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Fueled by innovation in the computer vision and artificial 

intelligence communities, recent developments in 

computational neuroscience have used goal-driven hierarchical 

convolutional neural networks (HCNNs) to make strides in 

modeling neural single-unit and population responses in higher 

visual cortical areas. In this Perspective, we review the recent 

progress in a broader modeling context and describe some of 

the key technical innovations that have supported it. We then 

outline how the goal-driven HCNN approach can be used to 

delve even more deeply into understanding the development 

and organization of sensory cortical processing. 

What should one expect of a model of sensory cortex?

Brains actively reformat incoming sensory data to better serve their 

host organism’s behavioral needs (Fig. 1a). In human vision, retinal 

input is converted into rich object-centric scenes; in human audition, 

sound waves become words and sentences. The core problem is that 

the natural axes of sensory input space (for example, photoreceptor 

or hair cell potentials) are not well-aligned with the axes along which 

high-level behaviorally relevant constructs vary. For example, in vis-

ual data, object translation, rotation, motion in depth, deformation, 

lighting changes and so forth cause complex nonlinear changes in the 

original input space (the retina). Conversely, images of two objects 

that are ecologically quite distinct—for example, different individuals’ 

faces—can be very close together in pixel space. Behaviorally relevant 

dimensions are thus ‘entangled’ in this input space, and brains must 

accomplish the untangling1,2.

Two foundational empirical observations about cortical sensory 

systems are that they consist of a series of anatomically distinguish-

able but connected areas3,4 (Fig. 1b) and that the initial wave of neural 

activity during the first 100 ms after a stimulus change unfolds as a 

cascade along that series of areas2. Each individual stage of the cascade 

performs very simple neural operations such as weighted linear sums 

of inputs or nonlinearities such as activation thresholds and competi-

tive normalization5. However, complex nonlinear transformations can 

arise from simple stages applied in series6. Since the original input 

entanglement was highly nonlinear, the untangling process must also 

be highly nonlinear.

The space of possible nonlinear transformations that the brains  

neural networks could potentially compute is vast. A major challenge  

in understanding sensory systems is thus systems identification:  

identifying which transformations the true biological circuits are  

using. While identifying summaries of neural transfer functions (for 

example, receptive field characterization) can be useful7, solving  

this systems identification problem ultimately involves producing an 

encoding model: an algorithm that accepts arbitrary stimulus inputs 

(for example, any pixel map) and outputs a correct prediction of neural 

responses to that stimulus. Models cannot be limited just to explaining 

a narrow phenomenon identified on carefully chosen neurons, defined 

only for highly controlled and simplified stimuli8,9. Operating on arbi-

trary stimuli and quantitatively predicting the responses of all neurons 

in an area are two core criteria that any model of a sensory area must 

meet (see Box 1).

Moreover, a comprehensive encoding model must not merely 

predict the stimulus-response relationship of neurons in one final 

area, such as (in vision) anterior inferior temporal cortex. Instead, 

the model must also be mappable: having identifiable components  

corresponding to intermediate cortical areas (for example, V1, V2, 

V4) and, ultimately, subcortical circuits as well. The model’s responses 

in each component area should correctly predict neural response  

patterns within the corresponding brain area (Fig. 1c).

Hierarchical convolutional neural networks

Starting with the seminal work of Hubel and Wiesel10, work in visual 

systems neuroscience has shown that the brain generates invariant 

object recognition behavior via a hierarchically organized series of 

cortical areas, the ventral visual stream2. A number of workers have 

built biologically inspired neural networks generalizing Hubel and 

Wiesel’s ideas (for example, refs. 11–15). Over time, it was realized 

that these models were examples of a more general class of computa-

tional architectures known as HCNNs16. HCNNs are stacks of layers 

containing simple neural circuit motifs repeated across the sensory 

input; these layers are then composed in series. (Here, “layer” is used 

in the neural network sense, not in the cortical anatomy sense.) Each 

layer is simple, but a deep network composed of such layers com-

putes a complex transformation of the input data—analogous to the  

transformation produced in the ventral stream.

The motifs in a single HCNN layer

The specific operations comprising a single HCNN layer were inspired 

by the ubiquitously observed linear-nonlinear (LN) neural motif5. 

These operations (Fig. 1c) include (i) filtering, a linear operation that 

takes the dot product of local patches in the input stimulus with a set 

of templates, (ii) activation, a pointwise nonlinearity—typically either 
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a rectified linear threshold or a sigmoid, (iii) pooling, a nonlinear  

aggregation operation—typically the mean or maximum of local  

values13, and (iv) divisive normalization, correcting output values to 

a standard range17. Not all HCNN incarnations use these operations 

in this order, but most are reasonably similar. All the basic operations 

exist within a single HCNN layer, which is then typically mapped to 

a single cortical area.

Analogously to neural receptive fields, all HCNN operations are 

applied locally, over a fixed-size input zone that is typically smaller 

than the full spatial extent of the input (Fig. 1c). For example, on a 

256 × 256 pixel image, a layer’s receptive fields might be 7 × 7 pixels. 

Because they are spatially overlapping, the filter and pooling operations  

are typically ‘strided’, meaning that output is retained for only a  

fraction of positions along each spatial dimension: a stride of 2 in 

image convolution will skip every second row and column.

