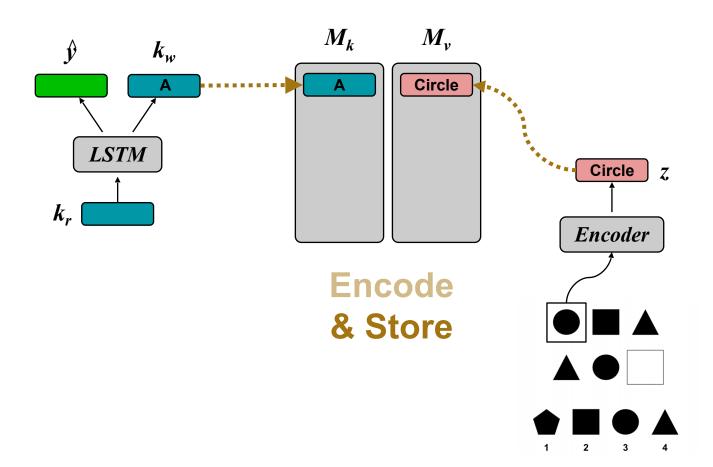


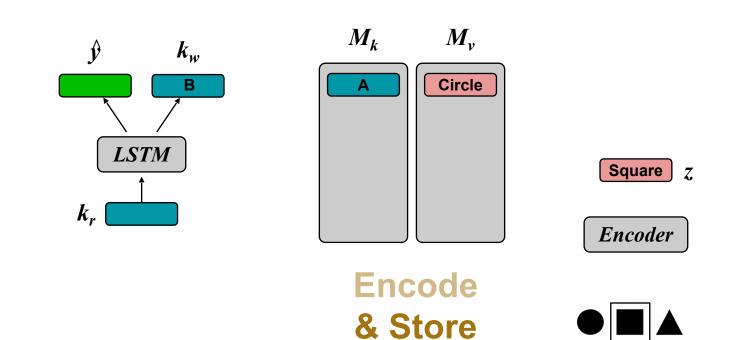


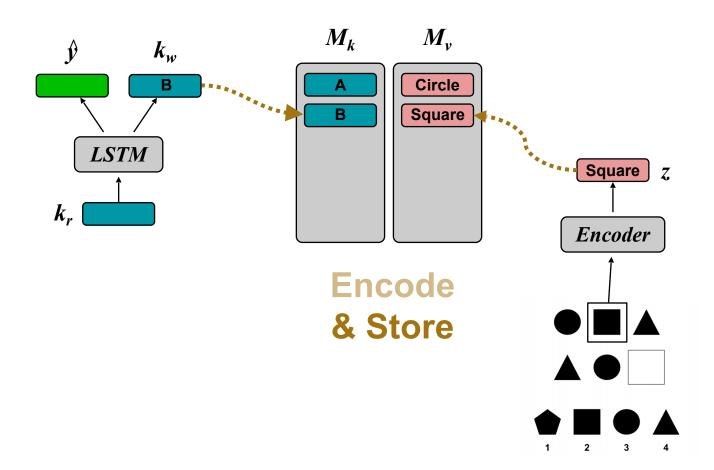


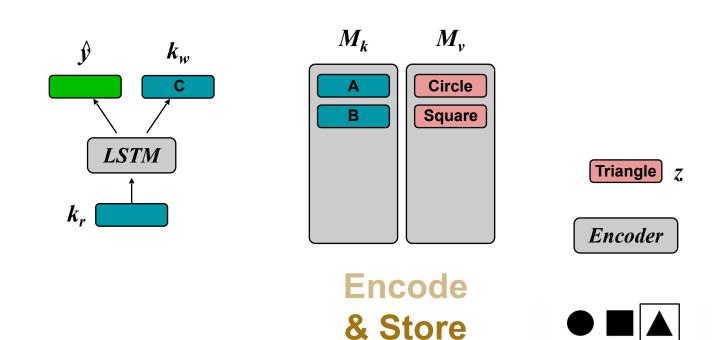


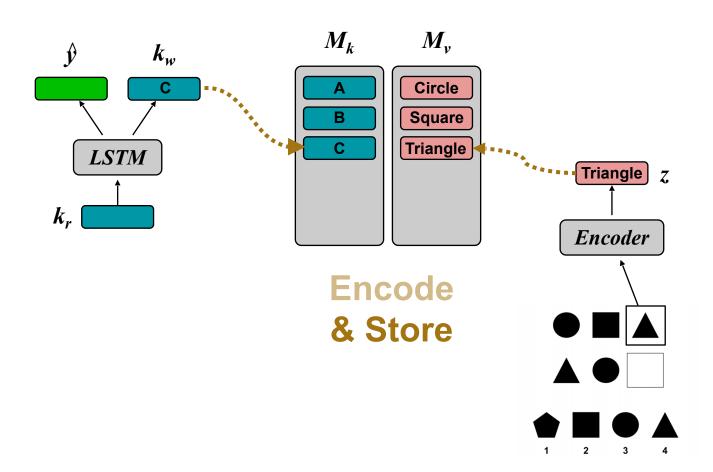
1 2 3 4

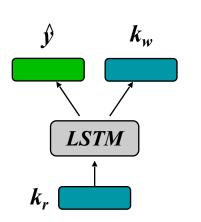


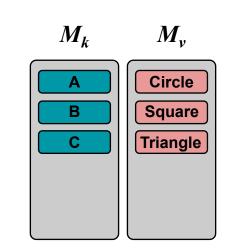




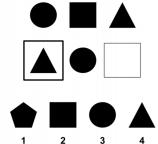


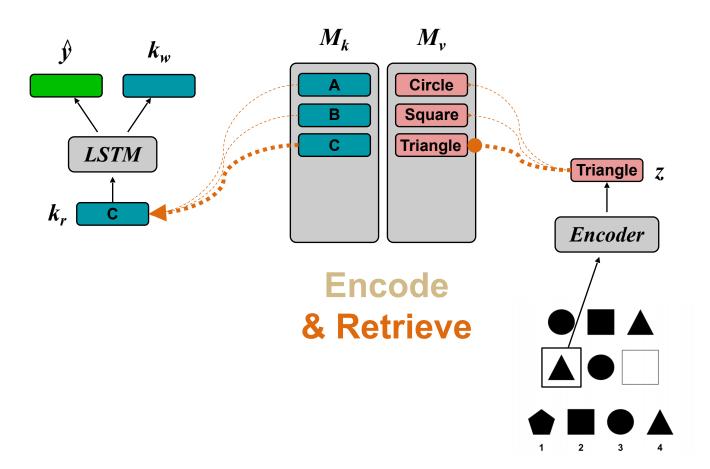


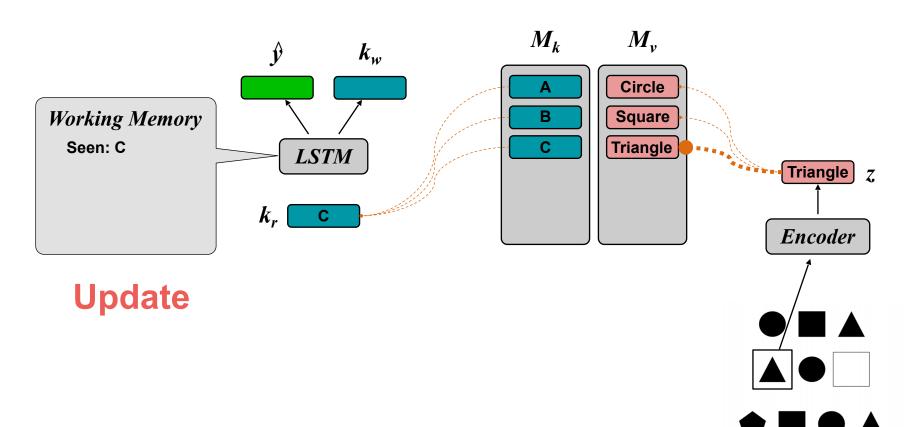




