Abstraction:
Symbolic Processing
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Background

e Miracle of traditional symbolic computing:

o Computationally general: maximum flexibility

¢ existence proof of flexibility of human cognitive ability
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Background

e Miracle of traditional symbolic computing:

’ Inefficient and/or difficult to configure for complex domains

- vision, natural language
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e Miracle of deep learning

¢ Inflexible
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¢ sample-inefficient

¢ domain-specific



Background

e So where are we?
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- With reasonable amounts, and often little or no training - sample efficiency




Human Brain = Existence Proof

Smell Jeopardy Chess Go Navigate

Dog B watson H Deep Blue Il Alpha Go H Tesla Autopilot

“Sweet spot” between flexibility and efficiency

- ~20 watts, often with parallel performance - processing efficiency




Human Brain = Existence Proof

Smell Jeopardy Chess Go Navigate

Dog B watson H Deep Blue Il Alpha Go H Tesla Autopilot Human

How does it accomplish this?






Shangri-La?

¢ Challenge:
— Integrate flexibility of symbolic processing in traditional architectures

— with efficiency of function approximation in neural networks



Shangri-La?

e Current efforts:

— Neuro-symbolic approaches:
¢ start with pre-specified symbolic primitives (“core knowledge”)
¢ use deep learning to combine these (e.g., “program induction”)




Shangri-La?

e Current efforts:

— “Neo-connectionist” approaches:
¢ use deep learning for “end-to-end” training of neural networks




Shangri-La?

e Current efforts:

— “Neo-connectionist” approaches:

¢ inductive biases that favor abstraction
« training: curricular learning, meta learning
* architecture & processing: attention, external memory
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Two critical ingredients:
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Abstraction
and

Autonomy



Two critical ingredients:

Self-Reconfiguration

~




Two critical ingredients:

e

Relational Bottleneck
and
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Abstraction
The search for (ow dimensional Structure

e Usually evaluated by
capacity for generalization:

¢ Interpolation
(out of sample)

e Extrapolation
(out of distribution)

* recognition of
structure




Abstraction
The search for (low dimensional) Structure

¢ “Cognitive” example...
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Analogy

electron : nucleus . earth :  Jupiter



Abstraction
The search for (ow dimensional Structure

.....

electron : nucleus



Abstraction
The search for (ow dimensional Structure

Analogy
Structure Relation Function
.................................. Linear v = mx+b

Orbital az - b2 =c2
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The search for (low dimensional) Structure
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Abstraction
The search for (low dimensional) Structure

e Function learning and extrapolation

- Neuro-symbolic approach:

- (Gaussian process models /
(Schultz et al., Cog Pay 2017)

- must pre-specify basis functions
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e Function learning and extrapolation

- Connectionist approach:

- Autoregressive / Iterator (RNN) models
(Segert & Cohen, TMLR 2022)

- function approximation - accumulation of errors




Abstraction
The search for (ow dimensional Structure

- Neuro-symbolic approach:

- Gaussian process models
(Schultz et al., Cog Pay 2017)

- must pre-specify basis functions

- Connectionist approach:

- Autoregressive / Iterator (RNN) models
(Segert & Cohen, TMLR 2022)

- function approximation - accumulation of errors

e What we really want is the
discovery of symmetry functions...
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¢ The Search Symmetftry:

“It is only slightly overstating the case to say that
physics is the study of symmetry”
(Anderson, Science 1978)

- It is doing so only a bit more to say so for cognitive science...



Abstraction
The search for (ow dimensional Structure

¢ The Search Symmetftry:

“It is only slightly overstating the case to say that
physics is the study of symmetry”
(Anderson, Science 1978)

- function learning, analogies, stereotypes, schemas =

Invariance / equivariance over transformations



Abstraction
The search for (ow dimensional Structure

¢ The Search Symmetftry:

“It is only slightly overstating the case to say that
physics is the study of symmetry”
(Anderson, Science 1978)

- Genuine extrapolation requires the discovery of symmetry



Abstraction
The search for (ow dimensional Structure

¢ The Search Symmetftry:

“It is only slightly overstating the case to say that
physics is the study of symmetry”
(Anderson, Science 1978)

- What inductive bias in learning will promote such discovery?
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e Symmetries =
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that apply indefinitely (periodically) beyond it



Relations as Symmetry

e Symmetries =

“relations” that obtain over the fundamental domain of a function,
that apply indefinitely (periodically) beyond it

— properly formalized in Group Theory (more on that if there is time)



Relations as Symmetry

e Symmetries =

key point: inducing the /earning of relations —
promote the discovery of symmetries



Relations as Symmetry

e Similarities in data are a place to start... (“correlations are all you need”)

X, X, X

Identity map Sequence map (for ABA)



Relational Bottleneck

Relational
bottleneck

Identity map

Downstream
processing

Relations

Objects




Relational Bottleneck

Downstream
processing

X X, X
Yl
YZ rent
Y3 Relations
Relational
) bottleneck
Identlty Inap Objects

How do we build this in a neural network?
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Bindings

e External memory: External Memory

Keys Values

Form of “dictionary” (key-value pairs):
Rapid binding of arbitrary pieces of information
4=
Similarity-based retrieval (e.qg., use of inner products)

= implements episodic memory function of
medial temporal cortex (e.g., hippocampus)
(Complementary Memory Systems, McClelland et al., 1995)




Relational Bottleneck

¢ Build on use of “external memory” in deep learning networks
(Neural Turing Machine, Graves et al., 2014)

e External memory:

Form of “dictionary” (key-value pairs):

Rapid binding of arbitrary pieces of information
4=

Similarity-based retrieval (e.qg., use of inner products)

= implements episodic memory function of
medial temporal cortex (e.g., hippocampus)
(Complementary Memory Systems, McClelland et al., 1995)

e Example...



