Constraint Satisfaction, Attractor Networks and Perception

Context influences perception

Ebbinghaus-Tichener Illusion (1901)

Context influences perception

Ebbinghaus-Tichener Illusion (1901)

Context influences perception

Edward Adelson (1995)

Context influences perception

Edward Adelson (1995)

Top-down Effects

Mask Illusion - Richard Gregory (1970)

Top-down Effects

Mask Illusion - Richard Gregory (1970)

Top-down Effects

Instruction can also be a source of context

Gestalt Figures

The parts interact to determine the whole

Necker Cube (1832)

Kanizsa Triangle (1976)

Perceptual Bistability

- Instantly perceive a coherent figure (more or less)
- Two different interpretations
- Can't perceive both at once
- Alternate between perceptions: *bistablility...*

The Necker Cube

Perceptual Bistability

- Instantly perceive coherent figure (more or less)
- Two different interpretations
- Can't perceive both at once
- Alternate between perceptions: *from above*

The Necker Cube

Perceptual Bistability

- Instantly perceive coherent figure (more or less)
- Two different interpretations
- Can't perceive both at once
- Alternate between perceptions: from below

The Necker Cube

Other Examples

Principles that guide perception of the "whole"

- -Similarity
- -Contiguity
- -Continuity
- -Closure
- -Symmetry

• Principles that guide perception of the "whole"

- -Similarity
- -Contiguity
- -Continuity
- -Closure
- -Symmetry
- -Emergence

Principles that guide perception of the "whole"

- -Similarity
- -Contiguity
- -Continuity
- -Closure
- -Symmetry
- -Emergence

• Nice heuristic description, but how do these work?

 How do we assess images along all of these dimensions at once, seemingly instantaneously? (remember the 100 step rule)

• These problems can be recast more generally as constraint satisfaction problems:

- Simultaneously satisfy many interdependent relationships, or "constraints"

(e.g., matches between sensory cues, or sensory input and memory representations)

- Simultaneously satisfy many interdependent relationships, or "constraints" (e.g., matches between sensory cues, or sensory input and memory representations)

T A E C A T

- There may be no perfect solution, so...

- Look for the best "fit" — one that satisfies as many of the constraints as possible

- Some constraints may be more common or important than others

• Connectionist models lend themselves naturally to the solution of such problems...

• Hypotheses = unit activity values

- Hypotheses = unit activity values
- Constraints = connections between units

- Hypotheses = unit activity values
- Constraints = connections between units
- Importance of constraint = weight of connection

- Hypotheses = unit activity values
- Constraints = connections between units
- Importance of constraint = weight of connection
- A priori probability of truth of a hypothesis = biases

- Hypotheses = unit activity values
- Constraints = connections between units
- Importance of constraint = weight of connection
- *A priori* probability of truth of a hypothesis = biases
- Evidence for a given hypothesis = external input

- Hypotheses = unit activity values
- Constraints = connections between units
- Importance of constraint = weight of connection
- *A priori* probability of truth of a hypothesis = biases
- Evidence for a given hypothesis = external input
- Satisficing = settling process

- Hypotheses = unit activity values
- Constraints = connections between units
- Importance of constraint = weight of connection
- *A priori* probability of truth of a hypothesis = biases
- Evidence for a given hypothesis = external input
- Satisficing = settling process
- Success = goodness of fit

- Hypotheses = unit activity values
- Constraints = connections between units
- Importance of constraint = weight of connection
- *A priori* probability of truth of a hypothesis = biases
- Evidence for a given hypothesis = external input
- Satisficing = settling process
- Success = goodness of fit

P(Hypothesis|Data) =

P(Hypothesis,Data)

P(Data|Hypothesis) • P(Hypothesis)

posterior

- Hypotheses = unit activity values
- Constraints = connections between units
- Importance of constraint = weight of connection
- A priori probability of truth of a hypothesis = biases
- Evidence for a given hypothesis = external input

P(Hypothesis|Data) =

- Satisficing = settling process
- Success = goodness of fit

P(Data|Hypothesis) • P(Hypothesis)

likelihood

P(Hypothesis,Data)

prior

posterior

- Hypotheses = unit activity values
- Constraints = connections between units
- Importance of constraint = weight of connection
- A priori probability of truth of a hypothesis = biases
- Evidence for a given hypothesis = external input
- Satisficing = settling process
- Success = goodness of fit

ا P(Data|Hypothesis) • P(Hypothesis)

likelihood

prior

P(Hypothesis,Data)

• How can this be applied to psychological phenomena?