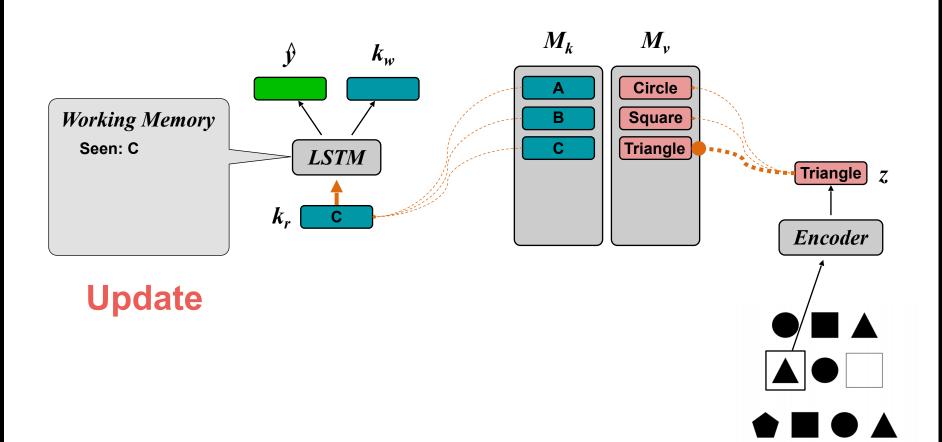
Encode & Retrieve

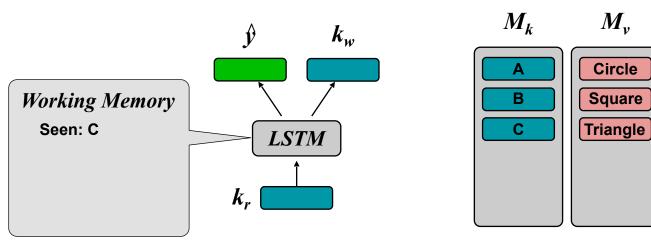






1 2 3 4



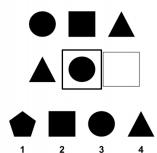


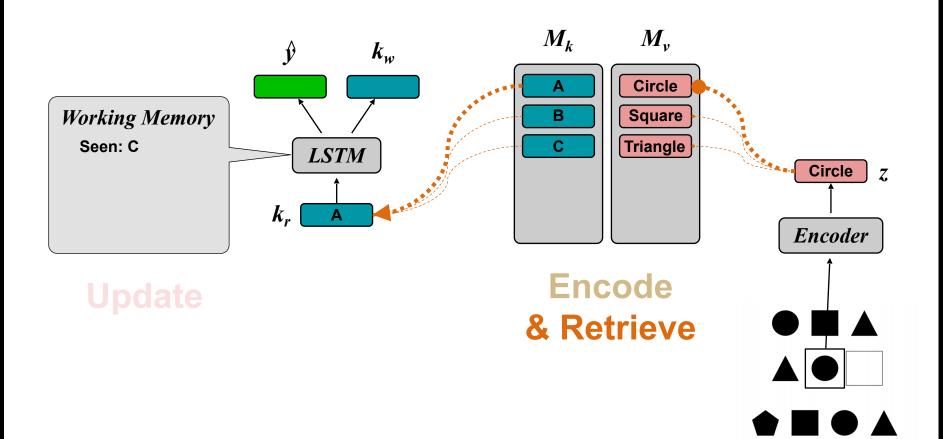
(Circle	Z

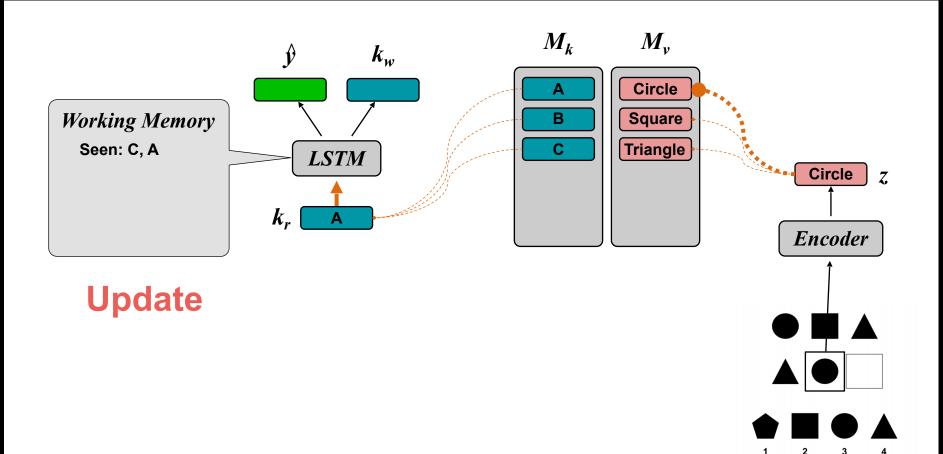
Encoder

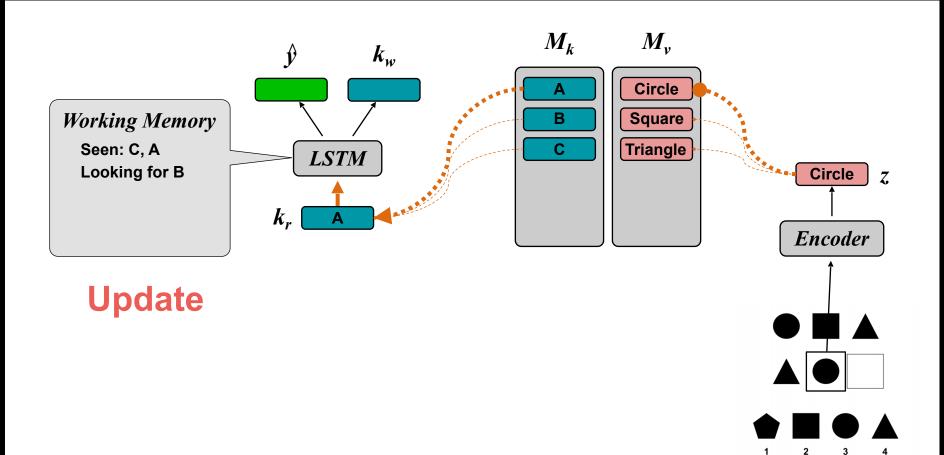
Update

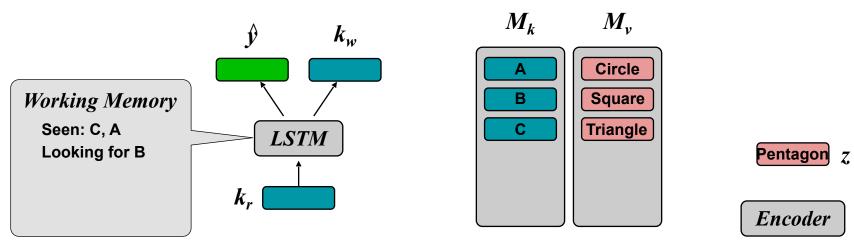
Encode & Retrieve





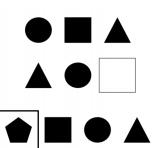




