
Gradient-Based Learning Applied
to Document Recognition

YANN LECUN, MEMBER, IEEE,LÉON BOTTOU, YOSHUA BENGIO,AND PATRICK HAFFNER

Invited Paper

Multilayer neural networks trained with the back-propagation
algorithm constitute the best example of a successful gradient-
based learning technique. Given an appropriate network
architecture, gradient-based learning algorithms can be used
to synthesize a complex decision surface that can classify
high-dimensional patterns, such as handwritten characters, with
minimal preprocessing. This paper reviews various methods
applied to handwritten character recognition and compares them
on a standard handwritten digit recognition task. Convolutional
neural networks, which are specifically designed to deal with
the variability of two dimensional (2-D) shapes, are shown to
outperform all other techniques.

Real-life document recognition systems are composed of multiple
modules including field extraction, segmentation, recognition,
and language modeling. A new learning paradigm, called graph
transformer networks (GTN’s), allows such multimodule systems
to be trained globally using gradient-based methods so as to
minimize an overall performance measure.

Two systems for online handwriting recognition are described.
Experiments demonstrate the advantage of global training, and
the flexibility of graph transformer networks.

A graph transformer network for reading a bank check is
also described. It uses convolutional neural network character
recognizers combined with global training techniques to provide
record accuracy on business and personal checks. It is deployed
commercially and reads several million checks per day.

Keywords—Convolutional neural networks, document recog-
nition, finite state transducers, gradient-based learning, graph
transformer networks, machine learning, neural networks, optical
character recognition (OCR).

NOMENCLATURE

GT Graph transformer.
GTN Graph transformer network.
HMM Hidden Markov model.
HOS Heuristic oversegmentation.
K-NN K-nearest neighbor.

Manuscript received November 1, 1997; revised April 17, 1998.
Y. LeCun, L. Bottou, and P. Haffner are with the Speech and Image

Processing Services Research Laboratory, AT&T Labs-Research, Red
Bank, NJ 07701 USA.

Y. Bengio is with the D́epartement d’Informatique et de Recherche
Opérationelle, Universit́e de Montŕeal, Montŕeal, Qúebec H3C 3J7 Canada.

Publisher Item Identifier S 0018-9219(98)07863-3.

NN Neural network.
OCR Optical character recognition.
PCA Principal component analysis.
RBF Radial basis function.
RS-SVM Reduced-set support vector method.
SDNN Space displacement neural network.
SVM Support vector method.
TDNN Time delay neural network.
V-SVM Virtual support vector method.

I. INTRODUCTION

Over the last several years, machine learning techniques,
particularly when applied to NN’s, have played an increas-
ingly important role in the design of pattern recognition
systems. In fact, it could be argued that the availability
of learning techniques has been a crucial factor in the
recent success of pattern recognition applications such as
continuous speech recognition and handwriting recognition.

The main message of this paper is that better pattern
recognition systems can be built by relying more on auto-
matic learning and less on hand-designed heuristics. This
is made possible by recent progress in machine learning
and computer technology. Using character recognition as a
case study, we show that hand-crafted feature extraction can
be advantageously replaced by carefully designed learning
machines that operate directly on pixel images. Using
document understanding as a case study, we show that the
traditional way of building recognition systems by manually
integrating individually designed modules can be replaced
by a unified and well-principled design paradigm, called
GTN’s, which allows training all the modules to optimize
a global performance criterion.

Since the early days of pattern recognition it has been
known that the variability and richness of natural data,
be it speech, glyphs, or other types of patterns, make it
almost impossible to build an accurate recognition system
entirely by hand. Consequently, most pattern recognition
systems are built using a combination of automatic learning
techniques and hand-crafted algorithms. The usual method

0018–9219/98$10.00 1998 IEEE

2278 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Traditional pattern recognition is performed with two
modules: a fixed feature extractor and a trainable classifier.

of recognizing individual patterns consists in dividing the
system into two main modules shown in Fig. 1. The first
module, called the feature extractor, transforms the input
patterns so that they can be represented by low-dimensional
vectors or short strings of symbols that: 1) can be easily
matched or compared and 2) are relatively invariant with
respect to transformations and distortions of the input pat-
terns that do not change their nature. The feature extractor
contains most of the prior knowledge and is rather specific
to the task. It is also the focus of most of the design effort,
because it is often entirely hand crafted. The classifier,
on the other hand, is often general purpose and trainable.
One of the main problems with this approach is that the
recognition accuracy is largely determined by the ability of
the designer to come up with an appropriate set of features.
This turns out to be a daunting task which, unfortunately,
must be redone for each new problem. A large amount of
the pattern recognition literature is devoted to describing
and comparing the relative merits of different feature sets
for particular tasks.

Historically, the need for appropriate feature extractors
was due to the fact that the learning techniques used
by the classifiers were limited to low-dimensional spaces
with easily separable classes [1]. A combination of three
factors has changed this vision over the last decade. First,
the availability of low-cost machines with fast arithmetic
units allows for reliance on more brute-force “numerical”
methods than on algorithmic refinements. Second, the avail-
ability of large databases for problems with a large market
and wide interest, such as handwriting recognition, has
enabled designers to rely more on real data and less on
hand-crafted feature extraction to build recognition systems.
The third and very important factor is the availability
of powerful machine learning techniques that can handle
high-dimensional inputs and can generate intricate decision
functions when fed with these large data sets. It can be
argued that the recent progress in the accuracy of speech
and handwriting recognition systems can be attributed in
large part to an increased reliance on learning techniques
and large training data sets. As evidence of this fact, a large
proportion of modern commercial OCR systems use some
form of multilayer NN trained with back propagation.

In this study, we consider the tasks of handwritten

character recognition (Sections I and II) and compare the
performance of several learning techniques on a benchmark
data set for handwritten digit recognition (Section III).
While more automatic learning is beneficial, no learning
technique can succeed without a minimal amount of prior
knowledge about the task. In the case of multilayer NN’s,
a good way to incorporate knowledge is to tailor its archi-
tecture to the task. Convolutional NN’s [2], introduced in
Section II, are an example of specialized NN architectures
which incorporate knowledge about the invariances of two-
dimensional (2-D) shapes by using local connection patterns
and by imposing constraints on the weights. A comparison
of several methods for isolated handwritten digit recogni-
tion is presented in Section III. To go from the recognition
of individual characters to the recognition of words and
sentences in documents, the idea of combining multiple
modules trained to reduce the overall error is introduced
in Section IV. Recognizing variable-length objects such as
handwritten words using multimodule systems is best done
if the modules manipulate directed graphs. This leads to the
concept of trainable GTN, also introduced in Section IV.
Section V describes the now classical method of HOS for
recognizing words or other character strings. Discriminative
and nondiscriminative gradient-based techniques for train-
ing a recognizer at the word level without requiring manual
segmentation and labeling are presented in Section VI.
Section VII presents the promising space-displacement NN
approach that eliminates the need for segmentation heuris-
tics by scanning a recognizer at all possible locations on
the input. In Section VIII, it is shown that trainable GTN’s
can be formulated as multiple generalized transductions
based on a general graph composition algorithm. The
connections between GTN’s and HMM’s, commonly used
in speech recognition, is also treated. Section IX describes
a globally trained GTN system for recognizing handwriting
entered in a pen computer. This problem is known as
“online” handwriting recognition since the machine must
produce immediate feedback as the user writes. The core
of the system is a convolutional NN. The results clearly
demonstrate the advantages of training a recognizer at
the word level, rather than training it on presegmented,
hand-labeled, isolated characters. Section X describes a
complete GTN-based system for reading handwritten and
machine-printed bank checks. The core of the system is
the convolutional NN called LeNet-5, which is described
in Section II. This system is in commercial use in the
NCR Corporation line of check recognition systems for the
banking industry. It is reading millions of checks per month
in several banks across the United States.

A. Learning from Data

There are several approaches to automatic machine learn-
ing, but one of the most successful approaches, popularized
in recent years by the NN community, can be called “nu-
merical” or gradient-based learning. The learning machine
computes a function where is the th
input pattern, and represents the collection of adjustable
parameters in the system. In a pattern recognition setting,

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2279Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

the output may be interpreted as the recognized class
label of pattern or as scores or probabilities associated
with each class. A loss function
measures the discrepancy between the “correct” or
desired output for pattern and the output produced by
the system. The average loss function is the
average of the errors over a set of labeled examples
called the training set In the
simplest setting, the learning problem consists in finding
the value of that minimizes In practice,
the performance of the system on a training set is of little
interest. The more relevant measure is the error rate of the
system in the field, where it would be used in practice.
This performance is estimated by measuring the accuracy
on a set of samples disjoint from the training set, which is
called the test set. Much theoretical and experimental work
[3]–[5] has shown that the gap between the expected error
rate on the test set and the error rate on the training
set decreases with the number of training samples
approximately as

(1)

where is the number of training samples,is a measure
of “effective capacity” or complexity of the machine [6],
[7], is a number between 0.5 and 1.0, andis a constant.
This gap always decreases when the number of training
samples increases. Furthermore, as the capacityincreases,

decreases. Therefore, when increasing the capacity
there is a tradeoff between the decrease of and the

increase of the gap, with an optimal value of the capacity
that achieves the lowest generalization error Most

learning algorithms attempt to minimize as well as
some estimate of the gap. A formal version of this is called
structural risk minimization [6], [7], and it is based on defin-
ing a sequence of learning machines of increasing capacity,
corresponding to a sequence of subsets of the parameter
space such that each subset is a superset of the previous
subset. In practical terms, structural risk minimization is
implemented by minimizing where the
function is called a regularization function andis
a constant. is chosen such that it takes large values
on parameters that belong to high-capacity subsets of
the parameter space. Minimizing in effect limits the
capacity of the accessible subset of the parameter space,
thereby controlling the tradeoff between minimizing the
training error and minimizing the expected gap between
the training error and test error.

B. Gradient-Based Learning

The general problem of minimizing a function with
respect to a set of parameters is at the root of many
issues in computer science. Gradient-based learning draws
on the fact that it is generally much easier to minimize
a reasonably smooth, continuous function than a discrete
(combinatorial) function. The loss function can be mini-
mized by estimating the impact of small variations of the
parameter values on the loss function. This is measured

by the gradient of the loss function with respect to the
parameters. Efficient learning algorithms can be devised
when the gradient vector can be computed analytically (as
opposed to numerically through perturbations). This is the
basis of numerous gradient-based learning algorithms with
continuous-valued parameters. In the procedures described
in this article, the set of parameters is a real-valued
vector, with respect to which is continuous, as well
as differentiable almost everywhere. The simplest mini-
mization procedure in such a setting is the gradient descent
algorithm where is iteratively adjusted as follows:

(2)

In the simplest case, is a scalar constant. More sophis-
ticated procedures use variable or substitute it for a
diagonal matrix, or substitute it for an estimate of the
inverse Hessian matrix as in Newton or quasi-Newton
methods. The conjugate gradient method [8] can also be
used. However, Appendix B shows that despite many
claims to the contrary in the literature, the usefulness of
these second-order methods to large learning machines is
very limited.

A popular minimization procedure is the stochastic gra-
dient algorithm, also called the online update. It consists
in updating the parameter vector using a noisy, or approxi-
mated, version of the average gradient. In the most common
instance of it, is updated on the basis of a single sample

(3)

With this procedure the parameter vector fluctuates around
an average trajectory, but usually it converges considerably
faster than regular gradient descent and second-order meth-
ods on large training sets with redundant samples (such
as those encountered in speech or character recognition).
The reasons for this are explained in Appendix B. The
properties of such algorithms applied to learning have been
studied theoretically since the 1960’s [9]–[11], but practical
successes for nontrivial tasks did not occur until the mid
eighties.

C. Gradient Back Propagation

Gradient-based learning procedures have been used since
the late 1950’s, but they were mostly limited to linear
systems [1]. The surprising usefulness of such simple
gradient descent techniques for complex machine learning
tasks was not widely realized until the following three
events occurred. The first event was the realization that,
despite early warnings to the contrary [12], the presence of
local minima in the loss function does not seem to be a
major problem in practice. This became apparent when it
was noticed that local minima did not seem to be a major
impediment to the success of early nonlinear gradient-based
learning techniques such as Boltzmann machines [13], [14].
The second event was the popularization by Rumelhartet
al. [15] and others of a simple and efficient procedure
to compute the gradient in a nonlinear system composed

2280 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

of several layers of processing, i.e., the back-propagation
algorithm. The third event was the demonstration that the
back-propagation procedure applied to multilayer NN’s
with sigmoidal units can solve complicated learning tasks.
The basic idea of back propagation is that gradients can
be computed efficiently by propagation from the output to
the input. This idea was described in the control theory
literature of the early 1960’s [16], but its application to ma-
chine learning was not generally realized then. Interestingly,
the early derivations of back propagation in the context
of NN learning did not use gradients but “virtual targets”
for units in intermediate layers [17], [18], or minimal
disturbance arguments [19]. The Lagrange formalism used
in the control theory literature provides perhaps the best
rigorous method for deriving back propagation [20] and for
deriving generalizations of back propagation to recurrent
networks [21] and networks of heterogeneous modules [22].
A simple derivation for generic multilayer systems is given
in Section I-E.

The fact that local minima do not seem to be a problem
for multilayer NN’s is somewhat of a theoretical mystery.
It is conjectured that if the network is oversized for the
task (as is usually the case in practice), the presence of
“extra dimensions” in parameter space reduces the risk
of unattainable regions. Back propagation is by far the
most widely used neural-network learning algorithm, and
probably the most widely used learning algorithm of any
form.

D. Learning in Real Handwriting Recognition Systems

Isolated handwritten character recognition has been ex-
tensively studied in the literature (see [23] and [24] for
reviews), and it was one of the early successful applications
of NN’s [25]. Comparative experiments on recognition of
individual handwritten digits are reported in Section III.
They show that NN’s trained with gradient-based learning
perform better than all other methods tested here on the
same data. The best NN’s, called convolutional networks,
are designed to learn to extract relevant features directly
from pixel images (see Section II).

One of the most difficult problems in handwriting recog-
nition, however, is not only to recognize individual charac-
ters, but also to separate out characters from their neighbors
within the word or sentence, a process known as seg-
mentation. The technique for doing this that has become
the “standard” is called HOS. It consists of generating a
large number of potential cuts between characters using
heuristic image processing techniques, and subsequently
selecting the best combination of cuts based on scores
given for each candidate character by the recognizer. In
such a model, the accuracy of the system depends upon the
quality of the cuts generated by the heuristics, and on the
ability of the recognizer to distinguish correctly segmented
characters from pieces of characters, multiple characters,
or otherwise incorrectly segmented characters. Training a
recognizer to perform this task poses a major challenge
because of the difficulty in creating a labeled database
of incorrectly segmented characters. The simplest solution

consists of running the images of character strings through
the segmenter and then manually labeling all the character
hypotheses. Unfortunately, not only is this an extremely
tedious and costly task, it is also difficult to do the labeling
consistently. For example, should the right half of a cut-up
four be labeled as a one or as a noncharacter? Should the
right half of a cut-up eight be labeled as a three?

The first solution, described in Section V, consists of
training the system at the level of whole strings of char-
acters rather than at the character level. The notion of
gradient-based learning can be used for this purpose. The
system is trained to minimize an overall loss function which
measures the probability of an erroneous answer. Section V
explores various ways to ensure that the loss function
is differentiable and therefore lends itself to the use of
gradient-based learning methods. Section V introduces the
use of directed acyclic graphs whose arcs carry numerical
information as a way to represent the alternative hypotheses
and introduces the idea of GTN.

The second solution, described in Section VII, is to
eliminate segmentation altogether. The idea is to sweep
the recognizer over every possible location on the input
image, and to rely on the “character spotting” property
of the recognizer, i.e., its ability to correctly recognize
a well-centered character in its input field, even in the
presence of other characters besides it, while rejecting
images containing no centered characters [26], [27]. The
sequence of recognizer outputs obtained by sweeping the
recognizer over the input is then fed to a GTN that takes
linguistic constraints into account and finally extracts the
most likely interpretation. This GTN is somewhat similar
to HMM’s, which makes the approach reminiscent of the
classical speech recognition [28], [29]. While this technique
would be quite expensive in the general case, the use of
convolutional NN’s makes it particularly attractive because
it allows significant savings in computational cost.

E. Globally Trainable Systems

As stated earlier, most practical pattern recognition sys-
tems are composed of multiple modules. For example, a
document recognition system is composed of a field loca-
tor (which extracts regions of interest), a field segmenter
(which cuts the input image into images of candidate
characters), a recognizer (which classifies and scores each
candidate character), and a contextual postprocessor, gen-
erally based on a stochastic grammar (which selects the
best grammatically correct answer from the hypotheses
generated by the recognizer). In most cases, the information
carried from module to module is best represented as
graphs with numerical information attached to the arcs.
For example, the output of the recognizer module can be
represented as an acyclic graph where each arc contains the
label and the score of a candidate character, and where each
path represents an alternative interpretation of the input
string. Typically, each module is manually optimized, or
sometimes trained, outside of its context. For example, the
character recognizer would be trained on labeled images
of presegmented characters. Then the complete system is

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2281Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

assembled, and a subset of the parameters of the modules
is manually adjusted to maximize the overall performance.
This last step is extremely tedious, time consuming, and
almost certainly suboptimal.

A better alternative would be to somehow train the entire
system so as to minimize a global error measure such
as the probability of character misclassifications at the
document level. Ideally, we would want to find a good
minimum of this global loss function with respect to all the
parameters in the system. If the loss functionmeasuring
the performance can be made differentiable with respect
to the system’s tunable parameters we can find a local
minimum of using gradient-based learning. However, at
first glance, it appears that the sheer size and complexity
of the system would make this intractable.

To ensure that the global loss function is
differentiable, the overall system is built as a feedforward
network of differentiable modules. The function imple-
mented by each module must be continuous and differ-
entiable almost everywhere with respect to the internal
parameters of the module (e.g., the weights of an NN
character recognizer in the case of a character recognition
module), and with respect to the module’s inputs. If this is
the case, a simple generalization of the well-known back-
propagation procedure can be used to efficiently compute
the gradients of the loss function with respect to all the
parameters in the system [22]. For example, let us consider
a system built as a cascade of modules, each of which
implements a function where
is a vector representing the output of the module, is
the vector of tunable parameters in the module (a subset of

and is the module’s input vector (as well as the
previous module’s output vector). The input to the first
module is the input pattern If the partial derivative of

with respect to is known, then the partial derivatives
of with respect to and can be computed using
the backward recurrence

(4)

where is the Jacobian of with
respect to evaluated at the point and

is the Jacobian of with respect to
The Jacobian of a vector function is a matrix containing

the partial derivatives of all the outputs with respect to
all the inputs. The first equation computes some terms
of the gradient of while the second equation
generates a backward recurrence, as in the well-known
back-propagation procedure for NN’s. We can average
the gradients over the training patterns to obtain the full
gradient. It is interesting to note that in many instances
there is no need to explicitly compute the Jacobian ma-
trix. The above formula uses the product of the Jacobian
with a vector of partial derivatives, and it is often easier
to compute this product directly without computing the
Jacobian beforehand. In analogy with ordinary multilayer

NN’s, all but the last module are called hidden layers
because their outputs are not observable from the outside.
In more complex situations than the simple cascade of
modules described above, the partial derivative notation
becomes somewhat ambiguous and awkward. A completely
rigorous derivation in more general cases can be done using
Lagrange functions [20]–[22].

Traditional multilayer NN’s are a special case of the
above where the state information is represented
with fixed-sized vectors, and where the modules are
alternated layers of matrix multiplications (the weights)
and component-wise sigmoid functions (the neurons).
However, as stated earlier, the state information in complex
recognition system is best represented by graphs with
numerical information attached to the arcs. In this case,
each module, called a GT, takes one or more graphs as input
and produces a graph as output. Networks of such modules
are called GTN’s. Sections IV, VI, and VIII develop the
concept of GTN’s and show that gradient-based learning
can be used to train all the parameters in all the modules
so as to minimize a global loss function. It may seem
paradoxical that gradients can be computed when the state
information is represented by essentially discrete objects
such as graphs, but that difficulty can be circumvented,
as shown later.

II. CONVOLUTIONAL NEURAL NETWORKS FOR

ISOLATED CHARACTER RECOGNITION

The ability of multilayer networks trained with gradi-
ent descent to learn complex, high-dimensional, nonlinear
mappings from large collections of examples makes them
obvious candidates for image recognition tasks. In the
traditional model of pattern recognition, a hand-designed
feature extractor gathers relevant information from the input
and eliminates irrelevant variabilities. A trainable classifier
then categorizes the resulting feature vectors into classes. In
this scheme, standard, fully connected multilayer networks
can be used as classifiers. A potentially more interesting
scheme is to rely as much as possible on learning in the
feature extractor itself. In the case of character recognition,
a network could be fed with almost raw inputs (e.g.,
size-normalized images). While this can be done with an
ordinary fully connected feedforward network with some
success for tasks such as character recognition, there are
problems.

First, typical images are large, often with several hundred
variables (pixels). A fully connected first layer with, e.g.,
one hundred hidden units in the first layer would already
contain several tens of thousands of weights. Such a large
number of parameters increases the capacity of the system
and therefore requires a larger training set. In addition, the
memory requirement to store so many weights may rule out
certain hardware implementations. But the main deficiency
of unstructured nets for image or speech applications is that
they have no built-in invariance with respect to translations
or local distortions of the inputs. Before being sent to
the fixed-size input layer of an NN, character images,

2282 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Architecture of LeNet-5, a convolutional NN, here used for digits recognition. Each plane
is a feature map, i.e., a set of units whose weights are constrained to be identical.

or other 2-D or one-dimensional (1-D) signals, must be
approximately size normalized and centered in the input
field. Unfortunately, no such preprocessing can be perfect:
handwriting is often normalized at the word level, which
can cause size, slant, and position variations for individual
characters. This, combined with variability in writing style,
will cause variations in the position of distinctive features
in input objects. In principle, a fully connected network of
sufficient size could learn to produce outputs that are invari-
ant with respect to such variations. However, learning such
a task would probably result in multiple units with similar
weight patterns positioned at various locations in the input
so as to detect distinctive features wherever they appear on
the input. Learning these weight configurations requires a
very large number of training instances to cover the space of
possible variations. In convolutional networks, as described
below, shift invariance is automatically obtained by forcing
the replication of weight configurations across space.

Secondly, a deficiency of fully connected architectures is
that the topology of the input is entirely ignored. The input
variables can be presented in any (fixed) order without af-
fecting the outcome of the training. On the contrary, images
(or time-frequency representations of speech) have a strong
2-D local structure: variables (or pixels) that are spatially or
temporally nearby are highly correlated. Local correlations
are the reasons for the well-known advantages of extracting
and combining local features before recognizing spatial
or temporal objects, because configurations of neighboring
variables can be classified into a small number of categories
(e.g., edges, corners, etc.). Convolutional networks force
the extraction of local features by restricting the receptive
fields of hidden units to be local.