In HCNNs, filtering is implemented via convolutional weight shar-

ing, meaning that the same filter templates are applied at all spatial 

locations. Since identical operations are applied everywhere, spatial 

variation in the output arises entirely from spatial variation in the 

input stimulus. It is unlikely the brain literally implements weight 

sharing, since the physiology of the ventral stream and other sensory 

cortices appears to rule out the existence of a single master location in 
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Figure 1 HCNNs as models of sensory  

cortex. (a) The basic framework in which  

sensory cortex is studied is one of encoding—the process by which stimuli are transformed  

into patterns of neural activity—and decoding, the process by which neural activity generates  

behavior. HCNNs have been used to make models of the encoding step; that is, they describe  

the mapping of stimuli to neural responses as measured in brain. (b) The ventral visual pathway is the most comprehensively studied sensory cascade. 

It consists of a series of connected cortical brain areas (macaque brain shown). PIT, posterior inferior temporal cortex; CIT, central; AIT, anterior; 

RGC, retinal ganglion cell; LGN, lateral geniculate nucleus. DoG, difference of Gaussians model; T(•), transformation. (c) HCNNs are multilayer neural 

networks, each of whose layers are made up of a linear-nonlinear (LN) combination of simple operations such as filtering, thresholding, pooling and 

normalization. The filter bank in each layer consists of a set of weights analogous to synaptic strengths. Each filter in the filter bank corresponds to a 

distinct template, analogous to Gabor wavelets with different frequencies and orientations; the image shows a model with four filters in layer 1, eight in 

layer 2, and so on. The operations within a layer are applied locally to spatial patches within the input, corresponding to simple, limited-size receptive 

fields (red boxes). The composition of multiple layers leads to a complex nonlinear transform of the original input stimulus. At each layer, retinopy 

decreases and effective receptive field size increases. HCNNs are good candidates for models of the ventral visual pathway. By definition, they are image 

computable, meaning that they generate responses for arbitrary input images; they are also mappable, meaning that they can be naturally identified in a 

component-wise fashion with observable structures in the ventral pathway; and, when their parameters are chosen correctly, they are predictive, meaning 

that layers within the network describe the neural response patterns to large classes of stimuli outside the domain on which the models were built.

Box 1 Minimal criteria for a sensory encoding model 

We identify three criteria that any encoding model of a sensory cortical system should meet:

Stimulus-computability: The model should accept arbitrary stimuli within the general stimulus domain of interest;

Mappability: The components of the model should correspond to experimentally deinable components of the neural system; and

Predictivity: The units of the model should provide detailed predictions of stimulus-by-stimulus responses, for arbitrarily chosen neurons in each 

mapped area.

These criteria may sometimes be in tension—insisting on mappability at the inest grain might hinder identifying models that actually work for complex 

real-world stimuli, since low-level circuit tools may operate best in reduced stimulus regimes. While seeking detailed models of neural circuit connec-

tivity in simpliied contexts is important, if such models do not add up in the aggregate to accurate predictors of neural responses to real-world stimuli, 

the utility of their lower-level verisimilitude is limited.
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which shared templates could be stored. However, the natural visual 

(or auditory) statistics of the world are themselves largely shift invari-

ant in space (or time), so experience-based learning processes in the 

brain should tend to cause weights at different spatial (or temporal) 

locations to converge. Shared weights are therefore likely to be a rea-

sonable approximation to the brain’s visual system, at least within the 

central visual field. The real visual system has a strong foveal bias, and 

more realistic treatment of nonuniform receptive field density might 

improve models’ fits to neural data.

Deep networks through stacking

Since convolutional layer outputs have the same spatial layout as their 

inputs, output of one layer can be input to another. HCNNs can thus 

be stacked into deep networks (Fig. 1c). Although the local fields seen 

by units in a single layer have a fixed, small size, the effective recep-

tive field size relative to the original input increases with succeeding 

layers. Because of repeated striding, deep HCNNs typically become 

less retinotopic with each succeeding layer, consistent with empirical 

observations4. However, the number of filter templates used in each 

layer typically increases. Thus, the dimensionality changes through 

the layers from wide and shallow to deep and narrow (Fig. 1c).  

After many strided layers, the spatial component of the output is 

so reduced that convolution is no longer meaningful, whereupon 

networks are typically extended using one or more fully connected 

layers. The last layer is usually used for readout: for example, for 

each of several visual categories, the likelihood of the input image 

containing an object of the given category might be represented by 

one output unit.

HCNNs as a parameterized model family

HCNNs are not a single model, but rather a parameterized model 

class. Any given HCNN is characterized by the following:

   discrete  architectural  parameters,  including  the  number  of  layers  

the network contains,  as well  as,  for  each  layer, discrete parameters 

specifying  the  number  of  ilter  templates;  the  local  radius  of  each  

iltering,  pooling  and  normalization  operation;  the  pooling  type;  

and potentially other choices required by the speciic HCNN imple-

mentation; and

   continuous  ilter  parameters,  specifying  the  ilter  weights  of  

convolutional and fully connected layers.

Though parameter choices might seem like mere details, subtle 

parameter differences can dramatically affect a network’s perform-

ance on recognition tasks and its match to neural data15,18.

Given the minimal model criteria described in Box 1, a key goal is 

identifying a single HCNN parameter setting whose layers correspond 

to distinct regions within the cortical system of interest (for example, 

different areas in the ventral stream) and which accurately predict 

response patterns in those areas (see Box 2).