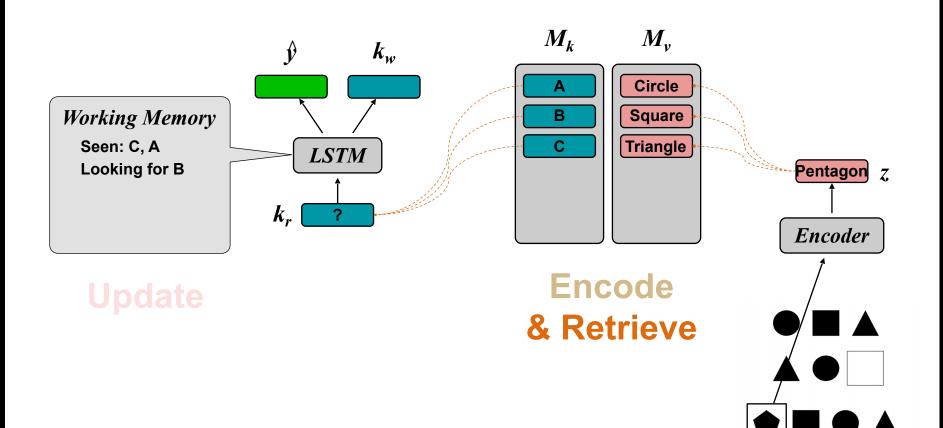


Update

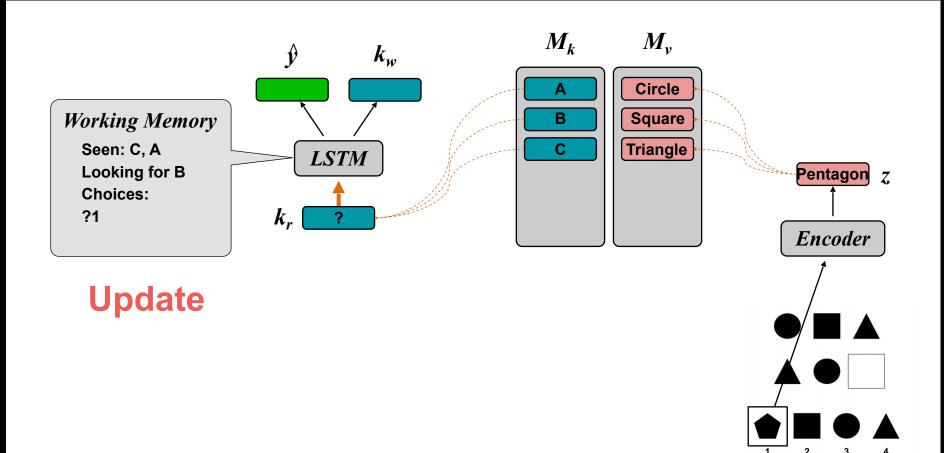
Encode & Retrieve

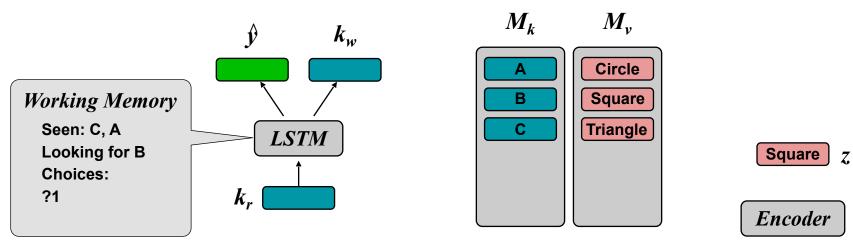


2



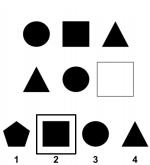
2

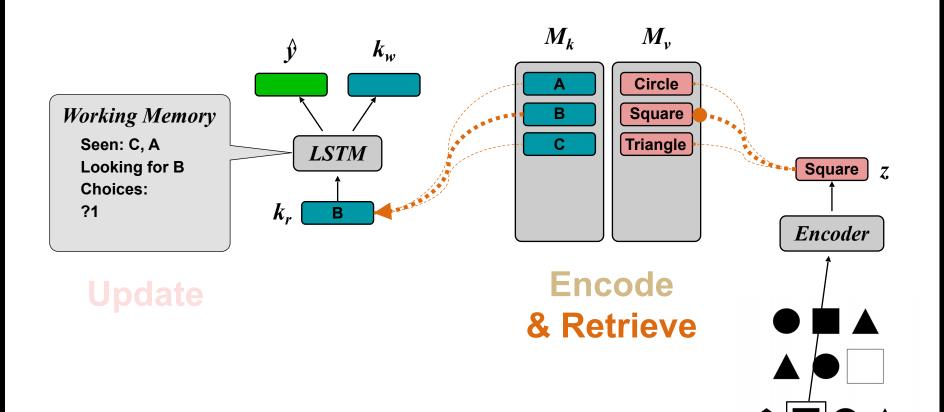


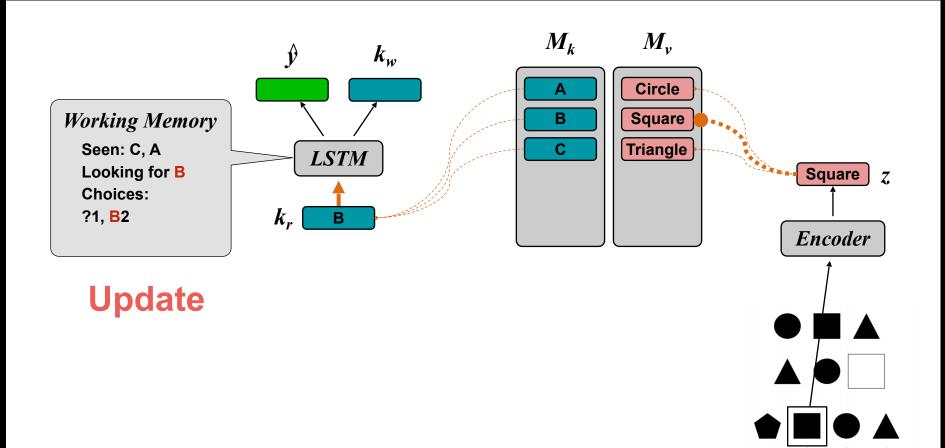


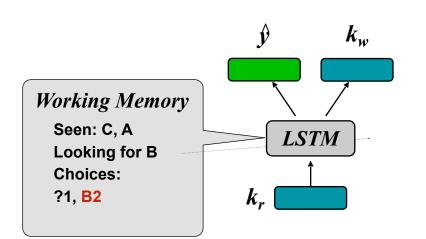
Update

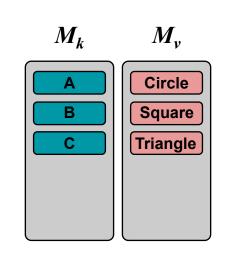
Encode & Retrieve

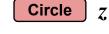