A. Convolutional Networks

Convolutional networks combine three architectural ideas
to ensure some degree of shift, scale, and distortion in-
variance: 1) local receptive fields; 2) shared weights (or
weight replication); and 3) spatial or temporal subsampling.
A typical convolutional network for recognizing characters,
dubbed LeNet-5, is shown in Fig. 2. The input plane
receives images of characters that are approximately size
normalized and centered. Each unit in a layer receives
inputs from a set of units located in a small neighborhood

in the previous layer. The idea of connecting units to local
receptive fields on the input goes back to the perceptron in
the early 1960’s, and it was almost simultaneous with Hubel
and Wiesel’s discovery of locally sensitive, orientation-
selective neurons in the cat’s visual system [30]. Local
connections have been used many times in neural models
of visual learning [2], [18], [31]–[34]. With local receptive
fields neurons can extract elementary visual features such
as oriented edges, endpoints, corners (or similar features in
other signals such as speech spectrograms). These features
are then combined by the subsequent layers in order to
detect higher order features. As stated earlier, distortions or
shifts of the input can cause the position of salient features
to vary. In addition, elementary feature detectors that are
useful on one part of the image are likely to be useful across
the entire image. This knowledge can be applied by forcing
a set of units, whose receptive fields are located at different
places on the image, to have identical weight vectors [15],
[32], [34]. Units in a layer are organized in planes within
which all the units share the same set of weights. The set of
outputs of the units in such a plane is called a feature map.
Units in a feature map are all constrained to perform the
same operation on different parts of the image. A complete
convolutional layer is composed of several feature maps
(with different weight vectors), so that multiple features
can be extracted at each location. A concrete example of
this is the first layer of LeNet-5 shown in Fig. 2. Units
in the first hidden layer of LeNet-5 are organized in six
planes, each of which is a feature map. A unit in a feature
map has 25 inputs connected to a 55 area in the input,
called the receptive field of the unit. Each unit has 25
inputs and therefore 25 trainable coefficients plus a trainable
bias. The receptive fields of contiguous units in a feature
map are centered on corresponding contiguous units in the
previous layer. Therefore, receptive fields of neighboring
units overlap. For example, in the first hidden layer of
LeNet-5, the receptive fields of horizontally contiguous
units overlap by four columns and five rows. As stated
earlier, all the units in a feature map share the same set of 25
weights and the same bias, so they detect the same feature
at all possible locations on the input. The other feature
maps in the layer use different sets of weights and biases,
thereby extracting different types of local features. In the

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2283Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

case of LeNet-5, at each input location six different types
of features are extracted by six units in identical locations
in the six feature maps. A sequential implementation of
a feature map would scan the input image with a single
unit that has a local receptive field and store the states
of this unit at corresponding locations in the feature map.
This operation is equivalent to a convolution, followed by
an additive bias and squashing function, hence the name
convolutional network. The kernel of the convolution is the
set of connection weights used by the units in the feature
map. An interesting property of convolutional layers is that
if the input image is shifted, the feature map output will be
shifted by the same amount, but it will be left unchanged
otherwise. This property is at the basis of the robustness of
convolutional networks to shifts and distortions of the input.

Once a feature has been detected, its exact location
becomes less important. Only its approximate position
relative to other features is relevant. For example, once
we know that the input image contains the endpoint of a
roughly horizontal segment in the upper left area, a corner
in the upper right area, and the endpoint of a roughly
vertical segment in the lower portion of the image, we can
tell the input image is a seven. Not only is the precise
position of each of those features irrelevant for identifying
the pattern, it is potentially harmful because the positions
are likely to vary for different instances of the character. A
simple way to reduce the precision with which the position
of distinctive features are encoded in a feature map is
to reduce the spatial resolution of the feature map. This
can be achieved with a so-called subsampling layer, which
performs a local averaging and a subsampling, thereby
reducing the resolution of the feature map and reducing
the sensitivity of the output to shifts and distortions. The
second hidden layer of LeNet-5 is a subsampling layer. This
layer comprises six feature maps, one for each feature map
in the previous layer. The receptive field of each unit is
a 2 2 area in the previous layer’s corresponding feature
map. Each unit computes the average of its four inputs,
multiplies it by a trainable coefficient, adds a trainable
bias, and passes the result through a sigmoid function.
Contiguous units have nonoverlapping contiguous receptive
fields. Consequently, a subsampling layer feature map has
half the number of rows and columns as the feature maps in
the previous layer. The trainable coefficient and bias control
the effect of the sigmoid nonlinearity. If the coefficient is
small, then the unit operates in a quasi-linear mode, and the
subsampling layer merely blurs the input. If the coefficient
is large, subsampling units can be seen as performing a
“noisy OR” or a “noisy AND” function depending on
the value of the bias. Successive layers of convolutions
and subsampling are typically alternated resulting in a
“bipyramid”: at each layer, the number of feature maps
is increased as the spatial resolution is decreased. Each
unit in the third hidden layer in Fig. 2 may have input
connections from several feature maps in the previous
layer. The convolution/subsampling combination, inspired
by Hubel and Wiesel’s notions of “simple” and “complex”
cells, was implemented in Fukushima’s Neocognitron [32],

though no globally supervised learning procedure such
as back propagation was available then. A large degree
of invariance to geometric transformations of the input
can be achieved with this progressive reduction of spatial
resolution compensated by a progressive increase of the
richness of the representation (the number of feature maps).

Since all the weights are learned with back propagation,
convolutional networks can be seen as synthesizing their
own feature extractor. The weight sharing technique has
the interesting side effect of reducing the number of free
parameters, thereby reducing the “capacity” of the machine
and reducing the gap between test error and training error
[34]. The network in Fig. 2 contains 345 308 connections,
but only 60 000 trainable free parameters because of the
weight sharing.

Fixed-size convolutional networks have been applied to
many applications, among other handwriting recognition
[35], [36], machine-printed character recognition [37], on-
line handwriting recognition [38], and face recognition
[39]. Fixed-size convolutional networks that share weights
along a single temporal dimension are known as time-delay
NN’s (TDNN’s). TDNN’s have been used in phoneme
recognition (without subsampling) [40], [41], spoken word
recognition (with subsampling) [42], [43], online recogni-
tion of isolated handwritten characters [44], and signature
verification [45].

B. LeNet-5

This section describes in more detail the architecture of
LeNet-5, the Convolutional NN used in the experiments.
LeNet-5 comprises seven layers, not counting the input, all
of which contain trainable parameters (weights). The input
is a 32 32 pixel image. This is significantly larger than
the largest character in the database (at most 2020 pixels
centered in a 2828 field). The reason is that it is desirable
that potential distinctive features such as stroke endpoints
or corner can appear in the center of the receptive field
of the highest level feature detectors. In LeNet-5, the set
of centers of the receptive fields of the last convolutional
layer (C3, see below) form a 2020 area in the center of the
32 32 input. The values of the input pixels are normalized
so that the background level (white) corresponds to a value
of and the foreground (black) corresponds to 1.175.
This makes the mean input roughly zero and the variance
roughly one, which accelerates learning [46].

In the following, convolutional layers are labeled Cx,
subsampling layers are labeled Sx, and fully connected
layers are labeled Fx, where x is the layer index.

Layer C1 is a convolutional layer with six feature maps.
Each unit in each feature map is connected to a 55 neigh-
borhood in the input. The size of the feature maps is 2828
which prevents connection from the input from falling off
the boundary. C1 contains 156 trainable parameters and
122 304 connections.

Layer S2 is a subsampling layer with six feature maps of
size 14 14. Each unit in each feature map is connected to a
2 2 neighborhood in the corresponding feature map in C1.
The four inputs to a unit in S2 are added, then multiplied by

2284 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Table 1 Each Column Indicates Which Feature Map in S2 Are
Combined by the Units in a Particular Feature Map of C3

a trainable coefficient, and then added to a trainable bias.
The result is passed through a sigmoidal function. The 22
receptive fields are nonoverlapping, therefore feature maps
in S2 have half the number of rows and column as feature
maps in C1. Layer S2 has 12 trainable parameters and 5880
connections.

Layer C3 is a convolutional layer with 16 feature maps.
Each unit in each feature map is connected to several
5 5 neighborhoods at identical locations in a subset of
S2’s feature maps. Table 1 shows the set of S2 feature
maps combined by each C3 feature map. Why not connect
every S2 feature map to every C3 feature map? The
reason is twofold. First, a noncomplete connection scheme
keeps the number of connections within reasonable bounds.
More importantly, it forces a break of symmetry in the
network. Different feature maps are forced to extract dif-
ferent (hopefully complementary) features because they get
different sets of inputs. The rationale behind the connection
scheme in Table 1 is the following. The first six C3 feature
maps take inputs from every contiguous subsets of three
feature maps in S2. The next six take input from every
contiguous subset of four. The next three take input from
some discontinuous subsets of four. Finally, the last one
takes input from all S2 feature maps. Layer C3 has 1516
trainable parameters and 156 000 connections.

Layer S4 is a subsampling layer with 16 feature maps of
size 5 5. Each unit in each feature map is connected to a
2 2 neighborhood in the corresponding feature map in C3,
in a similar way as C1 and S2. Layer S4 has 32 trainable
parameters and 2000 connections.

Layer C5 is a convolutional layer with 120 feature maps.
Each unit is connected to a 55 neighborhood on all 16
of S4’s feature maps. Here, because the size of S4 is also
5 5, the size of C5’s feature maps is 11; this amounts
to a full connection between S4 and C5. C5 is labeled as
a convolutional layer, instead of a fully connected layer,
because if LeNet-5 input were made bigger with everything
else kept constant, the feature map dimension would be
larger than 1 1. This process of dynamically increasing the
size of a convolutional network is described in Section VII.
Layer C5 has 48 120 trainable connections.

Layer F6 contains 84 units (the reason for this number
comes from the design of the output layer, explained
below) and is fully connected to C5. It has 10 164 trainable
parameters.

As in classical NN’s, units in layers up to F6 compute a
dot product between their input vector and their weight
vector, to which a bias is added. This weighted sum,
denoted for unit is then passed through a sigmoid

squashing function to produce the state of unitdenoted
by

(5)

The squashing function is a scaled hyperbolic tangent

(6)

where is the amplitude of the function and determines
its slope at the origin. The functionis odd, with horizontal
asymptotes at and The constant is chosen to be
1.7159. The rationale for this choice of a squashing function
is given in Appendix A.

Finally, the output layer is composed of Euclidean RBF
units, one for each class, with 84 inputs each. The outputs
of each RBF unit is computed as follows:

(7)

In other words, each output RBF unit computes the Eu-
clidean distance between its input vector and its parameter
vector. The further away the input is from the parameter
vector, the larger the RBF output. The output of a particular
RBF can be interpreted as a penalty term measuring the
fit between the input pattern and a model of the class
associated with the RBF. In probabilistic terms, the RBF
output can be interpreted as the unnormalized negative
log-likelihood of a Gaussian distribution in the space of
configurations of layer F6. Given an input pattern, the loss
function should be designed so as to get the configuration
of F6 as close as possible to the parameter vector of the
RBF that corresponds to the pattern’s desired class. The
parameter vectors of these units were chosen by hand and
kept fixed (at least initially). The components of those
parameters vectors were set to1 or 1. While they could
have been chosen at random with equal probabilities for

1 and 1, or even chosen to form an error correcting
code as suggested by [47], they were instead designed to
represent a stylized image of the corresponding character
class drawn on a 712 bitmap (hence the number 84). Such
a representation is not particularly useful for recognizing
isolated digits, but it is quite useful for recognizing strings
of characters taken from the fully printable ASCII set. The
rationale is that characters that are similar, and therefore
confusable, such as uppercase “O,” lowercase “o,” and zero,
lowercase “l” digit one, and square brackets and uppercase
“I,” will have similar output codes. This is particularly
useful if the system is combined with a linguistic post-
processor that can correct such confusions. Because the
codes for confusable classes are similar, the output of the
corresponding RBF’s for an ambiguous character will be
similar, and the postprocessor will be able to pick the
appropriate interpretation. Fig. 3 gives the output codes for
the full ASCII set.

Another reason for using such distributed codes, rather
than the more common “1 of N” code (also called place
code or grandmother cell code) for the outputs is that
nondistributed codes tend to behave badly when the number

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2285Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Initial parameters of the output RBF’s for recognizing the full ASCII set.

of classes is larger than a few dozen. The reason is
that output units in a nondistributed code must be off
most of the time. This is quite difficult to achieve with
sigmoid units. Yet another reason is that the classifiers are
often used not only to recognize characters, but also to
reject noncharacters. RBF’s with distributed codes are more
appropriate for that purpose because unlike sigmoids, they
are activated within a well-circumscribed region of their
input space, outside of which nontypical patterns are more
likely to fall.

The parameter vectors of the RBF’s play the role of
target vectors for layer F6. It is worth pointing out that
the components of those vectors are1 or 1, which is
well within the range of the sigmoid of F6, and therefore
prevents those sigmoids from getting saturated. In fact,

1 and 1 are the points of maximum curvature of the
sigmoids. This forces the F6 units to operate in their
maximally nonlinear range. Saturation of the sigmoids must
be avoided because it is known to lead to slow convergence
and ill-conditioning of the loss function.

C. Loss Function

The simplest output loss function that can be used with
the above network is the maximum likelihood estimation
criterion, which in our case is equivalent to the minimum
mean squared error (MSE). The criterion for a set of
training samples is simply

(8)

where is the output of the th RBF unit, i.e., the
one that corresponds to the correct class of input pattern

While this cost function is appropriate for most cases,
it lacks three important properties. First, if we allow the
parameters of the RBF to adapt, has a trivial, but
totally unacceptable, solution. In this solution, all the RBF
parameter vectors are equal and the state of F6 is constant
and equal to that parameter vector. In this case the network
happily ignores the input, and all the RBF outputs are equal

to zero. This collapsing phenomenon does not occur if the
RBF weights are not allowed to adapt. The second problem
is that there is no competition between the classes. Such a
competition can be obtained by using a more discriminative
training criterion, dubbed the maximuma posteriori(MAP)
criterion, similar to maximum mutual information criterion
sometimes used to train HMM’s [48]–[50]. It corresponds
to maximizing the posterior probability of the correct class

(or minimizing the logarithm of the probability of the
correct class), given that the input image can come from
one of the classes or from a background “rubbish” class
label. In terms of penalties, it means that in addition to
pushing down the penalty of the correct class like the MSE
criterion, this criterion also pulls up the penalties of the
incorrect classes

(9)

The negative of the second term plays a “competitive”
role. It is necessarily smaller than (or equal to) the first
term, therefore this loss function is positive. The constant

is positive and prevents the penalties of classes that
are already very large from being pushed further up. The
posterior probability of this rubbish class label would be the
ratio of and This discriminative
criterion prevents the previously mentioned “collapsing
effect” when the RBF parameters are learned because it
keeps the RBF centers apart from each other. In Section VI,
we present a generalization of this criterion for systems
that learn to classify multiple objects in the input (e.g.,
characters in words or in documents).

Computing the gradient of the loss function with respect
to all the weights in all the layers of the convolutional
network is done with back propagation. The standard al-
gorithm must be slightly modified to take account of the

2286 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

weight sharing. An easy way to implement it is to first
compute the partial derivatives of the loss function with
respect to each connection, as if the network were a
conventional multilayer network without weight sharing.
Then the partial derivatives of all the connections that share
a same parameter are added to form the derivative with
respect to that parameter.

Such a large architecture can be trained very efficiently,
but doing so requires the use of a few techniques that are
described in the appendixes. Appendix A describes details
such as the particular sigmoid used and the weight ini-
tialization. Appendixes B and C describe the minimization
procedure used, which is a stochastic version of a diagonal
approximation to the Levenberg–Marquardt procedure.

III. RESULTS AND COMPARISON WITH OTHER METHODS

While recognizing individual digits is only one of many
problems involved in designing a practical recognition
system, it is an excellent benchmark for comparing shape
recognition methods. Though many existing methods com-
bine a hand-crafted feature extractor and a trainable clas-
sifier, this study concentrates on adaptive methods that
operate directly on size-normalized images.

A. Database: The Modified NIST Set

The database used to train and test the systems described
in this paper was constructed from the NIST’s Special
Database 3 and Special Database 1 containing binary im-
ages of handwritten digits. NIST originally designated SD-3
as their training set and SD-1 as their test set. However,
SD-3 is much cleaner and easier to recognize than SD-1.
The reason for this can be found on the fact that SD-
3 was collected among Census Bureau employees, while
SD-1 was collected among high-school students. Drawing
sensible conclusions from learning experiments requires
that the result be independent of the choice of training set
and test among the complete set of samples. Therefore it
was necessary to build a new database by mixing NIST’s
datasets.

SD-1 contains 58 527 digit images written by 500 dif-
ferent writers. In contrast to SD-3, where blocks of data
from each writer appeared in sequence, the data in SD-1 is
scrambled. Writer identities for SD-1 are available and we
used this information to unscramble the writers. We then
split SD-1 in two: characters written by the first 250 writers
went into our new training set. The remaining 250 writers
were placed in our test set. Thus we had two sets with nearly
30 000 examples each. The new training set was completed
with enough examples from SD-3, starting at pattern #0, to
make a full set of 60 000 training patterns. Similarly, the
new test set was completed with SD-3 examples starting at
pattern #35 000 to make a full set with 60 000 test patterns.
In the experiments described here, we only used a subset of
10 000 test images (5,000 from SD-1 and 5,000 from SD-3),
but we used the full 60 000 training samples. The resulting
database was called the modified NIST, or MNIST, dataset.

Fig. 4. Size-normalized examples from the MNIST database.

The original black and white (bilevel) images were size
normalized to fit in a 20 20 pixel box while preserving
their aspect ratio. The resulting images contain grey levels
as result of the antialiasing (image interpolation) technique
used by the normalization algorithm. Three versions of the
database were used. In the first version, the images were
centered in a 2828 image by computing the center of mass
of the pixels and translating the image so as to position this
point at the center of the 2828 field. In some instances,
this 28 28 field was extended to 3232 with background
pixels. This version of the database will be referred to as
the regular database. In the second version of the database,
the character images were deslanted and cropped down to
20 20 pixels images. The deslanting computes the second
moments of inertia of the pixels (counting a foreground
pixel as one and a background pixel as zero) and shears the
image by horizontally shifting the lines so that the principal
axis is vertical. This version of the database will be referred
to as the deslanted database. In the third version of the
database, used in some early experiments, the images were
reduced to 16 16 pixels.1 Fig. 4 shows examples randomly
picked from the test set.

B. Results

Several versions of LeNet-5 were trained on the regu-
lar MNIST database. Twenty iterations through the entire
training data were performed for each session. The values
of the global learning rate [see (21) in Appendix C for
a definition] was decreased using the following schedule:
0.0005 for the first two passes; 0.0002 for the next three;
0.0001 for the next three; 0.000 05 for the next 4; and
0.000 01 thereafter. Before each iteration, the diagonal

1The regular database (60 000 training examples, 10 000 test examples
size-normalized to 20�20 and centered by center of mass in 28�28 fields)
is available WWW: http://www.research.att.com/˜yann/ocr/mnist.

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2287Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Training and test error of LeNet-5 as a function of the
number of passes through the 60 000 pattern training set (without
distortions). The average training error is measured on-the-fly as
training proceeds. This explains why the training error appears to
be larger than the test error initially. Convergence is attained after
10–12 passes through the training set.

Hessian approximation was reevaluated on 500 samples,
as described in Appendix C, and was kept fixed during
the entire iteration. The parameter was set to 0.02.
The resulting effective learning rates during the first pass
varied between approximately 710 and 0.016 over
the set of parameters. The test error rate stabilizes after
around ten passes through the training set at 0.95%. The
error rate on the training set reaches 0.35% after 19
passes. Many authors have reported observing the common
phenomenon of overtraining when training NN’s or other
adaptive algorithms on various tasks. When overtraining
occurs, the training error keeps decreasing over time but
the test error goes through a minimum and starts increasing
after a certain number of iterations. While this phenomenon
is very common, it was not observed in our case as the
learning curves in Fig. 5 show. A possible reason is that
the learning rate was kept relatively large. The effect of
this is that the weights never settle down in the local
minimum but keep oscillating randomly. Because of those
fluctuations, the average cost will be lower in a broader
minimum. Therefore, stochastic gradient will have a similar
effect as a regularization term that favors broader minima.
Broader minima correspond to solutions with large entropy
of the parameter distribution, which is beneficial to the
generalization error.

The influence of the training set size was measured
by training the network with 15 000, 30 000, and 60 000
examples. The resulting training error and test error are
shown in Fig. 6. It is clear that, even with specialized
architectures such as LeNet-5, more training data would
improve the accuracy.

To verify this hypothesis, we artificially generated more
training examples by randomly distorting the original train-
ing images. The increased training set was composed of
the 60 000 original patterns plus 540 000 instances of dis-
torted patterns with randomly picked distortion parameters.

The distortions were combinations of the following planar
affine transformations: horizontal and vertical translations;
scaling; squeezing (simultaneous horizontal compression
and vertical elongation, or the reverse); and horizontal
shearing. Fig. 7 shows examples of distorted patterns used
for training. When distorted data were used for training,
the test error rate dropped to 0.8% (from 0.95% without
deformation). The same training parameters were used
as without deformations. The total length of the training
session was left unchanged (20 passes of 60 000 patterns
each). It is interesting to note that the network effectively
sees each individual sample only twice over the course of
these 20 passes.

Fig. 8 shows all 82 misclassified test examples. some
of those examples are genuinely ambiguous, but several
are perfectly identifiable by humans, although they are
written in an under-represented style. This shows that
further improvements are to be expected with more training
data.

C. Comparison with Other Classifiers

For the sake of comparison, a variety of other trainable
classifiers was trained and tested on the same database. An
early subset of these results was presented in [51]. The error
rates on the test set for the various methods are shown in
Fig. 9.

1) Linear Classifier and Pairwise Linear Classifier:
Possibly the simplest classifier that one might consider
is a linear classifier. Each input pixel value contributes to a
weighted sum for each output unit. The output unit with the
highest sum (including the contribution of a bias constant)
indicates the class of the input character. On the regular
data, the error rate is 12%. The network has 7850 free
parameters. On the deslanted images, the test error rate is
8.4%. The network has 4010 free parameters. The deficien-
cies of the linear classifier are well documented [1], and it is
included here simply to form a basis of comparison for more
sophisticated classifiers. Various combinations of sigmoid
units, linear units, gradient descent learning, and learning
by directly solving linear systems gave similar results.

A simple improvement of the basic linear classifier was
tested [52]. The idea is to train each unit of a single-
layer network to separate each class from each other
class. In our case this layer comprises 45 units labeled

Unit is trained to pro-
duce 1 on patterns of class 1 on patterns of class,
and it is not trained on other patterns. The final score for
class is the sum of the outputs all the units labeled
minus the sum of the output of all the units labeled for
all and The error rate on the regular test set was 7.6%.

2) Baseline Nearest Neighbor Classifier:Another simple
classifier is a K-NN classifier with a Euclidean distance
measure between input images. This classifier has the
advantage that no training time, and no thought on the
part of the designer, are required. However the memory
requirement and recognition time are large: the complete
60 000 20 20 pixel training images (about 24 megabytes
at one byte per pixel) must be available at run time. Much

2288 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Training and test errors of LeNet-5 achieved using training sets of various sizes. This graph
suggests that a larger training set could improve the performance of LeNet-5. The hollow square
shows the test error when more training patterns are artificially generated using random distortions.
The test patterns are not distorted.

Fig. 7. Examples of distortions of ten training patterns.

more compact representations could be devised with modest
increase in error rate. On the regular test set the error
rate was 5.0%. On the deslanted data, the error rate was
2.4%, with Naturally, a realistic Euclidean distance
nearest-neighbor system would operate on feature vectors

Fig. 8. The 82 test patterns misclassified by LeNet-5. Below
each image is displayed the correct answers (left) and the net-
work answer (right). These errors are mostly caused either by
genuinely ambiguous patterns, or by digits written in a style that
are under-represented in the training set.

rather than directly on the pixels, but since all of the other
systems presented in this study operate directly on the
pixels, this result is useful for a baseline comparison.

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2289Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Error rate on the test set (%) for various classification methods. [deslant] indicates that the
classifier was trained and tested on the deslanted version of the database. [dist] indicates that the
training set was augmented with artificially distorted examples. [16�16] indicates that the system
used the 16�16 pixel images. The uncertainty in the quoted error rates is about 0.1%.

3) PCA and Polynomial Classifier:Following [53] and
[54], a preprocessing stage was constructed which computes
the projection of the input pattern on the 40 principal
components of the set of training vectors. To compute the
principal components, the mean of each input component
was first computed and subtracted from the training
vectors. The covariance matrix of the resulting vectors
was then computed and diagonalized using singular value
decomposition. The 40-dimensional feature vector was used
as the input of a second degree polynomial classifier. This
classifier can be seen as a linear classifier with 821 inputs,
preceded by a module that computes all products of pairs of
input variables. The error on the regular test set was 3.3%.

