Lecture 3:

Associative Learning and
Feature Maps




Learning

e What about learning?
— how is the landscape shaped? (=geology)
— dynamics of acquisition



Learning

e Unsupervised Learning
X — Hebbian Learning Rule
— Self-organized maps
— Topographic structure
— Pattern associator

— Pattern detectors




Hebbian Learning

¢ Fundamental learning mechanism
— responsible for much of how we gain our knowledge



Hebbian Learning
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Hebbian Learning
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Multiple Associations
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A Bit O’ Math

e Two patterns whose NDP = 0 are said to be “orthogonal”

¢ Tip: Vectors that are “perpendicular” in 3D space are orthogonal
(compute the NDP for the x axis against the y axis);
this is because they are uncorrelated



Associative Learning and
Internal Representations / Model Building

e Extracting regularities is a fundamental job of cognition:

= Efficiency of learning: can represent novel items with existing codes



Pattern Detector
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® In words:

Net effect: weights will adjust to produce the greatest variance in y, by responding to
“conspiracies” of correlated input units



Example

@ ® Observe:
g X Units 1 and 2 are highly correlated

4 -
1 across the input patterns
.1 A = Their weights consistently grow
= The weight for unit 3 “thrashes” and,
Q on average, goes nowhere
L] L] 1 »

= Weights adjust to produce the greatest variance in y, by responding
to the fact that the combined influence of 1 and 2 is strong
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Principal Components Analysis (PCA)

e Unit y extracts the principal Eigen Vector
(i.e., one with the largest Eigen Value)
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Principal Components Analysis (PCA)

e Unit y; extracts the principal Eigen Vector
(i.e., one with the largest Eigen Value)

e If we have multiple detector units Y
we can extract additional components

- Lateral competition required to prevent redundancy
(otherwise all detector units would encode the same principal component)




Principal Components Analysis (PCA)

e Unit y; extracts the principal Eigen Vector
(i.e., one with the largest Eigen Value)

e If we have multiple detector units Vs
we can extract additional components

- Lateral competition required to prevent redundancy
(otherwise all detector units would encode the same principal
component)

= Schemes can be devised to enforce orthogonality of components
= Standard hierarchical PCA

- However, other schemes (e.g., weight normalization) provide
mechanisms of parallel (“heterarchical”) PCA:

¢ encourages detectors to specialize for different features

¢ better fit to structure of real world
(world is not hierarchically arranged)



Other Approaches

o~ ° Kohonen Network

= Multiple detector units with structured local connections among them:
captures neighborhood relationships among features; topographic maps
(Ken Miller’s simulations of ocular dominance columns)




More Generally...

e Can think of associative networks as implementing
“exploratory” analysis of environment

e Parameterization implements different classes of
statistical functions




Limitations of Associative Learning
and Some Solutions

e Pattern associator can only learn orthogonal representations;
pattern detector restricted to /inear correlational structure

= Error-driven learning
= Example of problem...



Cat +1 -1 +1 -1 +1 0o o
Dog +1 +1 -1 -1 0 +1
Bird +1 -1 -1 +1 0o 0o +1

Observe: tail is active for all of the animals (no variance)
so it doesn’t correlate with any of the other animal features
and therefore is not part of their representation



Summary

e Even still, important behaviors that it can explain...



Topographic Organization

¢ These may reflect meaningful relationships
(i.e., the “real world”)

W,
E_ —<ist in the “data”



Topographic Organization
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“Dimension Reduction”

e How does this structure arise?

e Challenge:

e What about even higher dimensional data?




Self-Organizing Maps (SOMs)

Kohonen Network (1982)
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e Learning rule:
— adjust weights for that unit using following rule: & correlation of
W t+1) = Wh(t) + G * g(t) * (I - Wh() output unit with

pattern of activity
over input units



Self-Organizing Maps

Network

Input
Patterns

Small random
initial weights

Similar colors
have similar patterns



https://www.youtube.com/watch?v=-6a7LATC-9g

Self-Organizing Maps
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Self-Organizing Maps
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Self-Organizing Maps
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Self-Organizing Maps
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Self-Organizing Maps




Self-Organizing Maps
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Self-Organizing Maps
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Self-Organizing Maps
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Self-Organizing Maps
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Self-Organizing Maps
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Self-Organizing Maps
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Self-Organizing Maps




Self-Organizing Maps
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Self-Organizing Maps
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Self-Organizing Maps
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Self-Organizing Maps
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