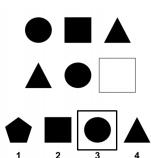


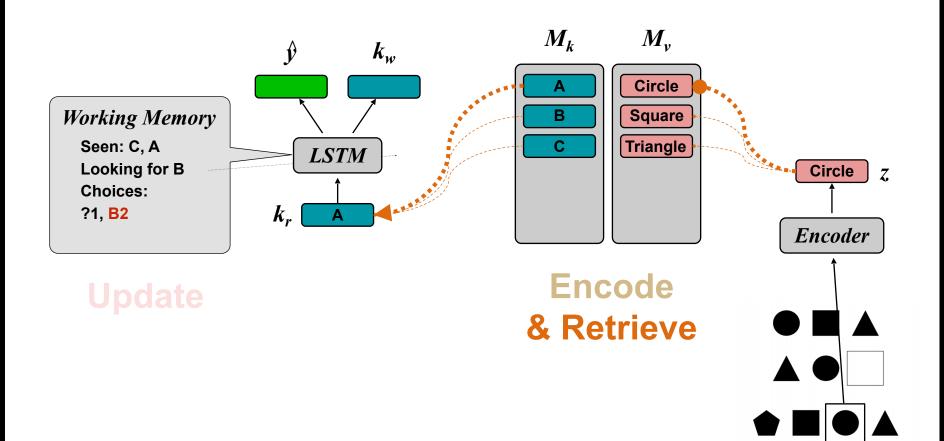


Encoder

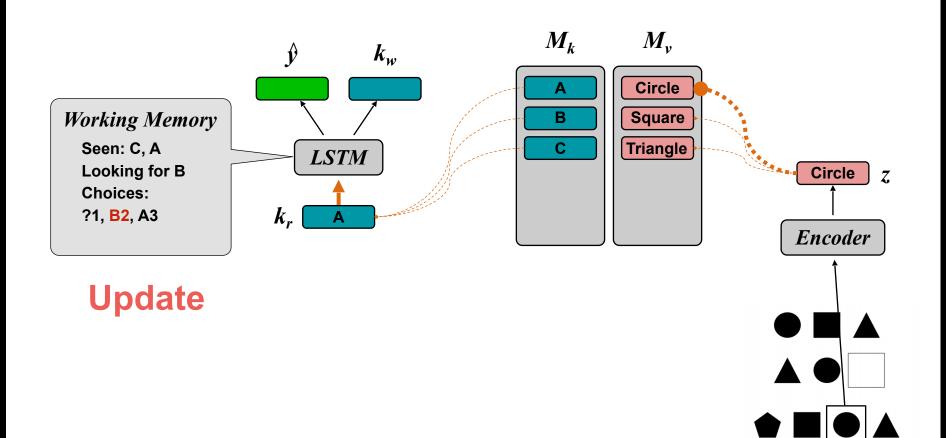
Update

Encode & Retrieve

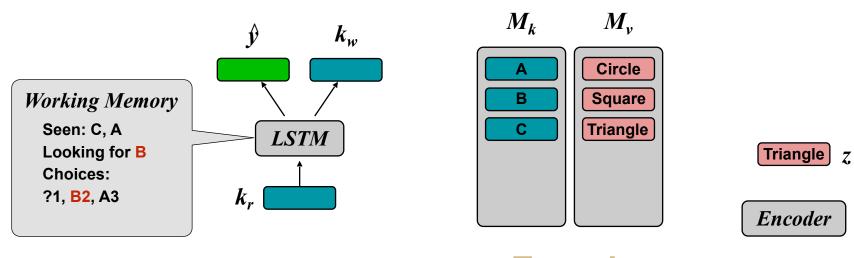




2

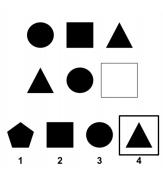


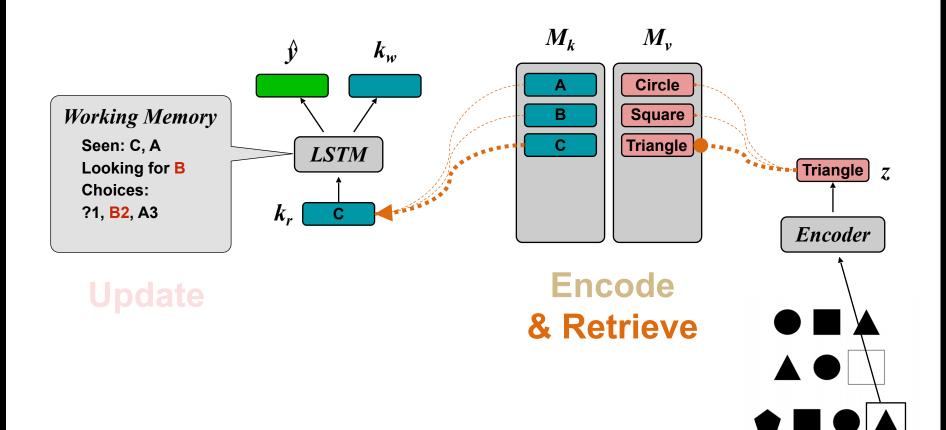
2

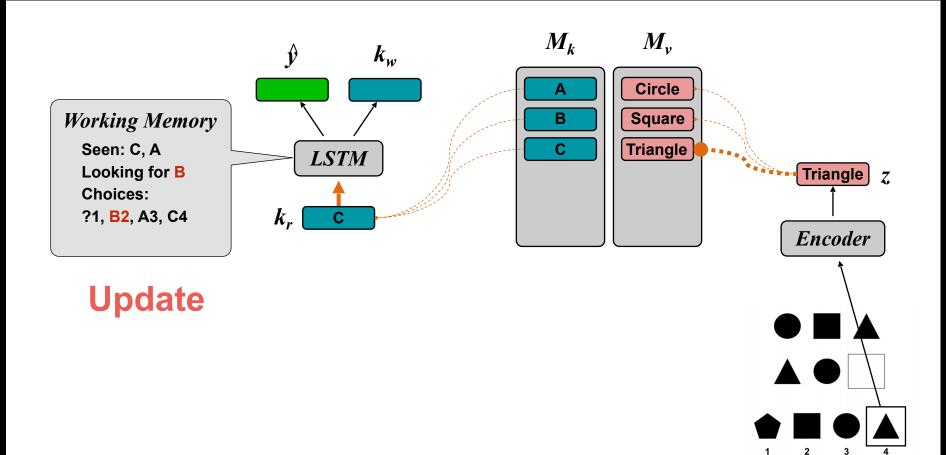


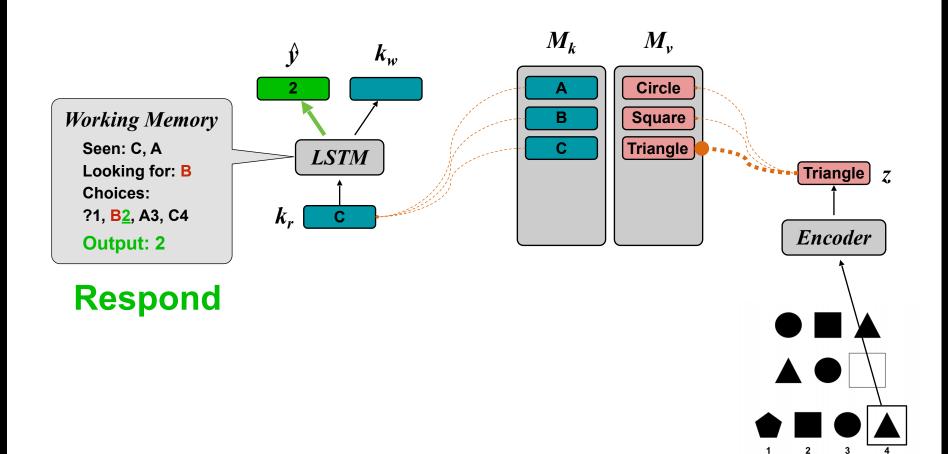
Update

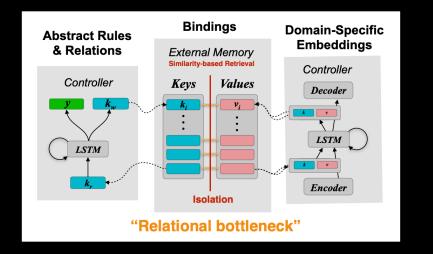
