
Lecture 3:

______________

Associative Learning and
Feature Maps



Learning

• So far, we’ve focused on processing: 
– dynamics of encoding and representation information (≈ weather) 

• What about learning? 
– how is the landscape shaped? (≈geology) 
– dynamics of acquisition
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• Unsupervised Learning 
– Hebbian Learning Rule 
– Self-organized maps 
– Topographic structure 
– Pattern associator 
– Pattern detectors 

• Supervised Learning 
– Scalar Learning 

– Classical and Instrumental Conditioning 
– Sequential learning and Prediction 

– Vector-Based Learning 
– Generalized Delta Rule 
– Backpropagation 
– Deep Learning

Learning

☞ 



• D. O. Hebb: (1949) 
“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently 

takes part in firing it, some growth process or metabolic change takes place in one or 
both cells such that A’s efficiency, as one of the cells firing B, is increased.”  

• Critical factor 
– concurrent presynatptic and postsynaptic activity:  correlation 
– units that “fire together wire together” 

• Fundamental learning mechanism 
– responsible for much of how we gain our knowledge

Hebbian Learning
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Stimuli Representations

Activating X activates A which now activates B Activating X……which strengthens connection between A and B 
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Hebbian Learning



Formalism: 
Δwij = α aiaj 

where α is the learning rate and a can be any real number

After n “experiences:” 
wij = α Σnainajn 

“Correlational Learning: 
  wij ≡ correlation of ai and aj  over time (patterns)  

 if ai and aj vary linearly from -1 to +1 (i.e., mean=0 and unit variance) 

Captures statistical relationship  
among co-occurring features
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Multiple Associations
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A Bit O’ Math
• Patterns can be considered as vectors (lists of activation values) 

and relationships between them described using linear algebra

• Normalized Dot Product (NDP) of two patterns a and b over n units: 
 a • b  = (Σiaibi) / n
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• NDP combines measure of strength and similarity 

- Strength of pattern:  vector length, normalized for # of elements 
♦ Tip:  this is the Euclidean distance from the origin 

 to the point defined by the vector; 
        (≈ hypotenuse of the triangle defined by 
 the vector and its distance along each axis

• Two patterns whose NDP = 0 are said to be “orthogonal” 
♦ Tip:  Vectors that are “perpendicular” in 3D space are orthogonal 

        (compute the NDP for the x axis against the y axis); 
        this is because they are uncorrelated

X
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- Similarity: correlation, independent of length 
♦ Tip:  this is the angle between the two vectors 

        0° = similar (+ correlation) 
        90° = unrelated (0 correlation)  
        180° = opposite (- correlation)



• The role of associative learning in model building 
- Correlations are important for building internal models of the world:   

♦ the world is inhabited by objects and agents with features 
that are in consistent relationship to one another 

♦ these regularities are useful for identification and prediction 
(predators have fangs; when it is warm fruit will be available;  types of faces) 

♦ correlations among features define dimensions that are relevant for 
and efficient at describing and understanding the world 

• Extracting regularities is a fundamental job of cognition: 
- Parsimony/ Abstraction:  can describe a complex world with finite 

resources 

- Generalization:  infer properties of the world in novel circumstances 

- Efficiency of learning:  can represent novel items with existing codes

Associative Learning and
Internal Representations / Model Building



• Formalism: 

- Detector unit y receives connections from a set of input units xk 

- Activation of detector unit: 
yj = Σkxkwkj

- Weight change between xi and yj over 
a set of n input patterns t 

Δwij = εΣtxityjt

- If  ε = 1/n,  then 
Δwij = <xiyj >t   (average product, or “expected value,” of xiyj over t)

- Substitute for yj and some algebra: 
Δwij = Σk<xixk >t <wkj >t 

• In words: 

Changes in the weight from input unit Xi  to the detector yj are a weighted average of the 
correlations that Xi  exhibits with the other input units Xk in the network 

Net effect:  weights will adjust to produce the greatest variance in y, by responding to 
“conspiracies” of correlated input units

Pattern Detector

yj

x1 x2 xk

w1j w2j wkj



Example
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• Observe: 
- Units 1 and 2 are highly correlated 

across the input patterns 

- Their weights consistently grow 

- The weight for unit 3 “thrashes” and, 
on average, goes nowhere 

- Weights adjust to produce the greatest variance in y, by responding 
to the fact that the combined influence of 1 and 2 is strong
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Principal Components Analysis (PCA)
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• Unit y extracts the principal Eigen Vector 
(i.e., one with the largest Eigen Value)



Principal Components Analysis (PCA)
• Unit yi extracts the principal Eigen Vector 

(i.e., one with the largest Eigen Value) 

• If we have multiple detector units yj,  
we can extract additional components 
- Lateral competition required to prevent redundancy 

(otherwise all detector units would encode the same principal component)

Cat +1 -1 +1 -1 +1  0  0

Dog +1 +1 -1 -1  0 +1  0

Bird +1 -1 -1 +1  0  0 +1

bark “cat” “dog” “bird”tail meow chirp

catness birdnessdognessExample:



Principal Components Analysis (PCA)
• Unit yi extracts the principal Eigen Vector 

(i.e., one with the largest Eigen Value) 

