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Motor Cortex Encodes Complex Motor Movements

Extended stimulation of motor 
cortex evokes complex motor 
movements.

Graziano et al, Neuron 2002

This often involves the sequential 
engagement of multiple muscles.

Because stimulation drives 
movement towards a particular 
goal, the exact pattern of muscle 
activation depends on the initial 
position of the arm.



Motor Cortex Encodes Complex Motor Movements

Neural activity in motor cortex is complex and dynamic. Neurons are 
phasically engaged during multiple timesteps during a reach movement.



LEARNING MOTOR ACTIONS



Learning a motor movement engages stereotyped 
responses in cortex

Peters et al, Nature 2014

Mice were trained to respond to an 
auditory cue by pushing a small lever in 
order to get a reward.

Movement became more 
stereotyped over time.

Note: lesioning motor cortex disrupted learning.

Chronic 2PT imaging tracked activity of 
neurons in M1 during learning of task:

Correlation reaches 
asymptote around session 
10.



Response of neurons evolves over training in two ways:
1) The population of neurons involved changed over initial learning.
2) Sequence activity increased correlation over time as the animal settled into 

behavior.

Peters et al, Nature 2014

Correlation of movements:

Learning a motor movement engages 
stereotyped responses in cortex



Peters et al, Nature 2014

The fraction of neurons involved in a movement 
on any given trial was constant; but different 
neurons were involved on different trials.

Response of neurons evolves over training in two ways:
1) The population of neurons involved changed over initial learning.
2) Sequence activity increased correlation over time as the animal settled into 

behavior.

Learning a motor movement engages 
stereotyped responses in cortex



Peters et al, Nature 2014

Learning a motor movement engages 
stereotyped responses in cortex

Learning is associated with changes in synapses: addition of new synapses 
followed pruning.



Response of neurons evolves over training in two ways:
1) The population of neurons involved changed over initial learning.
2) Sequence activity increased correlation over time as the animal settled into 

behavior.

Peters et al, Nature 2014

Correlation of movements:

Learning a motor movement engages 
stereotyped responses in cortex



Motor skill learning embeds sequences in motor 
cortex

Results are consistent with construction of synfire chain:



Neural dynamics supporting motor movements as 

trajectories through state space 

The patterns of activity in the 
neural population can be 
conceptualized as a trajectory 
through neural state space.

Vyas et al, Ann. Rev. Neuro 2020

Dynamics of neural activity can be captured as a linear dynamical system:



Selecting a motor movement by setting initial state of the 

dynamics

The sequence of motor 
movements is encoded as a 
sequence of neural activity in 
motor cortex.

This is captured by the linear 
dynamical system.

Vyas et al, Ann. Rev. Neuro 2020



Selecting a motor movement by setting initial state of the 

dynamics

The sequence of motor 
movements is encoded as a 
sequence of neural activity in 
motor cortex.

This is captured by the linear 
dynamical system.

Vyas et al, Ann. Rev. Neuro 2020

Given this, the initial state determines 
how the dynamics evolve. 

This suggests setting the initial state 
determines the neural dynamics 
which, in turn, determines the motor 
action.



Initial state varies between different reaches; rotational 

dynamics convert initial state into action

While the response of individual neurons is 
complex:

Churchland et al, Nature 2012

The neural population, as a whole, shows structured 
rotational dynamics.

The initial starting point (different colors) are 
transformed into different dynamic patterns of neural 
activity.

In this way, initial condition has been associated with 
both speed and with the motor action.



Initial condition is in the null space of the action itself

These results suggests there are multiple subspaces within motor cortex – one that 
encodes the animal's preparation and a different subspace that encodes the execution of 
the motor response. 

Churchland and Shenoy, Nat Rev Neuro 2024



Action-potent and null spaces are useful for reading-out and 

hiding information

Projections of high dimensional representations onto subspaces can either simplify or 
distort neural dynamics :

Churchland and Shenoy, Nat Rev Neuro 2024

Neural activity is projected 
onto a potent subspace:



USING SUBSPACES FOR COGNITIVE 
CONTROL



Cognition is remarkably flexible – humans and animals are excellent multi-

task agents, able to perform a multitude of behaviors.

Cognitive control is the ability to select a goal-relevant, situationally-

appropriate, behavior. 

Visual Search

Categorization

Decision Making



Action Potent vs. Action Null Subpsaces

Some components of a representation project onto another region, able to 
drive neural activity in downstream neurons.

Semedo et al, Neuron 2019



A dynamic model of cognitive control: aligning neural 

representations with subspaces can route information



Changing the geometry of a neural representation 

may be a mechanism for cognitive control of behavior.

- control what information is relevant

- control how that information is computed/acted on

- control when that information is acted upon

A dynamic model of cognitive control: aligning neural 

representations with subspaces can route information

Behavioral Task

(Cognitive Control)

Panichello and Buschman, 

Nature 2021
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