4) RBF Network: Following [55], an RBF network was
constructed. The first layer was composed of 1000 Gaussian
RBF units with 28 28 inputs, and the second layer was a
simple 1000 inputs/ten outputs linear classifier. The RBF
units were divided into ten groups of 100. Each group of
units was trained on all the training examples of one of
the ten classes using the adaptive K-means algorithm. The
second-layer weights were computed using a regularized
pseudoinverse method. The error rate on the regular test
set was 3.6%.

5) One-Hidden-Layer Fully Connected Multilayer NN:
Another classifier that we tested was a fully connected
multilayer NN with two layers of weights (one hidden layer)
trained with the version of back-propagation described in
Appendix C. Error on the regular test set was 4.7% for a
network with 300 hidden units and 4.5% for a network with
1000 hidden units. Using artificial distortions to generate
more training data brought only marginal improvement:
3.6% for 300 hidden units and 3.8% for 1000 hidden units.
When deslanted images were used, the test error jumped
down to 1.6% for a network with 300 hidden units.

It remains somewhat of a mystery that networks with
such a large number of free parameters manage to achieve
reasonably low testing errors. We conjecture that the dy-
namics of gradient descent learning in multilayer nets
has a “self-regularization” effect. Because the origin of
weight space is a saddle point that is attractive in al-
most every direction, the weights invariably shrink during
the first few epochs (recent theoretical analysis seem to
confirm this [56]). Small weights cause the sigmoids to
operate in the quasi-linear region, making the network
essentially equivalent to a low-capacity, single-layer net-
work. As the learning proceeds the weights grow, which

2290 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

progressively increases the effective capacity of the net-
work. This seems to be an almost perfect, if fortuitous,
implementation of Vapnik’s “structural risk minimization”
principle [6]. A better theoretical understanding of these
phenomena, and more empirical evidence, are definitely
needed.

6) Two-Hidden-Layer Fully Connected Multilayer NN:To
see the effect of the architecture, several two-hidden-layer
multilayer NN’s were trained. Theoretical results have
shown that any function can be approximated by a one-
hidden-layer NN [57]. However, several authors have ob-
served that two-hidden-layer architectures sometimes yield
better performance in practical situations. This phenomenon
was also observed here. The test error rate of a 2828-
300-100-10 network was 3.05%, a much better result than
the one-hidden-layer network, obtained using marginally
more weights and connections. Increasing the network size
to 28 28-1000-150-10 yielded only marginally improved
error rates: 2.95%. Training with distorted patterns im-
proved the performance somewhat: 2.50% error for the
28 28-300-100-10 network, and 2.45% for the 2828-
1000-150-10 network.

7) A Small Convolutional Network—LeNet-1:Convolu-
tional networks are an attempt to solve the dilemma
between small networks that cannot learn the training
set and large networks that seem overparameterized.
LeNet-1 was an early embodiment of the convolutional
network architecture which is included here for comparison
purposes. The images were down-sampled to 1616
pixels and centered in the 2828 input layer. Although
about 100 000 multiply/add steps are required to evaluate
LeNet-1, its convolutional nature keeps the number of free
parameters to only about 2600. The LeNet-1 architecture
was developed using our own version of the USPS (U.S.
Postal Service zip codes) database and its size was tuned to
match the available data [35]. LeNet-1 achieved 1.7% test
error. The fact that a network with such a small number of
parameters can attain such a good error rate is an indication
that the architecture is appropriate for the task.

8) LeNet-4: Experiments with LeNet-1 made it clear that
a larger convolutional network was needed to make optimal
use of the large size of the training set. LeNet-4 and later
LeNet-5 were designed to address this problem. LeNet-
4 is very similar to LeNet-5, except for the details of
the architecture. It contains four first-level feature maps,
followed by eight subsampling maps connected in pairs
to each first-layer feature maps, then 16 feature maps,
followed by 16 subsampling maps, followed by a fully
connected layer with 120 units, followed by the output layer
(ten units). LeNet-4 contains about 260 000 connections and
has about 17 000 free parameters. Test error was 1.1%. In a
series of experiments, we replaced the last layer of LeNet-
4 with a Euclidean nearest-neighbor classifier, and with
the “local learning” method of Bottou and Vapnik [58], in
which a local linear classifier is retrained each time a new
test pattern is shown. Neither of those methods improved
the raw error rate, although they did improve the rejection
performance.

9) Boosted LeNet-4:Following theoretical work by
Schapire [59], Druckeret al. [60] developed the “boosting”
method for combining multiple classifiers. Three LeNet-4’s
are combined: the first one is trained the usual way; the
second one is trained on patterns that are filtered by the
first net so that the second machine sees a mix of patterns,
50% of which the first net got right and 50% of which
it got wrong; the third net is trained on new patterns on
which the first and the second nets disagree. During testing,
the outputs of the three nets are simply added. Because the
error rate of LeNet-4 is very low, it was necessary to
use the artificially distorted images (as with LeNet-5) in
order to get enough samples to train the second and third
nets. The test error rate was 0.7%, the best of any of our
classifiers. At first glance, boosting appears to be three
times more expensive as a single net. In fact, when the first
net produces a high confidence answer, the other nets are
not called. The average computational cost is about 1.75
times that of a single net.

10) Tangent Distance Classifier:The tangent distance
classifier is a nearest-neighbor method where the distance
function is made insensitive to small distortions and
translations of the input image [61]. If we consider an
image as a point in a high-dimensional pixel space (where
the dimensionality equals the number of pixels), then an
evolving distortion of a character traces out a curve in pixel
space. Taken together, all these distortions define a low-
dimensional manifold in pixel space. For small distortions
in the vicinity of the original image, this manifold can be
approximated by a plane, known as the tangent plane. An
excellent measure of “closeness” for character images is
the distance between their tangent planes, where the set of
distortions used to generate the planes includes translations,
scaling, skewing, squeezing, rotation, and line thickness
variations. A test error rate of 1.1% was achieved using
16 16 pixel images. Prefiltering techniques using simple
Euclidean distance at multiple resolutions allowed to reduce
the number of necessary tangent distance calculations.

11) SVM: Polynomial classifiers are well studied meth-
ods for generating complex decision surfaces. Unfortu-
nately, they are impractical for high-dimensional problems
because the number of product terms is prohibitive. The
support vector technique is an extremely economical way of
representing complex surfaces in high-dimensional spaces,
including polynomials and many other types of surfaces [6].

A particularly interesting subset of decision surfaces
is the ones that correspond to hyperplanes that are at a
maximum distance from the convex hulls of the two classes
in the high-dimensional space of the product terms. Boser
et al. [62] realized that any polynomial of degreein this
“maximum margin” set can be computed by first computing
the dot product of the input image with a subset of the train-
ing samples (called the “support vectors”), elevating the
result to the th power, and linearly combining the numbers
thereby obtained. Finding the support vectors and the coef-
ficients amounts to solving a high-dimensional quadratic
minimization problem with linear inequality constraints.
For the sake of comparison, we include here the results

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2291Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. Rejection Performance: percentage of test patterns that must be rejected to achieve 0.5%
error for some of the systems.

Fig. 11. Number of multiply–accumulate operations for the recognition of a single character
starting with a size-normalized image.

obtained by Burges and Schölkopf and reported in [63].
With a regular SVM, their error rate on the regular test set
was 1.4%. Cortes and Vapnik had reported an error rate of
1.1% with SVM on the same data using a slightly different
technique. The computational cost of this technique is very
high: about 14 million multiply-adds per recognition. Using
Scḧolkopf’s V-SVM technique, 1.0% error was attained.
More recently, Sch¨olkopf (personal communication) has
reached 0.8% using a modified version of the V-SVM.
Unfortunately, V-SVM is extremely expensive: about twice
as much as regular SVM. To alleviate this problem, Burges
has proposed the RS-SVM technique, which attained 1.1%

on the regular test set [63], with a computational cost of
only 650 000 multiply–adds per recognition, i.e., only about
60% more expensive than LeNet-5.

D. Discussion

A summary of the performance of the classifiers is
shown in Figs. 9–12. Fig. 9 shows the raw error rate of the
classifiers on the 10 000 example test set. Boosted LeNet-4
performed best, achieving a score of 0.7%, closely followed
by LeNet-5 at 0.8%.

Fig. 10 shows the number of patterns in the test set
that must be rejected to attain a 0.5% error for some of

2292 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 12. Memory requirements, measured in number of variables, for each of the methods. Most
of the methods only require one byte per variable for adequate performance.

the methods. Patterns are rejected when the value of the
corresponding output is smaller than a predefined thresh-
old. In many applications, rejection performance is more
significant than raw error rate. The score used to decide
upon the rejection of a pattern was the difference between
the scores of the top two classes. Again, Boosted LeNet-4
has the best performance. The enhanced versions of LeNet-
4 did better than the original LeNet-4, even though the raw
accuracies were identical.

Fig. 11 shows the number of multiply–accumulate op-
erations necessary for the recognition of a single size-
normalized image for each method. Expectedly, NN’s are
much less demanding than memory-based methods. Con-
volutional NN’s are particularly well suited to hardware
implementations because of their regular structure and
their low memory requirements for the weights. Single
chip mixed analog–digital implementations of LeNet-5’s
predecessors have been shown to operate at speeds in
excess of 1000 characters per second [64]. However, the
rapid progress of mainstream computer technology renders
those exotic technologies quickly obsolete. Cost-effective
implementations of memory-based techniques are more
elusive due to their enormous memory requirements and
computational requirements.

Training time was also measured. K-NN’s and tangent
distance classifier have essentially zero training time. While
the single-layer net, the pairwise net, and PCAquadratic
net could be trained in less than an hour, the multilayer net
training times were expectedly much longer, but only re-
quired 10–20 passes through the training set. This amounts

to two–three days of CPU to train LeNet-5 on a Silicon
Graphics Origin 2000 server using a single 200 MHz
R10000 processor. It is important to note that while the
training time is somewhat relevant to the designer, it is
of little interest to the final user of the system. Given the
choice between an existing technique and a new technique
that brings marginal accuracy improvements at the price of
considerable training time, any final user would choose the
latter.

Fig. 12 shows the memory requirements, and therefore
the number of free parameters, of the various classifiers
measured in terms of the number of variables that need
to be stored. Most methods require only about 1 byte
per variable for adequate performance. However, nearest-
neighbor methods may get by with 4 bits per pixel for
storing the template images. Not surprisingly, NN’s require
much less memory than memory-based methods.

The overall performance depends on many factors includ-
ing accuracy, running time, and memory requirements. As
computer technology improves, larger capacity recognizers
become feasible. Larger recognizers in turn require larger
training sets. LeNet-1 was appropriate to the available
technology in 1989, just as LeNet-5 is appropriate now.
In 1989 a recognizer as complex as LeNet-5 would have
required several weeks’ training and more data than were
available and was therefore not even considered. For quite a
long time, LeNet-1 was considered the state of the art. The
local learning classifier, the optimal margin classifier, and
the tangent distance classifier were developed to improve
upon LeNet-1—and they succeeded at that. However, they

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2293Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

in turn motivated a search for improved NN architectures.
This search was guided in part by estimates of the capacity
of various learning machines, derived from measurements
of the training and test error as a function of the number
of training examples. We discovered that more capacity
was needed. Through a series of experiments in architec-
ture, combined with an analysis of the characteristics of
recognition errors, LeNet-4 and LeNet-5 were crafted.

We find that boosting gives a substantial improvement in
accuracy, with a relatively modest penalty in memory and
computing expense. Also, distortion models can be used
to increase the effective size of a data set without actually
requiring to collect more data.

The SVM has excellent accuracy, which is most remark-
able because, unlike the other high performance classifiers,
it does not includea priori knowledge about the problem.
In fact, this classifier would do just as well if the image
pixels were permuted with a fixed mapping and lost their
pictorial structure. However, reaching levels of performance
comparable to the convolutional NN’s can only be done
at considerable expense in memory and computational re-
quirements. The RS-SVM requirements are within a factor
of two of the convolutional networks, and the error rate is
very close. Improvements of those results are expected as
the technique is relatively new.

When plenty of data are available, many methods can
attain respectable accuracy. The neural-net methods run
much faster and require much less space than memory-
based techniques. The NN’s advantage will become more
striking as training databases continue to increase in size.

E. Invariance and Noise Resistance

Convolutional networks are particularly well suited for
recognizing or rejecting shapes with widely varying size,
position, and orientation, such as the ones typically pro-
duced by heuristic segmenters in real-world string recog-
nition systems.

In an experiment like the one described above, the
importance of noise resistance and distortion invariance is
not obvious. The situation in most real applications is quite
different. Characters generally must be segmented out of
their context prior to recognition. Segmentation algorithms
are rarely perfect and often leave extraneous marks in char-
acter images (noise, underlines, neighboring characters), or
sometimes cut characters too much and produce incomplete
characters. Those images cannot be reliably size-normalized
and centered. Normalizing incomplete characters can be
very dangerous. For example, an enlarged stray mark can
look like a genuine “1.” Therefore, many systems have
resorted to normalizing the images at the level of fields or
words. In our case, the upper and lower profiles of entire
fields (i.e., amounts in a check) are detected and used to
normalize the image to a fixed height. While this guarantees
that stray marks will not be blown up into character-
looking images, this also creates wide variations of the
size and vertical position of characters after segmentation.
Therefore it is preferable to use a recognizer that is robust
to such variations. Fig. 13 shows several examples of

distorted characters that are correctly recognized by LeNet-
5. It is estimated that accurate recognition occurs for
scale variations up to about a factor of two, vertical shift
variations of plus or minus about half the height of the
character, and rotations up to plus or minus 30 degrees.
While fully invariant recognition of complex shapes is still
an elusive goal, it seems that convolutional networks offer
a partial answer to the problem of invariance or robustness
with respect to geometrical distortions.

Fig. 13 includes examples of the robustness of LeNet-5
under extremely noisy conditions. Processing those images
would pose insurmountable problems of segmentation and
feature extraction to many methods, but LeNet-5 seems
able to robustly extract salient features from these cluttered
images. The training set used for the network shown here
was the MNIST training set with salt and pepper noise
added. Each pixel was randomly inverted with probability
0.1.2

IV. M ULTIMODULE SYSTEMS AND GRAPH

TRANSFORMER NETWORKS

The classical back-propagation algorithm, as described
and used in the previous sections, is a simple form of
gradient-based learning. However, it is clear that the gra-
dient back-propagation algorithm given by (4) describes a
more general situation than simple multilayer feedforward
networks composed of alternated linear transformations and
sigmoidal functions. In principle, derivatives can be back-
propagated through any arrangement of functional modules,
as long as we can compute the product of the Jacobians of
those modules by any vector. Why would we want to train
systems composed of multiple heterogeneous modules? The
answer is that large and complex trainable systems need to
be built out of simple, specialized modules. The simplest
example is LeNet-5, which mixes convolutional layers,
subsampling layers, fully connected layers, and RBF layers.
Another less trivial example, described in Sections IV-A
and IV-B, is a system for recognizing words, that can
be trained to simultaneously segment and recognize words
without ever being given the correct segmentation.

Fig. 14 shows an example of a trainable multimodular
system. A multimodule system is defined by the function
implemented by each of the modules and by the graph of
interconnection of the modules to each other. The graph
implicitly defines a partial order according to which the
modules must be updated in the forward pass. For example
in Fig. 14, module 0 is first updated, then modules 1 and
2 are updated (possibly in parallel), followed by module
3. Modules may or may not have trainable parameters.
Loss functions, which measure the performance of the
system, are implemented as module 4. In the simplest case,
the loss function module receives an external input that
carries the desired output. In this framework, there is no
qualitative difference between trainable parameters (W1,

2More examples of LeNet-5 in action are available WWW:
http://www.research.att.com/˜yann/ocr.

2294 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 13. Examples of unusual, distorted, and noisy characters correctly recognized by LeNet-5.
The grey level of the output label represents the penalty (lighter for higher penalties).

Fig. 14. A trainable system composed of heterogeneous modules.

W2in the figure), external inputs and outputs (Z,D,E), and
intermediate state variables (X1, X2, X3, X4, X5).

A. An Object-Oriented Approach

Object-oriented programming offers a particularly con-
venient way of implementing multimodule systems. Each
module is an instance of a class. Module classes have
a “forward propagation” method (or member function)
called fprop whose arguments are the inputs and outputs
of the module. For example, computing the output of
module 3 in Fig. 14 can be done by calling the method
fprop on module 3 with the argumentsX3, X4, X5 .

Complex modules can be constructed from simpler modules
by simply defining a new class whose slots will contain
the member modules and the intermediate state variables
between those modules. Thefprop method for the class
simply calls thefprop methods of the member modules,
with the appropriate intermediate state variables or external
input and outputs as arguments. Although the algorithms
are easily generalizable to any network of such modules,
including those whose influence graph has cycles, we will
limit the discussion to the case of directed acyclic graphs
(feed-forward networks).

Computing derivatives in a multimodule system is just as
simple. A “backward propagation” method, calledbprop ,
for each module class can be defined for that purpose. The
bprop method of a module takes the same arguments as
the fprop method. All the derivatives in the system can be
computed by calling thebprop method on all the modules
in reverse order compared to the forward propagation
phase. The state variables are assumed to contain slots
for storing the gradients computed during the backward
pass, in addition to storage for the states computed in the
forward pass. The backward pass effectively computes the
partial derivatives of the loss with respect to all the state
variables and all the parameters in the system. There is
an interesting duality property between the forward and
backward functions of certain modules. For example, a
sum of several variables in the forward direction is trans-
formed into a simple fan-out (replication) in the backward

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2295Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

direction. Conversely, a fan-out in the forward direction
is transformed into a sum in the backward direction. The
software environment used to obtain the results described
in this paper, called SN3.1, uses the above concepts. It
is based on a home-grown object-oriented dialect of Lisp
with a compiler to C.

The fact that derivatives can be computed by propagation
in the reverse graph is easy to understand intuitively. The
best way to justify it theoretically is through the use of
Lagrange functions [21], [22]. The same formalism can be
used to extend the procedures to networks with recurrent
connections.

B. Special Modules

NN’s and many other standard pattern recognition tech-
niques can be formulated in terms of multimodular systems
trained with gradient-based learning. Commonly used mod-
ules include matrix multiplications and sigmoidal modules,
the combination of which can be used to build conven-
tional NN’s. Other modules include convolutional layers,
subsampling layers, RBF layers, and “softmax” layers [65].
Loss functions are also represented as modules whose
single output produces the value of the loss. Commonly
used modules have simplebprop methods. In general, the
bprop method of a function is a multiplication by the
Jacobian of Here are a few commonly used examples.
The bprop method of a fanout (a “Y” connection) is a
sum, and vice versa. Thebprop method of a multipli-
cation by a coefficient is a multiplication by the same
coefficient. Thebprop method of a multiplication by a
matrix is a multiplication by the transpose of that matrix.
The bprop method of an addition with a constant is the
identity.

Interestingly, certain nondifferentiable modules can be
inserted in a multimodule system without adverse effect.
An interesting example of that is the multiplexer module.
It has two (or more) regular inputs, one switching input, and
one output. The module selects one of its inputs, depending
upon the (discrete) value of the switching input, and copies
it on its output. While this module is not differentiable
with respect to the switching input, it is differentiable with
respect to the regular inputs. Therefore the overall function
of a system that includes such modules will be differentiable
with respect to its parameters as long as the switching input
does not depend upon the parameters. For example, the
switching input can be an external input.

Another interesting case is themin module. This module
has two (or more) inputs and one output. The output of
the module is the minimum of the inputs. The function
of this module is differentiable everywhere, except on
the switching surface which is a set of measure zero.
Interestingly, this function is continuous and reasonably
regular, and that is sufficient to ensure the convergence
of a gradient-based learning algorithm.

The object-oriented implementation of the multimodule
idea can easily be extended to include abbprop method
that propagates Gauss–Newton approximations of the sec-
ond derivatives. This leads to a direct generalization for

modular systems of the second-derivative back propagation
(22) given in Appendix C.

The multiplexer module is a special case of a much more
general situation, described at length in Section IX, where
the architecture of the system changes dynamically with the
input data. Multiplexer modules can be used to dynamically
rewire (or reconfigure) the architecture of the system for
each new input pattern.

C. GTN’s

Multimodule systems are very flexible tools for build-
ing a large trainable system. However, the descriptions
in the previous sections implicitly assumed that the set
of parameters, and the state information communicated
between the modules, are all fixed-size vectors. The limited
flexibility of fixed-size vectors for data representation is
a serious deficiency for many applications, notably for
tasks that deal with variable length inputs (e.g., continuous
speech recognition and handwritten word recognition) or for
tasks that require encoding relationships between objects or
features whose number and nature can vary (invariant per-
ception, scene analysis, recognition of composite objects).
An important special case is the recognition of strings of
characters or words.

More generally, fixed-size vectors lack flexibility for
tasks in which the state must encode probability distribu-
tions over sequences of vectors or symbols, as is the case in
linguistic processing. Such distributions over sequences are
best represented by stochastic grammars, or, in the more
general case, directed graphs in which each arc contains
a vector (stochastic grammars are special cases in which
the vector contains probabilities and symbolic information).
Each path in the graph represents a different sequence of
vectors. Distributions over sequences can be represented
by interpreting elements of the data associated with each
arc as parameters of a probability distribution or simply
as a penalty. Distributions over sequences are particularly
handy for modeling linguistic knowledge in speech or
handwriting recognition systems: each sequence, i.e., each
path in the graph, represents an alternative interpretation
of the input. Successive processing modules progressively
refine the interpretation. For example, a speech recognition
system might start with a single sequence of acoustic
vectors, transform it into a lattice of phonemes (distribution
over phoneme sequences), then into a lattice of words
(distribution over word sequences), and then into a single
sequence of words representing the best interpretation.

In our work on building large-scale handwriting recog-
nition systems, we have found that these systems could be
developed and designed much more easily and quickly by
viewing the system as a networks of modules that take one
or several graphs as input and produce graphs as output.
Such modules are called GT’s, and the complete systems
are called GTN’s. Modules in a GTN communicate their
states and gradients in the form of directed graphs whose
arcs carry numerical information (scalars or vectors) [66].

From the statistical point of view, the fixed-size state vec-
tors of conventional networks can be seen as representing

2296 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 15. Traditional NN’s and multimodule systems communi-
cate fixed-size vectors between layers. Multilayer GTN’s are
composed of trainable modules that operate on and produce graphs
whose arcs carry numerical information.

the means of distributions in state space. In variable-size
networks such as the space-displacement NN’s described
in Section VII, the states are variable-length sequences
of fixed size vectors. They can be seen as representing
the mean of a probability distribution over variable-length
sequences of fixed-size vectors. In GTN’s the states are
represented as graphs, which can be seen as represent-
ing mixtures of probability distributions over structured
collections (possibly sequences) of vectors (Fig. 15).

One of the main points of the next several sections is
to show that gradient-based learning procedures are not
limited to networks of simple modules that communicate
through fixed-size vectors but can be generalized to
GTN’s. Gradient back propagation through a GT takes
gradients with respect to the numerical information in
the output graph and computes gradients with respect to
the numerical information attached to the input graphs,
and with respect to the module’s internal parameters.
Gradient-based learning can be applied as long as
differentiable functions are used to produce the numerical
data in the output graph from the numerical data in the
input graph and the functions parameters.

The second point of the next several sections is to show
that the functions implemented by many of the modules
used in typical document processing systems (and other
image recognition systems), though commonly thought to
be combinatorial in nature, are indeed differentiable with
respect to their internal parameters as well as with respect
to their inputs, and are therefore usable as part of a globally
trainable system.

