
Ocular Dominance Column Development: Analysis and Simulation 

Author(s): Kenneth D. Miller, Joseph B. Keller and Michael P. Stryker 

Source: Science , Aug. 11, 1989, New Series, Vol. 245, No. 4918 (Aug. 11, 1989), pp. 605-
615  

Published by: American Association for the Advancement of Science 

Stable URL: https://www.jstor.org/stable/1704458

 
REFERENCES 
Linked references are available on JSTOR for this article: 
https://www.jstor.org/stable/1704458?seq=1&cid=pdf-
reference#references_tab_contents 
You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

American Association for the Advancement of Science  is collaborating with JSTOR to digitize, 
preserve and extend access to Science

This content downloaded from 
������������140.180.240.246 on Mon, 10 Feb 2025 14:58:57 UTC������������ 

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/1704458
https://www.jstor.org/stable/1704458?seq=1&cid=pdf-reference#references_tab_contents
https://www.jstor.org/stable/1704458?seq=1&cid=pdf-reference#references_tab_contents


 9. E. Garfield, Curr. Contents 46, 3 (16 November 1987).
 10. Science and Engineering Indicators-1987 (National Science Board, Washington, DC,

 1987), p. 133.
 11. Not only are references to the scientific literature increasing in U.S. patents, but the

 age of the references is shortening. In 1975, the median age of an examiner
 reference to nonpatent literature was approximately 8 years. In 1986, this decreased
 to about 7 years [F. Narin and E. Noma, Scientometrics 7, 369 (1985); W. J. Broad,
 "Science and technology: The gap is shrinking fast," New York Times, 5 April 1988,

 p. C1.
 12. Supported by NSF grant SRS-8507306. We thank J. Bond for support. Develop-

 ment of the literature and patent data and analysis techniques were partially
 supported under NSF Science Indicators contract SRS-8607471 and Small
 Business Innovation grant ISI-8521261. The final report under the NSF grant is
 cited in (4); it contains most of the data underlying this article. We also thank D.
 Olivastro for computer analysis of the patent data and K. A. Stevens for
 preparation of the literature data.

 Ocular Dominance Column Development:
 Analysis and Simulation

 KENNETH D. MILLER, JOSEPH B. KELLER, MICHAEL P. STRYIER

 The visual cortex of many adult mammals has patches of
 cells that receive inputs driven by the right eye alternating
 with patches that receive inputs driven by the left eye.
 These ocular dominance patches (or "columns") form
 during early life as a consequence of competition between
 the activity patterns of the two eyes. A mathematical
 model of several biological mechanisms that can account
 for this development is presented. Analysis of this model
 reveals the conditions under which ocular dominance
 segregation will occur and determines the resulting patch
 width. Simulations of the model also exhibit other phe-
 nomena associated with early visual development, such as
 topographic refinement of cortical receptive fields, the
 confinement of input cell connections to patches, monoc-
 ular deprivation plasticity including a critical period, and
 the effect of artificially induced strabismus. The model
 can be used to predict the results of proposed experiments
 and to discriminate among various mechanisms of plastic-
 ity.

 I N THE VISUAL SYSTEMS OF MANY MAMMALS, INCLUDING CATS,

 monkeys, and humans, the optic nerves from the two eyes
 project to separate layers of a relay nucleus, the lateral geniculate

 nucleus (LGN) of the thalamus. Fibers from the LGN in turn
 project to cortical layer 4, the input layer of the primary visual
 cortex. There they terminate in alternate patches called "ocular
 dominance columns" serving the left eye and right eye, respectively
 (Fig. 1). The nonoverlapping pattern of connections evolves during
 development. Initially the connections representing the two eyes are
 distributed throughout layer 4, overlapping completely. Subse-
 quently, they become segregated into two sets of patches, one for
 each eye.

 Ocular dominance patch formation appears to depend on compe-
 tition between the activity patterns originating within the two eyes
 (1). The patches do not develop when neural activity is blocked in
 the eyes or in the cortex or when a pattern of neural activity is given
 synchronously to the nerves from both eyes. They do develop when
 the activity patterns in the nerves from the two eyes are asynchro-
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 nous. Closing one eye during a critical period early in development
 (monocular deprivation) results in larger patches for the open eye
 and smaller patches for the closed eye. Closing of both eyes during
 the same period causes no abnormal effect. Thus, both development
 of ocular dominance patches and the effects of monocular depriva-
 tion involve competition between activity patterns; they do not
 result simply from the presence or absence of activity.

 This competition provides a model system for understanding
 activity-dependent synaptic plasticity. We presume that the
 strengthening of some synapses and the weakening of others are
 governed by cellular-level rules involving the patterns of neural
 activity onto and by each cortical cell. These small-scale changes,
 occurring on many individual cells during development, result in the
 large-scale structure of ocular dominance.

 Various cellular-level mechanisms for plasticity have been pro-
 posed (2). Simulations by von der Malsburg and others (3) have
 demonstrated that some of these mechanisms can produce ocular
 dominance patches. We have developed a mathematical model that
 describes several such mechanisms. From it, we can determine the
 ocular dominance structure that would result from each mechanism,
 given experimental values for biological parameters (4).

 Our analysis focuses on four biological features that are thought
 to play a role in organizing ocular dominance patches (Fig. 2):

 1) The patterns of initial connectivity of the geniculocortical
 afferents (inputs from geniculate to visual cortex) onto the cortical
 cells. These patterns involve the spread of afferent arbors and of
 cortical dendrites and are described by an "arbor function," A.

 2) The patterns of activity in the afferents. These patterns are
 described by a set of four "correlation functions," CLL, CRR,
 CLR, and CRL. They describe correlations in activity between
 afferents serving the same eye, left or right (CLL and CRR) or serving
 different eyes (CLR and CRL).

 3) Influences acting laterally within the cortex, whereby synapses
 on one cell can influence the competition occurring on nearby cells.

 K. D. Miller is in the Department of Physiology, University of California, San
 Francisco, CA 94143-0444, where he has worked while a graduate student in the
 Department of Neurobiology, Stanford University, Stanford, CA 94305. The work
 presented here forms part of his Stanford Ph.D. dissertation. J. B. Keller is a member of
 the Department of Mathematics, Stanford University, Stanford, CA 94305. M. P.
 Stryker is a member of the Department of Physiology and Neuroscience Graduate
 Program, University of California, San Francisco, CA 94143-0444.
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 These influences, described by a "cortical interaction function," I,
 may occur through corticocortical synaptic connections or diffusion
 of modulatory substances.

 4) Constraints limiting the total synaptic strength supported by
 an afferent or cortical cell.

 The sizes of some of these features have been measured in the

 visual cortex of adult cats. The final patches have periodicity of
 about 850 ,um (5, 6). Initial arbors may fill a region with diameter 1
 to 1.5 mm (X cells) or larger than 2 mm (Y cells) (7). Afferents from
 a single eye appear positively correlated in darkness over distances of
 from 1/2 (for X cells) to 3/2 (for Y cells) of a geniculocortical arbor
 radius (8). Corticocortical synaptic interactions may be excitatory at
 short range and are inhibitory at further distances to about 400 ,rm;
 longer range, periodic cortical connections also exist (9). Most of
 these features have not yet been measured in kittens, when columns
 are developing.

 The purpose of this analysis is to demonstrate the role of each of
 these four features in ocular dominance segregation. The model
 shows that ocular dominance patches emerge from an initially
 uniform state when the state is unstable to small perturbations. The
 model also describes the development of structure within individual
 cortical receptive fields and geniculate axon terminal arborizations
 ("arbors"). We shall characterize the general conditions on the four
 features under which a pattern-forming instability exists and deter-
 mine the width of the ocular dominance patches that emerge. The
 results predict the patterns of ocular dominance organization that
 should result under various experimental conditions and thereby
 permit discrimination among proposed mechanisms of plasticity.