P(Hypothesis|Data)

• *Hypotheses* = unit activity values

• Constraints = connections between units -

• *Importance of constraint* = weight of connection

Evidence (for a given hypothesis) = external input —

• A priori probability (for a given hypothesis) = biases

• *Inference* = settling process

• **Success** = goodness of fit

• **Success** = goodness of fit

• How can we formalize this?

• State: vector of unit activation values

(state space = range of all possible vector values)

FUL FLL BUL BLL FUR]

• Energy of each state: $E = \frac{\sum_{ij} w_{ij} a_i a_j}{2}$ (opposite of Goodness)

• Energy surface: plot of energy for every state

$$E = \frac{\sum_{ij} w_{ij} a_i a_j}{2}$$

• **Dynamics:** traversal of energy surface

$$E = \frac{\sum_{ij} w_{ij} a_i a_j}{2}$$

• Minima: points of lowest energy (local & global)

$$E = \frac{\sum_{ij} w_{ij} a_i a_j}{2}$$

• Under proper assumptions, can prove that system will flow down hill

$$E = -\frac{\Sigma_{ij} w_{ij} a_i a_j}{2}$$

Update	a ₁	a ₂	a ₃	a ₄	Energy
Initial State	1	1	0	0	+0.5

$$E = -\frac{\Sigma_{ij} w_{ij} a_i a_j}{2}$$

Update	a ₁	a ₂	a ₃	a ₄	Energy
a ₁	0	1	0	0	0

$$E = -\frac{\Sigma_{ij} w_{ij} a_i a_j}{2}$$

Update	a ₁	a ₂	a ₃	a ₄	Energy
	1	1	0	0	+0.5
a ₁	0	1	0	0	0
a ₃	0	1	1	0	-0.5

$$E = -\frac{\Sigma_{ij} w_{ij} a_i a_j}{2}$$

Update	a ₁	a ₂	a ₃	a ₄	Energy
Initial state	1	1	0	0	+0.5
a ₁	0	1	0	0	0
a ₂	0	1	1	0	-0.5

Two stable states — percepts (or memories)

State	a ₁	a ₂	a ₃	a ₄	Energy
1	1	0	0	1	-0.5
2	0	1	1	0	-0.5

$$E = -\frac{\Sigma_{ij} w_{ij} a_i a_j}{2}$$

Update	a ₁	a ₂	a ₃	a ₄	Energy
Initial state	1	1	0	0	+0.5
a ₁	0	1	0	0	0
a ₂	0	1	1	0	-0.5

Two stable states — percepts (or memories)

State	a ₁	a ₂	a ₃	a ₄	Energy
1	1	0	0	1	-0.5
2	0	1	1	0	-0.5

• A surface that is the energy of the network as a function of the activity of its units

• The state of the system is a point on this surface

 The settling process of the network is the downhill trajectory of this network along this surface

• Hard to visualize in high dimensions, so stick to 2.5-D...

Mutually Inhibitory units

• Minima define stable states of the system: attractors

- "wells" in the energy landscape

• Minima define stable states of the system: attractors

- "wells" in the energy landscape

System will head to the nearest well: settling

- ball will roll downhill to the nearest well and stay there

• Minima define stable states of the system: attractors

- "wells" in the energy landscape
- System will head to the nearest well: settling
 - ball will roll downhill to the nearest well and stay there

• **Settling = perception** (or retrieval)

 values of the units in that state reflect the properties of the perceptual interpretation (or retrieved memory)

• Minima define stable states of the system: attractors

- "wells" in the energy landscape
- System will head to the nearest well: settling
 ball will roll downhill to the nearest well and stay there
- Settling = perception (or retrieval)
 - values of the units in that state reflect the properties of the perceptual interpretation (or retrieved memory)
- No guarantee that nearest minimum is the best: local minima

 ball can get stuck in a shallow well before finding deepest one...

• Predisposing factors to getting stuck in local minima:

- Neighborhood effects (coalitions)
- Binary units or large changes in activation (rapid updating)

• Predisposing factors to getting stuck in local minima:

- Neighborhood effects (coalitions)
- Binary units or large changes in activation (rapid updating)

• Avoiding local minima ("annealing"):

- Continuous activation values

small adjustments in activity in each update prevents units from "committing themselves" before they feel more distant (global) influences

• Predisposing factors to getting stuck in local minima:

- Neighborhood effects (coalitions)
- Binary units or large changes in activation (rapid updating)

• Avoiding local minima ("annealing"):

- Continuous activation values

small adjustments in activity in each update prevents units from "committing themselves" before they feel more distant (global) influences but it takes longer to settle

• Predisposing factors to getting stuck in local minima:

- Neighborhood effects (coalitions)
- Binary units or large changes in activation (rapid updating)

• Avoiding local minima ("annealing"):