Encode & Retrieve



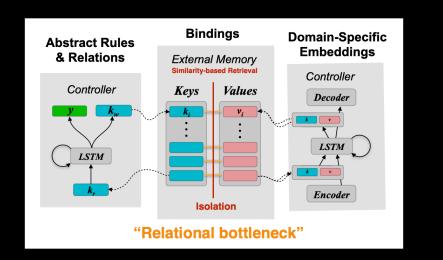




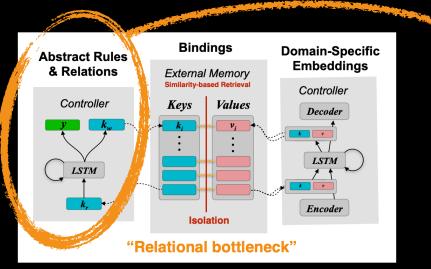


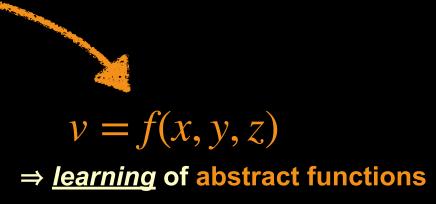


External memory for isolation + similarity-based retrieval ⇒ relational bottleneck

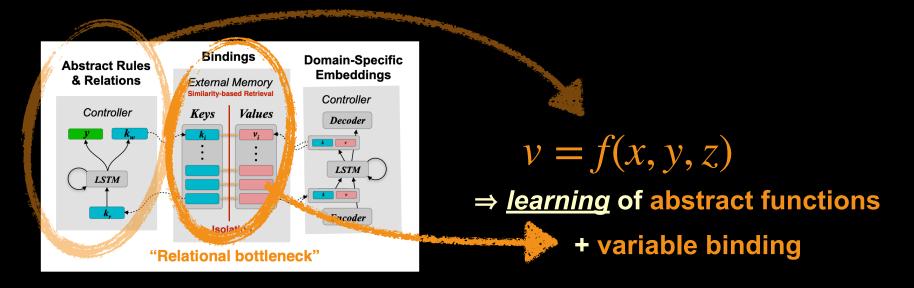


External memory for isolation + similarity-based retrieval ⇒ relational bottleneck

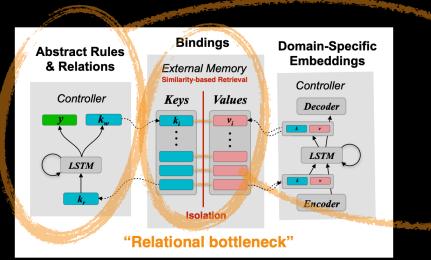