In most of the following, we will purposely avoid making
references to probability theory. All the quantities manipu-
lated are viewed as penalties, or costs, which if necessary
can be transformed into probabilities by taking exponentials
and normalizing.

V. MULTIPLE OBJECT RECOGNITION: HOS

One of the most difficult problems of handwriting recog-
nition is to recognize not just isolated characters, but

Fig. 16. Building a segmentation graph with HOS.

strings of characters such as zip codes, check amounts,
or words. Since most recognizers can only deal with one
character at a time, we must first segment the string
into individual character images. However, it is almost
impossible to devise image analysis techniques that will
infallibly segment naturally written sequences of characters
into well formed characters.

The recent history of automatic speech recognition [28],
[67] is here to remind us that training a recognizer by
optimizing a global criterion (at the word or sentence level)
is much preferable to merely training it on hand-segmented
phonemes or other units. Several recent works have shown
that the same is true for handwriting recognition [38]:
optimizing a word-level criterion is preferable to solely
training a recognizer on presegmented characters because
the recognizer can learn not only to recognize individual
characters, but also to reject missegmented characters,
thereby minimizing the overall word error.

This section and Section VI describe in detail a simple
example of GTN to address the problem of reading strings
of characters, such as words or check amounts. The method
avoids the expensive and unreliable task of hand-truthing
the result of the segmentation often required in more
traditional systems trained on individually labeled character
images.

A. Segmentation Graph

A now classical method for segmentation and recognition
is called HOS [68], [69]. Its main advantages over other
approaches to segmentation are that it avoids making hard
decisions about the segmentation by taking a large number
of different segmentations into consideration. The idea is to
use heuristic image processing techniques to find candidate
cuts of the word or string, and then to use the recognizer to
score the alternative segmentations thereby generated. The
process is depicted in Fig. 16. First, a number of candidate
cuts are generated. Good candidate locations for cuts can be
found by locating minima in the vertical projection profile,
or minima of the distance between the upper and lower
contours of the word. Better segmentation heuristics are
described in Section XI. The cut generation heuristic is
designed so as to generate more cuts than necessary in the
hope that the “correct” set of cuts will be included. Once the
cuts have been generated, alternative segmentations are best
represented by a graph, called the segmentation graph. The
segmentation graph is a directed acyclic graph with a start
node and an end node. Each internal node is associated with
a candidate cut produced by the segmentation algorithm.
Each arc between a source node and a destination node

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2297Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 17. Recognizing a character string with a GTN. For read-
ability, only the arcs with low penalties are shown.

is associated with an image that contains all the ink
between the cut associated with the source node and the
cut associated with the destination node. An arc is created
between two nodes if the segmentor decided that the ink
between the corresponding cuts could form a candidate
character. Typically, each individual piece of ink would
be associated with an arc. Pairs of successive pieces of
ink would also be included, unless they are separated by a
wide gap, which is a clear indication that they belong to
different characters. Each complete path through the graph
contains each piece of ink once and only once. Each path
corresponds to a different way of associating pieces of ink
together so as to form characters.

B. Recognition Transformer and Viterbi Transformer

A simple GTN to recognize character strings is shown in
Fig. 17. It is composed of two GT’s called the recognition
transformer and the Viterbi transformer The goal
of the recognition transformer is to generate a graph, called
the interpretation graph or recognition graph that
contains all the possible interpretations for all the possible
segmentations of the input. Each path in represents
one possible interpretation of one particular segmentation

Fig. 18. The recognition transformer refines each arc of the
segmentation arc into a set of arcs in the interpretation graph, one
per character class, with attached penalties and labels.

of the input. The role of the Viterbi transformer is to extract
the best interpretation from the interpretation graph.

The recognition transformer takes the segmentation
graph as input, and applies the recognizer for single
characters to the images associated with each of the arcs in
the segmentation graph. The interpretation graph has
almost the same structure as the segmentation graph, except
that each arc is replaced by a set of arcs from and to the
same node. In this set of arcs, there is one arc for each pos-
sible class for the image associated with the corresponding
arc in As shown in Fig. 18, to each arc is attached
a class label, and the penalty that the image belongs to
this class as produced by the recognizer. If the segmentor
has computed penalties for the candidate segments, these
penalties are combined with the penalties computed by the
character recognizer to obtain the penalties on the arcs of
the interpretation graph. Although combining penalties of
different nature seems highly heuristic, the GTN training
procedure will tune the penalties and take advantage of this
combination anyway. Each path in the interpretation graph
corresponds to a possible interpretation of the input word.
The penalty of a particular interpretation for a particular
segmentation is given by the sum of the arc penalties
along the corresponding path in the interpretation graph.
Computing the penalty of an interpretation independently
of the segmentation requires to combine the penalties of
all the paths with that interpretation. An appropriate rule
for combining the penalties of parallel paths is given in
Section VI-C.

2298 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

The Viterbi transformer produces a graph with a
single path. This path is the path of least cumulated penalty
in the Interpretation graph. The result of the recognition
can be produced by reading off the labels of the arcs along
the graph extracted by the Viterbi transformer. The
Viterbi transformer owes its name to the famous Viterbi
algorithm [70], an application of the principle of dynamic
programming to find the shortest path in a graph efficiently.
Let be the penalty associated to arc with source
node and destination node (note that there can be
multiple arcs between two nodes). In the interpretation
graph, arcs also have a label The Viterbi algorithm
proceeds as follows. Each node is associated with a
cumulated Viterbi penalty Those cumulated penalties
are computed in any order that satisfies the partial order
defined by the interpretation graph (which is directed and
acyclic). The start node is initialized with the cumulated
penalty The other nodes cumulated penalties

are computed recursively from the values of their
parent nodes, through the upstream arcs with
destination

(10)

Furthermore, the value of for each node which min-
imizes the right-hand side is noted the minimizing
entering arc. When the end node is reached we obtain in

the total penalty of the path with the smallest total
penalty. We call this penalty the Viterbi penalty, and this
sequence of arcs and nodes the Viterbi path. To obtain the
Viterbi path with nodes and arcs we
trace back these nodes and arcs as follows, starting with

the end node, and recursively using the minimizing
entering arc: and until the start node
is reached. The label sequence can then be read off the arcs
of the Viterbi path.

VI. GLOBAL TRAINING FOR GRAPH

TRANSFORMER NETWORKS

Section V described the process of recognizing a string
using HOS, assuming that the recognizer is trained so
as to give low penalties for the correct class label of
correctly segmented characters, high penalties for erroneous
categories of correctly segmented characters, and high
penalties for all categories for poorly formed characters.
This section explains how to train the system at the string
level to do the above without requiring manual labeling of
character segments. This training will be performed with
a GTN whose architecture is slightly different from the
recognition architecture described in Section V.

In many applications, there is enougha priori knowledge
about what is expected from each of the modules in order
to train them separately. For example, with HOS one
could individually label single-character images and train
a character recognizer on them, but it might be difficult
to obtain an appropriate set of noncharacter images to
train the model to reject wrongly segmented candidates.
Although separate training is simple, it requires additional

supervision information that is often lacking or incomplete
(the correct segmentation and the labels of incorrect candi-
date segments). Furthermore, it can be shown that separate
training is suboptimal [67].

The following section describes four different gradient-
based methods for training GTN-based handwriting recog-
nizers at the string level: Viterbi training, discriminative
Viterbi training, forward training, and discriminative for-
ward training. The last one is a generalization to graph-
based systems of the maximuma posteriori criterion in-
troduced in Section II-C. Discriminative forward training
is somewhat similar to the so-called maximum mutual
information criterion used to train HMM in speech recog-
nition. However, our rationale differs from the classical
one. We make no recourse to a probabilistic interpretation
but show that, within the gradient-based learning approach,
discriminative training is a simple instance of the pervasive
principle of error correcting learning.

Training methods for graph-based sequence recognition
systems such as HMM’s have been extensively studied
in the context of speech recognition [28]. Those meth-
ods require that the system be based on probabilistic
generative models of the data, which provide normalized
likelihoods over the space of possible input sequences.
Popular HMM learning methods, such as the Baum–Welsh
algorithm, rely on this normalization. The normalization
cannot be preserved when nongenerative models such as
NN’s are integrated into the system. Other techniques, such
as discriminative training methods, must be used in this
case. Several authors have proposed such methods to train
NN/HMM speech recognizers at the word or sentence level
[29], [67], [71]–[78].

Other globally trainable sequence recognition systems
avoid the difficulties of statistical modeling by not resorting
to graph-based techniques. The best example is recurrent
NN’s (RNN’s). Unfortunately, despite early enthusiasm,
the training of RNN’s with gradient-based techniques has
proven very difficult in practice [79].

The GTN techniques presented below simplify and gen-
eralize the global training methods developed for speech
recognition.

A. Viterbi Training

During recognition, we select the path in the interpre-
tation graph that has the lowest penalty with the Viterbi
algorithm. Ideally, we would like this path of lowest penalty
to be associated with the correct label sequence as often as
possible. An obvious loss function to minimize is therefore
the average over the training set of the penalty of the
path associated with the correct label sequence that has the
lowest penalty. The goal of training will be to find the set of
recognizer parameters (the weights, if the recognizer is an
NN) that minimize the average penalty of this “correct”
lowest penalty path. The gradient of this loss function
can be computed by back propagation through the GTN
architecture shown in Fig. 19. This training architecture is
almost identical to the recognition architecture described
in the previous section, except that an extra GT called a

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2299Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 19. Viterbi training GTN architecture for a character string
recognizer based on HOS.

path selector is inserted between the interpretation graph
and the Viterbi transformer. This transformer takes the
interpretation graph and the desired label sequence as input.
It extracts from the interpretation graph those paths that
contain the correct (desired) label sequence. Its output
graph is called the constrained interpretation graph (also
known as forced alignment in the HMM literature) and
contains all the paths that correspond to the correct label
sequence. The constrained interpretation graph is then sent
to the Viterbi transformer which produces a graph
with a single path. This path is the “correct” path with
the lowest penalty. Finally, a path scorer transformer takes

and simply computes its cumulated penalty by
adding up the penalties along the path. The output of this
GTN is the loss function for the current pattern

(11)

The only label information that is required by the above
system is the sequence of desired character labels. No
knowledge of the correct segmentation is required on
the part of the supervisor, since it chooses among the
segmentations in the interpretation graph the one that yields
the lowest penalty.

The process of back propagating gradients through the
Viterbi training GTN is now described. As explained in
Section IV, the gradients must be propagated backward
through all modules of the GTN in order to compute
gradients in preceding modules and thereafter tune their
parameters. Back propagating gradients through the path
scorer is quite straightforward. The partial derivatives of
the loss function with respect to the individual penalties on
the constrained Viterbi path are equal to one, since
the loss function is simply the sum of those penalties. Back
propagating through the Viterbi Transformer is equally
simple. The partial derivatives of with respect to the
penalties on the arcs of the constrained graphare one for
those arcs that appear in the constrained Viterbi path
and zero for those that do not. Why is it legitimate to back

propagate through an essentially discrete function such as
the Viterbi transformer? The answer is that the Viterbi trans-
former is nothing more than a collection ofmin functions
and adders put together. It was shown in Section IV that
gradients can be back propagated throughmin functions
without adverse effects. Back propagation through the path
selector transformer is similar to back propagation through
the Viterbi transformer. Arcs in that appear in
have the same gradient as the corresponding arc in
i.e., one or zero, depending on whether the arc appear
in The other arcs, i.e., those that do not have an
alter ego in because they do not contain the right label
have a gradient of zero. During the forward propagation
through the recognition transformer, one instance of the
recognizer for single character was created for each arc in
the segmentation graph. The state of recognizer instances
was stored. Since each arc penalty in is produced by
an individual output of a recognizer instance, we now have
a gradient (one or zero) for each output of each instance
of the recognizer. Recognizer outputs that have a nonzero
gradient are part of the correct answer and will therefore
have their value pushed down. The gradients present on
the recognizer outputs can be back propagated through
each recognizer instance. For each recognizer instance, we
obtain a vector of partial derivatives of the loss function
with respect to the recognizer instance parameters. All the
recognizer instances share the same parameter vector, since
they are merely clones of each other, therefore the full
gradient of the loss function with respect to the recognizer’s
parameter vector is simply the sum of the gradient vectors
produced by each recognizer instance. Viterbi training,
though formulated differently, is often use in HMM-based
speech recognition systems [28]. Similar algorithms have
been applied to speech recognition systems that integrate
NN’s with time alignment [71], [72], [76] or hybrid neural-
network/HMM systems [29], [74], [75].

While it seems simple and satisfying, this training archi-
tecture has a flaw that can potentially be fatal. The problem
was already mentioned in Section II-C. If the recognizer
is a simple NN with sigmoid output units, the minimum
of the loss function is attained, not when the recognizer
always gives the right answer, but when it ignores the
input and sets its output to a constant vector with small
values for all the components. This is known as the collapse
problem. The collapse only occurs if the recognizer outputs
can simultaneously take their minimum value. If, on the
other hand, the recognizer’s output layer contains RBF
units with fixed parameters, then there is no such trivial
solution. This is due to the fact that a set of RBF with
fixed distinct parameter vectors cannot simultaneously take
their minimum value. In this case, the complete collapse
described above does not occur. However, this does not
totally prevent the occurrence of a milder collapse because
the loss function still has a “flat spot” for a trivial solution
with constant recognizer output. This flat spot is a saddle
point, but it is attractive in almost all directions and is very
difficult to get out of using gradient-based minimization
procedures. If the parameters of the RBF’s are allowed

2300 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

to adapt, then the collapse problems reappear because the
RBF centers can all converge to a single vector, and the
underlying NN can learn to produce that vector and ignore
the input. A different kind of collapse occurs if the width
of the RBF’s are also allowed to adapt. The collapse only
occurs if a trainable module such as an NN feeds the
RBF’s. The collapse does not occur in HMM-based speech
recognition systems because they are generative systems
that produce normalized likelihoods for the input data (more
on this later). Another way to avoid the collapse is to train
the whole system with respect to a discriminative training
criterion, such as maximizing the conditional probability of
the correct interpretations (correct sequence of class labels)
given the input image.

Another problem with Viterbi training is that the penalty
of the answer cannot be used reliably as a measure of
confidence because it does not take low-penalty (or high-
scoring) competing answers into account.

B. Discriminative Viterbi Training

A modification of the training criterion can circumvent
the collapse problem described above and at the same time
produce more reliable confidence values. The idea is to
not only minimize the cumulated penalty of the lowest
penalty path with the correct interpretation, but also to
somehow increase the penalty of competing and possibly
incorrect paths that have a dangerously low penalty. This
type of criterion is called discriminative because it plays the
good answers against the bad ones. Discriminative training
procedures can be seen as attempting to build appropriate
separating surfaces between classes rather than to model in-
dividual classes independently of each other. For example,
modeling the conditional distribution of the classes given
the input image is more discriminative (focusing more on
the classification surface) than having a separate generative
model of the input data associated to each class (which, with
class priors, yields the whole joint distribution of classes
and inputs). This is because the conditional approach does
not need to assume a particular form for the distribution of
the input data.

One example of discriminative criterion is the difference
between the penalty of the Viterbi path in the constrained
graph, and the penalty of the Viterbi path in the (uncon-
strained) interpretation graph, i.e., the difference between
the penalty of the best correct path and the penalty of
the best path (correct or incorrect). The corresponding
GTN training architecture is shown in Fig. 20. The left
side of the diagram is identical to the GTN used for
nondiscriminative Viterbi training. This loss function re-
duces the risk of collapse because it forces the recognizer
to increases the penalty of wrongly recognized objects.
Discriminative training can also be seen as another example
of error correction procedure, which tends to minimize the
difference between the desired output computed in the left
half of the GTN in Fig. 20 and the actual output computed
in the right half of Fig. 20.

Let the discriminative Viterbi loss function be denoted
and let us call the penalty of the Viterbi path

in the constrained graph and the penalty of the Viterbi
path in the unconstrained interpretation graph

(12)

is always positive since the constrained graph is a
subset of the paths in the interpretation graph, and the
Viterbi algorithm selects the path with the lowest total
penalty. In the ideal case, the two paths and
coincide, and is zero.

Back-propagating gradients through the discriminative
Viterbi GTN adds some “negative” training to the previ-
ously described nondiscriminative training. Fig. 20 shows
how the gradients are back propagated. The left half is
identical to the nondiscriminative Viterbi training GTN,
therefore the back propagation is identical. The gradients
back propagated through the right half of the GTN are
multiplied by 1, since contributes to the loss with
a negative sign. Otherwise the process is similar to the left
half. The gradients on arcs of get positive contributions
from the left half and negative contributions from the
right half. The two contributions must be added since the
penalties on arcs are sent to the two halves through
a “Y” connection in the forward pass. Arcs in that
appear neither in nor in have a gradient of zero.
They do not contribute to the cost. Arcs that appear in both

and also have zero gradient. The1 contribution
from the right half cancels the1 contribution from the left
half. In other words, when an arc is rightfully part of the
answer there is no gradient. If an arc appears in but
not in the gradient is 1. The arc should have had a
lower penalty to make it to If an arc is in but
not in the gradient is The arc had a low penalty,
but it should have had a higher penalty since it is not part
of the desired answer.

Variations of this technique have been used for the speech
recognition. Driancourt and Bottou [76] used a version of
it where the loss function is saturated to a fixed value.
This can be seen as a generalization of the Learning Vector
Quantization 2 (LVQ-2) loss function [80]. Other variations
of this method use not only the Viterbi path but the K-
best paths. The discriminative Viterbi algorithm does not
have the flaws of the nondiscriminative version, but there
are problems nonetheless. The main problem is that the
criterion does not build a margin between the classes. The
gradient is zero as soon as the penalty of the constrained
Viterbi path is equal to that of the Viterbi path. It would be
desirable to push up the penalties of the wrong paths when
they are dangerously close to the good one. The following
section presents a solution to this problem.

C. Forward Scoring and Forward Training

While the penalty of the Viterbi path is perfectly appro-
priate for the purpose of recognition it gives only a partial
picture of the situation. Imagine the lowest penalty paths
corresponding to several different segmentations produced
the same answer (the same label sequence). Then it could be
argued that the overall penalty for the interpretation should

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2301Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 20. Discriminative Viterbi training GTN architecture for a character string recognizer based
on HOS. Quantities in square brackets are penalties computed during the forward propagation.
Quantities in parentheses are partial derivatives computed during the backward propagation.

be smaller than the penalty obtained when only one path
produced that interpretation, because multiple paths with
identical label sequences are more evidence that the label
sequence is correct. Several rules can be used compute
the penalty associated to a graph that contains several
parallel paths. We use a combination rule borrowed from
a probabilistic interpretation of the penalties as negative
log posteriors. In a probabilistic framework, the posterior
probability for the interpretation should be the sum of the
posteriors for all the paths that produce that interpretation.

Translated in terms of penalties, the penalty of an inter-
pretation should be the negative logarithm of the sum of
the negative exponentials of the penalties of the individual
paths. The overall penalty will be smaller than all the
penalties of the individual paths.

Given an interpretation, there is a well-known method,
called the forward algorithm for computing the above
quantity efficiently [28]. The penalty computed with this
procedure for a particular interpretation is called the for-
ward penalty. Consider again the concept of constrained

2302 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

graph, the subgraph of the interpretation graph which
contains only the paths that are consistent with a particular
label sequence. There is one constrained graph for each
possible label sequence (some may be empty graphs, which
have infinite penalties). Given an interpretation, running
the forward algorithm on the corresponding constrained
graph gives the forward penalty for that interpretation.
The forward algorithm proceeds in a way very similar to
the Viterbi algorithm, except that the operation used at
each node to combine the incoming cumulated penalties,
instead of being themin function, is the so-calledlogadd
operation, which can be seen as a “soft” version of themin
function

(13)

where is the set of upstream arcs of node
is the penalty on arc and

(14)

Note that because of numerical inaccuracies, it is better
to factorize the largest (corresponding to the smallest
penalty) out of the logarithm.

An interesting analogy can be drawn if we consider
that a graph on which we apply the forward algorithm is
equivalent to an NN on which we run a forward propaga-
tion, except that multiplications are replaced by additions,
the additions are replaced by log-adds, and there are no
sigmoids.

One way to understand the forward algorithm is to think
about multiplicative scores (e.g., probabilities) instead of
additive penalties on the arcs: score
In that case the Viterbi algorithm selects the path with
the largest cumulative score (with scores multiplied along
the path), whereas the forward score is the sum of the
cumulative scores associated to each of the possible paths
from the start to the end node. The forward penalty is
always lower than the cumulated penalty on any of the
paths, but if one path “dominates” (with a much lower
penalty), its penalty is almost equal to the forward penalty.
The forward algorithm gets its name from the forward
pass of the well-known Baum–Welsh algorithm for training
HMM’s [28]. Section VIII-E gives more details on the
relation between this work and HMM’s.

The advantage of the forward penalty with respect to the
Viterbi penalty is that it takes into account all the different
ways to produce an answer, not just the one with the lowest
penalty. This is important if there is some ambiguity in the
segmentation, since the combined forward penalty of two
paths and associated with the same label sequence
may be less than the penalty of a path associated with
another label sequence, even though the penalty of
might be less than any one of or

The forward-training GTN is only a slight modification of
the previously introduced Viterbi-training GTN. It suffices
to turn the Viterbi transformers in Fig. 19 into forward
scorers that take an interpretation graph as input an produce

the forward penalty of that graph on output. Then the
penalties of all the paths that contain the correct answer
are lowered, instead of just that of the best one.

Back propagating through the forward penalty computa-
tion (the forward transformer) is quite different from back
propagating through a Viterbi transformer. All the penalties
of the input graph have an influence on the forward penalty,
but penalties that belong to low-penalty paths have a
stronger influence. Computing derivatives with respect to
the forward penalties computed at each node of a
graph is done by back-propagation through the graph

(15)

where with source is the set of
downstream arcs from node From the above derivatives,
the derivatives with respect to the arc penalties are obtained

(16)

This can be seen as a “soft” version of the back propagation
through a Viterbi scorer and transformer. All the arcs in

have an influence on the loss function. The arcs that
belong to low penalty paths have a larger influence. Back
propagation through the path selector is the same as before.
The derivative with respect to arcs that have an alter
ego in are simply copied from the corresponding arc in

The derivatives with respect to the other arcs are zero.
Several authors have applied the idea of back-propagating

gradients through a forward scorer to train speech recogni-
tion systems, including Bridle and his-net model [73] and
Haffner and his -TDNN model [81], but these authors
recommended discriminative training as described in the
next section.

D. Discriminative Forward Training

The information contained in the forward penalty can be
used in another discriminative training criterion which we
will call the discriminative forward criterion. This criterion
corresponds to maximization of the posterior probability of
choosing the paths associated with the correct interpreta-
tion. This posterior probability is defined as the exponential
of minus the constrained forward penalty, normalized by the
exponential of minus the unconstrained forward penalty.
Note that the forward penalty of the constrained graph
is always larger or equal to the forward penalty of the
unconstrained interpretation graph. Ideally, we would like
the forward penalty of the constrained graph to be equal
to the forward penalty of the complete interpretation graph.
Equality between those two quantities is achieved when
the combined penalties of the paths with the correct label
sequence is negligibly small compared to the penalties of all
the other paths, or that the posterior probability associated
to the paths with the correct interpretation is almost one,
which is precisely what we want. The corresponding GTN
training architecture is shown in Fig. 21.

Let the difference be denoted and let us call
the forward penalty of the constrained graph and

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2303Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 21. Discriminative forward training GTN architecture for a
character string recognizer based on HOS.

the forward penalty of the complete interpretation
graph

(17)

is always positive since the constrained graph is
a subset of the paths in the interpretation graph, and the
forward penalty of a graph is always larger than the forward
penalty of a subgraph of this graph. In the ideal case, the
penalties of incorrect paths are infinitely large, therefore
the two penalties coincide and is zero. Readers
familiar with the Boltzmann machine connectionist model
might recognize the constrained and unconstrained graphs
as analogous to the “clamped” (constrained by the observed
values of the output variable) and “free” (unconstrained)
phases of the Boltzmann machine algorithm [13].