 Formulation of the Equations

 We model layer 4 of the cortex and two geniculate laminae, each
 serving one eye, as three two-dimensional sheets. Consider aferents
 serving the left eye with cell body at position a in the LGN (Fig. 2)
 (10). Suppose the terminal arborizations of these cells make synaptic
 contact with cortical cells at the position x. We denote the number
 of such synapses by the arbor function A(x - a) and their total
 synaptic strength at time t by SL(x,a,t). Similarly, SR(x,a,t) denotes
 the corresponding strength for the right eye. A(x - a) is taken to
 be a decreasing function of the retinotopic distance between genicu-
 late and cortical cells and is the same for both eyes.

 We begin, by formulating an equation for Hebbian synapses,
 which are strengthened when presynaptic activity is sufficiently
 correlated with activation of the postsynaptic cell and weakened
 otherwise (11). This equation can be written for individual synapses
 as As = [(post)(pre) - (decay)]At, where As is the change in the
 synaptic strength in a small time interval At, and post and pre are
 functions of postsynaptic and presynaptic activities, respectively.

 We assume that cortical activity is determined by the combined
 activity of all the afferents from the LGN to the cortex. Then post can
 be replaced by a function of presynaptic activities and of synaptic
 strengths. We then obtain the following equation governing
 SL(x,a,t) (12-15):

 dSL(xNa~t) = A(x - a)XI(x - y)[CLL(a - r3)SL(y,3,t)
 dt ye

 + CLR(a - r3)SR(y,3,t)] - -ySL(x,a,t) - eA(x - a) (1)

 Interchanging L and R yields the equation for SR. Similar equations
 have been derived by a number of investigators (16-21).

 In Eq. 1, CLL(a - 13) is a measure of the correlation between the
 activities of the left-eye afferents from points a and 13 in the LGN.
 CLR(a - 13 is the corresponding correlation measure for left-eye
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 afferents from a and right-eye afferents from P. The cortical
 interaction function I(x - y) describes the total influence on the
 cortical cell at x of geniculate excitation of the cortical cell at y. This
 includes direct excitation, if y = x, and indirect effects via excitation
 of intermediate cortical cells that may excite or inhibit the cell at x.

 Equation 1 for SL and the corresponding equation for SR
 constitute our basic mathematical model of synaptic strength devel-
 opment. The data used in the model are the arbor function
 A(x - a), the cortical interaction function I(x - y), and the correla-
 tion functions such as CLL(a - 1). When the initial values of SL and
 SR are given at time t = O., the equations determine SL and SR at any
 later time t.

 This basic model must be modified to prevent synaptic strength
 from becoming negative or from becoming too large. Nonlinearities
 must be included in the equation to enforce these conditions. In
 addition, the model may be modified to limit the total synaptic
 strength supported by a cortical or afferent cell (22). Terms must be
 added to the equations to enforce such limits.

 We have investigated Eq. 1, subject to these conditions, by using
 computer simulations and analytical methods to determine the
 conditions on the functions A, I, and C under which column
 development and other features of visual cortical development
 occur. We choose a particular model for the conditions limiting
 synaptic strengths in the simulations and explore the role of these
 conditions more generally in the analysis.

 Simulations

 We represent layer 4 of the cortex and two LGN laminae, one
 representing each eye, as three 25 x 25 grids of cells. Periodic
 boundary conditions are used, so that the topmost and bottommost

 A Visual cortex

 _ S \ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. . ..... .. ............... ......

 Right eye A .

 ..... ...... _
 LGN

 Left eye

 Fig. 1. (A) Schematic of the visual B
 system after development of ocular
 dominance patches. The left lateral ...
 geniculate nucleus (LGN) and visu-
 al cortex are pictured. Retinal gan- I
 glion cells from the two eves pro-
 ject to separate laminae of the
 LGN. The right (contralateral) eve .
 projects to lamina A, and the left
 (ipsilateral) eve projects to lamina
 Al. Neurons from these two layers
 in tum project to separate patchcs _
 or stripes within layer 4 of the
 primary visual cortex. The cortex is depicted in cross section, so that lavers 1
 through 3 are above and layers 5 and 6 arc below the layer 4 projection
 region. Binocular regions arc pictured at the borders benteen patches in
 laver 4. (B) Ocular dominance patches in layer 4 of the cat visual cortex.
 Photomontage w as constructed from tangential sections taken through layecr
 4 of flattened cortex. Geniculocortical afferent terminals representing; the
 ipsilateral evec were labeled and appear whhite. [From figure 6D) of (6). with
 permission of the Jouarnal of .Neulrosciencve]
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 rows within each grid are regarded as neighbors, as are the leftmost
 and rightmost columns within each grid. Each LGN cell arborizes to
 contact a 7 X 7 square of cortical cells centered on its retinotopic
 position in the cortex. Thus there are 2 x (25 x 25) x (7 x 7) =
 61,250 synapses. Initially the strength of each synapse is assigned a
 value chosen randomly from a distribution uniform between 0.8 and
 1.2. We limit synaptic strengths to a range between 0 and 8.0 and
 impose constraints fixing the total synaptic strength supported by a
 cortical cell and limiting or fixing the total synaptic strength over an
 afferent arbor. We solve Eq. 1 beginning from the random initial
 conditions and subject to these limits and constraints (23).

 Figure 3 shows typical development under the model. Initially the
 cortex is binocular everywhere with approximately equal input from
 the two eyes, indicated by the color blue in Fig. 3A. Gradually,
 synapses driven by the right and left eyes segregate, indicated by red
 and green, respectively, dividing the cortical territory into ocular
 dominance patches. Biologically, the development of ocular domi-
 nance patches is accompanied by (i) development of monocular
 receptive fields of cortical neurons, (ii) topographic refinement of
 receptive fields, and (iii) the progressive confinement of individual
 LGN axon arbors to patches. We examine the set of LGN inputs to a
 cortical cell as representative of the cell's receptive field. Figure 3B
 shows the development of eight such sets. Initially, each cortical cell
 has synapses of uniform strength from both eyes throughout the
 field. The inputs from each eye become concentrated in the centers
 of each receptive field, producing topographic refinement. Subse-
 quently, the cells become monocular, that is, one eye gives strong
 input (red) and the other eye's input is lost (gray). Geniculate
 afferent arbors (Fig. 3C) also are initially uniform and then concen-
 trate their strength centrally. Subsequently, the two axonal arbors
 from the two eyes stemming from a single retinotopic position in
 the LGN segregate into complementary regions. These regions
 correspond to the cortical patches.

 These results are completely robust, because qualitatively identical
 results were obtained for every set of random initial conditions tried.
 Figure 4 shows the final cortical layer 4 patterns of ocular domi-
 nance resulting from four different random initial conditions.
 Although the precise locations of the patches vary from trial to trial,
 the qualitative and essential quantitative nature of the patches
 remains invariant.

 The precise afferent correlations, cortical interactions, and spread
 of afferent connections in kittens are not yet known. Furthermore,
 these functions will vary among species and under experimental
 perturbations. Therefore, it is important to determine how the
 developmental outcome depends on these functions. To do so, we
 simulated development with each of various correlation functions,
 cortical interaction functions, and arbor functions. In the results
 presented below, the initial conditions and all functions except the
 one being studied remain identical to those used in Fig. 3. These
 results confirm and supplement more general results obtained
 analytically, which will be discussed subsequently.

 We studied development with correlation functions varied in
 several systematic ways (Fig. 5A). First, we considered a broader or
 narrower Gaussian correlation function within each eye, with zero
 correlation between the two eyes (labeled "same-eye correlations" in
 Fig. 5A). As shown in Fig. 6A, the broader the range of correla-
 tions, the more purely monocular the resulting cortex. The cortex
 resulting from broader correlations resembles that of the monkey in
 having few binocular cells at the borders of patches (24), whereas
 that resulting from narrower correlations resembles that of the cat in
 having many binocular cells at the patch borders (25, 26). On the
 basis of these results and results obtained with correlation functions
 that are constant over some finite range, we conclude that correla-
 tion among nearest neighbors (adjacent grid points) is sufficient to
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 give a periodic pattern of ocular dominance, whereas positive
 correlation over an arbor radius (? 3 grid points) seems sufficient to
 achieve a fully monocular cortical layer 4.

