
Jonathan Pillow
NEU 502a  

 
Jan 30, 2025

Early Vision: 
from retina to visual cortex 



the retina  
(“smart” film in your camera)



What does the retina do?

1. Transduction
• Conversion of energy from one form to another
(i.e., “light” into “electrical energy”)

2. Processing
• Amplification of very weak signals  
   (1-2 photons can be detected!)
• Compression of image into more compact form so that 
information can be efficiently sent to the brain 

optic nerve = “bottleneck” 
analogy: jpeg compression of images 





Basic anatomy: photomicrograph of the retina



Basic anatomy: photomicrograph of the retina
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What’s crazy about this is that the light has 
to pass through all the other junk in our eye 
before getting to photoreceptors!

Cephalopods (squid, octopus): did it right.
 • photoreceptors in innermost layer, no blind spot!

Debate:  
1. accident of evolution?  
             OR
2. better to have photoreceptors near blood supply?
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blind spot demo



rods
• respond in low light 

(“scotopic”)
• only one kind: don’t 

process color
• 90M in humans

cones
• respond in daylight 

(“photopic”)
• 3 different kinds: 

responsible for 
color processing

• 4-5M in humans

phototransduction: converting light to electrical signals



• packed with discs
• discs have opsins 

(proteins that change 
shape when they absorb 
a photon - amazing!)

*
photon

outer segments

phototransduction: converting light to electrical signals

• different opsins sensitive to 
different wavelengths of light

• rhodopsin: opsin in rods
• photopigment: general term 

for molecules that are 
photosensitive (like opsins)



• neurotransmitter is 
released at a high rate

dark current

to bipolar cells

•  In the dark, membrane 
channels in rods and cones are 
open by default (unusual!)
• current flows in continuously
• membrane is depolarized 
  (less negative)



*
photon

transduction & signal amplification 

• photon is absorbed by an opsin

to bipolar cells

• channels close (dark current turns off)

• membrane becomes more 
polarized (more negative)

• neurotransmitter is 
released at a lower rate



*
photon

neurotransmitter release

graded potential
(not spikes!)

to bipolar cells

inner segments

machinery for amplifying 
signals from outer segment

transduction & signal amplification 



Photoreceptors: not evenly distributed across the retina

• fovea: mostly cones
• periphery: mostly rods Q: what are the implications of this?



• not much color vision in the periphery
• highest sensitivity to dim lights: 5º eccentricity

Photoreceptors: not evenly distributed across the retina



Retinal information processing:  receptive fields

“ON”  Cell

[Kuffler 1952]



“OFF”  Cell

[Kuffler 1952]

Retinal information processing:  receptive fields



Receptive field:   “what makes a neuron fire”

• weighting function that the neuron uses to add up its inputs

patch of light

1×(+5)   +  1×(-4)   =  +1 spikes

light level

“center”
weight

“surround”
weight
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patch of bright light

1×(+5)   +  0×(-4)   =  +5 spikes

light level

“center”
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“surround”
weight

Response to a spot of light

Receptive field:   “what makes a neuron fire”

• weighting function that the neuron uses to add up its inputs



Mach Bands
Each stripe has 
constant luminance 
(“light level”)
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It makes intuitive sense to think that encoding the 
contrast (local changes in light) in RGC responses 
might be more efficient than sending the raw light 
levels (eg raw photoreceptor responses).   

