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Convolutional Neural Network, not Gable-NewsNebwork

CNN Logo History

e Not this type of CNN —> B togos-world.net
e This type of CNN:
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Fig. 2. Architecture of LeNet-5, a convolutional NN, here used for digits recognition. Each plane
is a feature map, i.c., a set of units whose weights are constrained to be identical.

Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to
document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp.
2278-2324, Nov. 1998, doi: 10.1109/5.726791.



Perceptron is a "GLM" and a one-layer neural network

e Now implemented with code instead of a physical machine

In the modern sense, the perceptron is an algorithm for learning a binary
Perceptron

classifier called a threshold function: a function that maps its input x (a real- N

@4.

valued vector) to an output value f(x) (a single binary value):

£(x) = h(w - x+b)

where h is the Heaviside step-function (where an input of > 0 outputs 1;
otherwise 0 is the output ), w is a vector of real-valued weights, w - X is the
dot product Z:’il w; T;, where m is the number of inputs to the perceptron, \

and b is the bias. The bias shifts the decision boundary away from the origin 0= f(i i -W)
- k k
and does not depend on any input value. k=1

The appropriate weights are applied to the inputs, =
Equivalently, since w - x + b = (W7 b) : (x7 1)1 we can add the bias term b and the resulting weighted sum passed to a function
as another weight w,,, .1 and add a coordinate 1 to each input x, and then that produces the output o.

write it as a linear classifier that passes the origin: https://en .wikipedia.org/wiki/Perceptron



Perceptron learns from making mistakes. No pain = no gain

e TLDR: update weights based on misclassified data
Learning algorithm for a single-layer perceptron edt;

Below is an example of a learning algorithm for a single-layer perceptron with a
single output unit. For a single-layer perceptron with multiple output units, since the
weights of one output unit are completely separate from all the others', the same
algorithm can be run for each output unit.

For multilayer perceptrons, where a hidden layer exists, more sophisticated
algorithms such as backpropagation must be used. If the activation function or the
underlying process being modeled by the perceptron is nonlinear, alternative learning
algorithms such as the delta rule can be used as long as the activation function is
differentiable. Nonetheless, the learning algorithm described in the steps below will
often work, even for multilayer perceptrons with nonlinear activation functions.

When multiple perceptrons are combined in an artificial neural network, each output

neuron operates independently of all the others; thus, learning each output can be 5

A diagram showing a perceptron updating its
considered in isolation. linear boundary as more training examples are

https://en.wikipedia.org/wiki/Perceptron added



Perceptron cannot learn "simple" operations like XOR

Requires having linearly separable data to "learn" correctly
Multiple lines needed for XOR Truth table for AND, OR, and XOR Logic Gates

@ enjoyalgorithms.com

Draw a really long line?
Give up?

X1

AND

enjoyalgorithms.com



Feed-forward neural network is a multi-layered perceptron

e Each hidden node ~= 1 perceptron
. Example of a MLP having two hidden layers
e Repeat across many hidden layers ® datacamp.com
e Retrieve one or more output nodes innerlayer | Hidden layers Outer layer
[

Can learn more complex patterns




CNNs are biologically inspired machine learning

e LeNet uses convolutions to learn features from 2D input for image classification
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Fig. 2. Architecture of LeNet-5, a convolutional NN, here used for digits recognition. Each plane
is a feature map, i.e., a set of units whose weights are constrained to be identical.

Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791.



"Kernels" are essentially fancier, 2D dot products

e Slide kernel along an input image to combine information across shapes

Input Kernel Output

Fig. 7.2.1 Two-dimensional cross-correlation operation. The shaded portions are the first output element as well as the
input and kernel tensor elements used for the output computation:0 x 0+1x1+4+3 x2+4 x 3 = 19.

D2L Al textbook



Padding allows "data" to change or keep same shape

e Another example, with padding on boundaries

Input Kernel Output
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Fig. 7.3.2 Two-dimensional cross-correlation with padding.
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Figure 1: HCNNs are more biologically realistic CNNs

Figure 1: HCNNs as models of sensory cortex.

Encoding Decoding
a Stimulus —_— Neurons » Behavior

Spatial convolution

over image input :

] Threshold Pool Normalize

Yamins, D., DiCarlo, J. Using goal-driven deep learning mbdels to understand sensory cortex. Nat Neurosci
19, 356-365 (2016). https://doi.org/10.1038/nn.4244



Various combinations available for each layer

The motifs in a single HCNN layer

The specific operations comprising a single HCNN layer were inspired by the ubiquitously
observed linear-nonlinear (LN) neural motif2. These operations (Fig. 1c) include (i) filtering, a
linear operation that takes the dot product of local patches in the input stimulus with a set of
templates, (ii) activation, a pointwise nonlinearity—typically either a rectified linear threshold
or asigmoid, (iii) pooling, a nonlinear aggregation operation—typically the mean or
maximum of local values!3, and (iv) divisive normalization, correcting output values to a
standard rangelZ. Not all HCNN incarnations use these operations in this order, but most are
reasonably similar. All the basic operations exist within a single HCNN layer, which is then

typica"y ma pped toa Single Cortical area. Yamins, D., DiCarlo, J. Using goal-driven deep learning models to understand sensory cortex. Nat