While an oversimplification, the relationship between modifying 

filters and architectural parameters is somewhat analogous to that 

between developmental and evolutionary variation. Filter param-

eters are thought of as corresponding to synaptic weights, and their  

learning algorithms (see discussion of backpropagation below) 

update parameters in an online fashion. Changing architectural 

parameters, in contrast, restructures the computational primitives,  

•

•

Box 2 Mapping models to neural sensory systems 

How does one map artiicial neural networks to real neurons? Several approaches are possible, at varying levels of neural detail.

Task information consistency. At the coarsest level, a useful metric of model similarity to a system is the consistency of patterns of explicitly decoda-

ble information available to support potential behavioral tasks. In this approach, populations of ‘neurons’ from a model and populations of recorded 

neurons are analyzed with identical decoding methods on a battery of high-level tasks (for example, object recognition, face identiication and so forth). 

While not required, it is useful to use simple decoders such as linear classiiers or linear regressors1,32,63,64, as these embody hypothetical downstream 

decoding circuits65,66. This procedure generates a pattern of response choices for both the model and the neural population. These patterns are then 

compared to each other either at a coarse grain (for example, via accuracy levels for each task32) or a ine grain (stimulus-by-stimulus response consist-

ency). We note that this approach naturally connects to the linkage between neuronal populations and behavior32, as both models and neurons can be 

compared to behavioral measurements from either in animal or humans subjects. Both the neural area thought be most directly connected to behavior 

(for example, IT in the visual case) and the computational model of this area should exhibit high consistency with those behavioral patterns32.

Population representational similarity. Another population-level metric is representational similarity analysis29,35, in which the two representations (that of the 

real neurons and that of the model) are characterized by their pairwise stimulus correlation matrix (Fig. 2d). For a given set of stimuli, this matrix describes 

how far apart a representation ‘thinks’ each pair of stimuli are. These distance matrices are then compared for similarity: the model is judged to be similar to 

the neural representation if it treats stimuli pairs as close to (or far from) each other whenever the real neural population representation also does so.

Single-unit response predictivity. A iner grained mapping of models to neurons is that of linear neural response predictivity of single units33. This idea is 

best understood via a simple thought experiment: imagine one had measurements from all neurons in a given brain area in two animals: a source animal 

and a target animal. How would one map the neurons in the source to neurons in the target? In many brain areas (such as, for example, V4 or IT), there 

might not be an exact one-to-one mapping of units between the animals. However, it is reasonable to suppose that the two animals’ areas are the same (or 

very similar) up to linear transform—for example, that units in the target animal are approximately linear combinations of (a small number of) units in the 

source animal. In engineering terms, the animals would be said to be ‘equivalent bases’ for sensory representation. (If the mapping had to be nonlinear, 

it would call into question whether the two areas were the same across animals to begin with.) Making the mapping would, in effect, be the problem of 

identifying the correct linear combinations. The same idea can be used to map units in a model layer to neurons in a brain area. Speciically, each empiri-

cally measured neuron is treated as the target of linear regression from units in the model layer. The goal is ind linear combinations of model units that 

together produce a ‘synthetic neuron’ that will reliably have the same response patterns as the original target real neuron: ind c i ni , { , , }∈ …1  such that

 
r x r x c m x

i

i i( ) ( ) ( )≈ = ∑synth

where r(x) is the response of neuron r to stimulus x, and mi(x) is the response of the i-th model unit (in some ixed model layer). Accuracy of rsynth is 

then measured as its explained variance (R2) for r on new stimuli not used to identify the coeficients ci. Ideally, the number of model source units i 

that have nonzero weights ci would be approximately the same as would be found empirically when attempting to map the neurons in one animal to 

those in same brain area for a different animal.

n
p
g

©
 2

0
1
6 

N
a

tu
re

 A
m

e
ri

c
a

, 
In

c
. 
A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.



NATURE NEUROSCIENCE VOLUME 19 | NUMBER 3 | MARCH 2016 359

P E R S P E C T I V E

the number of sensory areas (model layers) and the number of  

neurons in each area.

Early models of visual cortex in context

A number of approaches have been taken to identify HCNN param-

eters that best match biological systems.

Hand-designing parameters via Hubel and Wiesel theory. Beginning 

in the 1970s, before the HCNN concept was fully articulated, modelers  

started tackling lower cortical areas such as V1, where neurons 

might be explicable through comparatively shallow networks. Hubel 

and Wiesel’s empirical observations suggested that neurons in V1 

resemble Gabor wavelet filters, with different neurons corresponding  

to edges of different frequencies and orientations10,19. Indeed, early 

computational models using hand-designed Gabor filter banks as 

convolution weights achieved some success in explaining V1 neural 

responses20. Later it was realized that models could be substantially 

improved using nonlinearities such as thresholding, normaliza-

tion and gain control5,21, helping motivate the HCNN class in the 

first place. Similar ideas have been proposed for modeling primary  

auditory cortex22.

Learning parameters via efficient coding constraints. The work of 

Barlow, Olshausen and others introduced another way of determining 

filter parameters23,24. Filters were optimized to minimize the number 

of units activated by any given stimulus while still retaining the abil-

ity to reconstruct the original input. Such ‘sparse’ efficient codings 

naturally learn Gabor-wavelet-like filters from natural image data, 

without having to build those patterns in by hand.