Back propagating derivatives through the discriminative
forward GTN distributes gradients more evenly than in the
Viterbi case. Derivatives are back propagated through the
left half of the GTN in Fig. 21 down to the interpretation
graph. Derivatives are negated and back propagated through
the right-half, and the result for each arc is added to the
contribution from the left half. Each arc in now has
a derivative. Arcs that are part of a correct path have
a positive derivative. This derivative is very large if an
incorrect path has a lower penalty than all the correct
paths. Similarly, the derivatives with respect to arcs that are
part of a low-penalty incorrect path have a large negative
derivative. On the other hand, if the penalty of a path
associated with the correct interpretation is much smaller
than all other paths, the loss function is very close to zero
and almost no gradient is back propagated. The training
therefore concentrates on examples of images which yield
a classification error, and furthermore, it concentrates on the
pieces of the image which cause that error. Discriminative
forward training is an elegant and efficient way of solving
the infamous credit assignment problem for learning ma-
chines that manipulate “dynamic” data structures such as
graphs. More generally, the same idea can be used in all

situations where a learning machine must choose between
discrete alternative interpretations.

As previously, the derivatives on the interpretation graph
penalties can then be back propagated into the character
recognizer instances. Back propagation through the charac-
ter recognizer gives derivatives on its parameters. All the
gradient contributions for the different candidate segments
are added up to obtain the total gradient associated to
one pair (input image, correct label sequence), that is, one
example in the training set. A step of stochastic gradient
descent can then be applied to update the parameters.

E. Remarks on Discriminative Training

In the above discussion, the global training criterion
was given a probabilistic interpretation, but the individual
penalties on the arcs of the graphs were not. There are
good reasons for that. For example, if some penalties are
associated to the different class labels, they would: 1) have
to sum to one (class posteriors) or 2) integrate to one over
the input domain (likelihoods).

Let us first discuss the first case (class posteriors nor-
malization). This local normalization of penalties may
eliminate information that is important for locally rejecting
all the classes [82], e.g., when a piece of image does
not correspond to a valid character class because some of
the segmentation candidates may be wrong. Although an
explicit “garbage class” can be introduced in a probabilistic
framework to address that question, some problems remain
because it is difficult to characterize such a class probabilis-
tically and to train a system in this way (it would require
a density model of unseen or unlabeled samples).

The probabilistic interpretation of individual variables
plays an important role in the Baum–Welsh algorithm
in combination with the expectation-maximization (EM)
procedure. Unfortunately, those methods cannot be applied
to discriminative training criteria, and one is reduced to
using gradient-based methods. Enforcing the normalization
of the probabilistic quantities while performing gradient-
based learning is complex, inefficient, time consuming, and
creates ill-conditioning of the loss-function.

Following [82], we therefore prefer to postpone normal-
ization as far as possible (in fact, until the final decision
stage of the system). Without normalization, the quantities
manipulated in the system do not have a direct probabilistic
interpretation.

Let us now discuss the second case (using a generative
model of the input). Generative models build the boundary
indirectly by first building an independent density model
for each class and then performing classification decisions
on the basis of these models. This is not a discriminative
approach in that it does not focus on the ultimate goal of
learning, which in this case is to learn the classification
decision surface. Theoretical arguments [6], [7] suggest that
estimating input densities when the real goal is to obtain
a discriminant function for classification is a suboptimal
strategy. In theory, the problem of estimating densities
in high-dimensional spaces is much more ill posed than
finding decision boundaries.

2304 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 22. Explicit segmentation can be avoided by sweeping a
recognizer at every possible location in the input field.

Even though the internal variables of the system do not
have a direct probabilistic interpretation, the overall system
can still be viewed as producing posterior probabilities
for the classes. In fact, assuming that a particular label
sequence is given as the “desired sequence” to the GTN in
Fig. 21, the exponential of minus can be interpreted
as an estimate of the posterior probability of that label
sequence given the input. The sum of those posteriors for
all the possible label sequences is one. Another approach
would consists of directly minimizing an approximation
of the number of misclassifications [83], [76]. We prefer
to use the discriminative forward loss function because it
causes less numerical problems during the optimization. We
will see in Section X-C that this is a good way to obtain
scores on which to base a rejection strategy. The important
point being made here is that one is free to choose any
parameterization deemed appropriate for a classification
model. The fact that a particular parameterization uses
internal variables with no clear probabilistic interpretation
does not make the model any less legitimate than models
that manipulate normalized quantities.

An important advantage of global and discriminative
training is that learning focuses on the most important
errors, and the system learns to integrate the ambiguities
from the segmentation algorithm with the ambiguities of
the character recognizer. In Section IX we present ex-
perimental results with an online handwriting recognition
system that confirm the advantages of using global training
versus separate training. Experiments in speech recognition
with hybrids of NN’s and HMM’s also showed marked
improvements brought by global training [29], [67], [77],
[84].

VII. M ULTIPLE OBJECT RECOGNITION: SPACE

DISPLACEMENT NEURAL NETWORK

There is a simple alternative to explicitly segmenting
images of character strings using heuristics. The idea is
to sweep a recognizer at all possible locations across a
normalized image of the entire word or string as shown
in Fig. 22. With this technique, no segmentation heuristics
are required since the system essentially examines all the
possible segmentations of the input. However, there are
problems with this approach. First, the method is in general

Fig. 23. An SDNN is a convolutional network that has been
replicated over a wide input field.

quite expensive. The recognizer must be applied at every
possible location on the input, or at least at a large enough
subset of locations so that misalignments of characters
in the field of view of the recognizers are small enough
to have no effect on the error rate. Second, when the
recognizer is centered on a character to be recognized,
the neighbors of the center character will be present in the
field of view of the recognizer, possibly touching the center
character. Therefore the recognizer must be able to correctly
recognize the character in the center of its input field, even
if neighboring characters are very close to or touching the
central character. Third, a word or character string cannot
be perfectly size-normalized. Individual characters within a
string may have widely varying sizes and baseline positions.
Therefore the recognizer must be very robust to shifts and
size variations.

These three problems are elegantly circumvented if a
convolutional network is replicated over the input field.
First of all, as shown in Section III, convolutional NN’s are
very robust to shifts and scale variations of the input image,
as well as to noise and extraneous marks in the input. These
properties take care of the latter two problems mentioned
in the previous paragraph. Second, convolutional networks
provide a drastic saving in computational requirement when
replicated over large input fields. A replicated convolutional
network, also called an SDNN [27], is shown in Fig. 23.
While scanning a recognizer can be prohibitively expen-
sive in general, convolutional networks can be scanned or
replicated very efficiently over large, variable-size input
fields. Consider one instance of a convolutional net and its

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2305Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

alter ego at a nearby location. Because of the convolutional
nature of the network, units in the two instances that look
at identical locations on the input have identical outputs,
therefore their states do not need to be computed twice.
Only a thin “slice” of new states that are not shared by
the two network instances needs to be recomputed. When
all the slices are put together, the result is simply a larger
convolutional network whose structure is identical to the
original network, except that the feature maps are larger
in the horizontal dimension. In other words, replicating a
convolutional network can be done simply by increasing the
size of the fields over which the convolutions are performed
and by replicating the output layer accordingly. The output
layer effectively becomes a convolutional layer. An output
whose receptive field is centered on an elementary object
will produce the class of this object, while an in-between
output may indicate no character or contain rubbish. The
outputs can be interpreted as evidences for the presence of
objects at all possible positions in the input field.

The SDNN architecture seems particularly attractive for
recognizing cursive handwriting where no reliable segmen-
tation heuristic exists. Although the idea of SDNN is quite
old and very attractive in its simplicity, it has not generated
wide interest until recently because, as stated above, it puts
enormous demands on the recognizer [26], [27]. In speech
recognition, where the recognizer is at least one order of
magnitude smaller, replicated convolutional networks are
easier to implement, for instance in Haffner’s multistate
TDNN model [78], [85].

A. Interpreting the Output of an SDNN with a GTN

The output of an SDNN is a sequence of vectors which
encode the likelihoods, penalties, or scores of finding char-
acter of a particular class label at the corresponding location
in the input. A postprocessor is required to pull out the
best possible label sequence from this vector sequence. An
example of SDNN output is shown in Fig. 25. Very often,
individual characters are spotted by several neighboring
instances of the recognizer, a consequence of the robustness
of the recognizer to horizontal translations. Also quite
often, characters are erroneously detected by recognizer
instances that see only a piece of a character. For example
a recognizer instance that only sees the right third of a
“4” might output the label 1. How can we eliminate those
extraneous characters from the output sequence and pull
out the best interpretation? This can be done using a new
type of GT with two input graphs as shown in Fig. 24.
The sequence of vectors produced by the SDNN is first
coded into a linear graph with multiple arcs between pairs
of successive nodes. Each arc between a particular pair of
nodes contains the label of one of the possible categories,
together with the penalty produced by the SDNN for that
class label at that location. This graph is called the SDNN
output graph. The second input graph to the transformer
is a grammar transducer, more specifically a finite-state
transducer [86], that encodes the relationship between input
strings of class labels and corresponding output strings
of recognized characters. The transducer is a weighted

Fig. 24. A GT pulls out the best interpretation from the output
of the SDNN.

Fig. 25. An example of multiple character recognition with
SDNN. With SDNN, no explicit segmentation is performed.

finite state machine (a graph) where each arc contains a
pair of labels and possibly a penalty. Like a finite-state
machine, a transducer is in a state and follows an arc
to a new state when an observed input symbol matches
the first symbol in the symbol pair attached to the arc.
At this point the transducer emits the second symbol in
the pair together with a penalty that combines the penalty
of the input symbol and the penalty of the arc. A trans-
ducer therefore transforms a weighted symbol sequence
into another weighted symbol sequence. The GT shown
in Fig. 24 performs a composition between the recognition
graph and the grammar transducer. This operation takes
every possible sequence corresponding to every possible
path in the recognition graph and matches them with the
paths in the grammar transducer. The composition produces
the interpretation graph, which contains a path for each
corresponding output label sequence. This composition
operation may seem combinatorially intractable, but it turns
out there exists an efficient algorithm for it described in
more details in Section VIII.

B. Experiments with SDNN

In a series of experiments, LeNet-5 was trained with the
goal of being replicated so as to recognize multiple charac-
ters without segmentations. The data were generated from

2306 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 26. AN SDNN applied to a noisy image of digit string.
The digits shown in the SDNN output represent the winning class
labels, with a lighter grey level for high-penalty answers.

the previously described MNIST set as follows. Training
images were composed of a central character, flanked by
two side characters picked at random in the training set. The
separation between the bounding boxes of the characters
were chosen at random between1 and 4 pixels. In other
instances, no central character was present, in which case
the desired output of the network was the blank space class.
In addition, training images were degraded with 10% salt
and pepper noise (random pixel inversions).

Figs. 25 and 26 show a few examples of successful
recognitions of multiple characters by the LeNet-5 SDNN.
Standard techniques based on HOS would fail miserably on
many of those examples. As can be seen on these examples,
the network exhibits striking invariance and noise resistance
properties. While some authors have argued that invariance
requires more sophisticated models than feedforward NN’s
[87], LeNet-5 exhibits these properties to a large extent.

Similarly, it has been suggested that accurate recognition
of multiple overlapping objects require explicit mechanisms
that would solve the so-called feature binding problem [87].
As can be seen on Figs. 25 and 26, the network is able
to tell the characters apart even when they are closely
intertwined, a task that would be impossible to achieve
with the more classical HOS technique. The SDNN is also
able to correctly group disconnected pieces of ink that form
characters. Good examples of that are shown in the upper
half of Fig. 26. In the top left example, the 4 and the 0 are
more connected to each other than they are connected with
themselves, yet the system correctly identifies the 4 and the
0 as separate objects. The top right example is interesting
for several reasons. First the system correctly identifies the
three individual ones. Second, the left half and right half
of disconnected 4 are correctly grouped, even though no
geometrical information could decide to associate the left
half to the vertical bar on its left or on its right. The right

half of the 4 does cause the appearance of an erroneous
one on the SDNN output, but this one is removed by the
character model transducer which prevents characters from
appearing on contiguous outputs.

Another important advantage of SDNN is the ease with
which they can be implemented on parallel hardware.
Specialized analog/digital chips have been designed and
used in character recognition, and in image preprocessing
applications [88]. However the rapid progress of conven-
tional processor technology with reduced-precision vector
arithmetic instructions (such as Intel’s MMX) make the
success of specialized hardware hypothetical at best.3

C. Global Training of SDNN

In the above experiments, the string images were artifi-
cially generated from individual character. The advantage
is that we know in advance the location and the label of
the important character. With real training data, the correct
sequence of labels for a string is generally available, but
the precise locations of each corresponding character in the
input image are unknown.

In the experiments described in the previous section, the
best interpretation was extracted from the SDNN output
using a very simple GT. Global training of an SDNN can
be performed by back propagating gradients through such
GT’s arranged in architectures similar to the ones described
in Section VI.

This is somewhat equivalent to modeling the output
of an SDNN with an HMM. Globally trained, variable-
size TDNN/HMM hybrids have been used for speech
recognition and online handwriting recognition [67], [77],
[89], [90]. SDNN’s have been used in combination with
HMM’s or other elastic matching methods for handwritten
word recognition [91], [92].

Fig. 27 shows the GT architecture for training an
SDNN/HMM hybrid with the discriminative forward
criterion. The top part is comparable to the top part of
Fig. 21. On the right side the composition of the recognition
graph with the grammar gives the interpretation graph
with all the possible legal interpretations. On the left side
the composition is performed with a grammar that only
contains paths with the desired sequence of labels. This has
a somewhat similar function to the path selector used in the
previous section. Like in Section VI-D, the loss function is
the difference between the forward score obtained from the
left half and the forward score obtained from the right half.
To back propagate through the composition transformer,
we need to keep a record of which arc in the recognition
graph originated which arcs in the interpretation graph.
The derivative with respect to an arc in the recognition
graph is equal to the sum of the derivatives with respect
to all the arcs in the interpretation graph that originated
from it. Derivative can also be computed for the penalties
on the grammar graph, allowing to learn them as well. As
in the previous example, a discriminative criterion must

3Short video clips of the LeNet-5 SDNN are available WWW:
http://www.research.att.com/˜yann/ocr.

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2307Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 27. A globally trainable SDNN/HMM hybrid system ex-
pressed as a GTN.

be used, because using a nondiscriminative criterion could
result in a collapse effect if the network’s output RBF are
adaptive. The above training procedure can be equivalently
formulated in term of HMM. Early experiments in zip
code recognition [91], and more recent experiments in
online handwriting recognition [38] have demonstrated the
idea of globally trained SDNN/HMM hybrids. SDNN is
an extremely promising and attractive technique for OCR,
but so far it has not yielded better results than HOS. We
hope that these results will improve as more experience is
gained with these models.

D. Object Detection and Spotting with SDNN

An interesting application of SDNN’s is object detection
and spotting. The invariance properties of convolutional
networks, combined with the efficiency with which they
can be replicated over large fields, suggests that they can be
used for “brute force” object spotting and detection in large
images. The main idea is to train a single convolutional
network to distinguish images of the object of interest from
images present in the background. In utilization mode, the
network is replicated so as to cover the entire image to
be analyzed, thereby forming a 2-D SDNN. The output of
the SDNN is a 2-D plane in which activated units indicate
the presence of the object of interest in the corresponding
receptive field. Since the sizes of the objects to be detected
within the image are unknown, the image can be presented
to the network at multiple resolutions, and the results at
multiple resolutions combined. The idea has been applied
to face location [93], address block location on envelopes
[94], and hand tracking in video [95].

To illustrate the method, we will consider the case
of face detection in images as described in [93]. First,

images containing faces at various scales are collected.
Those images are filtered through a zero-mean Laplacian
filter so as to remove variations in global illumination and
low spatial frequency illumination gradients. Then, training
samples of faces and nonfaces are manually extracted from
those images. The face subimages are then size normalized
so that the height of the entire face is approximately 20
pixels while keeping fairly large variations (within a factor
of two). The scale of background subimages are picked
at random. A single convolutional network is trained on
those samples to classify face subimages from nonface
subimages.

When a scene image is to be analyzed, it is first filtered
through the Laplacian filter and subsampled at powers-of-
two resolutions. The network is replicated over each of
multiple resolution images. A simple voting technique is
used to combine the results from multiple resolutions.

A 2-D version of the global training method described
in the previous section can be used to alleviate the need
to manually locate faces when building the training sample
[93]. Each possible location is seen as an alternative inter-
pretation, i.e., one of several parallel arcs in a simple graph
that only contains a start node and an end node.

Other authors have used NN’s or other classifiers such
as SVM’s for face detection with great success [96], [97].
Their systems are very similar to the one described above,
including the idea of presenting the image to the network
at multiple scales. But since those systems do not use
convolutional networks, they cannot take advantage of the
speedup described here, and they have to rely on other
techniques, such as prefiltering and real-time tracking,
to keep the computational requirement within reasonable
limits. In addition, because those classifiers are much less
invariant to scale variations than convolutional networks, it
is necessary to multiply the number of scales at which the
images are presented to the classifier.

VIII. G RAPH TRANSFORMER NETWORKS

AND TRANSDUCERS

In Section IV, GTN’s were introduced as a general-
ization of multilayer, multimodule networks where the
state information is represented as graphs instead of fixed-
size vectors. This section reinterprets the GTN’s in the
framework of generalized transduction and proposes a
powerful graph composition algorithm.

A. Previous Work

Numerous authors in speech recognition have used
gradient-based learning methods that integrate graph-
based statistical models (notably HMM’s) with acoustic
recognition modules, mainly Gaussian mixture models,
but also NN’s [67], [78], [98], [99]. Similar ideas have
been applied to handwriting recognition (see [38] for
a review). However, there has been no proposal for a
systematic approach to multilayer graph-based trainable
systems. The idea of transforming graphs into other graphs
has received considerable attention in computer science

2308 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

through the concept of weighted finite-state transducers
[86]. Transducers have been applied to speech recognition
[100] and language translation [101], and proposals have
been made for handwriting recognition [102]. This line
of work has been mainly focused on efficient search
algorithms [103] and on the algebraic aspects of combining
transducers and graphs (called acceptors in this context),
but very little effort has been devoted to building globally
trainable systems out of transducers. What is proposed
in the following sections is a systematic approach to
automatic training in graph-manipulating systems. A
different approach to graph-based trainable systems, called
input–output HMM, was proposed in [104] and [105].

B. Standard Transduction

In the established framework of finite-state transducers
[86], discrete symbols are attached to arcs in the graphs.
Acceptor graphs have a single symbol attached to each
arc whereas transducer graphs have two symbols (an input
symbol and an output symbol). A special null symbol is
absorbed by any other symbol (when concatenating symbols
to build a symbol sequence). Weighted transducers and
acceptors also have a scalar quantity attached to each
arc. In this framework, the composition operation takes
as input an acceptor graph and a transducer graph and
builds an output acceptor graph. Each path in this output
graph (with symbol sequence) corresponds to one path
(with symbol sequence) in the input acceptor graph
and one path and a corresponding pair of input–output
sequences in the transducer graph. The weights
on the arcs of the output graph are obtained by adding
the weights from the matching arcs in the input acceptor
and transducer graphs. In the rest of the paper, we will
call this graph composition operation using transducers the
(standard) transduction operation.

A simple example of transduction is shown in Fig. 28.
In this simple example, the input and output symbols
on the transducer arcs are always identical. This type of
transducer graph is called a grammar graph. To better
understand the transduction operation, imagine two tokens
sitting each on the start nodes of the input acceptor graph
and the transducer graph. The tokens can freely follow
any arc labeled with a null input symbol. A token can
follow an arc labeled with a nonnull input symbol if the
other token also follows an arc labeled with the same
input symbol. We have an acceptable trajectory when
both tokens reach the end nodes of their graphs (i.e.,
the tokens have reached the terminal configuration). This
trajectory represents a sequence of input symbols that
complies with both the acceptor and the transducer. We can
then collect the corresponding sequence of output symbols
along the trajectory of the transducer token. The above
procedure produces a tree, but a simple technique described
in Section VIII-C can be used to avoid generating multiple
copies of certain subgraphs by detecting when a particular
output state has already been seen.

The transduction operation can be performed very ef-
ficiently [106], but presents complex bookkeeping prob-

Fig. 28. Example of composition of the recognition graph with
the grammar graph in order to build an interpretation that is
consistent with both of them. During the forward propagation
(dark arrows), the methodscheck andfprop are used. Gradients
(dashed arrows) are back propagated with the adaptation of the
method group.

lems concerning the handling of all combinations of null
and nonnull symbols. If the weights are interpreted as
probabilities (normalized appropriately) then an acceptor
graph represents a probability distribution over the language
defined by the set of label sequences associated to all
possible paths (from the start to the end node) in the graph.

An example of application of the transduction operation
is the incorporation of linguistic constraints (a lexicon or
a grammar) when recognizing words or other character
strings. The recognition transformer produces the recog-
nition graph (an acceptor graph) by applying the NN
recognizer to each candidate segment. This acceptor graph
is composed with a transducer graph for the grammar. The
grammar transducer contains a path for each legal sequence
of symbol, possibly augmented with penalties to indicate
the relative likelihoods of the possible sequences. The arcs
contain identical input and output symbols. Another exam-
ple of transduction was mentioned in Section V: the path
selector used in the HOS training GTN is implementable by
a composition. The transducer graph is linear graph which
contains the correct label sequence. The composition of
the interpretation graph with this linear graph yields the
constrained graph.

C. Generalized Transduction

If the data structures associated to each arc took only
a finite number of values, composing the input graph and
an appropriate transducer would be a sound solution. For
our applications however, the data structures attached to
the arcs of the graphs may be vectors, images or other

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2309Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

high-dimensional objects that are not readily enumerated.
We present a new composition operation that solves this
problem.

Instead of only handling graphs with discrete symbols
and penalties on the arcs, we are interested in considering
graphs whose arcs may carry complex data structures,
including continuous-valued data structures such as vectors
and images. Composing such graphs requires additional
information.

1) When examining a pair of arcs (one from each input
graph), we need a criterion to decide whether to create
corresponding arc(s) and node(s) in the output graph,
based on the information attached to the input arcs.
We can decide to build an arc, several arcs, or an
entire subgraph with several nodes and arcs.

2) When that criterion is met, we must build the corre-
sponding arc(s) and node(s) in the output graph and
compute the information attached to the newly created
arc(s) as a function that the information attached to
the input arcs.

These functions are encapsulated in an object called
a composition transformer. An instance of composition
transformer implements the following three methods:

1) check(arc1, arc2) compares the data struc-
tures pointed to by arcsarc1 (from the first graph)
and arc2 (from the second graph) and returns
a boolean indicating whether corresponding arc(s)
should be created in the output graph;

2) fprop(ngraph, upnode,downnode, arc1,
arc2) is called whencheck(arc1,arc2) re-
turns true; this method creates new arcs and nodes
between nodesupnode and downnode in the out-
put graphngraph , and computes the information
attached to these newly created arcs as a function of
the attached information of the input arcsarc1 and
arc2 ;

3) bprop(ngraph, upnode, downnode, arc1,
arc2) is called during training in order to prop-
agate gradient information from the output subgraph
betweenupnode anddownnode into the data struc-
tures on thearc1 andarc2 , as well as with respect
to the parameters that were used in thefprop call
with the same arguments; this method assumes that
the function used byfprop to compute the values
attached to its output arcs is differentiable.

The check method can be seen as constructing a dy-
namic architecture of functional dependencies, while the
fprop method performs a forward propagation through
that architecture to compute the numerical information at-
tached to the arcs. Thebprop method performs a backward
propagation through the same architecture to compute the
partial derivatives of the loss function with respect to
the information attached to the arcs. This is illustrated in
Fig. 28.