Can we make the notion of “efficiency” precise?
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Efficient Coding Hypothesis: 

mutual information

channel capacity
redundancy:

• goal of nervous system: maximize information about environment
   (one of the core “big ideas” in theoretical neuroscience)

Barlow 1961 
Atick & Redlich 1990



Efficient Coding Hypothesis: 
Barlow 1961 

Atick & Redlich 1990

mutual information

channel capacity
redundancy:

channel capacity: 
• upper bound on mutual information
• determined by physical properties of encoder

mutual information: • avg # yes/no questions you can answer 
about x given y  (“bits”)

• entropy: 
“noise” entropyresponse entropy

• goal of nervous system: maximize information about environment
   (one of the core “big ideas” in theoretical neuroscience)



Barlow’s original version:

mutual information
redundancy:

mutual information:

response entropy “noise” entropy
if responses are noiseless

Barlow 1961 
Atick & Redlich 1990



Barlow’s original version:

response entropy
redundancy:

mutual information:

“noise” entropy
noiseless system

brain should maximize response entropy
•  use full dynamic range
•  decorrelate (“reduce redundancy”)

• mega impact: huge number of theory and experimental papers focused 
on decorrelation / information-maximizing codes in the brain

Barlow 1961 
Atick & Redlich 1990

response entropy



Maximum entropy distributions

• Q: what is the maximum entropy (discrete) 
distribution on N bins?

1 2 N…



Maximum entropy distributions

• Q: what is the maximum entropy (discrete) 
distribution on N bins?

1 2 N…

Uniform 



stimulus prior

noiseless, discrete
encoding
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0

0.25

0.5

x

p(
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Gaussian prior
Q: what solution for infomax?

Application Example: single neuron encoding stimuli from a distribution P(x)
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Application Example: single neuron encoding stimuli from a distribution P(x)



response
data

Laughlin 1981:  blowfly light response

cdf of light level

• first major validation of Barlow’s theory



What about multiple neurons?

joint distribution

• This is clearly maximized when neurons are 
independent, i.e., I(r1, r2) = 0

This follows from setting up the optimization problem with the constraints:
��

p(r1, r2)dr1 dr2 = 1
�

p(r1, r2)dr2 = p1(r1), ⇤r1
�

p(r1, r2)dr1 = p2(r2), ⇤r2.

This setup entails an infinite number of constraints enforcing the separate marginals for every
value of r1 and r2. Let {�1i} and {�2i} denote the collection of Lagrange multipliers enforcing
the constraints on the marginals p1 and p2. Then we can write down a Lagragian with an infinite
number of constraints that has as its solution:
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which is independent in r1 and r2 and has solution

p(r1, r2) = p1(r1)p2(r2)

Easier way to see this (draw Venn diagram):

H(X,Y ) = H(X) +H(Y )� I(X,Y ) (3)

Clearly maximal when I(X,Y ) = 0, which only happens when X and Y are independent! (i.e.,
P (X,Y ) = P (X)P (Y )).

8.1.7 Binary Maximum-Entropy Distribution (Ising Model)

Suppose we are given binary random variables Xi ⇥ {�1,+1} with means E[Xi] = µi and second-
order moments (correlations) E[XiXj ] = ⇤ij . Then the maximum-entropy distribution over these
variables can be written
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is the partition function, where the sum is taken over all possible binary assignments of [X1, X2, . . . XN ]
in {�1, 1}N .

This model has an important history in statistical physics, where it has been used to describe
(among other things) the spin of magnetic particles (e.g., “spin glasses”). In the case where Jij is
non-zero except when Xi and Xj are neighbors, the binary maximum-entropy model is termed the
Ising model.

9

given fixed marginals  and p(r1) p(r2)
that achieves maximum entropy H(r1, r2)

We want: 

• solution:  neurons should be (marginally) independent!



basic intuition
natural image

nearby pixels exhibit 
strong dependencies
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efficient coding: take-home

1.  For single neurons:  given a constraint on the 
response (e.g., maximum or mean rate), information 
transfer maximized if marginal response distribution is 
a maximum-entropy subject to that constraint

2.  For multiple neurons: information is 
maximized when response distributions are 
independent (aka “redundancy reduction”)



break?