Fitting networks to neural data. Another natural approach begun 

in the mid-1990s was to bring neuroscience data directly to bear on 

model parameter choice. The idea was to collect response data to 

various stimuli for neurons in a brain area of interest and then use 

statistical fitting techniques to find model parameters that reproduce 

the observed stimulus–response relationship. This strategy had some 

success fitting shallow networks to visual area V1, auditory area A1 

and somatosensory area S1 (reviewed in ref. 25).

Difficulties with deeper networks. Given successful shallow convo-

lutional models of early cortical areas, perhaps deeper models would 

shed light on downstream sensory areas. However, the deeper models 

needed to model such higher areas would have many more parameters 

than V1-like models. How should these parameters be chosen?

The outputs on which higher layers operate are challenging to visu-

alize, making it difficult to generalize the hand-designed approach 

to deeper networks. Similarly, while some progress has been made 

in extending efficient coding beyond one layer26, these approaches 

also have not yielded effective deeper networks. Multi-layer HMAX  

networks were created by choosing parameters roughly to match 

known biological constraints12,13. HMAX networks had some success 

reproducing high-level empirical observations, such as the tolerance 

ranges of inferior temporal (IT) cortex neurons12,27 and the tradeoff 

between single-unit selectivity and tolerance28.

However, by the mid-2000s, it had become clear that these 

approaches were all having trouble extending to higher cortical areas 

such as V4 and IT. For example, HMAX models failed to match pat-

terns of IT population activity on batteries of visual images29, while 

multilayered neural networks fit to neural data in V4 and IT ended 

up overfitting the training data and predicting comparatively small 

amounts of explained variance on novel testing images8.

One plausible reason for this lack of success was that the largely 

feedforward neural networks being explored were too limited to 

capture the data efficiently. Perhaps more sophisticated network 

architectures, using feedback30 or millisecond-scale spike timing31, 

would be required. A second possibility was that failure arose from 

not having enough neural data to fit the model parameters. Single-

unit physiology approaches8 or whole-brain functional MRI29 could 

measure responses to perhaps 1,000 independent stimuli, while array  

electrophysiology32 could obtain responses to ~10,000 stimuli.  

In hindsight, the amount of neural data available to constrain such 

networks was several orders of magnitude too little.

A new way forward: goal-driven networks as neural models

The goal-driven approach is inspired by the idea that, whatever param-

eters are used, a neural network will have to be effective at solving  

the behavioral tasks the sensory system supports to be a correct model 

of a given sensory system. The idea of this approach is to first optimize 

network parameters for performance on an ethologically relevant 

task, and then, once network parameters have been fixed, to compare  

networks to neural data. This approach avoids the severe data limi-

tation of pure neural fitting, as collecting (for example) millions of 

human-labeled images containing many hard real-world cases of 

object recognition is far easier than obtaining comparable neural 

data. The key question becomes: do such top-down goals strongly 

constrain biological structure? Will performance optimization 

imposed at the outputs of a network be sufficient to cause hidden 

layers in the network to behave like real neurons in, for example, 

V1, V4 or IT? A series of recent results has shown that this might  

indeed be the case.

The technological bases of the goal-driven approach are recent 

improvements in optimizing neural networks performance for arti-

ficial intelligence tasks. In this section, we discuss how these tools 

have led to better neural models; in the next, we discuss the technical 

innovations underlying those tools.

Top hidden layers of categorization-optimized HCNNs predict 

IT neuronal responses. High-throughput computational experi-

ments evaluating thousands of HCNN models on task performance 

and neural-predictivity metrics revealed a key correlation: archi-

tectures that perform better on high-level object recognition tasks 

also better predict cortical spiking data33,34 (Fig. 2a). Pushing this 

idea further by using recent advances from machine learning led to 

the discovery of hierarchical neural network models that achieved 

near-human-level performance level on challenging object categori-

zation tasks. It turned out that the top hidden layers of these models 

were the first quantitatively accurate image-computable model of 

spiking responses in IT cortex, the highest-level area in the ventral 

hierarchy18,33,34 (Fig. 2b,c). Similar models have also been shown to 

predict population aggregate responses in functional MRI data from  

human IT (Fig. 2d)35,36.

These results are not trivially explained merely by any signal reflect-

ing object category identity being able to predict IT responses. In fact, at 

the single neuron level, IT neural responses are largely not categorical,  

and ideal-observer models with perfect access to category and iden-

tity information are far less accurate IT models than goal-driven 

HCNNs33 (Fig. 2a,c). Being a true image-computable neural network 

model appears critical for obtaining high levels of neural predictivity. 

In other words: combining two general biological constraints—the 

behavioral constraint of the object recognition task and the architec-

tural constraint imposed by the HCNN model class—leads to greatly 

improved models of multiple layers of the visual sensory cascade.
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Though the top hidden layers of these goal-driven models end up 

being predictive of IT cortex data, they were not explicitly tuned to 

do so; indeed, they were not exposed to neural data at all during the 

training procedure. Models thus succeeded in generalizing in two 

ways. First, the models were trained for category recognition using 

real-world photographs of objects in one set of semantic catego-

ries, but were tested against neurons on a completely distinct set of  

synthetically created images containing objects whose semantic cat-

egories were entirely non-overlapping with that used in training. 

Second, the objective function being used to train the network was 

not to fit neural data, but instead the downstream behavioral goal 

(for example, categorization). Model parameters were independently 

selected to optimize categorization performance, and were compared 

with neural data only after all intermediate parameters—for example, 

nonlinear model layers—had already been fixed.