 Second, anticorrelations were added to such a function, either
 between afferents of the two different eyes (labeled "+opp-eye anti-
 corr") or between distantly spaced afferents within a single eye
 (labeled "+ same-eye anticorr"). Addition of opposite-eye anticorre-
 lations can be taken to model strabismus or alternating monocular
 deprivation, treatments that increase the monocularity of cortex, or
 to reflect a possible feature of normal LGN circuitry (27). Addition
 of opposite-eye anticorrelations increases the monocularity of the
 simulated layer 4, as in experiments. In contrast, addition of
 anticorrelations within each eye decreases monocularity. If present
 within an arbor radius, such anticorrelation largely destroys monoc-
 ularity (same-eye anticorr 1.4, Fig. 6A).

 An alternative type of cortical interaction fimction that is purely
 excitatory is shown in Fig. 5B. With this interaction, one eye tends
 to dominate most or all of cortex. However, if the total synaptic
 strength supported by each arbor is fixed, the two eyes must remain
 equal in their total synaptic strength. The result is that a pattern of
 ocular dominance patches forms, with the width of left-eye plus
 right-eye patches slightly larger than before and approximately equal
 to an arbor diameter (Fig. 6B) . Thus, periodic segregation of ocular
 dominance can occur in the absence of lateral inhibition.

 The arbor function was modified to decrease with distance over
 the 7 X 7 range of connection. This represents decreasing connec-
 tivity. The result (not shown) is to decrease the period of the ocular
 dominance patches and to reduce the sizes of the final receptive
 fields and arbors.

 The model thus reproduces many features of normal development
 for a wide range of correlations, cortical interactions, and arbors.
 The degree of monocularity of the final cortex depends on afferent
 correlations, whereas the widths of the patches can be altered by
 varying the intracortical interactions or the arbor function.

 We studied monocular deprivation, modeling it as a reduction in
 the amount of activity in the deprivied eye without alteration of the
 correlational structure of that activity. This corresponds to a reduc-
 tion in the amplitude of the correlation function within that eye.
 Disruption of the correlations would only increase the effects of
 deprivation. The result of deprivation, both in the model and
 experimentally, is that the normal eye takes over more than its
 normal share of the cortex (Fig. 7). There is a critical period for this
 effect in the model, as is seen biologically; that is, the effect of
 deprivation is progressively weaker for later onset.

 The critical period in the model has two causes. One cause is
 strictly dynamical, requiring neither changes in plasticity rules nor
 stabilization of synapses. Once the cortex has a sufficient degree of
 ocular dominance organization, the deprived eye's greater synaptic
 strength, within its dominance domains, more than compensates for
 its weaker activity. In these domains the deprived eye therefore
 remains stable against competition from the normal eye. However,
 cells that remain binocular remain susceptible to domination by the
 more active eye. Binocular cells will become resistant to such
 domination if individual synapses are stabilized (rendered no longer
 modifiable) when they reach a saturating strength. Hence, stabiliza-
 tion of saturated synapses is the second cause of the critical period in
 the model. The dynamical mechanism is sufficient to completely
 account for the critical period when, as in Fig. 7, cells in layer 4
 become fully monocular in the absence of deprivation. If, as in the
 cat, many cells in layer 4 normally remain binocular, the dynamical
 mechanism can nonetheless contribute to the critical period by
 ensuring that regions that become sufficiently dominated by one eye
 are no longer subject to an ocular dominance shift.

 When cortical cells, but not afferents, are pharmacologically
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 inhibited during monocular deprivation, the experimental result is a
 shift in responsiveness in favor of the closed eye (28). To model this,
 we note that post in the Hebbian equation As = [(post)(pre) - (de-
 cay)]At becomes equal to a negative constant, because all cortical
 cells are inhibited [see Eq. 3 in (15)]. Then there is no coupling

 between synapses; each synapse decays in proportion to pre, which is
 a measure of its presynaptic activity. This "punishes" the more active
 synapses and, given constraints to preserve total synaptic strength

 over a cell, favors the afferents from the less active eye as in
 experiment.

 Analysis

 The simulations demonstrate that both normal and experimental-
 ly perturbed development of ocular dominance columns are repro-
 duced by the model. These results can largely be explained by the
 following intuitive analysis. First, consider geniculate synapses onto

 a single cortical cell in the absence of interactions with synapses on

 other cortical cells. Each synapse then grows in proportion to the

 sum of its correlations with all other synapses on the cell, weighted
 by the strengths of those synapses. Receptive fields refine topo-
 graphically, because synapses representing the center of the receptive
 field are strongly correlated with larger numbers of synapses than are
 synapses representing the periphery. This causes the central synapses
 to grow more rapidly than the peripheral ones. Similarly, receptive
 fields become monocular, because synapses serving each eye are
 better correlated with other synapses serving the same eye. This
 causes synapses of the eye with an initial advantage in overall
 synaptic strength to grow faster. Because this initial advantage is
 very slight compared to the advantage of central over peripheral
 synapses, monocularity develops more slowly than receptive field
 refinement.

 Broader correlations within each eye enhance the growth of a
 monocular pattern of inputs compared to that of a binocular pattern
 and thus enhance monocularity. Broader correlations also reduce the
 advantage of central synapses over peripheral ones. Anticorrelations
 between the two eyes enhance the difference in growth rate between
 synapses of the two eyes and hence also enhance development of
 monocularity. Same-eye anticorrelations within an arbor radius
 cause a synapse's growth to be reduced by the presence of synapses
 of the same eye in an adjacent part of the receptive field. This causes
 binocular cells to develop, because a binocular pattern of inputs then
 grows more quickly than a monocular one. Thus, the development
 of monocularity and of receptive field refinement can be understood
 from the correlation functions.

 Now consider the effects of intracortical interactions on the
 growth of a monocular set of inputs to one cortical cell. The set's
 growth is most enhanced if inputs to surrounding cortical cells fire
 in correlation over distances at which intracortical interactions are
 excitatory, and fire without correlation over distances at which
 intracortical interactions are inhibitory. Hence, the monocular
 inputs grow fastest if surrounded by a "bull's eye" of inputs from the
 same eye at excitatory distances and of inputs from the opposite eye
 at inhibitory distances. Although each monocularly driven cortical
 cell cannot be at the center of its own bull's eye, a compromise can
 be reached through a periodic organization such as patches or
 stripes. The period of this organization is like that of the bull's eye
 and is determined by the intracortical interactions.

 To gain a more precise understanding of the roles played by
 afferent correlations, arbors, and cortical interactions in causing
 ocular dominance segregation and in determining patch widths, we

 analyze the equations mathematically. To do so, we assume that the
 two eyes are equivalent in their activities and their initial projections.

 6o8

 Thus we ignore the effects of slight (5 to 10%) overall bias toward

 the contralateral eye in the cat (26) and we restrict our analysis to

 exclude monocular deprivation. Equivalence of the eyes implies

 CLL = CRR, CLR = CRL. Subtracting Eq. 3 for SL from Eq. 3 for
 SR yields an equation for the time evolution of the difference,

 SD = SR _- SL, between the synaptic strengths of the two eyes at a
 given location in the cortex:

 dSD(x,at,t) -

 dt

 XA(x - ct)Z I(x - y)CD(ot - A)SD(y,13,t) - ySD(x,0,t) (2)
 B'Y

 Here CD = CLL _ CLR. The function CD(a - A) measures the
 extent to which afferents at geniculate locations (x and a are more
 correlated if they are from the same eye than if they are from

 opposite eyes.
 Initially the difference in synaptic strengths, SD, is very close to

 zero. We examine the stability of the state SD 0_ 0 by examining
 whether a small initial perturbation of this state will grow or decay.
 Growth will result in a pattern of ocular dominance, whereas decay
 will yield a state of complete equality of the two eyes. If SD = 0 is
 unstable, many geniculocortical patterns of SD may grow from the
 initial perturbation. The fastest growing such pattern will quickly
 dominate. Its characteristic periodicity will determine the width of
 the patches or stripes. The initial pattern-forming instability occurs
 when SD is small, so only linear terms in an equation for SD are
 relevant to this analysis. Thus the results will be robust to nonlinear-

 ities such as those inherent in biological development (29).

