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Top-down Effects
Instruction can also be a source of context
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The parts interact to determine the whole

Kanizsa Triangle (1976)
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•Principles that guide perception of the “whole”
–Similarity
–Contiguity
–Continuity
–Closure
–Symmetry
–Emergence

Gestalt Perception

•Nice heuristic description, but how do these work? 

- How do we assess images along all of these dimensions 
at once, seemingly instantaneously? 
                        (remember the 100 step rule)
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Constraint Satisfaction

• These problems can be recast more generally as  
constraint satisfaction problems:
– Simultaneously satisfy many interdependent relationships, or “constraints” 

 (e.g., matches between sensory cues, or sensory input and memory representations)

– There may be no perfect solution, so…

– Look for the best “fit” — one that satisfies as many of the constraints as possible

– Some constraints may be more common or important than others

• Connectionist models lend themselves naturally 
to the solution of such problems...
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• Hypotheses = unit activity values

• Constraints = connections between units

• Importance of constraint = weight of connection

• A priori probability of truth of a hypothesis = biases

• Evidence for a given hypothesis = external input

• Satisficing = settling process

• Success = goodness of fit

• How can this be applied to psychological phenomena?

Constraint Satisfaction

♦

prior

likelihood
♦posterior
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• Hypotheses = unit activity values

• Constraints = connections between units

• Importance of constraint = weight of connection

• Evidence (for a given hypothesis) = external input

• A priori probability (for a given hypothesis) = biases
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• Importance of constraint = weight of connection
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• Hypotheses = unit activity values

• Constraints = connections between units

• Importance of constraint = weight of connection

• Evidence (for a given hypothesis) = external input

• A priori probability (for a given hypothesis) = biases

• Inference = settling process

• Success = goodness of fit ♦
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• Hypotheses = unit activity values

• Constraints = connections between units

• Importance of constraint = weight of connection

• Evidence (for a given hypothesis) = external input

• A priori probability (for a given hypothesis) = biases

• Inference = settling process

• Success = goodness of fit

•How can we formalize this?

♦
♦

Constraint Satisfaction Network
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• State: vector of unit activation values 
(state space = range of all possible vector values)

• Energy of each state:  
(opposite of Goodness)

• Energy surface:  plot of energy for every state

• Dynamics:  traversal of energy surface

• Minima: points of lowest energy (local & global)

• Under proper assumptions, can prove that system will flow down hill

Hopfield Networks, Energy &  
"State Space” Dynamics

E = −
Σijwijaiaj
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Energy Landscapes

• A surface that is the energy of the network 
as a function of the activity of its units

• The state of the system is a point on this surface

• The settling process of the network is the 
downhill trajectory of this network along this surface

• Hard to visualize in high dimensions, so stick to 2.5-D…
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• Minima define stable states of the system:  attractors 
– “wells” in the energy landscape

• System will head to the nearest well:  settling 
– ball will roll downhill to the nearest well and stay there

• Settling = perception (or retrieval) 
– values of the units in that state reflect the properties of 

the perceptual interpretation (or retrieved memory)

• No guarantee that nearest minimum is the best: local minima 
– ball can get stuck in a shallow well before finding deepest one…

Minima
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• Predisposing factors to getting stuck in local minima:
– Neighborhood effects (coalitions)

– Binary units or large changes in activation (rapid updating)

• Avoiding local minima (“annealing”):

– Continuous activation values
small adjustments in activity in each update prevents units from  
“committing themselves” before they feel more distant (global) influences
but it takes longer to settle

– Stochastic activation (noisy input)
allows the system to “correct” itself…  
can back out of blind alley,  or literally “jump” out of a local minimum
but less predictable

– Temperature modulates the effects of both…

Local Minima
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(Hopfield Net, 1984) 

Probability of firing 
(Boltzmann Machine)
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Hopfield (1982) Network

• Critical assumptions
– Non-linear (binary) units

♦ forces them to make “decisions:” 
• categorize an input as reflecting one memory or another; 
• vs. linear systems that represent graded blends of options

– Recurrent connections
♦ provides basis for settling dynamics and attractors
♦ symmetric: required for analysis, but not critical for function

– Asynchronous updating
♦ biologically plausible
♦ insures symmetry breaking,  avoids “see-sawing” (pseudo-stochasticity)

• Additional assumptions
– Deterministic

♦ each unit does exactly what it is “told” by its neighbors (no noise)

– No self-connections
♦ no “memory;  each unit governed entirely by sampling its neighbors

– Otherwise, fully interconnected
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Contributions

• Demonstration of how a neural network can compute:
– Biologically-inspired assumptions
– Percepts (memories) can be represented (stored) as minima (attractors)
– Algorithm for producing them using Hebbian learning
– Emergent properties:

♦ Gestalt categorization
♦ Content-addressability
♦ Dynamics

• Capacity:
– roughly 15% no. of units, before minima become too narrow / shallow

• Connection to statistical mechanics (Ising model):
– Can think about neural networks in terms of state-space 

  (or “phase space”) dynamics of energy minimization & annealing
– Energy landscapes describe network dynamics

• Connection to quantum computing (Hamiltonian dynamics)
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Comparison of Models

  Model       Activation           Updating         Connections    

Hopfield (1982)            Binary  Deterministic        Symmetric 

Hopfield (1984)            Continuous                 Deterministic                 Symmetric 

Bolzmann Machine          Binary  Stochastic        Asymmetric 

Interactive Activation      Continuous                  Deterministic        Symmetric 
and Competition (IAC) 

Leaky Competing            Continuous                  Stochastic                       Asymetric 
Accumulator (LCA)

• How can such models be used to account for empirical data...

• To what extent are setting dynamics psychologically/ neurally plausible?
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Interactive Activation Model 
of Word Perception

• Word superiority effect: 
– Faster to recognize a letter in the 

context of a word than alone

• IAC model: 
– Accounts for empirical findings 

regarding word perception: 
♦ frequency effects 
♦ neighborhood effects 
♦ word superiority effects 

– Predicted new perceptual phenomena 
– Landmark in formal modeling of complex psychological phenomena 

using connectionist architecture

• Will come back to this under section on language

McClelland & Rumelhart, 1981