Stated another way, within the class of HCNNs, there appear to be 

comparatively few qualitatively distinct, efficiently learnable solutions 

to high-variation object categorization tasks, and perhaps the brain is 

forced over evolutionary and developmental timescales to pick such a 

solution. To test this hypothesis it would be useful to identify non-HCNN  
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Figure 2 Goal-driven optimization yields neurally predictive models of ventral visual cortex. (a) HCNN models that are better optimized to solve 

object categorization produce hidden layer representations that are better able to predict IT neural response variance. The x axis shows performance 

(balanced accuracy; chance is 50%) of the model output features on a high-variation object categorization task. The y axis shows the median single-

site IT response predictivity of the last hidden layer of the HCNN model, over n = 168 IT sites. Site responses are defined as the mean firing rate 

70–170 ms after image onset. Response predictivity is defined as in Box 2. Each dot corresponds to a distinct HCNN model from a large family of such 

models. Models shown as blue circles were selected by random draws from object categorization performance-optimization; black circles show controls 

and earlier published HCNN models; red squares show the development over time of HCNN models produced during an optimization procedure that 

produces a specific HCNN model33. PLOS09, ref. 15; SIFT, shape-invariant feature transform; HMO, optimized HCNN. (b) Actual neural response 

(black trace) versus model predictions of the last hidden layer of an HCNN model (red trace) for a single IT neural site. The x axis shows 1,600 test 

images, none of which were used to fit the model. Images are sorted first by category identity and then by variation amount, with more drastic image 

transformations toward the right within each category block. The y axis represents the response of the neural site and model prediction for each  

test image. This site demonstrated face selectivity in its responses (see inset images), but predictivity results were similar for other IT sites33.  

(c) Comparison of IT and V4 single-site neural response predictivity for various models. Bar height shows median predictivity, taken over 128 predicted 

units in V4 (left panel) or 168 units in IT (right panel). The last hidden layer of the HCNN model best predicts IT responses, while the second-to-last 

hidden layer best predicts V4 responses. (d) Representational dissimilarity matrices (RDMs) for human IT and HCNN model. Blue color indicates 

low values, where representation treats image pairs as similar; red color indicates high values, where representation treats image pairs as distinct. 

Values range from 0 to 1. (e) RDM similarity, measured with Kendall’s τA, between HCNN model layer features and human V1–V3 (left) or human IT 

(right). Gray horizontal bar represents range of performance of the true model given noise and intersubject variation. Error bars are s.e.m. estimated by 

bootstrap resampling of the stimuli used to compute the RDMs. *P < 0.05, **P < 0.001, ****P < 0.0001 for difference from 0. Panels a–c adapted 

from ref. 33, US National Academy of Sciences; d and e adapted from ref. 35, S.M. Khaligh-Razavi and N. Kriegeskorte.
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models that, when optimized for categorization, achieved high  

performance. The hypothesis predicts that any such models would 

fail to predict neural response data.

Intermediate and lower layers predict V4 and V1 responses

In addition to higher model layers mapping to IT, intermediate layers 

of these same HCNN models turn out to be state-of-the-art predictors 

of neural responses in V4 cortex, an intermediate visual area that is the 

main cortical input to IT33 (Fig. 2c). While the fit to IT cortex peaks 

in the highest hidden model layers, the fit to V4 peaks in the middle 

layers. In fact, these ‘accidental’ V4-like layers are significantly more 

predictive of V4 responses than models built from classical intuitions 

of what the area might be doing (for example, edge conjunction or 

curvature representation37). Continuing this trend, the lowest layers of 

goal-driven HCNN models naturally contain a Gabor-wavelet-like acti-

vation pattern. Moreover, these lower layers provide effective models 

of voxel responses in V1–V3 voxel data (Fig. 2e)35,36. Top-down con-

straints are thus able to reach all the way down the ventral hierarchy.

A common assumption in visual neuroscience is that understanding 

tuning curves in lower cortical areas (for example, edge conjunctions  

in V2 (ref. 38) or curvature in V4 (ref. 39)) is a necessary precur-

sor to explaining higher visual areas. Results with goal-driven deep 

HCNNs show that top-down constraints can yield quantitatively 

accurate models of intermediate areas even when descriptive bottom- 

up primitives have not been identified (see Box 3).

HCNN layers as generative models of cortical areas. Unlike previ-

ous modeling approaches that fit single nonlinear models for each 

empirically measured neuron and then describe the distributions of 

parameters that were found6, the performance-based approach gen-

erates a single model for all neurons simultaneously. Consequently, 

layers of the deep HCNNs are generative models for correspond-

ing cortical areas, from which large numbers of (for example)  

IT-, V4- or V1-like units can be sampled. Given that the neurons 

used to evaluate model correctness were chosen by random electrode 

sampling, it is likely that any future neurons sampled from the same 

Box 4 Gradient backpropagation 

The basic idea of the gradient backpropagation algorithm is simple:

1. Formulate the task of interest as a loss function to be minimized—for example, categorization error. The loss function should be piecewise  

differentiable with respect to both the inputs (for example, images) and the model parameters.

2. Initialize the model parameters either at random or through some well-informed initial guess14.

3. For each input training sample, compute the derivative of the error function with respect to the ilter parameters, and sum these values over  

the input data.

4. Update network parameters by gradient descent—that is, by moving each parameter a small amount in the direction opposite to the error gradient 

for that parameter.