Fig. 29 shows a simplified generalized graph composition
algorithm. This simplified algorithm does not handle null
transitions, and it does not check whether the tokens

Fig. 29. Pseudocode for a simplified generalized composition
algorithm. For simplifying the presentation, we do not handle
null transitions nor implement dead end avoidance. The two main
components of the composition appear clearly here: 1) the recursive
function simtoken() enumerating the token trajectories and 2)
the associative arraymap used for remembering which nodes of
the composed graph have been visited.

trajectory is acceptable (i.e., both tokens simultaneously
reach the end nodes of their graphs). The management
of null transitions is a straightforward modification of the
token simulation function. Before enumerating the possible
nonnull joint token transitions, we loop on the possible
null transitions of each token, recursively call the token
simulation function, and finally call the methodfprop .
The safest way for identifying acceptable trajectories con-
sists of running a preliminary pass for identifying the
token configurations from which we can reach the terminal
configuration (i.e., both tokens on the end nodes). This

2310 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

is easily achieved by enumerating the trajectories in the
opposite direction. We start on the end nodes and follow
the arcs upstream. During the main pass, we only build
the nodes that allow the tokens to reach the terminal
configuration.

Graph composition using transducers (i.e., standard trans-
duction) is easily and efficiently implemented as a gener-
alized transduction. The methodcheck simply tests the
equality of the input symbols on the two arcs, and the
method fprop creates a single arc whose symbol is the
output symbol on the transducer’s arc.

The composition between pairs of graphs is particularly
useful for incorporating linguistic constraints in a handwrit-
ing recognizer. Examples of its use are given in the online
handwriting recognition system described in Section IX
(and in the check reading system described in Section X).

In the rest of the paper, the term composition transformer
will denote a GT based on the generalized transductions
of multiple graphs. The concept of generalized transduc-
tion is a very general one. In fact, many of the GT’s
described earlier in this paper, such as the segmenter and
the recognizer, can be formulated in terms of generalized
transduction. In this case, the generalized transduction does
not take two input graphs but a single input graph. The
methodfprop of the transformer may create several arcs
or even a complete subgraph for each arc of the initial
graph. In fact the paircheck,fprop itself can be seen
as procedurally defining a transducer.

In addition, it can be shown that the generalized trans-
duction of a single graph is theoretically equivalent to
the standard composition of this graph with a particular
transducer graph. However, implementing the operation this
way may be very inefficient since the transducer can be
very complicated.

In practice, the graph produced by a generalized transduc-
tion is represented procedurally in order to avoid building
the whole output graph (which may be huge when for
example the interpretation graph is composed with the
grammar graph). We only instantiate the nodes which are
visited by the search algorithm during recognition (e.g.,
Viterbi). This strategy propagates the benefits of pruning
algorithms (e.g., beam search) in all the GTN’s.

D. Notes on the Graph Structures

Section VI discussed the idea of global training by back-
propagating gradient through simple GT’s. Thebprop
method is the basis of the back-propagation algorithm for
generic GT’s. A generalized composition transformer can
be seen as dynamically establishing functional relation-
ships between the numerical quantities on the input and
output arcs. Once thecheck function has decided that a
relationship should be established, thefprop function im-
plements the numerical relationship. Thecheck function
establishes the structure of the ephemeral network inside
the composition transformer.

Since fprop is assumed to be differentiable, gradients
can be back propagated through that structure. Most param-
eters affect the scores stored on the arcs of the successive

graphs of the system. A few threshold parameters may
determine whether an arc appears or not in the graph.
Since nonexisting arcs are equivalent to arcs with very large
penalties, we only consider the case of parameters affecting
the penalties.

In the kind of systems we have discussed until now
(and the application described in Section X), much of the
knowledge about the structure of the graph that is produced
by a GT is determined by the nature of the GT, but it may
also depend on the value of the parameters and on the input.
It may also be interesting to consider GT modules which
attempt to learn the structure of the output graph. This might
be considered a combinatorial problem and not amenable
to gradient-based learning, but a solution to this problem is
to generate a large graph that contains the graph candidates
as subgraphs, and then select the appropriate subgraph.

E. GTN and HMM’s

GTN’s can be seen as a generalization and an extension
of HMM’s. On the one hand, the probabilistic interpretation
can be either kept (with penalties being log-probabilities),
pushed to the final decision stage (with the difference of
the constrained forward penalty and the unconstrained for-
ward penalty being interpreted as negative log-probabilities
of label sequences), or dropped altogether (the network
just represents a decision surface for label sequences in
input space). On the other hand, GTN’s extend HMM’s
by allowing to combine in a well-principled framework
multiple levels of processing, or multiple models (e.g.,
Pereiraet al. have been using the transducer framework for
stacking HMM’s representing different levels of processing
in automatic speech recognition [86]).

Unfolding an HMM in time yields a graph that is very
similar to our interpretation graph (at the final stage of
processing of the GTN, before Viterbi recognition). It has
nodes associated to each time stepand state in the
model. The penalty for an arc from to
then corresponds to the negative log-probability of emitting
observed data at position and going from state to
state in the time interval With this probabilistic
interpretation, the forward penalty is the negative logarithm
of the likelihood of whole observed data sequence (given
the model).

In Section VI we mentioned that the collapsing phe-
nomenon can occur when nondiscriminative loss functions
are used to train NN’s/HMM hybrid systems. With classi-
cal HMM’s with fixed preprocessing, this problem does
not occur because the parameters of the emission and
transition probability models are forced to satisfy certain
probabilistic constraints: the sum or the integral of the
probabilities of a random variable over its possible values
must be one. Therefore, when the probability of certain
events is increased, the probability of other events must
automatically be decreased. On the other hand, if the
probabilistic assumptions in an HMM (or other probabilistic
model) are not realistic, discriminative training, discussed
in Section VI, can improve performance as this has been

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2311Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

clearly shown for speech recognition systems [48]–[50],
[107], [108].

The input–output HMM (IOHMM) [105], [109] is
strongly related to GT’s. Viewed as a probabilistic model,
an IOHMM represents the conditional distribution of
output sequences given input sequences (of the same or
a different length). It is parameterized from an emission
probability module and a transition probability module.
The emission probability module computes the conditional
emission probability of an output variable (given an
input value and the value of discrete “state” variable).
The transition probability module computes conditional
transition probabilities of a change in the value of the
“state” variable, given the input value. Viewed as a GT,
it assigns an output graph (representing a probability
distribution over the sequences of the output variable)
to each path in the input graph. All these output graphs
have the same structure, and the penalties on their arcs are
simply added in order to obtain the complete output graph.
The input values of the emission and transition modules are
read off the data structure on the input arcs of the IOHMM
GT. In practice, the output graph may be very large, and
needs not be completely instantiated (i.e., it is pruned: only
the low penalty paths are created).

IX. A N ON-LINE HANDWRITING RECOGNITION SYSTEM

Natural handwriting is often a mixture of different
“styles,” i.e., lower case printed, upper case, and cursive.
A reliable recognizer for such handwriting would greatly
improve interaction with pen-based devices, but its imple-
mentation presents new technical challenges. Characters
taken in isolation can be very ambiguous, but considerable
information is available from the context of the whole word.
We have built a word recognition system for pen-based
devices based on four main modules: 1) a preprocessor that
normalizes a word, or word group, by fitting a geometrical
model to the word structure; 2) a module that produces an
“annotated image” from the normalized pen trajectory; 3)
a replicated convolutional NN that spots and recognizes
characters; and 4) a GTN that interprets the networks
output by taking word-level constraints into account. The
network and the GTN are jointly trained to minimize an
error measure defined at the word level.

In this work, we have compared a system based on
SDNN’s (such as described in Section VII), and a system
based on HOS (such as described in Section V). Because of
the sequential nature of the information in the pen trajectory
(which reveals more information than the purely optical in-
put from in image), HOS can be very efficient in proposing
candidate character cuts, especially for noncursive script.

A. Preprocessing

Input normalization reduces intracharacter variability,
thereby simplifying character recognition. We have used
a word normalization scheme [92] based on fitting a geo-
metrical model of the word structure. Our model has four
“flexible” lines representing respectively the ascenders line,

Fig. 30. An online handwriting recognition GTN based on HOS.

the core line, the base line, and the descenders line. The
lines are fitted to local minima or maxima of the pen
trajectory. The parameters of the lines are estimated with
a modified version of the EM algorithm to maximize the
joint probability of observed points and parameter values,
using a prior on parameters that prevents the lines from
collapsing on each other.

The recognition of handwritten characters from a pen
trajectory on a digitizing surface is often done in the
time domain [44], [110], [111]. Typically, trajectories are
normalized and local geometrical or dynamical features are
extracted. The recognition may then be performed using
curve matching [110], or other classification techniques
such as TDNN’s [44], [111]. While these representations
have several advantages, their dependence on stroke order-
ing and individual writing styles makes them difficult to use
in high accuracy, writer independent systems that integrate
the segmentation with the recognition.

Since the intent of the writer is to produce a legible
image, it seems natural to preserve as much of the pictorial
nature of the signal as possible, while at the same time
exploit the sequential information in the trajectory. For this
purpose we have designed a representation scheme called
AMAP [38], where pen trajectories are represented by low-
resolution images in which each picture element contains
information about the local properties of the trajectory. An
AMAP can be viewed as an “annotated image” in which
each pixel is a five-element feature vector: four features are
associated to four orientations of the pen trajectory in the

2312 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 31. An online handwriting recognition GTN based on
SDNN.

area around the pixel and the fifth one is associated to local
curvature in the area around the pixel. A particularly useful
feature of the AMAP representation is that it makes very
few assumptions about the nature of the input trajectory.
It does not depend on stroke ordering or writing speed,
and it can be used with all types of handwriting (capital,
lower case, cursive, punctuation, symbols). Unlike many
other representations (such as global features), AMAP’s
can be computed for complete words without requiring
segmentation.

B. Network Architecture

One of the best networks we found for both online and
offline character recognition is a five-layer convolutional
network somewhat similar to LeNet-5 (Fig. 2), but with
multiple input planes and different numbers of units on
the last two layers—layer one: convolution with eight
kernels of size 3 3; layer two: 2 2 subsampling; layer
three: convolution with 25 kernels of size 55; layer
four: convolution with 84 kernels of size 44; layer five:
2 1 subsampling; classification layer: 95 RBF units (one
per class in the full printable ASCII set). The distributed
codes on the output are the same as for LeNet-5, except
they are adaptive unlike with LeNet-5. When used in the
HOS system, the input to above network consisted of
an AMAP with five planes, 20 rows, and 18 columns.
It was determined that this resolution was sufficient for
representing handwritten characters. In the SDNN version,
the number of columns was varied according to the width

of the input word. Once the number of subsampling layers
and the sizes of the kernels are chosen, the sizes of all the
layers, including the input, are determined unambiguously.
The only architectural parameters that remain to be selected
are the number of feature maps in each layer and the infor-
mation as to what feature map is connected to what other
feature map. In our case, the subsampling rates were chosen
as small as possible (22) and the kernels as small as
possible in the first layer (33) to limit the total number of
connections. Kernel sizes in the upper layers are chosen to
be as small as possible while satisfying the size constraints
mentioned above. Larger architectures did not necessarily
perform better and required considerably more time to
be trained. A very small architecture with half the input
field also performed worse because of insufficient input
resolution. Note that the input resolution is nonetheless
much less than for OCR because the angle and curvature
provide more information than would a single grey level
at each pixel.

C. Network Training

Training proceeded in two phases. First, we kept the
centers of the RBF’s fixed and trained the network weights
so as to minimize the output distance of the RBF unit
corresponding to the correct class. This is equivalent to
minimizing the MSE between the previous layer and the
center of the correct-class RBF. This bootstrap phase was
performed on isolated characters. In the second phase, all
the parameters, network weights, and RBF centers were
trained globally to minimize a discriminative criterion at
the word level.

With the HOS approach, the GTN was composed of four
main GT’s.

1) Thesegmentation transformerperforms the HOS and
outputs the segmentation graph. An AMAP is then
computed for each image attached to the arcs of this
graph.

2) The character recognition transformerapplies the
convolutional network character recognizer to each
candidate segment and outputs the recognition graph
with penalties and classes on each arc.

3) The composition transformercomposes the recog-
nition graph with a grammar graph representing a
language model incorporating lexical constraints.

4) The beam search transformerextracts a good in-
terpretation from the interpretation graph. This task
could have been achieved with the usual Viterbi
Transformer. The beam search algorithm, however,
implements pruning strategies which are appropriate
for large interpretation graphs.

With the SDNN approach, the main GT’s are the fol-
lowing.

1) The SDNN transformerreplicates the convolutional
network over the a whole word image and outputs
a recognition graph that is a linear graph with class

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2313Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 32. Comparative results (character error rates) showing the improvement brought by global
training on the SDNN/HMM hybrid, and on the HOS, without and with a 25 461-word dictionary.

penalties for every window centered at regular inter-
vals on the input image.

2) The character-level composition transformercom-
poses the recognition graph with a left-to-right HMM
for each character class (as in Fig. 27).

3) The word-level composition transformercomposes
the output of the previous transformer with a language
model incorporating lexical constraints and outputs
the interpretation graph.

4) The beam search transformerextracts a good inter-
pretation from the interpretation graph.

In this application, the language model simply constrains
the final output graph to represent sequences of character
labels from a given dictionary. Furthermore, the interpreta-
tion graph is not actually completely instantiated: the only
nodes created are those that are needed by the beam search
module. The interpretation graph is therefore represented
procedurally rather than explicitly.

A crucial contribution of this research was the joint
training of all GT modules within the network with respect
to a single criterion, as explained in Sections VI and
VII. We used the discriminative forward loss function on
the final output graph: minimize the forward penalty of
the constrained interpretation (i.e., along all the “correct”
paths) while maximizing the forward penalty of the whole
interpretation graph (i.e., along all the paths).

During global training, the loss function was optimized
with the stochastic diagonal Levenberg–Marquardt proce-
dure described in Appendix C, which uses second deriva-
tives to compute optimal learning rates. This optimization
operates on all the parameters in the system, most notably
the network weights and the RBF centers.

D. Experimental Results

In the first set of experiments, we evaluated the gen-
eralization ability of the NN classifier coupled with the
word normalization preprocessing and AMAP input rep-
resentation. All results are in writer independent mode
(different writers in training and testing). Initial training
on isolated characters was performed on a database of

approximately 100 000 hand printed characters (95 classes
of upper case, lower case, digits, and punctuation). Tests on
a database of isolated characters were performed separately
on the four types of characters: upper case (2.99% error on
9122 patterns), lower case (4.15% error on 8201 patterns),
digits (1.4% error on 2938 patterns), and punctuation (4.3%
error on 881 patterns). Experiments were performed with
the network architecture described above. To enhance the
robustness of the recognizer to variations in position, size,
orientation, and other distortions, additional training data
was generated by applying local affine transformations to
the original characters.

The second and third set of experiments concerned the
recognition of lower case words (writer independent). The
tests were performed on a database of 881 words. First we
evaluated the improvements brought by the word normal-
ization to the system. For the SDNN/HMM system we have
to use word-level normalization since the network sees one
whole word at a time. With the HOS system, and before
doing any word-level training, we obtained with character-
level normalization 7.3% and 3.5% word and character
errors (adding insertions, deletions and substitutions) when
the search was constrained within a 25 461-word dictionary.
When using the word normalization preprocessing instead
of a character level normalization, error rates dropped to
4.6% and 2.0% for word and character errors respectively,
i.e., a relative drop of 37% and 43% in word and character
error respectively. This suggests that normalizing the word
in its entirety is better than first segmenting it and then
normalizing and processing each of the segments.

In the third set of experiments, we measured the im-
provements obtained with the joint training of the NN
and the postprocessor with the word-level criterion, in
comparison to training based only on the errors performed
at the character level. After initial training on individual
characters as above, global word-level discriminative train-
ing was performed with a database of 3500 lower case
words. For the SDNN/HMM system, without any dictionary
constraints, the error rates dropped from 38% and 12.4%
word and character error to 26% and 8.2% respectively after
word-level training, i.e., a relative drop of 32% and 34%.

2314 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

For the HOS system and a slightly improved architecture,
without any dictionary constraints, the error rates dropped
from 22.5% and 8.5% word and character error to 17% and
6.3% respectively, i.e., a relative drop of 24.4% and 25.6%.
With a 25 461-word dictionary, errors dropped from 4.6%
and 2.0% word and character errors to 3.2% and 1.4%,
respectively, after word-level training, i.e., a relative drop
of 30.4% and 30.0%. Even lower error rates can be obtained
by drastically reducing the size of the dictionary to 350
words, yielding 1.6% and 0.94% word and character errors.

These results clearly demonstrate the usefulness of glob-
ally trained NN/HMM hybrids for handwriting recognition.
This confirms similar results obtained earlier in speech
recognition [77].

X. A CHECK READING SYSTEM

This section describes a GTN based check reading sys-
tem, intended for immediate industrial deployment. It also
shows how the use of gradient based-learning and GTN’s
make this deployment fast and cost-effective while yielding
an accurate and reliable solution.

The verification of the amount on a check is a task that
is extremely time and money consuming for banks. As
a consequence, there is a very high interest in automat-
ing the process as much as possible (see, for example,
[112]–[114]). Even a partial automation would result in
considerable cost reductions. The threshold of economic
viability for automatic check readers, as set by the bank,
is when 50% of the checks are read with less than 1%
error. The other 50% of the check being rejected and
sent to human operators. In such a case, we describe the
performance of the system as 50% correct/49% reject/1%
error. The system presented here was one of the first to
cross that threshold on representative mixtures of business
and personal checks.

Checks contain at least two versions of the amount. The
courtesy amount is written with numerals, while the legal
amount is written with letters. On business checks, which
are generally machine-printed, these amounts are relatively
easy to read but quite difficult to find due to the lack of
standard for business check layout. On the other hand, these
amounts on personal checks are easy to find but much
harder to read.

For simplicity (and speed requirements), our initial task
is to read the courtesy amount only. This task consists of
two main steps.

1) The system has to find, among all the fields (lines
of text), the candidates that are the most likely to
contain the courtesy amount. This is obvious for many
personal checks, where the position of the amount
is standardized. However, as already noted, finding
the amount can be rather difficult in business checks,
even for the human eye. There are many strings of
digits, such as the check number, the date, or even
“not to exceed” amounts, that can be confused with
the actual amount. In many cases, it is very difficult to
decide which candidate is the courtesy amount before
performing a full recognition.

Fig. 33. A complete check amount reader implemented as a
single cascade of GT modules. Successive graph transformations
progressively extract higher level information.

2) In order to read (and choose) some courtesy amount
candidates, the system has to segment the fields into
characters, read and score the candidate characters,
and finally find the best interpretation of the amount
using contextual knowledge represented by a stochas-
tic grammar for check amounts.

The GTN methodology was used to build a check amount
reading system that handles both personal checks and
business checks.

A. A GTN for Check Amount Recognition

We now describe the successive graph transformations
that allow this network to read the check amount (cf.
Fig. 33). Each GT produces a graph whose paths encode
and score the current hypotheses considered at this stage
of the system.

The input to the system is a trivial graph with a single
arc that carries the image of the whole check (cf. Fig. 33).

1) The Field Location Transformer: first performs
classical image analysis (including connected component
analysis, ink density histograms, layout analysis, etc.) and
heuristically extracts rectangular zones that may contain the
check amount. produces an output graph, called the
field graph (cf. Fig. 33) such that each candidate zone is
associated with one arc that links the start node to the
end node. Each arc contains the image of the zone and
a penalty term computed from simple features extracted
from the zone (absolute position, size, aspect ratio, etc.).
The penalty term is close to zero if the features suggest
that the field is a likely candidate and is large if the field is
deemed less likely to be an amount. The penalty function is
differentiable, therefore its parameters are globally tunable.

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2315Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

An arc may represent separate dollar and cent amounts
as a sequence of fields. In fact, in handwritten checks, the
cent amount may be written over a fractional bar and not
aligned at all with the dollar amount. In the worst case, one
may find several cent amount candidates (above and below
the fraction bar) for the same dollar amount.

2) The Segmentation Transformer: similar to the
one described in Section VIII, examines each zone
contained in the field graph and cuts each image into
pieces of ink using heuristic image processing techniques.
Each piece of ink may be a whole character or a piece
of character. Each arc in the field graph is replaced by
its corresponding segmentation graph that represents all
possible groupings of pieces of ink. Each field segmentation
graph is appended to an arc that contains the penalty of the
field in the field graph. Each arc carries the segment image,
together with a penalty that provides a first evaluation
of the likelihood that the segment actually contains a
character. This penalty is obtained with a differentiable
function that combines a few simple features such as
the space between the pieces of ink or the compliance
of the segment image with a global baseline, and a few
tunable parameters. The segmentation graph represents all
the possible segmentations of all the field images. We can
compute the penalty for one segmented field by adding
the arc penalties along the corresponding path. As before,
using a differentiable function for computing the penalties
will ensure that the parameters can be optimized globally.

The segmenter uses a variety of heuristics to find candi-
date cut. One of the most important ones is called “hit and
deflect” [115]. The idea is to cast lines downward from the
top of the field image. When a line hits a black pixel, it is
deflected so as to follow the contour of the object. When a
line hits a local minimum of the upper profile, i.e., when it
cannot continue downward without crossing a black pixel,
it is just propagated vertically downward through the ink.
When two such lines meet each other, they are merged
into a single cut. The procedure can be repeated from the
bottom up. This strategy allows the separation of touching
characters such as double zeros.

3) The Recognition Transformer: iterates over all
segment arcs in the segmentation graph and runs a character
recognizer on the corresponding segment image. In our
case, the recognizer is LeNet-5, the convolutional NN
described in Section II, whose weights constitute the largest
and most important subset of tunable parameters. The
recognizer classifies segment images into one of 95 classes
(fully printable ASCII set) plus a rubbish class for unknown
symbols or badly formed characters. Each arc in the input
graph is replaced by 96 arcs in the output graph.
Each of those 96 arcs contains the label of one of the
classes, and a penalty that is the sum of the penalty of
the corresponding arc in the input (segmentation) graph,
and the penalty associated with classifying the image in
the corresponding class, as computed by the recognizer. In
other words, the recognition graph represents a weighted
trellis of scored character classes. Each path in this graph
represents a possible character string for the corresponding

field. We can compute a penalty for this interpretation
by adding the penalties along the path. This sequence of
characters may or may not be a valid check amount.

4) The Composition Transformer: selects the paths
of the recognition graph that represent valid character
sequences for check amounts. This transformer takes two
graphs as input: the recognition graph and the grammar
graph. The grammar graph contains all possible sequences
of symbols that constitute a well-formed amount. The out-
put of the composition transformer, called the interpretation
graph, contains all the paths in the recognition graph that are
compatible with the grammar. The operation that combines
the two input graphs to produce the output is a generalized
transduction (see Section IX). A differentiable function is
used to compute the data attached to the output arc from
the data attached to the input arcs. In our case, the output
arc receives the class label of the two arcs and a penalty
computed by simply summing the penalties of the two
input arcs (the recognizer penalty and the arc penalty in
the grammar graph). Each path in the interpretation graph
represents one interpretation of one segmentation of one
field on the check. The sum of the penalties along the path
represents the “badness” of the corresponding interpretation
and combines evidence from each of the modules along the
process, as well as from the grammar.

5) The Viterbi Transformer:The Viterbi transformer fi-
nally selects the path with the lowest accumulated penalty
corresponding to the best grammatically correct interpreta-
tions.

B. Gradient-Based Learning

Each stage of this check reading system contains tunable
parameters. While some of these parameters could be
manually adjusted (e.g., the parameters of the field locator
and segmenter), the vast majority of them must be learned,
particularly the weights of the NN recognizer.