• If we have multiple detector units yj,  
we can extract additional components 
- Lateral competition required to prevent redundancy 

(otherwise all detector units would encode the same principal 
component) 

- Schemes can be devised to enforce orthogonality of components  
 = Standard hierarchical PCA  

- However, other schemes (e.g., weight normalization) provide 
mechanisms of parallel (“heterarchical”) PCA: 

♦ encourages detectors to specialize for different features 
♦ better fit to structure of real world 

(world is not hierarchically arranged)



Other Approaches

• Linsker’s Information Maximization 
- Multiple detector units, similar to PCA network: 

 maximizing variance in output units ≈ maximizing information 
 (in limit not useful, since no dimension reduction ∴ no generalization) 

• Kohonen Network 
- Multiple detector units with structured local connections among them:  

captures neighborhood relationships among features;  topographic maps 
(Ken Miller’s simulations of ocular dominance columns) 

• Competitive Learning (winner-take-all) 
- Multiple detector units but only one allowed to be active; 

forces different detectors to identify different correlations among input units 

• Minimum Description Length (K-winners-take-all) 
- Similar to competitive learning, but a small set of detectors can be active; 

trades off maximizing information against minimizing complexity 

• LEABRA 
- Combines K-winners-take-all competition with error-driven learning

👉



More Generally…

•Can think of associative networks as implementing 
“exploratory” analysis of environment 

•Parameterization implements different classes of 
statistical functions



Limitations of Associative Learning 
and Some Solutions

• Recalls each test pattern as a weighted function of its similarity 
to ones that it has learned:  blends, doesn’t make “decisions” 

- Recurrent connections + non-linear units → settling processes:  
♦ auto-associator 
♦ attractor networks 

• Weights unbounded and never decrement 
- Weight normalization 
- Weight decrements for non-correlation:  Long-Term Depression (LTD) 

• Pattern associator can only learn orthogonal representations; 
pattern detector restricted to linear correlational structure 

- Error-driven learning 
- Example of problem...



Example

Cat +1 -1 +1 -1 +1  0  0

Dog +1 +1 -1 -1  0 +1  0

Bird +1 -1 -1 +1  0  0 +1

bark “cat” “dog” “bird”tail meow chirp

catness birdnessdogness

Observe:  tail is active for all of the animals (no variance) 
                 so it doesn’t correlate with any of the other animal features 
                 and therefore is not part of their representation 



• Associative (Hebbian) learning provides a biologically plausible 
mechanism for setting weights in a network 

- Relationship to Long Term Potentiation (LTP) 

• Hebbian pattern associators can learn 
relationships between features of the world 

- patterns constrained to be orthogonal 

• Hebbian pattern detectors can represent correlational structure 
- implement various forms of PCA 

• Basic Hebbian rule needs augmentation 
- Weight decay (LTD), normalization (competition), etc. 

• Even still, important behaviors that it can explain...

Summary



Topographic Organization

• Associative learning can extract structure in the world, 
and represent it structurally (topographically) 

• There is (lots of) topographic organization in the nervous system: 
– Retina (spatiotopic), inner ear (tonotopic), sensory and motor cortex 

– Exploited for imaging (e.g., retinotopic mapping of primary visual cortex) 

– Even as it gets more complex, some topography is maintained: 
♦ Occular dominance columns (Miller, 1989) 
♦ Ocular dominance, orientation and retinotopic positions “pinwheels” (Durbin & Mitchison, 1990) 

• These may reflect meaningful relationships that exist in the “data” 
    (i.e., the “real world”)



 Topographic Organization

Orientation 
columns

Simple Complex Hyper-complex

Visual areas Motor areas



“Dimension Reduction”

• How does this structure arise? 
• Challenge: 

• What about even higher dimensional data?

3D 2D



• Objectives: 
– Map input vectors (patterns) of dimension N onto a map with 1 or 2 dimensions. 

– Patterns close to one another in the input space should project to nearby units 
(“map" should be topographically ordered) 

• Network architecture and input environment (“training”) 
– Input layer: 

♦ units that code a space of vectors with structure, but not spatially arranged 

– Output layer: 
♦ each unit j has weights from all units in input layer 
♦ each unit j has a defined distance from all other units in the output layer 

• Learning rule: 
– present input pattern, and identify best matching (most active) output unit: 

♦ one with input current weights closest to input pattern (“winner” of lateral competition) 

– adjust weights for that unit using following rule: 
Wb(t+1) = Wb(t) + cwb(t) • g(t) • (I - Wb(t))

Self-Organizing Maps (SOMs)
Kohonen Network (1982)

𝜶  correlation of 
output unit with 
pattern of activity 
over input units

b j

closeness to b gain difference from Input patternchange in weights to b



Self-Organizing Maps

Input 
Patterns

Network Small random
initial weights

Similar colors
have similar patterns

Demo

https://www.youtube.com/watch?v=-6a7LATC-9g


Self-Organizing Maps
Distances



Self-Organizing Maps
Distances
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Self-Organizing Maps
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Self-Organizing Maps

Unit with weights
that best match

input pattern

Distance from
best matching unit

Augment weights
of that unit most

and others based on
their distance from it



Self-Organizing Maps
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Self-Organizing Maps

Spectrally 
arranged!