We’ve discussed:

• how the retina processes that image to extract 
contrast (with “center-surround” receptive fields)

• efficient coding: normative theory of retinal coding

Next:
•  how does visual cortex process information?



early visual pathway 

optic nerve

optic chiasm

optic tract

lateral geniculate 
nucleus (LGN)

optic radiations

primary visual 
cortex (“V1”)

thalamus:

cortex:

(aka “striate cortex”)
right visual 

world
left visual 

world

eye eye



Primary Visual Cortex

• Striate cortex:  known as primary visual cortex, or V1

• “Primary visual cortex” = first place in cortex where 
visual information is processed 
 
(Previous two stages: retina and LGN are pre-cortical)



Receptive Fields: monocular vs. binocular

- LGN cells: responds to one 
eye or the other, never both

- V1 cells: can respond to input from both eyes 

(but V1 neurons still tend to have a preferred eye - they 
spike more to input from one eye)

V1

LGN



Topography: mapping of visual space onto visual cortex

• contralateral representation 
- each visual field (L/R) represented in 
opposite hemisphere

• cortical magnification
 - unequal representation of 
fovea vs. periphery in cortex

(“retinotopic”, “visuotopic”)



major change in sensory representation in V1

V1
• elongated, oriented RFs
• 200M cells!

retina & LGN:
• circular RFs
• 1M fibers (from RGCs)



Orientation tuning:
• neurons in V1 respond more to bars of certain orientations
• response rate falls off with difference from preferred orientation
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Simple vs. Complex Cells

Cells in V1 respond best to bars of light rather than to spots of light
• “simple” cells: prefer bars of light, or prefer bars of dark
• “complex” cells: respond to both bars of light and dark



Receptive Fields in V1

[see link to Hubel & Weisel movie]



• orientation column:  
for a particular location in 
cortex, neurons have same 
preferred orientation

Column:  a vertical arrangement of neurons

• ocular dominance 
column: for particular 
location in cortex, neurons 
have same preferred eye



•  Hypercolumn:  1-mm block 
of V1 containing “all the 
machinery necessary to look 
after everything the visual 
cortex is responsible for, in a 
certain small part of the visual 
world” (Hubel, 1982)

• Each hypercolumn contains a full set of columns 
- has cells responding to every possible orientation, and 
inputs from left right eyes

Hypercolumn - contains all possible columns



Three theories of “What V1 Does”

3.  Sparse coding

2.  Fourier Analysis 

1.  Edge detection



“Edge detection” hypothesis for V1:

• The role of V1 is to detect edges
• not obvious that this is a good way to process images
• led to many failed approaches in computer vision

(I might make some disparaging remarks about Marr on this slide if you ask me)



Three theories of “What V1 Does”

3.  Sparse coding

2.  Fourier Analysis 

1.  Edge detection



• mathematical decomposition of an image (or sound) 
into sine waves.

Fourier decomposition

“image”
1 sine wave

reconstruction:

2 sine waves

3 sine waves

4 sine waves



“Fourier Decomposition” theory of V1

• Summation of two spatial sine 
waves

• any pattern can be broken 
down into a sum of sine waves

claim: role of V1 is to do “Fourier decomposition”, i.e., break 
images down into a sum of sine waves



Retinal Ganglion Cells are tuned to spatial frequency

Response of a 
ganglion cell to 
sine gratings of 
different 
frequencies 



important idea:  spatial frequency channels

spatial frequency:  the number of cycles of a grating per unit 
of visual angle (usually specified in degrees)

• think of it as:  # of bars per unit length

low frequency intermediate high frequency



original

low medium high



The contrast sensitivity function

Human contrast sensitivity illustration of this sensitivity



Image Illustrating Spatial Frequency Channels



Image Illustrating Spatial Frequency Channels



If it is hard to tell who this famous person is, try 
squinting or defocusing

“Lincoln illusion” Harmon & Jules 1973



“Gala Contemplating the Mediterranean Sea, which at 30 meters 
becomes the portrait of Abraham Lincoln (Homage to Rothko)”

- Salvador Dali (1976)



- Salvador Dali (1976)

“Gala Contemplating the Mediterranean Sea, which at 30 meters 
becomes the portrait of Abraham Lincoln (Homage to Rothko)”



• Neurons in the visual system are broadly tuned to 
frequency (unlike Fourier decomposition)

• Fourier decomposition is linear.   V1 is clearly nonlinear.