Neurosci 19, 356-365 (2016). https://doi.org/10.1038/nn.4244



Activation functions enable non-linear transformations

e Relu [0, inf) and Sigmoid (0, 1) are common activation functions
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[m] paperswithcode.com

e Commonly seen in U-net architectures (e.g. used in SLEAP)

Max pool "downsamples" dimensions by some size factor

12 120 | 30 | O
8 [ 12 ] 2 0 2 X 2 Max-Pool 20 | 30
>
B 37 | 4 B 37
RN 25 | 12




Strides also change the "receptive field" of later layers

e Example with stride 2, as opposed to stride 1 (seen previously)

-

#0 adeshpande3.github.io

7 x 7 Input Volume 3 x 3 Output Volume
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Figure 2:

HCNN are also
predictive of
neural spiking
data.
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Figure 2:

Earlier layers
correlate with
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Figure 3: Goal-driven learning follows 3 "requirements”

Figure 3: The components of goal-driven modeling.

e TLDR: try to integrate knowledge Model architecture class
about functional and anatomical
brain structure into machine
learning to answers questions

Goal-driven deep neural network models are built from three basic components (Fig. 3):

1 amodel architecture class from which the system is built, formalizing knowledge about

% . ‘]r:fm:. o
the brain's anatomical and functional connectivity; Differing = / ls

Primary
~
R ¢ Belt
@T
Parabelt

Yamins, D., DiCarlo, J. Using goal-driven deep learning models to understand sensory cortex. Nat Neurosci
19, 356-365 (2016). https://doi.org/10.1038/nn.4244

learning
2 abehavioral goal that the system must accomplish, such as object categorization; and dynamics

3 alearning rule that optimizes parameters within the model class to achieve the
behavioral goal.
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Bold claims: HCNNs as generative models

e Can be potentially used to reflect neurons (not just the one sampled in fig 2)

HCNN layers as generative models of cortical areas.

Unlike previous modeling approaches that fit single nonlinear models for each empirically
measured neuron and then describe the distributions of parameters that were found®, the
performance-based approach generates a single model for all neurons simultaneously.
Consequently, layers of the deep HCNNs are generative models for corresponding cortical
areas, from which large numbers of (for example) IT-, V4- or V1-like units can be sampled.
Given that the neurons used to evaluate model correctness were chosen by random electrode
sampling, itis likely that any future neurons sampled from the same areas will be equally well

predicted, without having to update model parameters or train any new nonlinear functions.

Yamins, D., DiCarlo, J. Using goal-driven deep learning models to understand sensory cortex. Nat
Neurosci 19, 356-365 (2016). https://doi.org/10.1038/nn.4244



Bold claims: HCNNs to predict unknown function

Extrapolate to predict other sensory brain regions despite showing
non-specific modeling in V4 / IT

Application to auditory cortex.

A natural idea is to apply goal-based HCNN modeling to sensory domains that are less well
understood than vision. The most obvious candidate for this is audition, where a clear path
forward involves producing HCNN models whose top layers are optimized to solve auditory
tasks such as speech recognition, speaker identification, natural sound identification and so
on. Anintriguing possibility is that intermediate layers of such models may reveal previously
unknown structures in non-primary auditory cortex. Initial results suggest that this approach

holds promiseZ.

Yamins, D., DiCarlo, J. Using goal-driven deep learning models to understand sensory cortex. Nat
Neurosci 19, 356-365 (2016). https://doi.org/10.1038/nn.4244




Predicted prevalence of GPUs for deep learning

e Nuvidia stocks go up

NVIDIA Corp - NASDAQ:NVDA

124.96 uso +6.31 (+5.31%) 2

Wednesday, 3:59 PM EST - Disclaimer

1Day 5 Days 1 Month Ytd 1 Year 5 Years Max
126
124
122
120
5AM 6AM 7 AM 8 AM 9AM 10 AM

2/5/25
Open 121.75 Mkt Cap N/A Prev close 118.65

High 125.00 P/E ratio N/A 52W high 15313
Low 120.76 Volume 390M 52W low 66.25

Learn more <% Digest (]

Yamins, D., DiCarlo, J. Using goal-driven deep
learning models to understand sensory
cortex. Nat Neurosci 19, 356-365 (2016).
https://doi.org/10.1038/nn.4244

Hardware-accelerated stochastic error backpropagation for optimizing
filter parameters