External memory for isolation + similarity-based retrieval ⇒ relational bottleneck

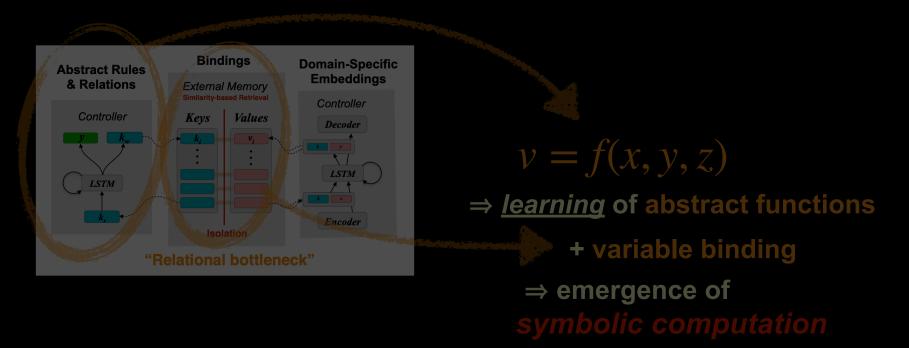


External memory for isolation + similarity-based retrieval ⇒ relational bottleneck



v = f(x, y, z) ⇒ <u>learning</u> of abstract functions + variable binding ⇒ emergence of symbolic computation

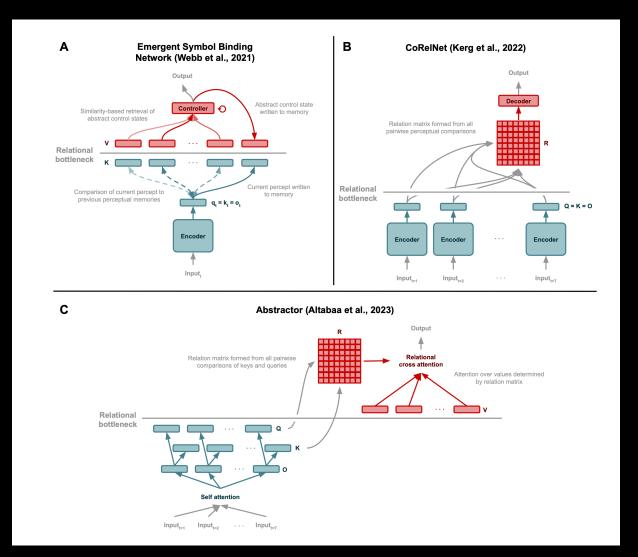
External memory for isolation + similarity-based retrieval ⇒ relational bottleneck



Broad applicability...

