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the retina

(“smart” film in your camera)



What does the retina do?

| . Transduction

* Conversion of energy from one form to another
(i.e.,“light” into “electrical energy”)

2. Processing

 Amplification of very weak signals

(I-2 photons can be detected!)
« Compression of image into more compact form so that
information can be efficiently sent to the brain

optic nerve = “bottleneck”
analogy: jpeg compression of images
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Basic anatomy: photomlcrograph of the retlna
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What'’s crazy about this is that the light has
to pass through all the other junk in our eye
before getting to photoreceptors!

Cephalopods (squid, octopus): did it right.
* photoreceptors in innermost layer, no blind spot!

Debate:
| . accident of evolution?

OR
2. better to have photoreceptors near blood supply?
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blind spot demo
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phototransduction: converting light to electrical signals

rods

* respond in low light
(“scotopic”)

* only one kind: don’t
process color

* 90M in humans

Outer
segment

Inner
segment

Synaptic

terminal

cones
* respond in daylight
(“photopic”)
* 3 different kinds:

responsible for
color processing

* 4.5M in humans



phototransduction: converting light to electrical signals

outer segments

.
Q
Q.

* packed with discs ¥ Outer
o # - — u
¢ diSCS ha.ve OPSI“S 25 segment
(proteins that change = phco?on
shape when they absorb _—
a photon - amazing!) segment
* different opsins sensitive to
different wavelengths of light Q
* rhodopsin: opsin in rods "
* photopigment: general term
for molecules that are R
L . ynaptic
photosensitive (like opsins) terminal




dark current

Rod

* |n the dark, membrane

: Outer
channels in rods and cones are ——
open by default (unusual!)

* current flows in continuously I
nner
* membrane is depolarized segment
(less negative)
Synaptic
terminal

* neurotransmitter is "
released at a high rate v to bipolar cells




transduction & sighal amplification

Rod Cone
* photon is absorbed by an opsin Outer
» segment
=5 O
e channels close (dark current turns off) || [} P"" 1
nner
segment
* membrane becomes more
polarized (more negative)
Synaptic
terminal

* neurotransmitter is

released at a lower rate :
l to bipolar cells



transduction & sighal amplification

Rod Cone
Outer
» segment
O
photon
. Inner
inner segments — segment
machinery for amplifying
signals from outer segment
neurotransmitter release ;
— Synaptic
terminal

graded potential

(not spikes!)
l to bipolar cells



Photoreceptors: not evenly distributed across the retina
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* fovea: mostly cones

e periphery: mostly rods Q: what are the implications of this?



Photoreceptors: not evenly distributed across the retina
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* not much color vision in the periphery
* highest sensitivity to dim lights: 5° eccentricity



Retinal information processing: receptive fields

“ON” Cell

(a) ON-center ganglion cell

Light on

Response ||

[Kuffler 1952]



Retinal information processing: receptive fields

“OFF” Cell
(b) OFF-center ganglion cell
Light on
+
Spot in LA "”””H_H_l_
pLis + o oo Response T
+

Spot in

Response
surround P

[Kuffler 1952]



Receptive field: “what makes a neuron fire”

* weighting function that the neuron uses to add up its inputs

Response to a dim light

patch of light

light=+1 light level

/N

1x(+5) + 1x(-4) = +1 spikes

f f

“center” ‘“surround”
weight weight




Receptive field: “what makes a neuron fire”

* weighting function that the neuron uses to add up its inputs

Response to a spot of light

patch of bright light
light level

/N

1x(+5) + Ox(-4) = +5 spikes

! f

“center” ‘“surround”
weight weight




Mach Bands

Each stripe has
constant luminance
(“light level”)




Response to a bright light

light=+2 higher light level

[\

2x(+5) + 2x(-4) = +2 spikes

f f

“center” ‘“surround”
weight weight




Response to an edge

2x(+5) + 2x(-3) + 1x(-1) = +3 spikes
“center” \ /,,

: “surround
weight

weight




Mach Band response

O OO0 O0O0O0o

+1 +1 +1
+1 +1 +1
+1 +1 +1
+1 +1 +1
+1 +1 +1
+1 +1 +1

2x(+5)

f

weight

“center”

+ 2x(-

3) + 1x(-

\/

“surround”
weight

+3 spikes



VS +

It makes intuitive sense to think that encoding the
contrast (local changes in light) in RGC responses
might be more efficient than sending the raw light
levels (eg raw photoreceptor responses).