In supervised learning of a task (for example, car detection in images), one chooses a set of
training data, containing both sample inputs (for example. images of cars and non-cars) and
labels describing desired results for each input (for example, image category labels, such as
“car” or “dog”). Learning algorithms are then used to optimize the parameter settings of the
network so that output layers yield the desired labels on the training datal%. A powerful
algorithm for supervised learning of filter parameters from supervised data has been in
existence for several decades: error gradient descent by backpropagation'#2 (see Box 4).
However, until recently, backpropagation has been computationally impractical at large
scales on massive data sets. The recent advent of graphical processing unit (GPU)-accelerated
programming has been a great boon because backpropagation computations largely involve
either simple pointwise operations or parallel matrix dot-products'>3343, GPUs, which are
more neuromorphic than von Neumann CPU architectures, are especially well suited to these
operations, routinely yielding speed increases of tenfold or more2, Further advancesin
neuromorphic computing could accelerate this trend#4.




"Transfer learning" from one domain to another

e Free training
e Why and how?

Yamins, D., DiCarlo, J. Using
goal-driven deep learning
models to understand sensory
cortex. Nat Neurosci 19,
356-365 (2016).
https://doi.org/10.1038/nn.42
44

Improving goal and training-set understanding

The choice of goal and training set has significantly influenced model development, with
high-variation data sets exposing the true heterogeneity within real-world categories334842,
It seems likely that this data-driven trend will continue22, A key recent result is that HCNNs
trained for one task (for example, ImageNet classification) generalize to many other visual
tasks quite different from the one on which they were originally trained.. If many relevant
tasks come along 'for free' with categorization, which tasks do not? An especially important
open challenge is finding tasks that are not solved by categorization optimization but rather
require direct independent optimization, and then testing models optimized for these tasks
to see if they better explain ventral stream neural data. Developing rich new labeled data sets
will be critical to this goal. Understanding how HCNNs systems for various sensory tasks
relate to each other, in terms of shared or divergent architectures, would be of interest, both
within a sensory domain2, as well as across domains (for example, between vision and

audition; see Fig. 3).



Disparities between real learning data and ML data size

e Babies learn "faster" than computers and yet are incapable of contributing to
my research |Improving learning rule understanding

While it is valuable that supervised learning creates working models that are a remarkably
good fit to real perceptual systems, it is physiologically unlikely that cortex is implementing
exact backpropagation. A core inconsistency between current deep-learning approaches and
real biological learning is that training effective HCNNs requires very large numbers of high-
level semantic labels. True biological postnatal learning in humans, higher primates and
other animals may use large amounts of unsupervised data, but is unlikely to require such
large amounts of externally labeled supervision. Discovering a biologically realistic
unsupervised or semi-supervised learning algorithm2>3%2Z that could produce high levels of
performance and neural predictivity would be of interest, from both artificial intelligence and

neuroscience viewpoints.

Yamins, D., DiCarlo, J. Using goal-driven deep learning models to understand sensory cortex. Nat
Neurosci 19, 356-365 (2016). https://doi.org/10.1038/nn.4244



Feed forward neural networks have no "memory"

e May benefit from memory
cells, recurrence, or
attention mechanisms

Yamins, D., DiCarlo, J. Using
goal-driven deep learning
models to understand sensory
cortex. Nat Neurosci 19,
356-365 (2016).
https://doi.org/10.1038/nn.42
44

Beyond sensory systems and feedforward networks

Largely feedforward HCNNs cannot provide a full account of dynamics in brain systems that
store extensible state, including any that involve working memory, since the dynamics of a
feedforward network will converge to the same state independent of input history. However,
there is a growing body of literature connecting recurrent neural networks to neural
phenomena in attention, decision making and motor program generation22, Models that
combine rich sensory input systems, as modeled by deep neural networks, with these
recurrent networks could provide a fruitful avenue for exploring more sophisticated
cognitive behaviors beyond simple categorization or binary decision making, breaking out of
the pure 'representation’ framework in which sensory models are often cast. This is especially
interesting for cases in which there is a complex loop between behavioral output and input
stimulus—for example, when modeling exploration of an agent over long time scalesina
complex sensory environment2, Intriguing recent results from reinforcement learning®?
have shown how powerful in solving strategy-learning problems deep neural network
techniques may be. Mapping these to ideas in the neuroscience of the interface between
ventral visual cortex and, for example, parietal cortex or the hippocampus will be of great

interestol6Z,



Pop quiz!

e What is the output of this convolution?

Input Kernel Output
0]1]1]2

011
314]|5 *

2|3

Fig. 7.2.1 Two-dimensional cross-correlation operation. The shaded portions are the first output element as well as the
input and kernel tensor elements used for the output computation: Hint: It's a "dot product"!
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Pop quiz!

e What is the output of this convolution?

Input Kernel Output

Fig. 7.2.1 Two-dimensional cross-correlation operation. The shaded portions are the first output element as well as the
input and kernel tensor elements used for the output computation:0 x 0 +1x1+3x2+4 x 3 =19.
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