• Fourier decomposition is non-local;  V1 is local. 
(So “wavelets” are maybe better than sine waves).

• Hasn’t shed very much light on visual function 
(e.g., how does Fourier decomposition help explain object 
recognition?)

Problems with the Fourier Theory of V1



images

noise
(Gaussian)

linear 
basis 
weights

  sparse

Olshausen & 
Field 1996

ai

Sparse representation

Image

ai

P(ai)

a. b.

schematic
latent variables (eg., Laplace)

V1

image

• V1 activity represents inferences under a “sparse” generative model of images

Sparse Coding Model

V1 neural activity
image i’th neuron’s

activity
sparsity
penalty

{

i’th neuron’s
“projective field”



The figure that launched a thousand papers

Projective fields Bi look like V1 receptive fields!

Olshausen & Field 1996

•  first normative account of V1 receptive fields 
(this doesn’t happen if you run PCA on natural images!)



Spike responses are indeed sparse

Macaque IT neuron responses 
(Baddeley 1997)

Sparsity: “large spike counts are rare” OR “distribution is heavy-tailed”

Gaussian 
distribution



(proposed) Advantages of Sparsity

• efficiency - uses few spikes to encode any given stimulus 
  (but you need many more neurons!) 

• computational convenience - easier to decode (you only 
need to decode a few neurons for readout)

• learning - may facilitate learning via local update rules

Does the brain actively seek to find sparse representations?



independent components analysis (ICA)

Bell & Sejnowski 1995

• deterministic version of Sparse Coding (no noise)
• “complete”:  # latent vars = # observed vars

latents

data

matrix

  sparse

A is a square matrix
Inference is easy:

(so equally a “generative” model as a 
“recognition” model)



Limitations of sparse coding model:

• biology uses a cascade (what happens after V1?)

• why don’t responses get sparser after V1?  
(Baddeley et al 97, Chechik et al 06)

• Sparse coding model is a linear generative model:  doesn’t 
provide very rich / accurate description of natural images

sample



Deep-learning based approaches

[Yamins et al, PNAS 2014]

classifiers on the IT neural population (Fig. 2B, green bars) and
the V4 neural population (n= 128, hatched green bars). To ex-
pose a key axis of recognition difficulty, we computed perfor-
mance results at three levels of object view variation, from low
(fixed orientation, size, and position) to high (180° rotations on
all axes, 2.5× dilation, and full-frame translations; Fig. S1A). As
a behavioral reference point, we also measured human perfor-
mance on these tasks using web-based crowdsourcing methods
(black bars). A crucial observation is that at all levels of variation,
the IT population tracks human performance levels, consistent with
known results about IT’s high category decoding abilities (11, 12).
The V4 population matches IT and human performance at low
levels of variation, but performance drops quickly at higher varia-
tion levels. (This V4-to-IT performance gap remains nearly as large
even for images with no object translation variation, showing that
the performance gap is not due just to IT’s larger receptive fields.)
As a computational reference, we used the same procedure to

evaluate a variety of published ventral stream models targeting
several levels of the ventral hierarchy. To control for low-level
confounds, we tested the (trivial) pixel model, as well as SIFT,
a simple baseline computer vision model (30). We also evaluated
a V1-like Gabor-based model (25), a V2-like conjunction-of-
Gabors model (31), and HMAX (17, 28), a model targeted at
explaining higher ventral cortex and that has receptive field sizes

similar to those observed in IT. The HMAX model can be trained
in a domain-specific fashion, and to give it the best chance of
success, we performed this training using the benchmark images
themselves (see SI Text for more information on the comparison
models). Like V4, the control models that we tested approach IT
and human performance levels in the low-variation condition, but
in the high-variation condition, all of them fail to match the per-
formance of IT units by a large margin. It is not surprising that V1
and V2 models are not nearly as effective as IT, but it is instructive
to note that the task is sufficiently difficult that the HMAX model
performs less well than the V4 population sample, even when
pretrained directly on the test dataset.