Can we make the notion of “efficiency” precise!



Barlow 1961
Atick & Redlich 1990

Efficient Coding Hypothesis:

* goal of nervous system: maximize information about environment
(one of the core “big ideas” in theoretical neuroscience)

T« mutual information

redundancy: } =1 — —
C

¥~ channel capacity



Barlow 1961
Atick & Redlich 1990

Efficient Coding Hypothesis:

* goal of nervous system: maximize information about environment
(one of the core “big ideas” in theoretical neuroscience)

T« mutual information
redundancy: R — 1 — 6

¥~ channel capacity

mutual information: * avg # yes/no questions you can answer

h . “Dbits”
I(ij y) — H(y) — H(y‘x) . eeln’([)rl:););’glv[jny ( Itsz):p

response entropy “noise” entropy

) log p(x

channel capacity:

( = sup ](ZE y) * upper bound on mutual information
P ’ * determined by physical properties of encoder
€XT



Barlow 1961
Atick & Redlich 1990

Barlow’s original version:

T« mutual information

redundancy: } =1 — —
C

mutual information:

I(x, y) = H(y) — E@"@ if responses are noiseless

response entropy “noise” entropy



Barlow 1961
Atick & Redlich 1990

Barlow’s original version:

» lesponse entropy

H(Y)

redundancy: [ = 1]
C

mutual information:

I(QZ, y) — H(y) — E@g"@ noiseless system

response entropy “noise” entropy

——> brain should maximize response entropy
* use full dynamic range
* decorrelate (“reduce redundancy”)

* mega impact: huge number of theory and experimental papers focused
on decorrelation / information-maximizing codes in the brain



Maximum entropy distributions

* Q: what is the maximum entropy (discrete)
distribution on N bins?

12 - N



Maximum entropy distributions

* Q: what is the maximum entropy (discrete)
distribution on N bins?

Uniform

12 - N



Application Example: single neuron encoding stimuli from a distribution P(x)
stimulus prior L~ P(Z)

noiseless, discrete Yy = f(aj), Y € {yl, Y2, ... 7yn}

encoding

Q: what solution for infomax?

0-51 Gaussian prior

3 _
= 0.25




Application Example: single neuron encoding stimuli from a distribution P(x)
stimulus prior L~ P(CU)

noiseless, discrete Y = f(aj), Y < {yl, Yz, ... 7yn}

encoding

0.5 Q: what solution for infomax?

Gaussian prior A: histogram-equalization

X 0.251 [(X7 Y) - H(Y) B HM)

0

20
> infomax
>
o =
5 10 ot
o
5
(@]

0
0 0 10 20

X output level y



Laughlin 1981: blowfly light response

- first major validation of Barlow’s theory

10mV
I cdf of light level
1.0

50ms / ;
i ft

" response
data

05

cumulative
probabilit

-1.0 0 _ +1.0
contrast  al/l



What about multiple neurons?

We want: joint distribution p(’r‘1, 7‘2)
that achieves maximum entropy H(r, r,)

given fixed marginals p(r,) and p(r,)

H(Tl,Tg) — H(Tl) -+ H(Tg) — ](Tl,Tg)

* This is clearly maximized when neurons are
independent, i.e., I(r{,r,) =0

- solution: neurons should be (marginally) independent!



basic intuition

natural image

nearby pixels exhibit
strong dependencies

neural representation

256 desired 100> o T T, 9" %]

' encoding
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efficient coding: take-home

|. For single neurons: given a constraint on the
response (e.g., maximum or mean rate), information
transfer maximized if marginal response distribution is
a maximum-entropy subject to that constraint

p(r) o« A7)

2. For multiple neurons: information is

maximized when response distributions are
independent  (aka ‘redundancy reduction”)

p(r1,7r2...,mn) = p(r1)p(r2) - - P(T0)




break?