Principle Applies Across Architectures...

(Webb et al., 2023)



...and Task Domains

5

5

00

 \mathfrak{s}

 \mathfrak{s}

ßßß

Visual Relational Reasoning

(Mondal, Cohen & Webb, ICML 2023)

Category 2

00

ED DI

0

 \bigcirc

0

0¢

SVRT

Category 1

0

0

2

D

Q.

B

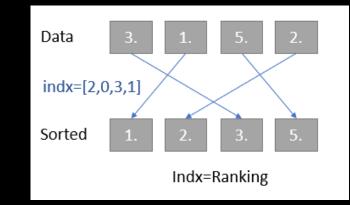
B

20

ART

Sequential Ordering

(Altabaa, Webb, Cohen & Lafferty, 2023)



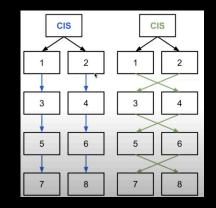
Prediction and Planning

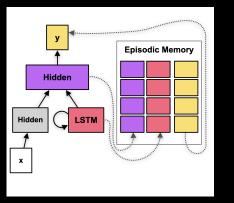
 \diamond

 \diamond

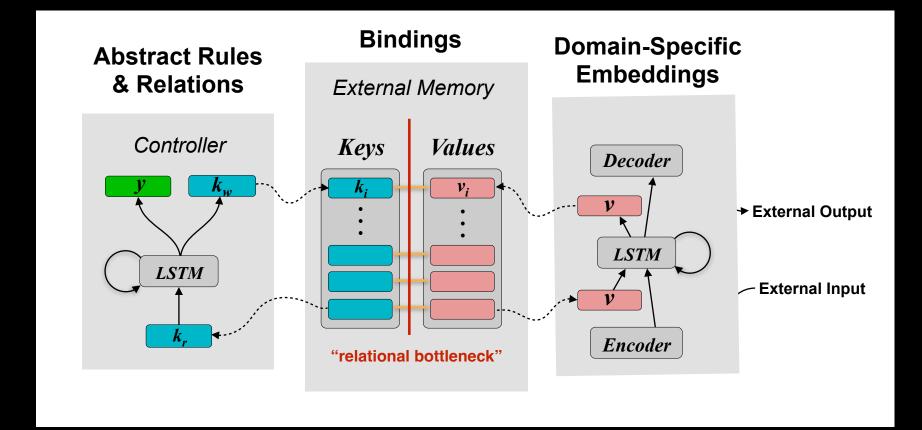
 $\diamond \diamond \diamond$

(Giallanza, Campbell & Cohen, 2023)