Prior to globally optimizing the system, each module pa-
rameters are initialized with reasonable values. The param-
eters of the field locator and the segmenter are initialized by
hand, while the parameters of the NN character recognizer
are initialized by training on a database of presegmented
and labeled characters. Then, the entire system is trained
globally from whole check images labeled with the correct
amount. No explicit segmentation of the amounts is needed
to train the system: it is trained at the check level.

The loss function minimized by our global training
procedure is the discriminative forward criterion described
in Section VI: the difference between 1) the forward penalty
of the constrained interpretation graph (constrained by the
correct label sequence) and 2) the forward penalty of the
unconstrained interpretation graph. Derivatives can be back
propagated through the entire structure, although it is only
practical to do it down to the segmenter.

C. Rejecting Low Confidence Checks

In order to be able to reject checks which are the
most likely to carry erroneous Viterbi answers, we must
rate them with a confidence and reject the check if this

2316 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 34. Additional processing required to compute the confi-
dence.

confidence is below a given threshold. To compare the
unnormalized Viterbi penalties of two different checks
would be meaningless when it comes to decide which
answer we trust the most.

The optimal measure of confidence is the probability
of the Viterbi answer given the input image. As seen
in Section VI-E, given a target sequence (which, in this
case, would be the Viterbi answer), the discriminative
forward loss function is an estimate of the logarithm of
this probability. Therefore, a simple solution to obtain a
good estimate of the confidence is to reuse the interpretation
graph (see Fig. 33) to compute the discriminative forward
loss as described in Fig. 21, using as our desired sequence
the Viterbi answer. This is summarized in Fig. 34, with

D. Results

A version of the above system was fully implemented
and tested on machine-print business checks. This system is
basically a generic GTN engine with task specific heuristics
encapsulated in thecheck and fprop method. As a con-
sequence, the amount of code to write was minimal: mostly
the adaptation of an earlier segmenter into the segmentation
transformer. The system that deals with handwritten or
personal checks was based on earlier implementations that
used the GTN concept in a restricted way.

The NN classifier was initially trained on 500 000 images
of character images from various origins spanning the entire
printable ASCII set. This contained both handwritten and
machine-printed characters that had been previously size
normalized at the string level. Additional images were
generated by randomly distorting the original images using
simple affine transformations of the images. The network
was then further trained on character images that had been
automatically segmented from check images and manually
truthed. The network was also initially trained to reject
noncharacters that resulted from segmentation errors. The
recognizer was then inserted in the check-reading system
and a small subset of the parameters were trained globally
(at the field level) on whole check images.

On 646 business checks that were automatically cat-
egorized as machine printed, the performance was 82%
correctly recognized checks, 1% errors, and 17% rejects.
This can be compared to the performance of the previous
system on the same test set: 68% correct, 1% errors, and
31% rejects. A check is categorized as machine-printed
when characters that are near a standard position dollar
sign are detected as machine printed, or when, if nothing is
found in the standard position, at least one courtesy amount
candidate is found somewhere else. The improvement is
attributed to three main causes. First the NN recognizer
was bigger and trained on more data. Second, because of
the GTN architecture, the new system could take advantage
of grammatical constraints in a much more efficient way
than the previous system. Third, the GTN architecture
provided extreme flexibility for testing heuristics, adjusting
parameters, and tuning the system. This last point is more
important than it seems. The GTN framework separates
the “algorithmic” part of the system from the “knowledge-
based” part of the system, allowing easy adjustments of the
latter. The importance of global training was only minor
in this task because the global training only concerned a
small subset of the parameters.

An independent test performed by systems integrators
in 1995 showed the superiority of this system over other
commercial courtesy amount reading systems. The system
was integrated in NCR’s line of check reading systems. It
has been fielded in several banks across the United States
since June 1996, and it has been reading millions of checks
per day since then.

XI. CONCLUSIONS

During the short history of automatic pattern recognition,
increasing the role of learning seems to have invariably
improved the overall performance of recognition systems.
The systems described in this paper are more evidence to
this fact. Convolutional NN’s have been shown to eliminate
the need for hand-crafted feature extractors. GTN’s have
been shown to reduce the need for hand-crafted heuristics,
manual labeling, and manual parameter tuning in document
recognition systems. As training data becomes plentiful, as
computers get faster, and as our understanding of learning
algorithms improves, recognition systems will rely more
and more of learning and their performance will improve.

Just as the back-propagation algorithm elegantly solved
the credit assignment problem in multilayer NN’s, the
gradient-based learning procedure for GTN’s introduced in
this paper solves the credit assignment problem in systems
whose functional architecture dynamically changes with
each new input. The learning algorithms presented here are
in a sense nothing more than unusual forms of gradient
descent in complex, dynamic architectures, with efficient
back-propagation algorithms to compute the gradient. The
results in this paper help establish the usefulness and
relevance of gradient-based minimization methods as a
general organizing principle for learning in large systems.

It was shown that all the steps of a document analysis
system can be formulated as GT’s through which gradi-

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2317Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

ents can be back propagated. Even in the nontrainable
parts of the system, the design philosophy in terms of
graph transformation provides a clear separation between
domain-specific heuristics (e.g., segmentation heuristics)
and generic, procedural knowledge (the generalized trans-
duction algorithm)

It is worth pointing out that data generating models (such
as HMM’s) and the maximum likelihood principle were not
called upon to justify most of the architectures and the train-
ing criteria described in this paper. Gradient-based learning
applied to global discriminative loss functions guarantees
optimal classification and rejection without the use of “hard
to justify” principles that put strong constraints on the
system architecture, often at the expense of performances.

More specifically, the methods and architectures pre-
sented in this paper offer generic solutions to a large number
of problems encountered in pattern recognition systems.

1) Feature extraction is traditionally a fixed transform,
and it is generally derived from some expert prior
knowledge about the task. This relies on the probably
incorrect assumption that the human designer is able
to capture all the relevant information in the input.
We have shown that the application of gradient-based
learning to convolutional NN’s allows us to learn ap-
propriate features from examples. The success of this
approach was demonstrated in extensive comparative
digit recognition experiments on the NIST database.

2) Segmentation and recognition of objects in images
cannot be completely decoupled. Instead of taking
hard segmentation decisions too early, we have used
HOS to generate and evaluate a large number of
hypotheses in parallel, postponing any decision until
the overall criterion is minimized.

3) Hand-truthing images to obtain segmented characters
for training a character recognizer is expensive and
does not take into account the way in which a whole
document or sequence of characters will be recog-
nized (in particular, the fact that some segmentation
candidates may be wrong, even though they may look
like true characters). Instead we train multimodule
systems to optimize a global measure of performance,
which does not require time consuming detailed hand-
truthing and yields significantly better recognition
performance because it allows to train these modules
to cooperate toward a common goal.

4) Ambiguities inherent in the segmentation, character
recognition, and linguistic model should be inte-
grated optimally. Instead of using a sequence of task-
dependent heuristics to combine these sources of in-
formation, we have proposed a unified framework in
which generalized transduction methods are applied
to graphs representing a weighted set of hypotheses
about the input. The success of this approach was
demonstrated with a commercially deployed check-
reading system that reads millions of business and
personal checks per day: the generalized transduction
engine resides in only a few hundred lines of code.

5) Traditional recognition systems rely on many hand-
crafted heuristics to isolate individually recognizable
objects. The promising SDNN approach draws on the
robustness and efficiency of convolutional NN’s to
avoid explicit segmentation altogether. Simultaneous
automatic learning of segmentation and recognition
can be achieved with gradient-based learning meth-
ods.

This paper presents a small number of examples of GT
modules, but it is clear that the concept can be applied to
many situations where the domain knowledge or the state
information can be represented by graphs. This is the case
in many audio signal recognition tasks, and visual scene
analysis applications. Future work will attempt to apply
GT networks to such problems, with the hope of allowing
more reliance on automatic learning and less on detailed
engineering.

APPENDIX A
PRECONDITIONS FORFASTER CONVERGENCE

As seen before, the squashing function used in our
convolutional networks is Symmetric
functions are believed to yield faster convergence, although
the learning can become extremely slow if the weights
are too small. The cause of this problem is that in weight
space the origin is a fixed point of the learning dynamics
and, although it is a saddle point, it is attractive in almost
all directions [116]. For our simulations, we use

and (see [20], [34]). With this choice of
parameters, the equalities and are
satisfied. The rationale behind this is that the overall gain
of the squashing transformation is around one in normal
operating conditions, and the interpretation of the state of
the network is simplified. Moreover, the absolute value of
the second derivative of is a maximum at 1 and 1,
which improves the convergence toward the end of the
learning session. This particular choice of parameters is
merely a convenience, and does not affect the result.

Before training, the weights are initialized with random
values using a uniform distribution between and

, where is the number of inputs (fan-in) of the unit
which the connection belongs to. Since several connections
share a weight, this rule could be difficult to apply, but in
our case all connections sharing a same weight belong to
units with identical fan-ins. The reason for dividing by the
fan-in is that we would like the initial standard deviation
of the weighted sums to be in the same range for each
unit and to fall within the normal operating region of the
sigmoid. If the initial weights are too small, the gradients
are very small and the learning is slow. If they are too
large, the sigmoids are saturated and the gradient is also
very small. The standard deviation of the weighted sum
scales like the square root of the number of inputs when
the inputs are independent, and it scales linearly with the
number of inputs if the inputs are highly correlated. We
chose to assume the second hypothesis since some units
receive highly correlated signals.

2318 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

APPENDIX B
STOCHASTIC GRADIENT VERSUSBATCH GRADIENT

Gradient-based learning algorithms can use one of two
classes of methods to update the parameters. The first
method, dubbed “batch gradient,” is the classical one: the
gradients are accumulated over the entire training set, and
the parameters are updated after the exact gradient has
been so computed. In the second method, called “stochastic
gradient,” a partial, or noisy, gradient is evaluated on the
basis of one single training sample (or a small number
of samples), and the parameters are updated using this
approximate gradient. The training samples can be selected
randomly or according to a properly randomized sequence.
In the stochastic version the gradient estimates are noisy,
but the parameters are updated much more often than
with the batch version. An empirical result of considerable
practical importance is that on tasks with large, redundant
data sets, the stochastic version is considerably faster than
the batch version, sometimes by orders of magnitude [117].
Although the reasons for this are not totally understood
theoretically, an intuitive explanation can be found in the
following extreme example. Let us take an example where
the training database is composed of two copies of the
same subset. Then accumulating the gradient over the whole
set would cause redundant computations to be performed.
On the other hand, running Stochastic Gradient once on
this training set would amount to performing two complete
learning iterations over the small subset. This idea can be
generalized to training sets where there exist no precise
repetition of the same pattern but where some redundancy is
present. In fact stochastic update must be better when there
is redundancy, i.e., when a certain level of generalization
is expected.

Many authors have claimed that second-order methods
should be used in lieu of gradient descent for NN training.
The literature abounds with recommendations [118] for
classical second-order methods such as the Gauss–Newton
or Levenberg–Marquardt algorithms for quasi-Newton
methods such as Broyden–Fletcher–Goldfarb–Shanno,
limited-storage Broyden–Fletcher–Goldfarb–Shanno, or
for various versions of the conjugate gradients method.
Unfortunately, all of the above methods are unsuit-
able for training large NN’s on large data sets. The
Gauss–Newton and Levenberg–Marquardt methods require

operations per update, where is the number
of parameters, which makes them impractical for even
moderate size networks. Quasi-Newton methods require
“only” operations per update, but that still makes
them impractical for large networks. Limited-storage Broy-
den–Fletcher–Goldfarb–Shanno’s and conjugate gradients
require only operations per update so they would
appear appropriate. Unfortunately, their convergence speed
relies on an accurate evaluation of successive “conjugate
descent directions” which only makes sense in “batch”
mode. For large data sets, the speed-up brought by
these methods over regular batch gradient descent cannot
match the enormous speed up brought by the use of

stochastic gradient. Several authors have attempted to
use conjugate gradient with small batches or batches of
increasing sizes [119], [120], but those attempts have
not yet been demonstrated to surpass a carefully tuned
stochastic gradient. Our experiments were performed with
a stochastic method that scales the parameter axes so as to
minimize the eccentricity of the error surface.

APPENDIX C
STOCHASTIC DIAGONAL LEVENBERG–MARQUARDT

Owing to the reasons given in Appendix B, we prefer
to update the weights after each presentation of a single
pattern in accordance with stochastic update methods. The
patterns are presented in a constant random order, and the
training set is typically repeated 20 times.

Our update algorithm is dubbed the stochastic diagonal
Levenberg–Marquardt method where an individual learning
rate (step size) is computed for each parameter (weight)
before each pass through the training set [20], [34], [121].
These learning rates are computed using the diagonal terms
of an estimate of the Gauss–Newton approximation to
the Hessian (second derivative) matrix. This algorithm is
not believed to bring a tremendous increase in learning
speed but it converges reliably without requiring extensive
adjustments of the learning parameters. It corrects major
ill-conditioning of the loss function that are due to the
peculiarities of the network architecture and the training
data. The additional cost of using this procedure over
standard stochastic gradient descent is negligible.

At each learning iteration a particular parameter is
updated according to the following stochastic update rule:

(18)

where is the instantaneous loss function for pattern
In convolutional NN’s, because of the weight sharing,

the partial derivative is the sum of the partial
derivatives with respect to the connections that share the
parameter

(19)

where is the connection weight from unitto unit
is the set of unit index pairs such that the connection
between and share the parameter i.e.,

(20)

As stated previously, the step sizesare not constant but
are function of the second derivative of the loss function
along the axis

(21)

where is a hand-picked constant and is an estimate
of the second derivative of the loss functionwith respect
to The larger is, the smaller the weight update.
The parameter prevents the step size from becoming too

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2319Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

large when the second derivative is small, very much like
the “model-trust” methods, and the Levenberg–Marquardt
methods in nonlinear optimization [8]. The exact formula
to compute from the second derivatives with respect
to the connection weights is

(22)

However, we make three approximations. The first approx-
imation is to drop the off-diagonal terms of the Hessian
with respect to the connection weights in (22)

(23)

Naturally, the terms are the average over the
training set of the local second derivatives

(24)

Those local second derivatives with respect to connection
weights can be computed from local second derivatives with
respect to the total input of the downstream unit

(25)

where is the state of unit and is the second
derivative of the instantaneous loss function with respect to
the total input to unit (denoted Interestingly, there is
an efficient algorithm to compute those second derivatives
which is very similar to the back-propagation procedure
used to compute the first derivatives [20], [21]

(26)

Unfortunately, using those derivatives leads to well-known
problems associated with every Newton-like algorithm:
these terms can be negative and can cause the gradient
algorithm to move uphill instead of downhill. Therefore,
our second approximation is a well-known trick called
the Gauss–Newton approximation, which guarantees that
the second derivative estimates are nonnegative. The
Gauss–Newton approximation essentially ignores the
nonlinearity of the estimated function (the NN, in our case),
but not that of the loss function. The back propagation
equation for Gauss-Newton approximations of the second
derivatives is

(27)

This is very similar to the formula for back propagating the
first derivatives, except that the sigmoid’s derivative and
the weight values are squared. The right-hand side is a sum
of products of nonnegative terms, therefore the left-hand
side term is nonnegative.

The third approximation we make is that we do not run
the average in (24) over the entire training set, but run it
on a small subset of the training set instead. In addition
the re-estimation does not need to be done often since the
second-order properties of the error surface change rather
slowly. In the experiments described in this paper, we re-
estimate the on 500 patterns before each training pass
through the training set. Since the size of the training set
is 60 000, the additional cost of re-estimating the is
negligible. The estimates are not particularly sensitive to the
particular subset of the training set used in the averaging.
This seems to suggest that the second-order properties of
the error surface are mainly determined by the structure
of the network, rather than by the detailed statistics of the
samples. This algorithm is particularly useful for shared-
weight networks because the weight sharing creates ill
conditioning of the error surface. Because of the sharing,
one single parameter in the first few layers can have
an enormous influence on the output. Consequently, the
second derivative of the error with respect to this parameter
may be very large, while it can be quite small for other
parameters elsewhere in the network. The above algorithm
compensates for that phenomenon.

Unlike most other second-order acceleration methods for
back-propagation, the above method works in stochastic
mode. It uses a diagonal approximation of the Hessian.
Like the classical Levenberg–Marquardt algorithm, it uses
a “safety” factor to prevent the step sizes from getting
too large if the second derivative estimates are small.
Hence the method is called the stochastic diagonal Lev-
enberg–Marquardt method.

ACKNOWLEDGMENT

Some of the systems described in this paper are the work
of many researchers now at AT&T and Lucent Technolo-
gies. In particular, C. Burges, C. Nohl, T. Cauble, and J.
Bromley contributed much to the check reading system.
Experimental results described in Section III include con-
tributions by C. Burges, A. Brunot, C. Cortes, H. Drucker,
L. Jackel, U. M̈uller, B. Scḧolkopf, and P. Simard. The
authors wish to thank F. Pereira, V. Vapnik, J. Denker, and
I. Guyon for helpful discussions, C. Stenard and R. Higgins
for providing the applications that motivated some of this
work, and L. R. Rabiner and L. D. Jackel for relentless
support and encouragement.

REFERENCES

[1] R. O. Duda and P. E. Hart,Pattern Classification and Scene
Analysis. New York: Wiley, 1973.

[2] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to
handwritten zip code recognition,”Neural Computation, vol. 1,
no. 4, pp. 541–551, Winter 1989.

[3] S. Seung, H. Sompolinsky, and N. Tishby, “Statistical mechan-
ics of learning from examples,”Phys. Rev. A, vol. 45, pp.
6056–6091, 1992.

[4] V. N. Vapnik, E. Levin, and Y. LeCun, “Measuring the vc-
dimension of a learning machine,”Neural Computation, vol. 6,
no. 5, pp. 851–876, 1994.

[5] C. Cortes, L. Jackel, S. Solla, V. N. Vapnik, and J. Denker,
“Learning curves: Asymptotic values and rate of convergence,”

2320 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

in Advances in Neural Information Processing Systems 6, J. D.
Cowan, G. Tesauro, and J. Alspector, Eds. San Mateo, CA:
Morgan Kaufmann, 1994, pp. 327–334.

[6] V. N. Vapnik, The Nature of Statistical Learning Theory. New
York: Springer, 1995.

[7] , Statistical Learning Theory. New York: Wiley, 1998.
[8] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.

Vetterling,Numerical Recipes: The Art of Scientific Computing.
Cambridge, UK: Cambridge Univ., 1986.

[9] S. I. Amari, “A theory of adaptive pattern classifiers,”IEEE
Trans. Electron. Comput., vol. EC-16, pp. 299–307, 1967.

[10] Y. Tsypkin, Adaptation and Learning in Automatic Systems
New York: Academic, 1971.

[11] , Foundations of the Theory of Learning Systems. New
York: Academic, 1973.

[12] M. Minsky and O. Selfridge, “Learning in random nets,” in
Proc. 4th London Symp. Information Theory, pp. 335–347, 1961.

[13] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning
algorithm for Boltzmann machines,”Cognitive Sci., vol. 9, pp.
147–169, 1985.

[14] G. E. Hinton and T. J. Sejnowski, “Learning and relearning
in Boltzmann machines,” inParallel Distributed Processing:
Explorations in the Microstructure of Cognition. Volume 1:
Foundations, D. E. Rumelhart and J. L. McClelland, Eds.
Cambridge, MA: MIT, 1986.

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learn-
ing internal representations by error propagation,” inParallel
Distributed Processing: Explorations in the Microstructure of
Cognition, vol. I. Cambridge, MA: Bradford Books, 1986,
pp. 318–362,

[16] A. E. Bryson, Jr. and Y.-C. Ho,Applied Optimal Control.
London, UK: Blaisdell, 1969.

[17] Y. LeCun, “A learning scheme for asymmetric threshold
networks,” in Proc. Cognitiva ’85, Paris, France, 1985, pp.
599–604.

[18] , “Learning processes in an asymmetric threshold net-
work,” in Disordered Systems and Biological Organization, E.
Bienenstock, F. Fogelman-Soulië, and G. Weisbuch, Eds. Les
Houches, France: Springer-Verlag, 1986, pp. 233–240.

[19] D. B. Parker, “Learning-logic,” Sloan School Manage., MIT,
Cambridge, MA, Tech. Rep., TR-47, Apr. 1985.

[20] Y. LeCun, Modéles Connexionnistes de l’Apprentissage (Con-
nectionist Learning Models), Ph.D. dissertation, Université P.
et M. Curie (Paris 6), June 1987.

[21] , “A theoretical framework for back-propagation,” inProc.
1988 Connectionist Models Summer School, D. Touretzky, G.
Hinton, and T. Sejnowski, Eds. Pittsburgh, PA: CMU, Morgan
Kaufmann, 1988, pp. 21–28.

[22] L. Bottou and P. Gallinari, “A framework for the cooperation
of learning algorithms,” inAdvances in Neural Information
Processing Systems, vol. 3, D. Touretzky and R. Lippmann,
Eds. Denver, CO: Morgan Kaufmann, 1991.

[23] C. Y. Suen, C. Nadal, R. Legault, T. A. Mai, and L. Lam,
“Computer recognition of unconstrained handwritten numerals,”
Proc. IEEE, vol. 80, pp. 1162–1180, July 1992.

[24] S. N. Srihari, “High-performance reading machines,”Proc.
IEEE., vol. 80, pp. 1120–1132, July 1992.

[25] Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf,
I. Guyon, D. Henderson, R. E. Howard, and W. Hubbard,
“Handwritten digit recognition: Applications of neural net chips
and automatic learning,”IEEE Trans. Commun., vol. 37, pp.
41–46, Nov. 1989.

[26] J. Keeler, D. Rumelhart, and W. K. Leow, “Integrated seg-
mentation and recognition of hand-printed numerals,” inNeural
Information Processing Systems, R. P. Lippmann, J. M. Moody,
and D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann,
vol. 3, pp. 557–563, 1991.

[27] O. Matan, C. J. C. Burges, Y. LeCun, and J. S. Denker, “Multi-
digit recognition using a space displacement neural network,”
vol. 4, in Neural Information Processing Systems, J. M. Moody,
S. J. Hanson, and R. P. Lippman, Eds. San Mateo, CA:
Morgan Kaufmann, 1992.

[28] L. R. Rabiner, “A tutorial on hidden Markov models and
selected applications in speech recognition,”Proc. IEEE, vol.
77, pp. 257–286, Feb. 1989.

[29] H. A. Bourland and N. Morgan,Connectionist Speech Recog-
nition: A Hybrid Approach. Boston: Kluwer, 1994.

[30] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular in-

teraction, and functional architecture in the cat’s visual cortex,”
J. Physiology (London), vol. 160, pp. 106–154, 1962.

[31] K. Fukushima, “Cognition: A self-organizing multilayered neu-
ral network,” Biological Cybern., vol. 20, pp. 121–136, 1975.

[32] K. Fukushima and S. Miyake, “Neocognitron: A new algorithm
for pattern recognition tolerant of deformations and shifts in
position,” Pattern Recognit., vol. 15, no. 6, pp. 455–469, Nov.
1982.

[33] M. C. Mozer, The Perception of Multiple Objects: A Con-
nectionist Approach. Cambridge, MA: MIT-Bradford Books,
1991.

[34] Y. LeCun, “Generalization and network design strategies,”
in Connectionism in Perspective, R. Pfeifer, Z. Schreter, F.
Fogelman, and L. Steels, Eds. Zurich, Switzerland: Elsevier,
1989.

[35] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel, “Handwritten digit
recognition with a back-propagation network,” inAdvances
in Neural Information Processing Systems 2 (NIPS’89), David
Touretzky, Ed. Denver, CO: Morgan Kaufmann, 1990.

[36] G. L. Martin, “Centered-object integrated segmentation and
recognition of overlapping hand-printed characters,”Neural
Computation, vol. 5, no. 3, pp. 419–429, 1993.

[37] J. Wang and J. Jean, “Multi-resolution neural networks for
omnifont character recognition,” inProc. Int. Conf. Neural
Networks, vol. III, 1993, pp. 1588–1593.