Neural Network with External Memory

Neural Turning Machine (NTN)
(Graves et al., 2014)

Bindings

External Memory

Controller
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Neural Network with External Memory

Emergent Symbols Through Binding Network (ESBN)
(Webb et al., ICLR 2021)
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External Memory
Controller

{f Decoder

External Output

External Input




Neural Network with External Memory

Emergent Symbols Through Binding Network (ESBN)
(Webb et al., ICLR 2021)
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Neural Network with External Memory

Emergent Symbols Through Binding Network (ESBN)
(Webb et al., ICLR 2021)
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Relational Bottleneck

Emergent Symbols Through Binding Network (ESBN)
(Webb et al., ICLR 2021)

Abstract Rules Bindings D%ma;nasdl?edfic
& Relations External Memory mbeddings

Similarity-based Retrieval

Controller

Controller K alues
L Ve Decoder \
: External Output

LSTM

External Input
’ Encoder ‘ ]

Isolation

“Relational bottleneck”



ESBN: Training

(Webb et al., 2021)

Tasks
Simple relations
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: Training

ESBN

(Webb et al., 2021)
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ESBN: Results

(Webb et al., 2021)
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ESBN: Results

(Webb et al., 2021)
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ESBN: Results

(Webb et al., 2021)
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ESBN: Results

(Webb et al., 2021)

Extrapolation Performance

— Trained on fewest number of items
needed to exemplify the rule




ESBN: Results

(Webb et al., 2021)

Extrapolation Performance

— Can extrapolate use of rule
to any set of items it can encode




ESBN: Results

(Webb et al., 2021)

Extrapolation Performance

— Learns single set of keys (roles)
used for any set of items (fillers)




ESBN: Results

(Webb et al., 2021)

Extrapolation Performance

= Genuinely symbolic processing
using external (episodic memory)
for variable binding




ESBN: Results

(Webb et al., 2021)
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Relational Bottleneck

External memory for isolation + similarity-based retrieval
= relational bottleneck
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Relational Bottleneck

External memory for isolation + similarity-based retrieval
= relational bottleneck
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Relational Bottleneck

External memory for isolation + similarity-based retrieval
= relational bottleneck

———

Abstract Rules Bindings D‘I)Emat:nasdl_)ecific
& Relations External Memory mbeddings
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Controller
Controller Keys Values

U RS-

Decoder

v =f(x,y,2)

= learning of abstract functions

#» + variable binding
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Relational Bottleneck

External memory for isolation + similarity-based retrieval
= relational bottleneck

Abstract Rules Al Domain-Specific

& Relations Embeddings

Controller
Controller (

v =f(x,y,2)

= learning of abstract functions

+ variable binding
= emergence of

Broad applicability...



Principle Applies Across Architectures...

(Webb et al., 2023)

Emergent Symbol Binding CoRelNet (Kerg et al., 2022)
Network (Webb et al., 2021)

Decoder
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Abstractor (Altabaa et al., 2023)




...and Task Domains

Visual Relational Reasoning Sequential Ordering
(Mondal, Cohen & Webb, ICML 2023) (Altabaa, Webb, Cohen & Lafferty, 2023)

SVRT

== [El B [E [

indx=[2,0,3,1]

Category 1 Category 2

wes [ [ N

Indx=Ranking

Prediction and Planning
(Giallanza, Campbell & Cohen, 2023)




Comports with Architecture of the Brain
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Relational Bottleneck in the Brain

Abstract Processing Domain-Specific Processing
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Relational Bottleneck in the Brain
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Relational Bottleneck in the Brain

Function Function
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Two critical ingredients:

Self-Reconfiguration

\




Rational Self-Reconfiguration

¢ Formal analysis of learning speed vs. processing efficiency
(Musslick, Saxe et al., 2017) )
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Rational Self-Reconfiguration

e Bayesian optimal process model
(Sagiv, Musslick & Cohen, 2018)

min{N,K} i—1
EpRl]= Y P(a=i)) Pp(success on task j)(1— jC)

=1 j=0
min{N,K} i—1

Er[R|t] = Z P(o=1) Z Pr(success on task j)(1)
i=1 j=0




Rational Self-Reconfiguration

e Deep learning applications
(Ravi, Musslick & Cohen, under review)




Big Picture...
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Natural Intelligence
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Natural Intelligence

Prefront
Abstract Processing Domain-Specific Processing

External Output

External Input

Bindings —— +==+ Read/Write
= == Monitoring
= Control

Hippocampus




Natural Intelligence

e Computational neuropsychiatry

e Cognitively informed agent-based models
e [Explainable Al]

e Autonomous artificial agents

e More humane-machine interactions...