Constructing a High-Performing Model. Although simple three-
layer hierarchical CNNs can be effective at low-variation object
recognition tasks, recent work has shown that they may be lim-
ited in their performance capacity for higher-variation tasks (9).
For this reason, we extended our model class to contain com-
binations (e.g., mixtures) of deeper CNN networks (Fig. S2B),
which correspond intuitively to architecturally specialized sub-
regions like those observed in the ventral visual stream (13, 32).
To address the significant computational challenge of finding es-
pecially high-performing architectures within this large space of
possible networks, we used hierarchical modular optimization
(HMO). The HMO procedure embodies a conceptually simple
hypothesis for how high-performing combinations of functionally
specialized hierarchical architectures can be efficiently discov-
ered and hierarchically combined, without needing to prespecify
the subtasks ahead of time. Algorithmically, HMO is analogous
to an adaptive boosting procedure (33) interleaved with hyper-
parameter optimization (see SI Text and Fig. S2C).
As a pretraining step, we applied the HMO selection pro-

cedure on a screening task (Fig. S1B). Like the testing set, the
screening set contained images of objects placed on randomly
selected backgrounds, but used entirely different objects in to-
tally nonoverlapping semantic categories, with none of the same
backgrounds and widely divergent lighting conditions and noise
levels. Like any two samples of naturalistic images, the screening
and testing images have high-level commonalities but quite dif-
ferent semantic content. For this reason, performance increases
that transfer between them are likely to also transfer to other
naturalistic image sets. Via this pretraining, the HMO procedure
identified a four-layer CNN with 1,250 top-level outputs (Figs.
S2B and S5), which we will refer to as the HMO model.
Using the same classifier training protocol as with the neural

data and control models, we then tested the HMO model to
determine whether its performance transferred from the screening
to the testing image set. In fact, the HMO model matched the
object recognition performance of the IT neural sample (Fig. 2B,
red bars), even when faced with large amounts of variation—
a hallmark of human object recognition ability (1). These per-
formance results are robust to the number of training examples
and number of sampled model neurons, across a variety of distinct
recognition tasks (Figs. S6 and S7).

Predicting Neural Responses in Individual IT Neural Sites. Given that
the HMO model had plausible performance characteristics, we
then measured its IT predictivity, both for the top layer and each
of the three intermediate layers (Fig. 3, red lines/bars). We found
that each successive layer predicted IT units increasingly well,
demonstrating that the trend identified in Fig. 1A continues to
hold in higher performance regimes and across a wide range of
model complexities (Fig. 1B). Qualitatively examining the spe-
cific predictions for individual images, the model layers show
that category selectivity and tolerance to more drastic image
transformations emerges gradually along the hierarchy (Fig. 3A,
top four rows). At lower layers, model units predict IT responses
only at a limited range of object poses and positions. At higher
layers, variation tolerance grows while category selectivity develops,
suggesting that as more explicit “untangled” object recognition
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Fig. 2. Neural-like models via performance optimization. (A) We (1) used
high-throughput computational methods to optimize the parameters of
a hierarchical CNN with linear-nonlinear (LN) layers for performance on a
challenging invariant object recognition task. Using new test images distinct
from those used to optimize the model, we then (2) compared output of each
of the model’s layers to IT neural responses and the output of intermediate
layers to V4 neural responses. To obtain neural data for comparison, we used
chronically implanted multielectrode arrays to record the responses of mul-
tiunit sites in IT and V4, obtaining the mean visually evoked response of each
of 296 neural sites to ∼6,000 complex images. (B) Object categorization
performance results on the test images for eight-way object categorization at
three increasing levels of object view variation (y axis units are 8-way cate-
gorization percent-correct, chance is 12.5%). IT (green bars) and V4 (hatched
green bars) neural responses, and computational models (gray and red bars)
were collected on the same image set and used to train support vector ma-
chine (SVM) linear classifiers from which population performance accuracy
was evaluated. Error bars are computed over train/test image splits. Human
subject responses on the same tasks were collected via psychophysics experi-
ments (black bars); error bars are due to intersubject variation.
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[Yamins et al, PNAS 2014]