 The Characteristic Patterns of Ocular
 Dominance

 We refer to the patterns that grow exponentially, from a perturba-
 tion of SD= 0, as characteristic patterns of ocular dominance.
 Technically, these are the eigenfunctions of the operator in Eq. 2.

 Visual I(x - x') -
 cortex

 Y R X X
 S (y' a)

 SL x C

 A(y- cL)

 LGN

 ScLL(aU., CO

 d ca-)

 Fig. 2. Notation. Afferents from left-eye (white) and right-eye (black) layers
 of the LGN innervate layer 4 of the visual cortex. a. and (x' label positions in
 the LGN, and x and x' label the retinotopically corresponding points in the
 cortex; y labels an additional position in the cortex. The afferent correlation
 fimctions CLL (correlation in activity between two left-eye afferents) and
 CLR (correlation in activity between a left-eye and a right-eye afferent) are
 functions of separation across the LGN. The arbor function A measures
 anatomical connectivity (number of synapses) from a geniculate point to a
 cortical point, as a function of the retinotopic distance between them. The
 cortical interaction function I depends on a distance across cortex. The left-
 eye and right-eye synaptic strengths, SL and SR, from a geniculate location to
 a cortical location, depend upon both locations.
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 Each characteristic pattern of ocular dominance is of a form similar
 to SD(x,cL) = cos k x R(x - ca) (30). Figure 8 shows the fastest
 growing such pattern for the functions used in the simulation of
 Fig. 3. The factor R(x - a) represents a characteristic receptive
 field. This is the pattern of differences between left- and right-eye
 synaptic strengths in the input to a cortical cell. Where it is positive
 one eye is dominant, and where it is negative the opposite eye is
 dominant. A monocular characteristic receptive field, like that of
 Fig. 8, is one dominated by a single eye throughout, so that R can be
 taken positive everywhere. Characteristic receptive fields need not be
 monocular: they may show division of the receptive field into
 domains dominated by opposite eyes.

 The factor cos k * x represents an oscillation in the degree of

 dominance of receptive fields across the cortex. In Fig. 8, the
 1lftmost receptive field occurs at a cortical point x where cos
 k * x = 1, so the right eye is dominant. The central receptive field
 occurs at a point x' where cos k * x' = 0, so the two eyes are equal.
 The rightmost receptive field occurs at a point x" where cos
 k * x" = -1, so the left eye is dominant. In the case of monocular
 characteristic fields, it is this oscillation, between ocular dominance
 by one eye and by the other, that causes organization of monocular
 cortical cells into ocular dominance patches. We refer to the spatial
 period or wavelength of this oscillation as the wavelength of the
 characteristic pattern. This wavelength corresponds to the width of
 left-eye patch plus right-eye patch, which we refer to simply as the
 patch width.