We've discussed:

* how the retina processes that image to extract
contrast (with “center-surround” receptive fields)

* efficient coding: normative theory of retinal coding

Next:
* how does visual cortex process information?



early visual pathway

optic nerve

optic chiasm

optic tract

lateral geniculate

nucleus (LGN)

thalamus:

optic radiations

\ B S
cortex: primary visual K g

cortex (“V1”)

rlght visual left visual
(aka “striate cortex”) world world



Primary Visual Cortex

® Striate cortex: known as primary visual cortex, or V1

® “Primary visual cortex” = first place in cortex where
visual information is processed

(Previous two stages: retina and LGN are pre-cortical)



Receptive Fields: monocular vs. binocular

- LGN cells: responds to one
eye or the other, never both
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-V cells: can respond to input from both eyes

(but VI neurons still tend to have a preferred eye - they
spike more to input from one eye)



Topography: mapping of visual space onto visual cortex
(“retinotopic”, “visuotopic”)

e contralateral representation
- each visual field (L/R) represented in
opposite hemisphere

Foveal image

e cortical magnification

- unequal representation of Optic chiasm

fovea vs. periphery in cortex Lateral
geniculate
nucleus |
(LGN)

Optic radiations

Striate cortex



major change in sensory representation in V|

retina & LGN:
e circular RFs
* IM fibers (from RGCs)

Vi
* elongated, oriented RFs
* 200M cells!

r

\




Orientation tuning:
* neurons in V| respond more to bars of certain orientations
* response rate falls off with difference from preferred orientation

Firing rate

45 90

e © [ Ppreferred orientation”

/

Orientation of line (degrees)



Simple vs. Complex Cells

Cells inVI respond best to bars of light rather than to spots of light
* “simple” cells: prefer bars of light, or prefer bars of dark
* “complex” cells: respond to both bars of light and dark

Receptive
f1e1d
St1mu1us / '

Simple-cell response

Complocellresporse HHHHHH M+




Receptive Fields in VI

[see link to Hubel & Weisel movie]



Column: a vertical arrangement of neurons

e ocular dominance
column: for particular
location in cortex, neurons
have same preferred eye

* orientation column:
for a particular location in
cortex, neurons have same
preferred orientation

E T S
-90° 0° 90°
Orientation




Hypercolumn - contains all possible columns

e Hypercolumn: |-mm block
of VI containing “all the
machinery necessary to look
after everything the visual
cortex is responsible for, in a
certain small part of the visual

world” (Hubel, 1982)

Cortical layers
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Color code for

orientation columns . . |

e Each hypercolumn contains a full set of columns
- has cells responding to every possible orientation, and

inputs from left right eyes



Three theories of “WhatV | Does”

|. Edge detection
2. Fourier Analysis

3. Sparse coding



“Edge detection” hypothesis for VI:

* The role of VI is to detect edges
* not obvious that this is a good way to process images

* led to many failed approaches in computer vision

(b) (c)
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(I might make some disparaging remarks about Marr on this slide if you ask me)



Three theories of “WhatV | Does”

2. Fourier Analysis

3. Sparse coding



Fourier decomposition

* mathematical decomposition of an image (or sound)
Into sine waves.

reconstruction:
“image” /f\\
\ \ / 1 sine wave
N/
FANEY AN
| ~ \\ | :
— | 2 sine waves
AN/ B (NN
J O\ v NJ
VANV AN '[\VAV[XI
1{ l‘ " \ ]
\ f 3 sine waves
i‘%[\‘ W \)Z‘ |\L PN 1'
P~ M
4 sine waves
l l
‘t{-\yx/v‘ Jif*v*\fkf




“Fourier Decomposition” theory of V|

claim: role of VI is to do “Fourier decomposition”, i.e., break
images down into a sum of sine waves

f
* Summation of two spatial sine
waves
* any pattern can be broken L2
down into a sum of sine waves /\/\/W

of

WA



Retinal Ganglion Cells are tuned to spatial frequency

(a) Low frequency yields weak response

(b) Medium frequency yields strong response
Response of a /WW
ganglion cell to
sine gratings of Iﬂ[ T
different

fl”eq uenc | (S (c) High frequency yields weak response

(A — -+




important idea: spatial frequency channels

spatial frequency: the number of cycles of a grating per unit
of visual angle (usually specified in degrees)

* think of it as: # of bars per unit length

low frequency intermediate high frequency
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The contrast sensitivity function

Human contrast sensitivity llustration of this sensitivity
1000

100

Visible

Contrast sensitivity

—
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1 ! |
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Spatial frequency (cycles/degree)




Image lllustrating Spatial Frequency Channels



Image lllustra




If it is hard to tell who this famous person is, try
squinting or defocusing

“Lincoln illusion” Harmon & Jules 1973



“Gala Contemplating the Mediterranean Sea, which at 30 meters
becomes the portrait of Abraham Lincoln (Homage to Rothko)”

»

- Salvador Dali (1976)




“Gala Contemplating the Mediterranean Sea, which at 30 meters
becomes the portrait of Abraham Lincoln (Homage to Rothko)”

- Salvador Dali (1976)




Problems with the Fourier Theory of V1

* Neurons in the visual system are broadly tuned to
frequency (unlike Fourier decomposition)

* Fourier decomposition is linear. V1 is clearly nonlinear.