classifiers on the IT neural population (Fig. 2B, green bars) and
the V4 neural population (n= 128, hatched green bars). To ex-
pose a key axis of recognition difficulty, we computed perfor-
mance results at three levels of object view variation, from low
(fixed orientation, size, and position) to high (180° rotations on
all axes, 2.5× dilation, and full-frame translations; Fig. S1A). As
a behavioral reference point, we also measured human perfor-
mance on these tasks using web-based crowdsourcing methods
(black bars). A crucial observation is that at all levels of variation,
the IT population tracks human performance levels, consistent with
known results about IT’s high category decoding abilities (11, 12).
The V4 population matches IT and human performance at low
levels of variation, but performance drops quickly at higher varia-
tion levels. (This V4-to-IT performance gap remains nearly as large
even for images with no object translation variation, showing that
the performance gap is not due just to IT’s larger receptive fields.)
As a computational reference, we used the same procedure to

evaluate a variety of published ventral stream models targeting
several levels of the ventral hierarchy. To control for low-level
confounds, we tested the (trivial) pixel model, as well as SIFT,
a simple baseline computer vision model (30). We also evaluated
a V1-like Gabor-based model (25), a V2-like conjunction-of-
Gabors model (31), and HMAX (17, 28), a model targeted at
explaining higher ventral cortex and that has receptive field sizes

similar to those observed in IT. The HMAX model can be trained
in a domain-specific fashion, and to give it the best chance of
success, we performed this training using the benchmark images
themselves (see SI Text for more information on the comparison
models). Like V4, the control models that we tested approach IT
and human performance levels in the low-variation condition, but
in the high-variation condition, all of them fail to match the per-
formance of IT units by a large margin. It is not surprising that V1
and V2 models are not nearly as effective as IT, but it is instructive
to note that the task is sufficiently difficult that the HMAX model
performs less well than the V4 population sample, even when
pretrained directly on the test dataset.

Constructing a High-Performing Model. Although simple three-
layer hierarchical CNNs can be effective at low-variation object
recognition tasks, recent work has shown that they may be lim-
ited in their performance capacity for higher-variation tasks (9).
For this reason, we extended our model class to contain com-
binations (e.g., mixtures) of deeper CNN networks (Fig. S2B),
which correspond intuitively to architecturally specialized sub-
regions like those observed in the ventral visual stream (13, 32).
To address the significant computational challenge of finding es-
pecially high-performing architectures within this large space of
possible networks, we used hierarchical modular optimization
(HMO). The HMO procedure embodies a conceptually simple
hypothesis for how high-performing combinations of functionally
specialized hierarchical architectures can be efficiently discov-
ered and hierarchically combined, without needing to prespecify
the subtasks ahead of time. Algorithmically, HMO is analogous
to an adaptive boosting procedure (33) interleaved with hyper-
parameter optimization (see SI Text and Fig. S2C).
As a pretraining step, we applied the HMO selection pro-