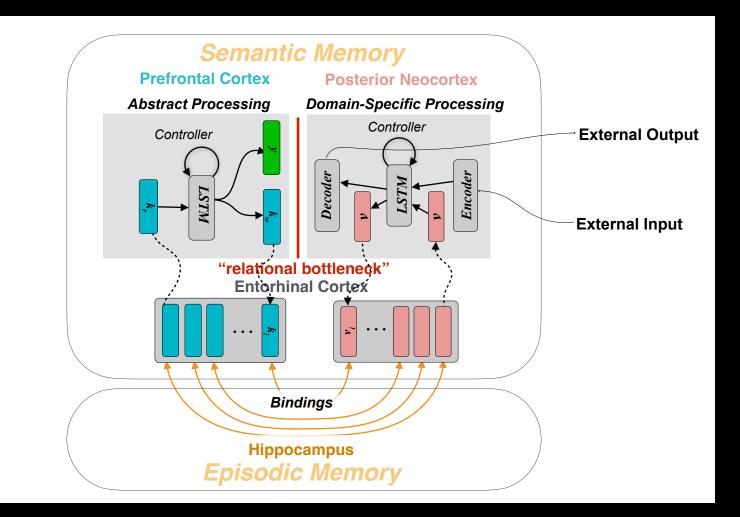




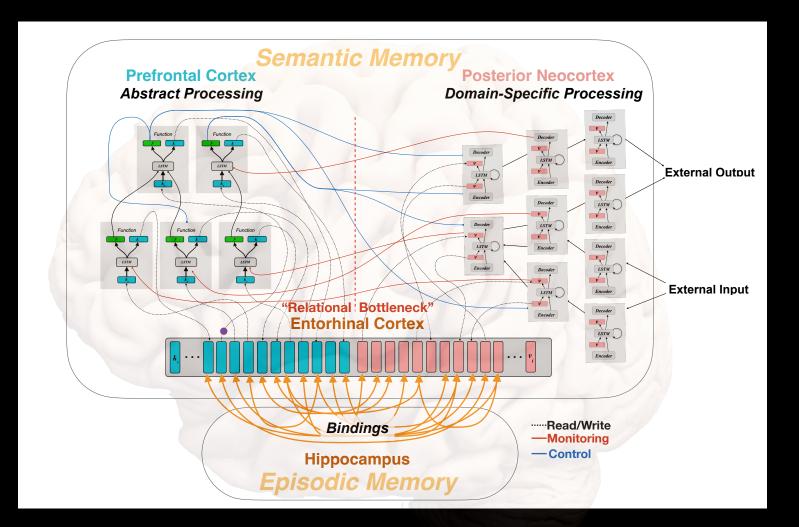
Comports with Architecture of the Brain



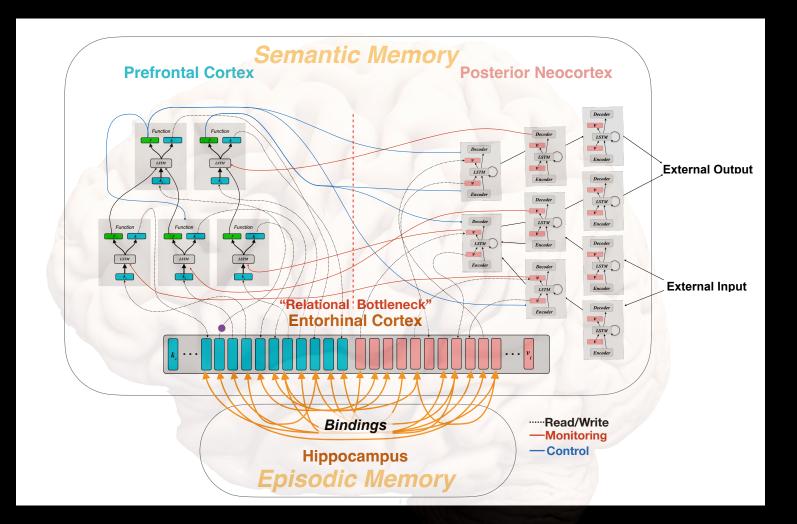
Relational Bottleneck in the Brain



Relational Bottleneck in the Brain



Relational Bottleneck in the Brain



Two critical ingredients:

Symbolic Modeling

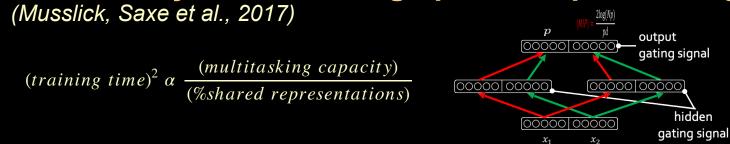
Self-Reconfiguration

Neural

Networks

Rational Self-Reconfiguration

• Formal analysis of learning speed vs. processing efficiency

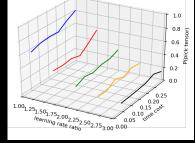


Rational Self-Reconfiguration

Formal analysis of learning speed vs. processing efficiency

 (Musslick, Saxe et al., 2017) (training time)² α (multitasking capacity) (%shared representations)
 • Bayesian optimal process model (Sagiv, Musslick & Cohen, 2018)

$$\mathbb{E}_{B}[R|t] = \sum_{i=1}^{\min\{N,K\}} \mathbb{P}(\alpha = i) \sum_{j=0}^{i-1} \mathbb{P}_{B}(\text{success on task } j)(1 - jC)$$
$$\mathbb{E}_{T}[R|t] = \sum_{i=1}^{\min\{N,K\}} \mathbb{P}(\alpha = i) \sum_{j=0}^{i-1} \mathbb{P}_{T}(\text{success on task } j)(1)$$

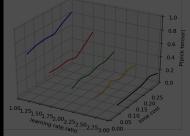


Rational Self-Reconfiguration

Formal analysis of learning speed vs. processing efficiency

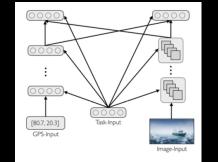
(Musslick, Saxe et al., 2017) $(training time)^2 \alpha \frac{(multitasking capacity)}{(\% shared representations)}$ • Bayesian optimal process model (Sagiv, Musslick & Cohen, 2018)

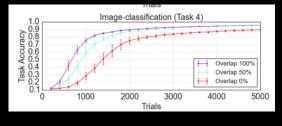
$$\mathbb{E}_{B}[R|t] = \sum_{i=1}^{\min\{N,K\}} \mathbb{P}(\alpha = i) \sum_{j=0}^{i-1} \mathbb{P}_{B}(\text{success on task } j)(1 - jC)$$
$$\mathbb{E}_{T}[R|t] = \sum_{i=1}^{\min\{N,K\}} \mathbb{P}(\alpha = i) \sum_{j=0}^{i-1} \mathbb{P}_{T}(\text{success on task } j)(1)$$



• Deep learning applications

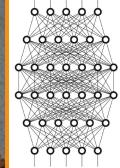
(Ravi, Musslick & Cohen, under review)





Big Picture...

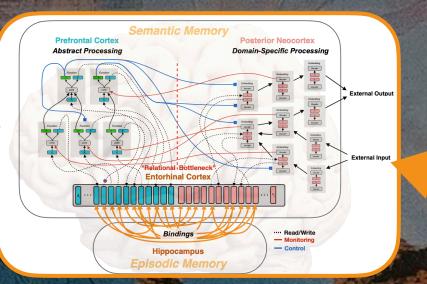
Symbolic Computing

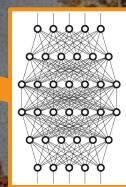


Neural Networks

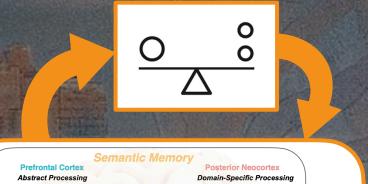
Symbolic Computing



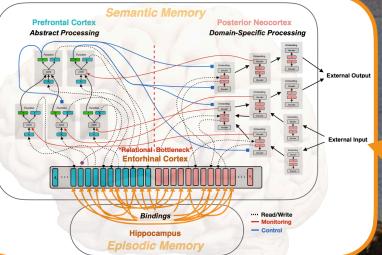


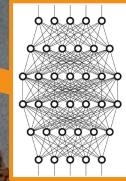


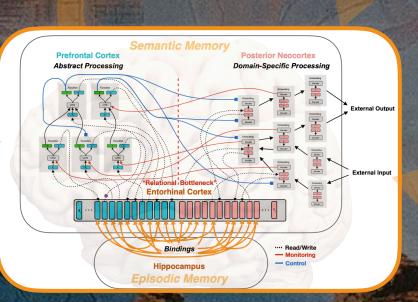
Neural Networks











- Computational neuropsychiatry
- Cognitively informed agent-based models
- [Explainable Al]
- Autonomous artificial agents
- More humane-machine interactions...