* Fourier decomposition is non-local; V1 is local.
(So “wavelets” are maybe better than sine waves).

* Hasn’t shed very much light on visual function
(e.g., how does Fourier decomposition help explain object
recognition?)



Olshausen &

Spdl‘se COding MOdel Field 1996

* V1 activity represents inferences under a “sparse” generative model of images

schematic

latent variables Y/ ~ gparse (eg., Laplace)

linear
basis -{lgi}

weights noise

T .
(Gaussian)
\4 / /

images £z

i'th neuron’s
“projective fleld”

{yz} — argr{r;m HLU o ZBzysz T )‘Z ‘yz
/ ! I

image
V1 neural activity g I'th neuron’s sparsﬂy

activity penalty



The figure that launched a thousand papers
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Projective fields B;jlook like V1 receptive fields!

. first normative account of V1 receptive fields
(this doesn’t happen if you run PCA on natural images!)



Spike responses are indeed sparse

Sparsity: “large spike counts are rare” OR “distribution is heavy-tailed”

Macaque IT neuron responses
(Baddeley 1997)
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(proposed) Advantages of Sparsity

* efficiency - uses few spikes to encode any given stimulus
(but you need many more neurons!)

 computational convenience - easier to decode (you only
need to decode a few neurons for readout)

* learning - may facilitate learning via local update rules



independent components analysis (ICA)

- deterministic version of Sparse Coding (no noise)
- “complete”. # latent vars = # observed vars

latents 1/~ sparse

matrix A <
\4
data U
xr = Ay

A Is a square matrix

Inference is easy:
y=A"1x

(so equally a “generative” model as a

“recognition” model)

Bell & Sejnowski 1995



Limitations of sparse coding model:

* biology uses a cascade (what happens afterV|?)

* why don’t responses get sparser afterV|?
(Baddeley et al 97, Chechik et al 06)

* Sparse coding model is a linear generative model: doesn’t
provide very rich / accurate description of natural images

sample




Deep-learning based approaches

“task based” or “goal
based” approaches:

1) train a network (CNN / DNN / RNN) to perform the task

Operations in Linear-Nonlinear Layer

R @,
R,

®o.

Filter

Threshold Pool Normalize

Spatial Convolution
over Image Input

Vo

Behavioral Tasks
e.g. Trees vs non-Trees

s
/M\‘ \h/ 1=®_,
ﬂ_®_> o
layer 3

e

1. Optimize Model for Task Performance

e

:l’li ;ll’ / Iayer 4
WA

[Yamins et al, PNAS 2014]



Deep-learning based approaches

“task based” or “goal 1) train a network (CNN / DNN / RNN) to perform the task
based” approaches: 2) regress units in trained network against neural data
Operations in Linear-Nonlinear Layer Behavioral Tasks

e.g. Trees vs non-Trees

®¢’1 ’
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- Threshold Pool Normalize e !
Filter
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layer 1 / layer 2

2. Test Per-Site Neural Predictions

100ms
Visual
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Neural Recordings from IT and V4

[Yamins et al, PNAS 2014]



Lots of current research directions inspired by
deep learning

early work focused on pre-trained networks (AlexNet, VGG, ResNet)
recent work shows we can fit models to neural data

can use DNNs to synthesize images to optimally drive neurons

use RNNs / LSTMs / GRUs to capture time-course of responses

can we improve these models by incorporating other ideas from
biology (feedback, spiking, divisive normalization, plasticity, etc.)?

current debate about whether we can ever “understand” V1
(or whether that is even a worthwhile goal)



Summary

retinal organization: photoreceptors (rods and cones),
dark current, bipolar cells, retinal ganglion cells (RGC)

receptive fields, “ON" and “OFF” receptive fields
Barlow’s efficient coding hypothesis

Hubel & Weisel: orientation tuning in V|

ocular dominance

simple / complex cells

edge detection

Fourier analysis, spatial frequency channels
sparse coding model

deep-learning based approaches