cedure on a screening task (Fig. S1B). Like the testing set, the
screening set contained images of objects placed on randomly
selected backgrounds, but used entirely different objects in to-
tally nonoverlapping semantic categories, with none of the same
backgrounds and widely divergent lighting conditions and noise
levels. Like any two samples of naturalistic images, the screening
and testing images have high-level commonalities but quite dif-
ferent semantic content. For this reason, performance increases
that transfer between them are likely to also transfer to other
naturalistic image sets. Via this pretraining, the HMO procedure
identified a four-layer CNN with 1,250 top-level outputs (Figs.
S2B and S5), which we will refer to as the HMO model.
Using the same classifier training protocol as with the neural

data and control models, we then tested the HMO model to
determine whether its performance transferred from the screening
to the testing image set. In fact, the HMO model matched the
object recognition performance of the IT neural sample (Fig. 2B,
red bars), even when faced with large amounts of variation—
a hallmark of human object recognition ability (1). These per-
formance results are robust to the number of training examples
and number of sampled model neurons, across a variety of distinct
recognition tasks (Figs. S6 and S7).

Predicting Neural Responses in Individual IT Neural Sites. Given that
the HMO model had plausible performance characteristics, we
then measured its IT predictivity, both for the top layer and each
of the three intermediate layers (Fig. 3, red lines/bars). We found
that each successive layer predicted IT units increasingly well,
demonstrating that the trend identified in Fig. 1A continues to
hold in higher performance regimes and across a wide range of
model complexities (Fig. 1B). Qualitatively examining the spe-
cific predictions for individual images, the model layers show
that category selectivity and tolerance to more drastic image
transformations emerges gradually along the hierarchy (Fig. 3A,
top four rows). At lower layers, model units predict IT responses
only at a limited range of object poses and positions. At higher
layers, variation tolerance grows while category selectivity develops,
suggesting that as more explicit “untangled” object recognition
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Fig. 2. Neural-like models via performance optimization. (A) We (1) used
high-throughput computational methods to optimize the parameters of
a hierarchical CNN with linear-nonlinear (LN) layers for performance on a
challenging invariant object recognition task. Using new test images distinct
from those used to optimize the model, we then (2) compared output of each
of the model’s layers to IT neural responses and the output of intermediate
layers to V4 neural responses. To obtain neural data for comparison, we used
chronically implanted multielectrode arrays to record the responses of mul-
tiunit sites in IT and V4, obtaining the mean visually evoked response of each
of 296 neural sites to ∼6,000 complex images. (B) Object categorization
performance results on the test images for eight-way object categorization at
three increasing levels of object view variation (y axis units are 8-way cate-
gorization percent-correct, chance is 12.5%). IT (green bars) and V4 (hatched
green bars) neural responses, and computational models (gray and red bars)
were collected on the same image set and used to train support vector ma-
chine (SVM) linear classifiers from which population performance accuracy
was evaluated. Error bars are computed over train/test image splits. Human
subject responses on the same tasks were collected via psychophysics experi-
ments (black bars); error bars are due to intersubject variation.
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“task based” or “goal 
based” approaches:

1) train a network (CNN / DNN / RNN) to perform the task 
2) regress units in trained network against neural data

Deep-learning based approaches



• early work focused on pre-trained networks (AlexNet, VGG, ResNet)

• recent work shows we can fit models to neural data

• can use DNNs to synthesize images to optimally drive neurons

• use RNNs / LSTMs / GRUs to capture time-course of responses

• can we improve these models by incorporating other ideas from 
  biology (feedback, spiking, divisive normalization, plasticity, etc.)?

• current debate about whether we can ever “understand” V1  
  (or whether that is even a worthwhile goal)

Lots of current research directions inspired by 
deep learning



Summary 
• retinal organization:  photoreceptors (rods and cones), 

dark current, bipolar cells, retinal ganglion cells (RGC)
• receptive fields, “ON” and “OFF” receptive fields
• Barlow’s efficient coding hypothesis
• Hubel & Weisel: orientation tuning in V1
• ocular dominance
• simple / complex cells
• edge detection
• Fourier analysis, spatial frequency channels
• sparse coding model
• deep-learning based approaches