5. Repeat steps 3 and 4 until either the training error converges or, if overitting is a concern, some ‘early stopping’ criterion is met14.

The key insight that makes this procedure relatively eficient for feedforward networks is that—simply by applying the chain rule from basic  

calculus—the derivatives of the error with respect to ilter values in a given layer can be eficiently computed from those in the layer just above42. 

Derivative computations thus start at the top layer and then propagate backwards through the network down to the irst layers.

Another important technical innovation enabling large-scale backpropagation was stochastic gradient descent (SGD)42. SGD involves breaking  

training data into small, randomly chosen batches. Gradient descent is done on each batch in sequence until the training data are exhausted,  

at which point the procedure can begin again, usually on newly chosen random batches. SGD enables backpropagation on much larger data sets  

than previously contemplated and usually converges to a stable solution, though the statistical theory guaranteeing such convergence is not  

well developed.

Box 3 The meaning of ‘understanding’ in a complex sensory system 

What does it mean to understand a complex neural system67? In this Perspective, we have suggested that successful models are image-computable, 

mappable and quantitatively predictive. But do models that meet these criteria necessarily represent understanding? It can be argued that deep  

neural networks are black boxes that give limited conceptual insight into the neural systems they aim to explain. Indeed, the very fact that deep HCNNs 

are able to predict the internal responses of a highly complex system performing a very nonlinear task suggests that, unlike earlier toy models, these  

deeper models will be more dificult to analyze than earlier models. There may be a natural tradeoff between model correctness and understandability.

Optimal stimulus and perturbation analysis. However, one of the key advantages of an image-computable model is that it can be analyzed in detail at low 

cost, making high-throughput ‘virtual electrophysiology’ possible. Recent techniques that optimize inputs either to match the statistics of target images  

or to maximize activation of a single output unit have produced impressive results in texture generation, image style matching and optimal stimulus  

synthesis (ref. 68 and Mordvintsev, A., Tyka, M. & Olah, C., http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html, 

2015). These techniques could be used to identify the featural drivers of individual neurons, using the models’ eficiency of scale to reduce a huge 

stimulus space to a set small enough to measure using realistic experimental procedures69. Inspired by causal intervention experiments70, predictions  

for causal relationships between neural responses and behavior could be obtained by perturbing units within the model, even optimizing stimuli and 

perturbation patterns to achieve the most effective behavioral changes.

A concrete example of traversing Marr’s levels of analysis. Goal-driven models yield higher level insight as well. That functional constraints can produce 

neurally predictive models is reminiscent of earlier work, including eficient coding hypotheses23,24. In both approaches, a driving concept—expressed 

as an objective function for optimization—explains why parameters are as they are. Unlike eficient coding, goal-driven HCNNs derive their objective 

function from behaviors that organisms are known to perform, rather than more abstract concepts, such as sparsity, whose ecological relevance is  

unclear. In this sense, the current work is more similar in spirit to Marr’s levels of analysis71, investigating how a system’s computational-level goals  

inluence its algorithmic and implementation level mechanisms. This approach is also related to neuroethology, where the natural behavior of an  

organism is studied to gain insight into underlying neural mechanisms72.
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areas will be equally well predicted, without having to update model 

parameters or train any new nonlinear functions.

Application to auditory cortex. A natural idea is to apply goal-based 

HCNN modeling to sensory domains that are less well understood 

than vision. The most obvious candidate for this is audition, where 

a clear path forward involves producing HCNN models whose  

top layers are optimized to solve auditory tasks such as speech  

recognition, speaker identification, natural sound identification  

and so on. An intriguing possibility is that intermediate layers  

of such models may reveal previously unknown structures in non-

primary auditory cortex. Initial results suggest that this approach 

holds promise40.

Factors leading to the improvement of HCNNs

Taking initial inspiration from neuroscience, HCNNs have become a 

core tool in machine learning. HCNNs have been successful on many 

tasks, including image categorization, face identification, localization, 

action recognition, depth estimation and a variety of other visual 

tasks41. Related recurrent versions of deep neural networks have been 

used to make strides in speech recognition. Here we discuss some of 

the technical advances that have led to this recent progress.

Hardware-accelerated stochastic error backpropagation for 

optimizing filter parameters

In supervised learning of a task (for example, car detection in images), 

one chooses a set of training data, containing both sample inputs (for 

example. images of cars and non-cars) and labels describing desired 

results for each input (for example, image category labels, such as “car” 

or “dog”). Learning algorithms are then used to optimize the parame-

ter settings of the network so that output layers yield the desired labels 

on the training data14. A powerful algorithm for supervised learn-

ing of filter parameters from supervised data has been in existence 

for several decades: error gradient descent by backpropagation14,42  

(see Box 4). However, until recently, backpropagation has been com-

putationally impractical at large scales on massive data sets. The recent 

advent of graphical processing unit (GPU)-accelerated programming 

has been a great boon because backpropagation computations largely 

involve either simple pointwise operations or parallel matrix dot-prod-

ucts15,33,43. GPUs, which are more neuromorphic than von Neumann 

CPU architectures, are especially well suited to these operations,  

routinely yielding speed increases of tenfold or more15. Further 

advances in neuromorphic computing could accelerate this trend44.

Automated learning procedures for architectural parameters

Discrete architectural parameters (for example, number of layers) 

cannot easily be optimized by error backpropagation. However, 

discrete parameters are critical to final network performance15,18. 