 A B

 T=O T=10 T-V

 R

 L

 synaptic Aynpti

 strength- * - * - - * - strength

 max ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~a

 T-30 T=40 T-W L~~~~dmnnc f otx ttmetpsT=0,1,20 0,4,80 ah ie

 - ~~~~~~~~T-30

 C T-

 e strength h , i tt
 T-0 max

 Fig. 3. Tepical development of ocular dominance patches (A), cortical cell
 receptive fields (B), and geniculocortical afferent arbors (C). (A) Ocular

 L ocular dominance of cortex at ri mesteps T = 0, 10, 20, 30, 40, 80. Each pixel
 represents a single cortical cell. The colors represent ocular dominance of
 each cell, that i s,in the contri nco coticoc total ( summed) strength of right -
 sehe and of left-eve ai nputs to the cell. Deepest red indicates T-30 _ d
 complete dominance by the right evel deepest green indicates complete
 p ldominance bj the left eve, and blue represents equalit of the two eves. The

 L timestep (r* * * * **ocular dominance varies linearly along the color bar at right. Final (timestep
 l200) cortex can be seen in the upper left of Fig. 6A. (B) Receptive fields

 A ref l_ _11 l_ A_ l_ - (ignoring the contribution of corwicocortical connections) of eight cortical
 JT Il cells at timesteps 0, 30, 60, and 200. Each vertical pair of colored squares

 eyeshows strengths of the LG afferents reghow.Te sy napses onto a cortical
 dominance scell. The color bar varies linearla in ssnaplc strengith from 0 (gram for 0;

 (Fig. SA) The intracorticalinteractionsaremixedexcitatory-inhibitory(Fig.purple just above zero) to the m 1 otrength present at the given
 L t d s c o t pt aimestep (red). These maximum strengths are: timestep 0, 1.2; timestep 30,

 eratin)_20;thecortewasaturebytiestep60to100, andveryfe 3.5w and w imes teps 60 and 200 8.0. Cortical cells shown are the eight
 functions le0eost cea s l in the bottom row of the cortices of (A). Receptive fields first
 II AUGUST 1989 A -refine in size, then become monocular with synaptic strength confined to

 T200 ~~~~~~~~~~left- or right-eve 'inputs. (C) AfFerent arbors at timesteps 0, 30, 60, and 200.
 Conventions as in (B), except that strengths of synapses made by eight left-
 eye and eight right-eve LGN afFerents are shown. The afferents shown are

 the eight leftmost cells ill the bottom row of the geniculate grids. Note that arbors first refine, then break up into patches confined to complementary ocular
 dominance stripes. This development used the following fiinctions: The correlation fimctions have same-eve correlations onlv, with Gaussian parameter 2.8
 (Fig. 5A). The intracortical interactions are mrixed excitatory-inhibitory (Fig. 5B). The arbor finction is taken to be I over a 7 x 7 arbor, 0 elsewhere.
 Conventions for all simulations: Illustrations of cortex show 40 x 40 grids, although the model cortex is 25 x 25. Periodic boundarv conditions were used',
 so this display shows continuity of the pattern across what would otherwise appear to be a boundary. Simulations in most cases were run through timestep (it-
 eraiion) 200; the cortex was mature by timestep 60 to 100, and very few or no changes were visible in the cortical maps after timestep 150. For the range of
 functions considered in this article, all but 2,500 to 4,000 of the 61,250 synapses had limiting values of 8.0 or 0.0 at timestep 200.
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 Fig. 4. Cortex, timestep 100, for four different random initial conditions.
 Cortical interaction, arbor, and correlation functions and conventions as in
 Fig. 3A. Results are qualtitatively and quantitatively similar for all initial
 conditions we have tried; that is, the two-dimensional Fourier transforms
 yield similar power spectra.

 As Fig. 8 indicates, the characteristic receptive fields have associat-
 ed with them characteristic afferent arbors, given by multiplying the
 receptive field by the oscillation in ocular dominance. In other
 words,) when characteristic receptive fields are monocular, so that
 ocular dominance patches arise, the afferent arbors will only inner-
 vate the patches from the relevant eye. Thus, characteristic arbors
 show patches with a periodicity equal to that of the cortical
 oscillation, as is seen both in the simulations and in actual biological
 development.

 0 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ,

 Deterixning the Monocularity and
 Periodicit of Cortex

 If the fastest growing characteristic receptive field is monocular,
 then a pattemn of ocular dominance patches will form. The patch
 width is given by the wavelength of the fastest growing pattemn.
 Thus, our problem can be reduced to two questions. (i) Under what
 circumstances will the fastest growing field be monocular? (ii) If it is
 monocular, what determines its wavelength?

 Solution of the equation in simple limiting cases suggests that the
 correlation function CD determines the wavelength of oscillations of
 ocular dominance across a receptive field, whereas the cortical
 interaction function I determines the wavelength of oscillations
 across an arbor. In these limits,) each wavelength is given by the
 dominant wavelength in the corresponding function. This is the
 wavelength corresponding to the peak of that function's Fourier
 transform. The oscillation of ocular dominance across the cortex is

 the superposition of these two oscillations. Thus, if CD does not
 oscillate within an arbor radius, the fastest growing receptive field
 does not oscillate and hence is monocular. The wavelength of the
 fastest growing pattemn is then given by the dominant wavelength in
 I. Each limiting case leads to an analytic expression for the growth
 rate of each cortical wavelength of ocular dominance in terms of

 I~~~~~~~~~~4 . .21 arbors, corltos anAd cotclitrcin 1,1)
 Drc copttino th chrceistcptesofouaoi
 nance. fo a vait.fprmtr.ofrm hs ai eut 3)
 Fiur 9A shw h rwhrtso hrceitcptesa
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 A Same-eye +Opp-eye + Same-eye
 correlations anticorr anticorr

 1 1 1-

 2.8

 0 0 0 :-
 0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 910

 111

 1.4

 0-4 0 0- . . . I

 0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

 Fig. 5. Correlation functions (A) B
 and cortical interaction functions 1
 (B) used in simulations and compu- Excitatory/inhibitory
 tations. Horizontal axes are in units
 of grid intervals. All functions are
 circularly symmetric in two dimen-
 sions. (A) Correlation functions. o -
 Functions labeled "same-eye correla- o 1 2 3 4 5 6 7 8 9 10
 tions' represent positive correla-
 tions, as illustrated, between affer-
 ents within each eye, with zero cor- 1- Excitatory
 relation between the eyes. The func-
 tions illustrated are Gaussians e-X2/t2,
 with parameters e = 2.8 and 1.4,
 respectively. Results do not depend

 on the Gaussian tails. Results with 6 0
 = 2.8 are virtually identical if the 0 1 2 3 4 5 6 7 8 9 10
 function is set to zero outside a
 square of ?3 grid intervals, that is, outside an arbor radius. Results with e =
 1.4 change only slightly if the function is set to zero outside a square of ?1
 grid interval. Functions labeled "+opp-eye anticorr" include anticorrelations
 between afferents from the two different eyes, illustrated by the curve below
 the axis, in addition to the positive correlations within each eye as in the
 same-eye correlations case. Functions labeled "+same-eye anticorr" have
 anticorrelations added within each eye, in addition to the positive correla-
 tions within each eye, while correlations between the two eyes remain zero.
 Both opposite-eye and same-eye anticorrelations are given by the Gaussian
 -(1/9) e-X2/(32 with e the same as for the same-eye correlations. (B) Cortical
 interaction functio2ns. The mixed "excitatory-inhibitory" function is given by
 eX2`~ - (1/9) e-x with e = 0.933. It was explicitly set to zero outside a
 square of ?7 grid intervals. Results are identical if the cutoff is ?5 grid
 intervals, and only small changes are seen if the cutoff is ?3 grid intervals.
 The "excitatory" function consists of the excitatory Gaussian alone, explicitly
 set to zero outside a square of ?2 grid intervals. Results are indistinguishable
 with a cutoff of ? 1 grid interval.

 finction of their wavelength, for the functions used in Fig. 6A. Gray
 level indicates the monocularity of the corresponding receptive
 fields, where lightest is fiully monocular and darkest is fillly binocu-
 lar. The fastest growing field is monocular whenever CD(a - 1) is
 locally positive, that is, positive at least between nearest neighbors
 on a grid, and nonnegative within an arbor radius. Broader correla-
 tions or opposite-eye anticorrelations increase the monocularity of
 fields and the advantage in growth rate of monocular over binocular
 fields. Same-eye anticorrelations have the opposite effects. Their
 presence within an arbor radius (same-eye anticorr 1.4) leads
 binocular fields to grow fastest. In all cases, the wavelength of the
 fastest growing monocular pattern is determined by the peak of the
 Fourier transform of the cortical interaction function I(x - y) (light
 lines in Fig. 9A) in close accordance with predictions from limiting
 cases (heavy lines in Fig. 9A).

 There is an exception if the wavelength of a monocular pattern is
 much larger than an arbor diameter. Then in order for the pattern to
 grow, entire arbors centered within a dominance patch must either
 increase in strength or decrease in strength. If there is a constraint
 limiting the total synaptic strength supported by a single arbor,
 arbors will be constrained to break up, so that a gain in synaptic
 strength in one part of the arbor is offset by a loss in another part.
 Such a constraint can limit the patch width to approximately one
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 arbor diameter (32). Figure 9B shows the growth rates of patterns,
 in the presence and absence of these constraints, for the two
 intracortical interactions of Fig. 5B. The excitatory cortical interac-
 tion normally selects a long wavelength but selects a wavelength of
 about an arbor diameter in the presence of constraints. The excitato-

 ry-inhibitory cortical interaction normally selects a smaller wave-
 length, and development under this interaction is not affected by