[38] Y. Bengio, Y. LeCun, C. Nohl, and C. Burges, “Lerec: A
NN/HMM hybrid for on-line handwriting recognition,”Neural
Computation, vol. 7, no. 5, 1995.

[39] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face
recognition: A convolutional neural network approach,”IEEE
Trans. Neural Networks, vol. 8, pp. 98–113, Jan. 1997.

[40] K. J. Lang and G. E. Hinton, “A time delay neural network
architecture for speech recognition,” Carnegie-Mellon Univ.,
Pittsburgh, PA, Tech. Rep. CMU-CS-88-152, 1988.

[41] A. H. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K.
Lang, “Phoneme recognition using time-delay neural networks,”
IEEE Trans. Acoustics, Speech, Signal Processing, vol. 37, pp.
328–339, Mar. 1989.

[42] L. Bottou, F. Fogelman, P. Blanchet, and J. S. Lienard, “Speaker
independent isolated digit recognition: Multilayer perceptron
versus dynamic time warping,”Neural Networks, vol. 3, pp.
453–465, 1990.

[43] P. Haffner and A. H. Waibel, “Time-delay neural networks
embedding time alignment: A performance analysis,” inProc.
EUROSPEECH’91, 2nd Europ. Conf. Speech Communication
and Technology, Genova, Italy.

[44] I. Guyon, P. Albrecht, Y. LeCun, J. S. Denker, and W. Hubbard,
“Design of a neural network character recognizer for a touch
terminal,” Pattern Recognit., vol. 24, no. 2, pp. 105–119, 1991.

[45] J. Bromley, J. W. Bentz, L. bottou, I. Guyon, Y. LeCun, C.
Moore, E. Säckinger, and R. Shah, “Signature verification using
a siamese time delay neural network,”Int. J. Pattern Recognit.
Artificial Intell., vol. 7, no. 4, pp. 669–687, Aug. 1993.

[46] Y. LeCun, I. Kanter, and S. Solla, “Eigenvalues of covariance
matrices: Application to neural-network learning,”Phys. Rev.
Lett., vol. 66, no. 18, pp. 2396–2399, May 1991.

[47] T. G. Dietterich and G. Bakiri, “Solving multiclass learning
problems via error-correcting output codes,”J. Artificial Intell.
Res., vol. 2, pp. 263–286, 1995.

[48] L. R. Bahl, P. F. Brown, P. V. de Souza, and R. L. Mercer,
“Maximum mutual information of hidden Markov model pa-
rameters for speech recognition,” inProc. Int. Conf. Acoustics,
Speech, Signal Processing, 1986, pp. 49–52.

[49] , “Speech recognition with continuous-parameter hidden
Markov models,” Comput., Speech Language, vol. 2, pp.
219–234, 1987.

[50] B. H. Juang and S. Katagiri, “Discriminative learning for
minimum error classification,”IEEE Trans. Acoustics, Speech,
Signal Processing, vol. 40, pp. 3043–3054, Dec. 1992.

[51] Y. LeCun, L. D. Jackel, L. Bottou, A. Brunot, C. Cortes, J. S.
Denker, H. Drucker, I. Guyon, U. A. Muller, E. S¨ackinger, P.
Simard, and V. N. Vapnik, “Comparison of learning algorithms
for handwritten digit recognition,” inInt. Conf. Artificial Neural
Networks, F. Fogelman and P. Gallinari, Eds. Paris: EC2 &
Cie, 1995, pp. 53–60.

[52] I. Guyon, I. Poujaud, L. Personnaz, G. Dreyfus, J. Denker, and
Y. LeCun, “Comparing different neural net architectures for

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2321Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

classifying handwritten digits,” inProc. IEEE IJCNN, Wash-
ington, DC, vol. II, 1989, pp. 127–132,.

[53] R. Ott, “Construction of quadratic polynomial classifiers,” in
Proc. IEEE Int. Conf. Pattern Recognition, 1976, pp. 161–165.

[54] J. Scḧurmann, “A multifont word recognition system for postal
address reading,”IEEE Trans. Comput., vol. C-27, pp. 721–732,
Aug. 1978.

[55] Y. Lee, “Handwritten digit recognition using k-nearest neigh-
bor, radial-basis functions, and backpropagation neural net-
works,” Neural Computation, vol. 3, no. 3, pp. 440–449, 1991.

[56] D. Saad and S. A. Solla, “Dynamics of on-line gradient descent
learning for multilayer neural networks,” inAdvances in Neural
Information Processing Systems, vol. 8, D. S. Touretzky, M.
C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA: MIT,
1996, pp. 302–308.

[57] G. Cybenko, “Approximation by superpositions of sigmoidal
functions,” Math. Control, Signals, Syst., vol. 2, no. 4, pp.
303–314, 1989.

[58] L. Bottou and V. N. Vapnik, “Local learning algorithms,”
Neural Computation, vol. 4, no. 6, pp. 888–900, 1992.

[59] R. E. Schapire, “The strength of weak learnability,”Machine
Learning, vol. 5, no. 2, pp. 197–227, 1990.

[60] H. Drucker, R. Schapire, and P. Simard, “Improving per-
formance inneural networks using a boosting algorithm,” in
Advances in Neural Information Processing Systems 5, S. J.
Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA:
Morgan Kaufmann, 1993, pp. 42–49.

[61] P. Simard, Y. LeCun, and J. Denker, “Efficient pattern recog-
nition using a new transformation distance,” inAdvances in
Neural Information Processing Systems, vol. 5, S. Hanson, J.
Cowan, and L. Giles, Eds. San Mateo, CA: Morgan Kauf-
mann, 1993.

[62] B. Boser, I. Guyon, and V. Vapnik, “A training algorithm
for optimal margin classifiers,” inProc. 5th Annu. Workshop
Computational Learning Theory, vol. 5, 1992, pp. 144–152.

[63] C. J. C. Burges and B. Schoelkopf, “Improving the accuracy
and speed of support vector machines,” inAdvances in Neural
Information Processing Systems 9, M. Jordan, M. Mozer, and
T. Petsche, Eds. Cambridge, MA: MIT, 1997.

[64] E. S̈ackinger, B. Boser, J. Bromley, Y. LeCun, and L. D. Jackel,
“Application of the ANNA neural network chip to high-speed
character recognition,”IEEE Trans. Neural Networks, vol. 3,
no. 3, pp. 498–505, Mar. 1992.

[65] J. S. Bridle, “Probabilistic interpretation of feedforward classi-
fication networks outputs, with relationship to statistical pattern
recognition,” inNeurocomputing, Algorithms, Architectures and
Applications, F. Fogelman, J. Herault, and Y. Burnod, Eds.
Les Arcs, France: Springer, 1989.

[66] Y. LeCun, L. Bottou, and Y. Bengio, “Reading checks with
graph transformer networks,” inProc. IEEE Int. Conf. Acous-
tics, Speech, Signal Processing. Munich, Germany, vol. 1, 1997,
pp. 151–154,.

[67] Y. Bengio,Neural Networks for Speech and Sequence Recogni-
tion. London, UK: International Thompson, 1996.

[68] C. Burges, O. Matan, Y. LeCun, J. Denker, L. Jackel, C.
Stenard, C. Nohl, and J. Ben, “Shortest path segmentation: A
method for training a neural network to recognize character
strings,” in Proc. Int. Joint Conf. Neural Networks, Baltimore,
MD, vol. 3, 1992, pp. 165–172.

[69] T. M. Breuel, “A system for the off-line recognition of hand-
written text,” in Proc. IEEE ICPR’94, Jerusalem, pp. 129–134.

[70] A. Viterbi, “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm,”IEEE Trans. In-
form. Theory, vol. 15, pp. 260–269, Apr. 1967.

[71] R. P. Lippmann and B. Gold, “Neural-net classifiers useful
for speech recognition,” inProc. IEEE 1st Int. Conf. Neural
Networks, San Diego, CA, June 1987, pp. 417–422.

[72] H. Sakoe, R. Isotani, K. Yoshida, K. Iso, and T. Watan-
abe, “Speaker-independent word recognition using dynamic
programming neural networks,” inProc. Int. Conf. Acoustics,
Speech, Signal Processing, Glasgow, 1989, pp. 29–32.

[73] J. S. Bridle, “Alphanets: A recurrent ‘neural’ network archi-
tecture with a hidden Markov model interpretation,”Speech
Commun., vol. 9, no. 1, pp. 83–92, 1990.

[74] M. A. Franzini, K. F. Lee, and A. H. Waibel, “Connectionist
viterbi training: A new hybrid method for continuous speech
recognition,” inProc. Int. Conf. Acoustics, Speech, Signal Pro-
cessing, Albuquerque, NM, 1990, pp. 425–428.

[75] L. T. Niles and H. F. Silverman, “Combining hidden Markov
models and neural network classifiers,” inProc. Int. Conf.
Acoustics, Speech, Signal Processing, Albuquerque, NM, 1990,
pp. 417–420.

[76] X. Driancourt and L. Bottou, “MLP, LVQ and DP: Comparison
& cooperation,” in Proc. Int. Joint Conf. Neural Networks,
Seattle, WA, vol. 2, 1991, pp. 815–819.

[77] Y. Bengio, R. De Mori, G. Flammia, and R. Kompe, “Global
optimization of a neural network-hidden Markov model hybrid,”
IEEE Trans. Neural Networks, vol. 3, pp. 252–259, March 1992.

[78] P. Haffner and A. H. Waibel, “Multi-state time-delay neural net-
works for continuous speech recognition,” vol. 4, inAdvances
in Neural Information Processing Systems. San Mateo, CA:
Morgan Kaufmann, pp. 579–588, 1992.

[79] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term
dependencies with gradient descent is difficult,”IEEE Trans.
Neural Networks, vol. 5, no. 2, pp. 157–166, Mar. 1994.

[80] T. Kohonen, G. Barna, and R. Chrisley, “Statistical pattern
recognition with neural network: Benchmarking studies,” in
Proc. IEEE 2nd Int. Conf. Neural Networks, San Diego, CA,
vol. 1, 1988, pp. 61–68.

[81] P. Haffner, “Connectionist speech recognition with a global
MMI algorithm,” in Proc. EUROSPEECH’93, 3rd Europ. Conf.
Speech Communication and Technology, Berlin, pp. 1929–1932.

[82] J. S. Denker and C. J. Burges, “Image segmentation and
recognition,” inThe Mathematics of Induction. Reading, MA:
Addison Wesley, 1995.

[83] L. Bottou,Une Approche th´eorique de l’Apprentissage Connex-
ionniste: Applications `a la Reconnaissance de la Parole, Ph.D.
dissertation, Univ. Paris XI, France, 1991.

[84] M. Rahim, Y. Bengio, and Y. LeCun, “Disriminative feature
and model design for automatic speech recognition,” inProc.
Eurospeech, Rhodes, Greece, 1997, pp. 75–78.

[85] U. Bodenhausen, S. Manke, and A. Waibel, “Connectionist
architectural learning for high performance character and speech
recognition,” inProc. Int. Conf. Acoustics, Speech, Signal Pro-
cessing, Minneapolis, MN, vol. 1, 1993, pp. 625–628.

[86] F. Pereira, M. Riley, and R. Sproat, “Weighted rational trans-
ductions and their application to human language processing,”
in ARPA Natural Language Processing Workshop, 1994.

[87] M. Lades, J. C. Vorbr̈uggen, J. Buhmann, and C. von der Mals-
burg, “Distortion invariant object recognition in the dynamic
link architecture,”IEEE Trans. Comput., vol. 42, pp. 300–311,
March 1993.

[88] B. Boser, E. S¨ackinger, J. Bromley, Y. LeCun, and L. Jackel,
“An analog neural network processor with programmable topol-
ogy,” IEEE J. Solid-State Circuits, vol. 26, pp. 2017–2025, Dec.
1991.

[89] M. Schenkel, H. Weissman, I. Guyon, C. Nohl, and D. Hender-
son, “Recognition-based segmentation of on-line hand-printed
words,” in Advances in Neural Information Processing Systems
5, S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. Denver,
CO: Morgan Kaufmann, 1993, pp. 723–730.

[90] C. Dugust, L. Devillers, and X. Aubert, “Combining TDNN
and HMM in a hybrid system for improved continuous-speech
recognition,”IEEE Trans. Speech Audio Processing, vol. 2, pp.
217–224, Jan. 1994.

[91] O. Matan, H. S. Baird, J. Bromley, C. J. C. Burges, J. S. Denker,
L. D. Jackel, Y. LeCun, E. P. D. Pednault, W. Satterfield, C. E.
Stenard, and T. J. Thompson, “Reading handwritten digits: A
ZIP code recognition system,”IEEE Trans. Comput., vol. 25,
no. 7, pp. 59–63, July 1992.

[92] Y. Bengio and Y. LeCun, “Word normalization for on-line
handwritten word recognition,” inProc. IEEE Int. Conf. Pattern
Recognition, Jerusalem, 1994.

[93] R. Vaillant, C. Monrocq, and Y. LeCun, “Original approach for
the localization of objects in images,”Proc. Inst. Elect. Eng.,
vol. 141, no. 4, pp. 245–250, Aug. 1994.

[94] R. Wolf and J. Platt, “Postal address block location using a
convolutional locator network,” inAdvances in Neural Infor-
mation Processing Systems 6, J. D. Cowan, G. Tesauro, and
J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann, 1994,
pp. 745–752.

[95] S. Nowlan and J. Platt, “A convolutional neural network hand
tracker,” inAdvances in Neural Information Processing Systems
7, G. Tesauro, D. Touretzky, and T. Leen, Eds. San Mateo,
CA: Morgan Kaufmann, 1995, pp. 901–908.

[96] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based

2322 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

face detection,” inProc. IEEE CVPR’96, pp. 203–208.
[97] E. Osuna, R. Freund, and F. Girosi, “Training support vector

machines: An application to face detection,” inProc. IEEE
CVPR’96, pp. 130–136.

[98] H. Bourlard and C. J. Wellekens, “Links between Markov
models and multilayer perceptrons,” inAdvances in Neural
Information Processing Systems, D. Touretzky, Ed. Denver:
Morgan-Kaufmann, vol. 1, 1989, pp. 186–187.

[99] Y. Bengio, R. De Mori, G. Flammia, and R. Kompe, “Neural
network—Gaussian mixture hybrid for speech recognition or
density estimation,” inAdvances in Neural Information Process-
ing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann,
Eds. Denver, CO: Morgan Kaufmann, 1992, pp. 175–182.

[100] F. C. N. Pereira and M. Riley, “Speech recognition by compo-
sition of weighted finite automata,” inFinite-State Devices for
Natural Lague Processing. Cambridge, MA: MIT, 1997.

[101] M. Mohri, “Finite-state transducers in language and speech
processing,”Computational Linguistics, vol. 23, no. 2, pp.
269–311, 1997.

[102] I. Guyon, M. Schenkel, and J. Denker, “Overview and syn-
thesis of on-line cursive handwriting recognition techniques,”
in Handbook on Optical Character Recognition and Document
Image Analysis, P. S. P. Wang and H. Bunke, Eds. New York:
World Scientific, 1996.

[103] M. Mohri and M. Riley, “Weighted determinization and mini-
mization for large vocabulary recognition,” inProc. Eurospeech
’97, Rhodes, Greece, pp. 131–134.

[104] Y. Bengio and P. Frasconi, “An input/output HMM architec-
ture,” in Advances in Neural Information Processing Systems,
vol. 7, G. Tesauro, D. Touretzky, and T. Leen, Eds. Cam-
bridge, MA: MIT, pp. 427–434, 1996.

[105] , “Input/output HMM’s for sequence processing,”IEEE
Trans. Neural Networks, vol. 7, no. 5, pp. 1231–1249, 1996.

[106] M. Mohri, F. C. N. Pereira, and M. Riley,A Rational Design
for a Weighted Finite-State Transducer Library(Lecture Notes
in Computer Science). New York: Springer Verlag, 1997.

[107] M. Rahim, C. H. Lee, and B. H. Juang, “Discriminative
utterance verification for connected digits recognition,”IEEE
Trans. Speech Audio Processing, vol. 5, pp. 266–277, 1997.

[108] M. Rahim, Y. Bengio, and Y. LeCun, “Discriminative feature
and model design for automatic speech recognition,” inProc.
Eurospeech ’97, Rhodes, Greece.

[109] S. Bengio and Y. Bengio, “An EM algorithm for asynchronous
input/output hidden Markov models,” inProc. International
Conference on Neural Information Processing, Hong-King,
1996, pp. 328–334.

[110] C. Tappert, C. Suen, and T. Wakahara, “The state of the art
in on-line handwriting recognition,”IEEE Trans. Pattern Anal.
Machine Intell., vol. 8, pp. 787–808, Dec. 1990.

[111] S. Manke and U. Bodenhausen, “A connectionist recognizer
for on-line cursive handwriting recognition,” inProc. Int. Conf.
Acoustics, Speech, Signal Processing, Adelaide, vol. 2, 1994,
pp. 633–636.

[112] M. Gilloux and M. Leroux, “Recognition of cursive script
amounts on postal checks,” inProc. Europ. Conf. Postal Tech-
nol., Nantes, France, June 1993, pp. 705–712.

[113] D. Guillevic and C. Y. Suen, “Cursive script recognition applied
to the processing of bank checks,” inProc. Int. Conf. Document
Analysis Recognition, Montreal, Canada, Aug. 1995, pp. 11–14.

[114] L. Lam, C. Y. Suen, D. Guillevic, N. W. Strathy, M. Cheriet,
K. Liu, and J. N. Said, “Automatic processing of informa-
tion on checks,” inInt. Conf. Systems, Man, and Cybernetics,
Vancouver, Canada, Oct. 1995, pp. 2353–2358.

[115] C. J. C. Burges, J. I. Ben, J. S. Denker, Y. LeCun, and C. R.
Nohl, “Off line recognition of handwritten postal words using
neural networks,”Int. J. Pattern Recognit. Artificial Intell., vol.
7, no. 4, p. 689, 1993.

[116] Y. LeCun, Y. Bengio, D. Henderson, A. Weisbuch, H. Weiss-
man, and L. Jackel, “On-line handwriting recognition with
neural networks: Spatial representation versus temporal repre-
sentation,” inProc. Int. Conf. Handwriting Drawing, 1993.

[117] U. Müller, A. Gunzinger, and W. Guggenb¨uhl, “Fast neural net
simulation with a DSP processor array,”IEEE Trans. Neural
Networks, vol. 6, pp. 203–213, Jan. 1995.

[118] R. Battiti, “First- and second-order methods for learning: Be-
tween steepest descent and Newton’s method,”Neural Compu-
tation, vol. 4, no. 2, pp. 141–166, 1992.

[119] A. H. Kramer and A. Sangiovanni-Vincentelli, “Efficient par-

allel learning algorithms for neural networks,” inAdvances in
Neural Information Processing Systems, vol. 1, D. S. Touretzky,
Ed. San Mateo, CA: Morgan Kaufmann, 1988, pp. 40–48.

[120] M. Moller, Efficient Training of Feed-Forward Neural Net-
works, Ph.D. dissertation, Aarhus Univ., Aarhus, Denmark,
1993.

[121] S. Becker and Y. LeCun, “Improving the convergence of
back-propagation learning with second-order methods,” Univ.
Toronto Connectionist Res. Group, Toronto, Ontario, Canada,
Tech. Rep. CRG-TR-88-5, Sept. 1988.

Yann LeCun (Member, IEEE) received the
Diplôme d’Inǵenieur degree from the Ecole
Supérieure d’Ingénieur en Electrotechnique
et Electronique, Paris, in 1983 and the Ph.D.
degree in computer science from the Universit´e
Pierre et Marie Curie, Paris, in 1987.

During his time at the Université Pierre et
Marie Curie, he proposed an early version of
the back-propagation learning algorithm for
neural networks. He joined the Department of
Computer Science at the University of Toronto,

Toronto, Ont., Canada, as a Research Associate in 1987. In 1988, he joined
the Adaptive Systems Research Department at AT&T Bell Laboratories,
Holmdel, NJ, where he worked on neural networks, machine learning, and
handwriting recognition. In 1996 he became Head of the Image Processing
Services Research Department at AT&T Labs-Research, Red Bank, NJ.
He has published over 70 technical papers and book chapters on neural
networks, machine learning, pattern recognition, handwriting recognition,
document understanding, image processing, very large scale integration
(VLSI) design, and information theory. In addition to the above topics, his
current interests include video-based user interfaces, image compression,
and content-based indexing of multimedia material.

Dr. LeCun serves on the board of theMachine Learning Journaland
has served as Associate Editor of the IEEE TRANSACTIONS ON NEURAL

NETWORKS. He is General Chair of the “Machines That Learn” workshop,
which has been held every year since 1986 in Snowbird, UT. He has
served as Program Co-Chair of IJCNN’89, INNC’90, and NIPS’90,
’94, and ’95. He is a member of the IEEE Neural Network for Signal
Processing Technical Committee.

Léon Bottou received the Dip̂ome degree from
Ecole Polytechnique, Paris, in 1987, the Mag-
istère en Math́ematiques Fondamentales et Ap-
pliquées et Informatiques degree from Ecole
Normale Suṕerieure, Paris in 1988, and the
Ph.D. degree in computer science from Univer-
sité de Paris-Sud in 1991.

During his time at Universit´e de Paris-Sud he
worked on speech recognition and proposed a
framework for stochastic gradient learning and
global training. He then joined the Adaptive

Systems Research Department at AT&T Bell Laboratories, Holmdel, NJ,
where he worked on neural networks, statistical learning theory, and local
learning algorithms. He returned to France in 1992 as a Research Engineer
at ONERA. He then became Chairman of Neuristique S.A., a company
that makes neural network simulators and traffic forecasting software.
He returned to AT&T Bell Laboratories in 1995 where he worked on
graph transformer networks for optical character recognition. He is now a
Member of the Image Processing Services Research Department at AT&T
Labs-Research, Red Bank, NJ. Besides learning algorithms, his current
interests include arithmetic coding, image compression, and indexing.

LECUN et al.: GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION 2323Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

Yoshua Bengioreceived the B.Eng. degree in
electrical engineering and the M.Sc. and Ph.D.
degrees in computer science from McGill Uni-
versity, Montreal, P.Q., Canada, in 1986, 1988,
and 1991, respectively.

In 1991–1992 he was a Postdoctoral Fel-
low at the Massachusetts Institute of Technol-
ogy, Cambridge. In 1992 he joined AT&T Bell
Laboratories, which later became AT&T Labs-
Research, Red Bank, NJ. In 1993 he joined the
faculty of the computer science department of

the Universit́e de Montŕeal, Montŕeal, P.Q., Canada, where he is now an
Associate Professor. Since his first work on neural networks in 1986,
his research interests have been centered around learning algorithms,
especially for data with a sequential or spatial nature, such as speech,
handwriting, and time-series.

Patrick Haffner graduated from Ecole Poly-
technique, Paris, in 1987 and from Ecole
Nationale Suṕerieure des T́elécommunications
(ENST), Paris, in 1989. He received the Ph.D
degree in speech and signal processing from
ENST in 1994.

In 1988 and 1990, he worked on the design of
the TDNN and the MS-TDNN architectures at
ATR (Japan) and Carnegie Mellon University.
From 1989 to 1995, as a Research Scientist
for CNET/France-T´elécom in Lannion, France,

he developed connectionist learning algorithms for telephone speech
recognition. In 1995, he joined AT&T Bell Laboratories, Holmdel, NJ, and
worked on the application of optical character recognition and transducers
to the processing of financial documents. In 1997, he joined the Image
Processing Services Research Department at AT&T Labs-Research, Red
Bank, NJ. His research interests include statistical and connectionist
models for sequence recognition, machine learning, speech and image
recognition, and information theory.

2324 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998Authorized licensed use limited to: Princeton University. Downloaded on February 10,2025 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