Traditionally, these parameters had been chosen by hand, empiri-

cally testing various combinations one at a time until improvements  

were observed. More recently, procedures such as Gaussian process 

optimization and genetic algorithms have been deployed to learn  

better architectural parameters automatically15,45,46.

Large web-enabled labeled data sets

Another important factor in recent advances is the advent of large 

labeled data sets. In the visual domain, early data sets often consisted 

of hundreds of images in hundreds of categories47. It was eventu-

ally realized that such data sets were neither large nor varied enough 

to provide sufficient training data to constrain the computational 

architecture15,48. A major advance was the release of the ImageNet 

data set, which contains tens of millions of images in thousands of 

categories, curated from the Internet by crowd-sourcing49. Taking 

advantage of these large data sets required the efficient hardware-

accelerated algorithms described above. Once these were in place, 

much deeper neural networks could be trained. A rough rule of thumb 

is that the number of training samples for backpropagation should be 

10 times the number of network parameters. Given that the number of 

parameters in a modern deep network far exceeds 100,000, the need 

for millions of training samples becomes evident, at least for current 

parameter learning strategies. (The neural learning algorithms used 

by the brain are probably significantly more efficient with labeled data 

than current computational methods for training HCNNs, and may 

not be subject to the ‘10×’ heuristic.)

A concomitance of small tweaks to architecture class and 

training methods

A number of other small changes in neural network architecture 

and training helped improve performance. One especially relevant 

modification replaced continuously differentiable sigmoid activation 

functions with half-rectified thresholds43. Because these activation 

functions have constant or zero derivative almost everywhere, they 
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Figure 3 The components of goal-driven modeling. The large circle 

represents an architectural model class; each point in the space is a full 

model (examples at right); inner circles represent subspaces of the full 

model class containing models of a given number of layers. Goal-driven 

models are built by using learning algorithms (dotted black arrows) that 

drive systems along trajectories in the model class (solid colored lines) 

to discover especially optimal models. Each goal can be thought of as 

corresponding to a basin of attraction within the model class (thick black 

contours) containing parameters that are especially good for solving that 

goal. Computational results have shown that tasks put a strong constraint 

on model parameter settings, meaning that the set of optimal parameters 

for any given task is very small compared to the original space. These 

goal-driven models can then be evaluated for how predictive they are 

of the response properties of neurons in brain areas that are thought to 

underlie behavior in a given task domain. For example, the units of a 

model optimized for word recognition could be compared to response 

properties in the primary, belt and parabelt regions of auditory cortex40.  

Models can also be compared to each other to determine to what 

extent different types of tasks lead to shared neural structures. Various 

component rules (supervised, unsupervised or semi-supervised) can also 

be studied to determine how they might lead to different dynamics during 

postnatal development or expertise learning (dashed green paths).
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suffer less from the so-called vanishing-gradients problem, in which 

error gradients in early layers become too small to optimize effectively. 

A second type of improvement was the introduction of regularization 

methods that inject noise during backpropagation into the network to 

prevent the learning of fragile, overfit weight patterns43.

The unreasonable effectiveness of engineering

Recent improvements represent the accretion of a number of critical 

engineering improvements (for example, refs. 50,51). These changes 

may not signal major conceptual breakthroughs beyond the original 

HCNN and backpropagation concepts described decades ago, but 

they nonetheless led to enormous improvement in final results. Large 

data sets and careful engineering have been much more important 

than was originally anticipated52.

Going forward: potentials and limitations

Goal-driven deep neural network models are built from three basic 

components (Fig. 3):

   a model architecture class  from which  the system is built,  formal-

izing  knowledge  about  the  brain’s  anatomical  and  functional  

connectivity;

   a behavioral goal that the system must accomplish, such as object 

categorization; and

   a learning rule that optimizes parameters within the model class to 

achieve the behavioral goal.

The results above demonstrate how these three components can be 

assembled to make detailed computational models that yield test-

able predictions about neural data, significantly surpassing prior 

sensory cortical models. Future progress will mean, in part, better  

understanding each of these three components—as well as their  

limitations (see Box 5).

Improving architecture class

Continued success in using computational models to understand sen-

sory cortex will involve more detailed and explicit mapping between 

model layers and cortical areas. HCNN operations such as template 

matching and pooling are neurally plausible, but understanding 

whether and how the parameterizations used in HCNNs actually con-

nect to real cortical microcircuits is far from obvious. Similarly, while 

the hierarchy of HCNN model layers appears to generally correspond 

with the overall order of observed ventral cortical areas, whether the 

model-layer/brain-area match is one-to-one (or close to it) is far 

from fully understood. Recent high-performing computer vision 

•

•

•

networks have greatly increased the number of layers, sometimes to 

20 or more50. Evaluating whether these very deep networks are better 

explanations of neural data will be of importance, as deviations from 

neural fit would suggest that the architectural choices are different 

from those in the brain. More generally, one can ask, within the class 

of HCNNs, which architectures, when optimized for categorization 

performance, best fit the ventral steam neural response data? The 

results above argue that this could be a new way to infer the architec-

tures in the adult ventral stream.