 these constraints.

 To summarize, suppose that the correlation functions are such
 that CD is locally positive and nonnegative within an arbor radius, so
 that cells tend toward monocularity. Then the patch width is
 determined by the dominant wavelength in the cortical interaction
 function I(x - y). If the dominant wavelength is no larger than an
 arbor diameter, the patch width is equal to this wavelength. If it is
 larger than an arbor diameter and the total afferent arbor synaptic
 strength is sufficiently constrained, then the patch width is equal to
 the arbor diameter. The wavelengths of cortical ocular dominance in
 simulations, as determined by the two-dimensional Fourier trans-
 form of the patterns, develop in accordance with these rules (13).

 Many Biological Mechanisms Can Be
 Modeled in This Framework

 The results we have presented are not unique to a Hebbian

 synapse mechanism. A variety of other correlation-based mecha-

 A SAME-EYE + OPP-EYE + SAME-EYE
 CORRELATIONS ANTI-CORR ANTI-CORR

 R

 2.8

 1.4

 L

 Fig. 6. Development of ocular
 B dominance using different

 correlation (A) and cortical
 interaction (B) functions. Ini-
 tial conditions, conventions,
 and all finctions (correlation,
 cortical interaction, arbor) ex-
 cept the one being studied are
 as in Fig. 3A. (A) Cortex,
 timestep 200, resulting from
 development from timestep 0
 with each of the six afferent
 correlation functions illustrat-
 ed in Fig. 5A. (B) Cortex,
 timestep 200, resulting from
 development from timestep 0
 with the purely excitatory cor-
 tical interaction function (Fig.

 5B). For these simulations, constraints were used fixing the total synaptic
 strength over each afferent arbor. In (A), these constraints make little
 difference in the final results (for example, compare the lower right panel of
 Fig. 7, which used only partial constraints, with the upper right panel of Fig.
 6A). In (B), results depend crucially on these constraints. The theoretical
 basis for this difference is discussed in the text and in Fig. 9B.
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 nisms can be expressed in terms of an effective arbor function, an
 afflrent correlation function, and a cortical interaction function.

 Therefore, they can be studied within our mathematical framework,
 as we shall now show for simplified versions of three alternative
 mechanisms.

 First, suppose that cortical cells release diffusible or actively
 transported substances in proportion to their activity. Suppose that
 these substances are taken up by synapses in proportion to synaptic
 activity, as would be expected if uptake occurs in conjunction with
 veside reuptake, and that they modify synaptic strength. Let
 E(x - z) describe an effective concentration of the substance at
 cortical site x resulting from release of a unit amount of the
 substance at cortical site z. Then, if we assume a plasticity rule for
 individual synapses of the form As = [(conc)(pre) - decay]A t, where

 conc is a linear function of the substance's concentration, and pre is
 again a function of presynaptic activity, we obtain Eq. 1. In this case
 the intracortical interaction I(x - y) = : E(x - z)H(z - y), where
 H(z - y) is the intracortical interaction of the Hebbian case arising
 from intracortical synaptic interactions (33).

 Second, we suppose a plasticity rule as just described, except that
 afferents rather than cortical cells release the modification factor in
 proportion to the strength of their activity. This leads to Eq. 1, with
 the intracortical interaction I(x - y) = E(x - y). In this case the
 activity of cortical cells has no influence on plasticity (34).

 Third, suppose that in addition to modifiable synapses, we
 consider chemospecific adhesion between afferent and cortical cells.
 Such "retinotopic" adhesion has been considered important in many
 models of retinotectal connections (19, 35). Suppose the degree of
 chemospecific adhesion between the afferent from a and the cortical
 cell at x depends only on x - a. In this case, the retinotopic
 adhesion can be represented by a factor f(x - a) multiplying some
 of the terms on the right side of Eq. 1. This is formally the role
 played by the arbor function. Hence, by letting A(x - a) represent
 the product of the chemospecific adhesion times the arbor strength,
 we can take account of retinotopic adhesion.

 Discussion

 We have formulated and analyzed a dass of models of cortical
 ocular dominance development. They predict the development of a
 periodic pattern of ocular dominance like that seen experimentally.
 The organization of periodicity requires three conditions:

 1) The correlation function CD = CIL - C' must favor
 formation of monocular cells, by being positive locally and not
 significantly negative within an arbor radius.

 2) There must be intracortical interactions, which should be
 locally excitatory (36).

 3) If the intracortical interactions are purely excitatory, there
 must be constraints on the total synaptic strength over an arbor.
 Given these conditions, a patch width of left-eye plus right-eye
 ocular dominance patches is determined. It corresponds to the
 wavelength at which the Fourier transform of l(x) is maximized,
 provided that wavelength is less than an arbor diameter. Otherwise,
 if arbor constraints exist, the patch width will be approximately an
 arbor diameter. These results are very robust, being independent of
 initial conditions, nonlinearities, and the detailed form of the three
 functions.

 These results are consistent with the measured sizes of ocular
 dominance patches, correlations, cortical interactions, and arbors in
 the adult cat (5-9). The observed patch width of about 850 Jxm can
 be produced by a variety of intracortical interactions ranging from
 excitation over a radius of 50 ,um or less surrounded by weak
 inhibition to excitation over 200 ,um or more surrounded by strong
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 Fig. 7. Results of monocular deprivation. Results at timestep 200 are shown
 for initiation of monocular deprivation at five different times (timestep 0, 10,
 20, 30, and 40). The sixth panel shows, for comparison, timestep 200 in an
 identical run but without deprivation. Arbor, correlation, and cortical
 interaction functions, initial conditions, and conventions as in Fig. 3A except
 as follows. Monocular deprivation is modeled as 30% decrease of amplitude
 of correlation function within deprived eye. Constraints on total synaptic
 strength over afferent arbors allow each arbor to decrease or increase its total
 synaptic strength by up to 50%. Without some constraint limiting changes
 in total synaptic strength over an arbor, one eye would completely take over
 cortex with early onset of deprivation. Although the choices of activity and
 constraint levels are arbitrary, the qualitative results are robust: with early
 onset of deprivation, the open eye takes over cortex to the limits imposed by
 constraints; with later onset, deprivation has progressively less effect.

 inhibition. Periodic longer range corticocortical connections, if
 present in the young animal, could enhance the growth of patterns
 with a similar period. Alternatively, a variety of arbor sizes, ranging
 from flat arbors of diameter about 850 pLm to larger tapering arbors,
 would yield 850-pLm patch widths by an arbor-driven mechanism.
 Such a mechanism is consistent with X-cell, though not with Y-cell,
 initial arbor sizes.

 Many other observed features of biological development emerge
 from the mechanisms studied. These include refinement of receptive
 fields and development of monocularity, refinement of arbors and
 their confinement to patches, monocular deprivation plasticity with
 a critical period, and an increase in monocularity resulting from
 treatments such as artificial strabismus or alternating monocular
 deprivation that reduce correlations or produce anticorrelations
 between activity in the two eyes.
 Many of these developmental details are less robust than the

 CHARACTERISTIC RECEPTIVE FIELDS

 *fl-

 N _ __
 V A\J

 CHRATEISICAROR

 6iz ~ ~ ~ ~

 development and organization of periodicity. The robust elements
 of these results involve relative rates of growth and depend on
 interactions between synapses. Periodicity develops because one
 eye's synapses grow faster than the others within each ocular
 dominance patch. Similarly, central synapses in a receptive field
 grow faster than peripheral ones. The less robust elements of the
 results involve absolute rates of growth and depend on the range of
 total synaptic strength allowed for each synapse and for the summed
 synaptic strength over each cell. For example, when a periodic

 difference in the strengths of the two eyes develops, the synapses of
 the weaker eye in a patch may decrease in strength or they may
 simply grow more slowly than the dominant eye's synapses. Only in
 the former case will individual cells become monocular. This can
 occur if there is a constraint limiting the total synaptic strength over
 a cortical cell and if individual synapses can grow sufficiently so that
 a single eye's synapses can saturate a cortical cell. In the absence of
 such constraints, one may see periodicity in each eye's innervation
 without seeing organization of monocular patches. Such a result
 may be seen in some New World monkeys (37).

 Limitations on the range of synaptic strengths can be achieved by
 many means (16, 17, 19-22, 38). Because little is known about the
 actual mechanisms involved biologically, we prefer to use simple
 mechanisms, which can be analyzed more easily, for modeling
 purposes (39).

 Other Models

 Some earlier models of ocular dominance (3) showed that patches
 could form from simple mechanisms like those studied here. Others
 (20, 40) focused on the development of monocularity in isolated
 cells, as well as on dynamical means of limiting synaptic strengths.
 Legendy (18) studied a Hebb-like model and concluded that
 intracortical synaptic interactions will determine the distances over
 which cortical cells are similar in their response properties.

 Swindale (41) formulated a model in terms of an effective
 interaction across cortex between right-eye and left-eye synapses,