- Continuous activation values

small adjustments in activity in each update prevents units from "committing themselves" before they feel more distant (global) influences but it takes longer to settle

- Stochastic activation (noisy input)

• Predisposing factors to getting stuck in local minima:

- Neighborhood effects (coalitions)
- Binary units or large changes in activation (rapid updating)

• Avoiding local minima ("annealing"):

- Continuous activation values

small adjustments in activity in each update prevents units from "committing themselves" before they feel more distant (global) influences but it takes longer to settle

- Stochastic activation (noisy input)

allows the system to "correct" itself... can back out of blind alley, or literally "jump" out of a local minimum

• Predisposing factors to getting stuck in local minima:

- Neighborhood effects (coalitions)
- Binary units or large changes in activation (rapid updating)

• Avoiding local minima ("annealing"):

- Continuous activation values

small adjustments in activity in each update prevents units from "committing themselves" before they feel more distant (global) influences but it takes longer to settle

- Stochastic activation (noisy input)

allows the system to "correct" itself... can back out of blind alley, or literally "jump" out of a local minimum but less predictable

• Predisposing factors to getting stuck in local minima:

- Neighborhood effects (coalitions)
- Binary units or large changes in activation (rapid updating)

• Avoiding local minima ("annealing"):

- Continuous activation values

small adjustments in activity in each update prevents units from "committing themselves" before they feel more distant (global) influences but it takes longer to settle

- Stochastic activation (noisy input)

allows the system to "correct" itself... can back out of blind alley, or literally "jump" out of a local minimum but less predictable

- Temperature modulates the effects of both...

Effects of Temperature

Effects of Temperature

Effects of Temperature

• Critical assumptions

- Non-linear (binary) units
 - forces them to make "decisions:"
 - categorize an input as reflecting one memory or another;
 - vs. linear systems that represent graded blends of options

• Critical assumptions

- Non-linear (binary) units
 - forces them to make "decisions:"
 - categorize an input as reflecting one memory or another;
 - vs. linear systems that represent graded blends of options
- Recurrent connections
 - provides basis for settling dynamics and attractors
 - symmetric: required for analysis, but not critical for function

• Critical assumptions

- Non-linear (binary) units
 - forces them to make "decisions:"
 - categorize an input as reflecting one memory or another;
 - vs. linear systems that represent graded blends of options
- Recurrent connections
 - provides basis for settling dynamics and attractors
 - * symmetric: required for analysis, but not critical for function

- Asynchronous updating

- biologically plausible
- insures symmetry breaking, avoids "see-sawing" (pseudo-stochasticity)

• Critical assumptions

- Non-linear (binary) units
 - forces them to make "decisions:"
 - categorize an input as reflecting one memory or another;
 - vs. linear systems that represent graded blends of options
- Recurrent connections
 - provides basis for settling dynamics and attractors
 - * symmetric: required for analysis, but not critical for function

- Asynchronous updating

- biologically plausible
- insures symmetry breaking, avoids "see-sawing" (pseudo-stochasticity)

Critical assumptions

- Non-linear (binary) units
 - forces them to make "decisions:"
 - categorize an input as reflecting one memory or another;
 - vs. linear systems that represent graded blends of options
- Recurrent connections
 - provides basis for settling dynamics and attractors
 - symmetric: required for analysis, but not critical for function
- Asynchronous updating
 - biologically plausible
 - insures symmetry breaking, avoids "see-sawing" (pseudo-stochasticity)

Additional assumptions

- Deterministic
 - each unit does exactly what it is "told" by its neighbors (no noise)

Critical assumptions

- Non-linear (binary) units
 - forces them to make "decisions:"
 - categorize an input as reflecting one memory or another;
 - vs. linear systems that represent graded blends of options
- Recurrent connections
 - provides basis for settling dynamics and attractors
 - symmetric: required for analysis, but not critical for function
- Asynchronous updating
 - biologically plausible
 - insures symmetry breaking, avoids "see-sawing" (pseudo-stochasticity)

Additional assumptions

- Deterministic
 - each unit does exactly what it is "told" by its neighbors (no noise)
- No self-connections
 - no "memory; each unit governed entirely by sampling its neighbors

Critical assumptions

- Non-linear (binary) units
 - forces them to make "decisions:"
 - categorize an input as reflecting one memory or another;
 - vs. linear systems that represent graded blends of options
- Recurrent connections
 - provides basis for settling dynamics and attractors
 - symmetric: required for analysis, but not critical for function
- Asynchronous updating
 - biologically plausible
 - insures symmetry breaking, avoids "see-sawing" (pseudo-stochasticity)

Additional assumptions

- Deterministic
 - each unit does exactly what it is "told" by its neighbors (no noise)
- No self-connections
 - no "memory; each unit governed entirely by sampling its neighbors
- Otherwise, fully interconnected