 which produced stripes like those obtained here. The precise nature
 of this interaction was not specified. In the limit in which the
 correlation function CD is constant or slowly varying, the influence
 of one synapse on another depends only on their cortical locations
 and their eyes of origin, and not on their retinotopic locations. Then
 the present model can be reduced mathematically to Swindale's (12,
 13). We can then express his effective interaction in terms of arbors,
 cortical interactions, and afferent correlations.

 FIg. 8. Illustration of typical monocular characteristic pattern of ocular
 dominance. The characteristic receptive field, and associated characteristic
 arbor, at three cortical points are illustrated. The sinusoid indicates the
 oscillation of ocular dominance across cortex associated with a characteristic
 pattern. Color codes SD, the difference between the synaptic strengths of the
 two eyes, varying from dominance by one eye to dominance by the other. At
 the cortical point corresponding to the leftmost receptive field, cortical cell
 inputs are dominated by the right eye. Afferents with the corresponding
 retinotopic position therefore project arbors such that the right eye afferents
 preferentially project to the central patch of the arbor (cortical right-eye
 stripe) and the left-eye afferents preferentially project to the peripheral
 patches (left-eye cortical stripe). Similarly, the central receptive field is at the
 border between left-eye and right-eye stripes, where the two eyes have equal
 innervation, and the rightmost receptive field is in the center of a left-eye
 stripe. The pattern shown here is one of the set (identical except for rotations
 of the direction of the oscillation) of fastest growing characteristic patterns
 for the functions used in Fig. 3. The oscillation is shown correctly scaled to
 the arbor and receptive field sizes. The oscillation projects in a direction
 perpendicular to the stripes across the arbors rather than horizontally as
 depicted.
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 Linsker (21) developed a model of plasticity very much like ours,
 which he used to study the development of orientation selectivity in
 visual cortex. It differs from ours in allowing modifiable input
 synapses to be excitatory or inhibitory, in using Gaussian arbors, in
 using constraints that ultimately fix the summed excitatory and the
 summed inhibitory input to a cortical cell, and in studying input
 from only a single eye. Our eigenfunction analysis can provide
 insight into his results. Thus, our equation for SD can alternatively
 be regarded as an equation for the strength of synapses, of one eye,
 that can be positive or negative. "Center-surround" cells develop in
 his model, because the fastest growing eigenfanctions have receptive
 fields that concentrate their strength centrally. When combined with
 constraints that force 35% of final synapses to be negative (42), this
 can lead to a center of positive synapses with a surround of negative
 synapses. Therefore, the development of "center-surround" cells
 and the corresponding development of anticorrelations in the
 afferent correlation function depend on the negative synapses and
 the constraints. Given an afferent correlation finction with strong
 anticorrelations within an arbor radius, oriented cells can develop.
 This is related to the fact that the fastest growing eigenfunctions for
 such a case (same-eye anticorr 1.4) have receptive fields that are
 striped.

 Pearson, Finkel, and Edelman (43) developed a similar, but more
 complex, model to study somatosensory development and plasticity.
 By examining this model in terms of arbors, correlations, and
 cortical interactions, we conclude that the periodicity that develops
 in it should scale with the cortical interactions. If these interactions
 extend over several hundred micrometers, the "groups" found in

 Fig. 9. Computed growth rate (vertical axes) of characteristic patterns of
 ocular dominance, as a function of inverse wavelength of the pattern
 (horizontal axes), for varying choice of (A) correlation and (B) cortical
 interaction functions. Grayscale indicates maximum dominance of any
 characteristic pattern with the given wave number and growth rate. Domi-
 nance is a measure of the degree of monocularity of the pattern's characteris-
 tic receptive field, on a scale from 0 for complete binocularity to 1 for perfect
 monocularity. Number beside the vertical axis indicates the maximum
 growth rate of any pattern. The horizontal axis represents wave number; the
 wavelength in units of grid intervals is 25 divided by the wave number. The
 first bin on the horizontal axis represents wave numbers 0 to 0.23;
 subsequent bins represent increments of 0.4 in wave number, so that the
 second bin represents wave numbers 0.23 to 0.63, and so forth. Bins
 representing wave numbers for which there can be no characteristic pattern,
 because of the nature of our grid, are indicated with a white mark on the
 horizontal axis; for each dominance, these bins are assigned a growth rate
 that is the average of that of the two adjoining bins. (A) The six correlation
 functions of Fig. 5A. Arbor and cortical interaction functions are as in Fig. 3;
 there are no constraints on total synaptic strength over an arbor. The heavy
 lines show an analytic prediction for growth rate of each cortical wavelength
 of ocular dominance in terms of the cortical interaction and arbor functions
 and the correlation functions in each case. This prediction is normalized to
 the maximum growth rate of characteristic patterns with dominance 20.5.
 The light lines show the Fourier transform of the cortical interaction
 function, identically normalized. We derived the analytic expression by
 assuming that correlations change slowly over an arbor diameter. However,
 it accurately predicts the growth of monocular patterns over a wide range of
 correlation functions. At its peak, which is the dominant wavelength in the
 cortical interaction, the degree of monocularity and the growth rate of
 monocular patterns are enhanced. (B) The two cortical interaction functions
 of Fig. 5B. Arbor and correlation functions as in Fig. 3. Two cases are
 shown: with constraints that fix the total synaptic strength over each afferent
 arbor and without any constraints on that total synaptic strength. Black lines
 indicate predictions of the analytic expression obtained as described in (A).
 The constraints suppress the growth of monocular patterns with wavelength
 longer than an arbor diameter. Constraints have a profound effect on the
 outcome when the excitatory cortical interaction function is used. They select
 a wavelengh of an arbor diameter: the maximum growth rate in the figure
 for this case occurs at wavelengths of 7.3 to 8.3 grid intervals. Constraints
 have little effect on the outcome when the mtixed excitatoty-inhibitory
 interaction function is used. This function normally selects a wavelength
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 that model also extend over several hundred micrometers. Physio-
 logically, no such structures exist on such a large scale (44). Hence,
 our analysis would rule out their model without significant modifi-
 cation.

 These points will be discussed elsewhere at greater length (13, 14,
 45).

 Experimental Implications
 Our model can serve as a gude for experiment. We have found

 that local correlations over an arbor radius determine the develop-
 ment of monocularity, whereas cortical interactions determine the
 width of ocular dominance patches up to a possible limit set by
 arbor diameters. Measurement of initial correlation, cortical interac-
 tion, and arbor fiunctions in various brain regions or species can test
 whether a proposed developmental mechanism is consistent with
 the patch width that emerges in each case. For example, area 18 of
 the cat has patches 1. 5 to 2 times wider than those in area 1 7;
 arbors', and perhaps correlations, are also more widespread (5, 6,
 46). If a Hebbian mechanism is responsible, we predict that kittens
 will show either a difference between the two regions in intracortical
 connectivilies sufficient to account for the difference in patch width
 or predominantly excitatory intracortical connections in both re-
 gions resulting in arbor-limited patch widths.

 Perturbation of the three functions in an experimental preparation
 before the onset of segregation, and comparison of the resulting
 patch width to the unperturbed case, can also test mechanisms.

 A Same-eye +Opp-eye +-Same-eye
 correlations anticorr anticorr

 273 350 19.7

 Dminance

 8.98h1\ 5.9

 1.4 ~~9L
 B No constraints Constraints

 420 34.
 Dominance
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 27.. 27 .

 N ~~~~~~~~~~~~0-0.1

This content downloaded from 
������������140.180.240.246 on Mon, 10 Feb 2025 14:58:57 UTC������������ 

All use subject to https://about.jstor.org/terms



 Under the hypothesis that a Hebbian mechanism underlies ocular
 dominance plasticity, periodic segregation is driven by intracortical
 synaptic connections. Local infusion of muscimol, a -y-aminobutyric
 acid (GABA) agonist, which inhibits postsynaptic cells, will elimi-
 nate activation of such connections. Therefore, we would predict
 that no pattern of ocular dominance organization would be seen in
 the muscimol-infused region, although individual cells might be-
 come monocular. Alternatively, intracortical inhibitory connections
 may be blocked by local infusion of bicuculline, a GABA antagonist.
 An increase in patch width would be consistent with a Hebbian
 mechanism, with width determined by the intracortical interactions.
 If patch width were unchanged by bicuculline, one would conclude
 either that the period was normally arbor-limited (which could be
 tested by measuring whether intracortical interactions were predom-
 inantly excitatory during initial column development) or that a non-
 Hebbian mechanism was involved.

 The model predicts that broader correlations within each eye
 would increase monocularity of layer 4 for mechanisms of the type
 we study. This could be tested by inducing broader correlations
 through pharmacological interventions in the retinas. One could
 also measure whether retinal correlations are broadened in animals
 deprived of pattern vision. Such animals have increased numbers of
 monocular cortical neurons (47). It would also be of interest to
 determine whether geniculate correlations are broader, relative to a
 geniculocortical arbor radius, in the developing monkey than in the
 kitten, because the monkey develops a more fully monocular layer 4
 (24, 26).

 Conclusion

 A variety of biological mechanisms will robustly cause develop-
 ment of a periodic structure of ocular dominance. The patch width
 can be predicted from a few biological fimctions that are, in
 principle, measurable. Given biologically plausible conditions to
 limit the synaptic strengths, these mechanisms also result in refine-
 ment and development of monocularity in individual receptive
 fields, the confinement of arbors to patches, and monocular depriva-
 tion plasticity including a critical period. These results lend plausibil-
 ity to the notion that simple mechanisms of activity-dependent
 competition may underlie many of the phenomena seen in the
 developing visual nervous system.
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 11. D. 0. Hebb, The Organization of Behavior (Wiley, New York, 1949). N-methyl-D-
 aspartate (NMDA) receptors may provide a biological mechanism for Hebbian
 plasticity. See G. L. Collingridge and T. V. P. Bliss, Trends Neurosci. 10, 288
 (1987).

 12. K. D. Miller and J. B. Keller, in preparation.
 13. K. D. Miller and M. P. Stryker, in Connectionist Modeling and Brain Function: The

 Developing Interface, S. J. Hanson and C. R. Olson, Eds. (MIT Press/Bradford,
 Cambridge, MA, in press).

 14. K. D. Miller, in Neuroscience and Connectionist Theory, M. A. Gluck and D. E.
 Rumelhart, Eds. (Erlbaum, Hillsboro, NJ, in press).

 15. Let c(x,t) represent activity (firing rate or membrane potential) of the cortical cell at
 location x at time t. Similarly, let aL(a,t), aR(a,t) represent firing rates of afferents
 serving the left or right eye, respectively, from locations a at time t. The equation
 used to describe Hebbian synapses is

 d t) X A(x - ot)[c(x,t) - cijjfaL(a,t)] - ySL(x,a,t) - s'A(x - a) (3)

 Let the geniculate input to y at time t be G(y,t) = {SL(yat)f2[aL(at)1 +
 SR(y,ot,t) f2[aR(ot,t)]}. The equation used to describe cortical activation is c(x,t) -
 z I(x - y)G(y,t) + c2. In these equations, X, y, s', cl and C2 are constants; f, andf2
 are functions incorporating threshold and saturation effects. If c(x,t) = G(x,t)
 + 2 B(x - y)c(y, t) + c', where B summarizes corticocortical interconnections, then
 the matrix I = (1 - B)-'.

 We substitute the expression for c(x,t) into Eq. 3, average the resulting equation
 over afferent activity patterns, and ignore hi her order terms. Then we obtain Eq.

 1, with CLL( - ) (fi[aL(xt)]f2ja (P3,t)]), CLR(a - P) E (fi[a'(,t)]
 f2[ag(j,t)]), and s _ - X(c2 - cj)(fj[a (o,)]), where pointed brackets indicate
 average value. We have kept the notation S for (S).

 This model includes only a single type of afferent. Corticocortical connectivity is
 considered to be uniform and unchanging. Changes in geniculocortical synaptic
 strengths are assumed to produce the initial pattern of ocular dominance, so that
 sprouting or retraction of terminal branches is not considered. These changes are
 governed by activity correlations over a time scale determined by the plasticity
 mechanism [G. G. Blasdel and J. D. Pettigrew, J. Neurophysiol. 42, 1692 (1979);
 L. Altmann, H. J. Luhmann, J. M. Greuel, W. Singer, ibid. 58, 965 (1987); B.
 Gustaffsson, H. Wigstrom, A. C. Abraham, Y. Y. Huang, J. Neurosci. 7, 774
 (1987)]. Interactions on this or finer time scales are considered instantaneous.
 Rationales for simplifications are discussed in (13, 14).

 16. D. J. Willshaw and C. von der Malsburg, Proc. R. Soc. London Ser. B 194, 431
 (1976).

 17. S. Grossberg, Biol. Cybern. 21, 145 (1976).
 18. C. R. Legendy, Brain Res. 158, 89 (1978).
 19. V. A. Whitelaw and J. D. Cowan, J. Neurosci. 1, 1369 (1981).
 20. E. L. Bienenstock, L. N. Cooper, P. W. Munro, ibid. 2, 32 (1982).
 21. R. Linsker, Proc. Natd. Acad. Sci. U.S.A. 83, 7508 (1986); ibid., p. 8390; ibid., p.

 8779.
 22. C. von der Malsburg, Kybernetik 14, 85 (1973). We implement conservation of

 total synaptic strength over a cortical cell by subtraction of the same time-
 dependent quantity from each synapse on a cell, whereas von der Malsburg
 subtracted a time-dependent quantity times the synapse's strength. The latter
 method suppresses the development of ocular dominance unless opposite-eye
 anticorrelations are present. This is discussed in (14) and in K. D. Miller and D. J.
 C. MacKay, in preparation.

 23. At each timestep, synapses are updated as follows: (i) Compute derivative (change
 per timestep) of each synapse from Eq. 1. By = s = 0. X is set, for each choice of
 functions A, I, and C, so that the average change in SD per timestep should initially
 be about 0.003. This yields 0.003 < X < 0.015. (ii) Modify derivatives with
 constraints. Constraints subtract a constant, weighted by A(x - a1), from the
 derivative of each synapse SL(x - a) or SR(x - a) associated with a cell. The
 constant is determined for each cell so that the sum of derivatives over that cell
 becomes zero. First all cortical cells, and then all aferents, are constrained. (iii) Use
 these derivatives plus derivatives from previous timesteps to compute total change
 in each synapse by a three-step method [G. Birkhoff and G. Rota, Ordinary
 DiJkrential Equations (Wiley, New York, 1978), p. 2211, and update synaptic
 strengths. (iv) If SL(xao,t) K 0 or > 8A(x - a), cut off value at 0 or 8A(x - a),
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 respectively; similarly for SR. (v) If any synapses have been cut off, correct the
 normalization of cortical cells. Each synaptic strength on the cortical cell at x
 is multiplied by a constant that sets total synaptic strength on the cell to 21 A(x -
 O-)3

 In simulations of Fig. 7, only partial constraints on afferent arbors were used.
 The term subtracted from the derivative of SL(xa) was multiplied by

 XSL (za) 2
 minimum [1.0, (1 - m ) /(0.5)2J

 XA(z - o)

 and similarly for S(xa). This allows total synaptic strength over each arbor to
 vary between 0.5 and 1.5 times its original value.

 Runs illustrated used stabilization: when synapses reached 8A(x - a) or 0, they
 were frozen so that no further changes in their strengths were allowed. Stabiliza-
 tion has no effect on final results, with one exception involving some cases of late
 onset of monocular deprivation, discussed in the text. To implement stabilization,
 frozen synapses were assigned a derivative of 0, and steps (ii) and (v) were applied
 only to unfrozen synapses. The multiplicative constants of step (v) were restricted
 to remain between 0.8 and 1.2.

 24. D. H. Hubei, T. N. Wiesel, S. LeVay, Philos. Trans. R. Sac. London Ser. B 278, 377
 (1977).

 25. C. D. Gilbert, J. Physiol. (London) 268, 391 (1977).
 26. C. J. Shatz and M. P. Stryker, ibid. 281, 267 (1978).
 27. D. H. Hubel andT. N. Wiesel, J. Neurophysiol. 28, 1041 (1965); P. O. Bishop, G.

 H. Henry, C. J. Smith, J. Physiol. (London) 216, 39 (1971).
 28. H. 0. Reiter and M. P. Stryker, Proc. Nal. Acad. Sci. U.S.A. 85, 3623 (1988).
 29. The linear analysis determines the initial development of a periodic pattern. The

 fastest growing patterns dominate exponentially, so their period determines the
 width of the patches. The form of the pattern of patches (for example, stripes versus
 patches versus hexagons, or long parallel stripes versus shorter branching stripes) is
 determined by nonlinear interactions between these fastest growing patterns and so
 is not addressed by our analysis. It is possible for such an initial pattern to be only
 metastable, so that eventually it may reorganize into a pattern with a different
 period determined by nonlinearities. This is unlikely in the ocular dominance
 system, as studies of development of ocular dominance columns [S. LeVay, M. P.
 Stryker, C. J. Shatz, J. Comp. Neuroal 179, 223 (1978)] show no obvious change in
 periodicity between its earliest detection and the final adult pattern. With the use of
 voltage-sensitive dyes [G. G. Blasdel and G. Salama, Nature 321, 579 (1986)], it
 may be possible to test this by following development of the columns within a
 single animal. Derivation of Eq. 2 using nonlinear functions for post in Eq. 3 and
 for cortical activation is discussed in (13).

 30. Let r S x - ct and transform variables from (xot) to (x,r). Then the right side of
 Eq. 2 becomes a simple convolution in the variable x. By Fourier transform in x
 the eigenfunctions must be of the form eikxRkt(r), where k is a pair of rational
 numbers and serves as one index for the eigenfunctions, and e is an additional index
 enumerating the receptive field modes for a given k. eikx represents a cortical
 oscillation with wavelength 2rWIk. Rkt(r) is a (complex) characteristic receptive
 field, because it represents the variation of the eigenfinction as r varies while

 cortical location x is fixed. The eigenfunctions can also be written eik "Bk&(r), where

 Bkt(r) = eikrRkk(r). B is a characteristic arbor, as it represents the variation of the
 eigenfiinction as r varies while afferent location oa is fixed.

 If I(x) = I(-x) and C0(a) = C0(-a), the real part and imaginary part of a
 complex eigenfsnction are both real eigenfunctions, with the same eigenvalue.
 These real eigenfunctions can be chosen of the form cos k x R+(r) + sin k x R0(r),
 where RM has zero net ocular dominance (YR(r) = 0) and R' may have net ocular
 dominance (12, 13). If, as for the eigenfimction of Fig. 8, R0 - 0, then the
 eigenfunction is precisely of the simpler form discussed in the text.

 31. Eigenfunctions were computed by applying Eq. 2 to 25 x 25 grids with 7 x 7
 uniform arbors as in the simulations. An eigenvalue equation was obtained for
 Rk(r) for each of the 625 cortical wave numbers k. By symmetry, only 91 of these
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 45. D. J. C. MacKay and K. D. Miller, in preparation.
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