- Demonstration of how a neural network can compute:
 - Biologically-inspired assumptions

• Demonstration of how a neural network can compute:

- Biologically-inspired assumptions
- Percepts (memories) can be represented (stored) as minima (attractors)

• Demonstration of how a neural network can compute:

- Biologically-inspired assumptions
- Percepts (memories) can be represented (stored) as minima (attractors)
- Algorithm for producing them using Hebbian learning

• Demonstration of how a neural network can compute:

- Biologically-inspired assumptions
- Percepts (memories) can be represented (stored) as minima (attractors)
- Algorithm for producing them using Hebbian learning
- Emergent properties:
 - Gestalt categorization
 - Content-addressability
 - Dynamics

• Demonstration of how a neural network can compute:

- Biologically-inspired assumptions
- Percepts (memories) can be represented (stored) as minima (attractors)
- Algorithm for producing them using Hebbian learning
- Emergent properties:
 - Gestalt categorization
 - Content-addressability
 - Dynamics

• Capacity:

- roughly 15% no. of units, before minima become too narrow / shallow

• Demonstration of how a neural network can compute:

- Biologically-inspired assumptions
- Percepts (memories) can be represented (stored) as minima (attractors)
- Algorithm for producing them using Hebbian learning
- Emergent properties:
 - Gestalt categorization
 - Content-addressability
 - Dynamics

• Capacity:

- roughly 15% no. of units, before minima become too narrow / shallow

• **Connection to statistical mechanics** (Ising model):

• Demonstration of how a neural network can compute:

- Biologically-inspired assumptions
- Percepts (memories) can be represented (stored) as minima (attractors)
- Algorithm for producing them using Hebbian learning
- Emergent properties:
 - Gestalt categorization
 - Content-addressability
 - Dynamics

• Capacity:

- roughly 15% no. of units, before minima become too narrow / shallow

• Connection to statistical mechanics (Ising model):

- Can think about neural networks in terms of state-space

(or "phase space") dynamics of energy minimization & annealing
Contributions

• Demonstration of how a neural network can compute:

- Biologically-inspired assumptions
- Percepts (memories) can be represented (stored) as minima (attractors)
- Algorithm for producing them using Hebbian learning
- Emergent properties:
 - Gestalt categorization
 - Content-addressability
 - Dynamics

• Capacity:

- roughly 15% no. of units, before minima become too narrow / shallow

• Connection to statistical mechanics (Ising model):

- Can think about neural networks in terms of state-space (or "phase space") dynamics of energy minimization & annealing
- Energy landscapes describe network dynamics

Contributions

• Demonstration of how a neural network can compute:

- Biologically-inspired assumptions
- Percepts (memories) can be represented (stored) as minima (attractors)
- Algorithm for producing them using Hebbian learning
- Emergent properties:
 - Gestalt categorization
 - Content-addressability
 - Dynamics

• Capacity:

- roughly 15% no. of units, before minima become too narrow / shallow

• **Connection to statistical mechanics** (Ising model):

- Can think about neural networks in terms of state-space
 - (or "phase space") dynamics of energy minimization & annealing
- Energy landscapes describe network dynamics

• **Connection to quantum computing** (Hamiltonian dynamics)

Comparison of Models

Model	Activation	Updating	Connections
Hopfield (1982)	Binary	Deterministic	Symmetric
Hopfield (1984)	Continuous	Deterministic	Symmetric
Bolzmann Machine	Binary	Stochastic	Asymmetric
Interactive Activation and Competition (IAC)	Continuous	Deterministic	Symmetric
Leaky Competing Accumulator (LCA)	Continuous	Stochastic	Asymetric

Comparison of Models

• To what extent are setting dynamics psychologically/ neurally plausible?

Comparison of Models

• How can such models be used to account for empirical data...

McClelland & Rumelhart, 1981

McClelland & Rumelhart, 1981

- Word superiority effect:
 - Faster to recognize a letter in the context of a word than alone

McClelland & Rumelhart, 1981

• Word superiority effect:

 Faster to recognize a letter in the context of a word than alone

• IAC model:

- Accounts for empirical findings regarding word perception:
 - frequency effects
 - neighborhood effects
 - word superiority effects
- Predicted new perceptual phenomena

McClelland & Rumelhart, 1981

• Word superiority effect:

 Faster to recognize a letter in the context of a word than alone

• IAC model:

- Accounts for empirical findings regarding word perception:
 - frequency effects
 - neighborhood effects
 - word superiority effects
- Predicted new perceptual phenomena
- Landmark in formal modeling of complex psychological phenomena using connectionist architecture

Will come back to this under section on language