Such top-down, performance-driven approaches should of 

course be coupled with state-of-the-art experimental techniques 

such as two-photon microscopy, optogenetics, electron microscopy  

reconstruction and other tracing techniques that aim to narrow the 

class of architectures more directly. Better empirical understanding 

at the neural circuit level could allow a narrowing in the class of  

biologically relevant HCNNs, ruling out certain architectures or 

making informed initial guesses about filter parameters. Models 

would then need to learn fewer parameters to achieve equal or better  

neural predictivity.

In both vision and audition, model architecture class could also be 

improved by building more biologically realistic sensor front-ends into 

early layers, using known results about subcortical structures53. At the 

opposite end of the scale spectrum, there are large-scale spatial inho-

mogeneities in higher cortical areas (for example, face patches)4. In the 

lower layers of HCNNs, there is an obvious mapping onto the cortical 

surface via retinotopic maps, but this relationship is less clear in higher 

layers. Understanding how multidimensional deep network output 

may map to two-dimensional cortical sheets, and the implications of 

this for functional organization, are important open problems.

Improving goal and training-set understanding

The choice of goal and training set has significantly influenced model 

development, with high-variation data sets exposing the true hetero-

geneity within real-world categories33,48,49. It seems likely that this 

data-driven trend will continue52. A key recent result is that HCNNs 

trained for one task (for example, ImageNet classification) general-

ize to many other visual tasks quite different from the one on which 

they were originally trained41. If many relevant tasks come along ‘for 

free’ with categorization, which tasks do not? An especially important 

open challenge is finding tasks that are not solved by categorization 

optimization but rather require direct independent optimization, and 

then testing models optimized for these tasks to see if they better 

explain ventral stream neural data. Developing rich new labeled data 

sets will be critical to this goal. Understanding how HCNNs systems 

for various sensory tasks relate to each other, in terms of shared or 

Box 5 Understanding adversarial optimization effects 

An intriguing recent development in the exploration of HCNNs is the discovery of adversarial images: normal photographs that are subtly modiied in 

ways that are undetectable to humans but that cause networks to incorrectly detect arbitrary objects in the modiied image73,74. In effect, adversarial 

images demonstrate that existing HCNNs may be susceptible to qualitatively different types of illusions than those that fool humans. These images are 

created through adversarial optimization, a process in which the pixels of the original image are optimally modiied so as to produce the largest changes 

in the network’s inal category-detection layer, but with the least disturbance at the pixel level. Creating such images, which may not naturally arise in 

the physical world, requires complete access to the network’s internal parameters.

Thinking along the lines of three components of goal-driven modeling discussed above (and see Fig. 3), several possibilities for explaining adversarial 

examples include (i) that similar effects would be replicable in humans—for example, the creation of idiosyncratic images that fool one human but  

are correctly perceived by others—if experiments had access to the detailed microcircuitry of that individual brain and could run an adversarial  

optimization algorithm on it; (ii) that optimization for a categorization goal is brittle, but if richer and more robust optimization goal(s) were used, the 

effects would disappear; or (iii) that adversarial examples expose a fundamental architectural law in HCNNs as brain models, and only by incorporating 

other network structures (for example, recurrence) will the adversarial examples be overcome. Regardless of which (if any) if these is most correct,  

understanding adversarial optimization effects would seem to be a critical component of better understanding HCNNs themselves, especially as  

putative models of the brain.
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divergent architectures, would be of interest, both within a sensory 

domain54, as well as across domains (for example, between vision and 

audition; see Fig. 3).

Improving learning rule understanding

While it is valuable that supervised learning creates working models 

that are a remarkably good fit to real perceptual systems, it is physi-

ologically unlikely that cortex is implementing exact backpropagation. 

A core inconsistency between current deep-learning approaches and 

real biological learning is that training effective HCNNs requires very 

large numbers of high-level semantic labels. True biological postnatal  

learning in humans, higher primates and other animals may use 

large amounts of unsupervised data, but is unlikely to require 

such large amounts of externally labeled supervision. Discovering 

a biologically realistic unsupervised or semi-supervised learning  

algorithm55–57 that could produce high levels of performance 

and neural predictivity would be of interest, from both artificial  

intelligence and neuroscience viewpoints.

Beyond sensory systems and feedforward networks

Largely feedforward HCNNs cannot provide a full account of dynamics 

in brain systems that store extensible state, including any that involve 

working memory, since the dynamics of a feedforward network will 

converge to the same state independent of input history. However, 

there is a growing body of literature connecting recurrent neural 

networks to neural phenomena in attention, decision making and 

motor program generation58. Models that combine rich sensory input 

systems, as modeled by deep neural networks, with these recurrent 

networks could provide a fruitful avenue for exploring more sophis-

ticated cognitive behaviors beyond simple categorization or binary 

decision making, breaking out of the pure ‘representation’ framework 

in which sensory models are often cast. This is especially interesting 

for cases in which there is a complex loop between behavioral out-

put and input stimulus—for example, when modeling exploration of 

an agent over long time scales in a complex sensory environment59. 

Intriguing recent results from reinforcement learning60 have shown 

how powerful in solving strategy-learning problems deep neural net-

work techniques may be. Mapping these to ideas in the neuroscience 

of the interface between ventral visual cortex and, for example, parietal 

cortex or the hippocampus will be of great interest61,62.

Conclusion

In sum, deep hierarchical neural networks are beginning to transform 

neuroscientists’ ability to produce quantitatively accurate computational  

models of the sensory systems, especially in higher cortical areas 

where neural response properties had previously been enigmatic. 

Such models have already achieved several notable results, explaining 

multiple lines of neuroscience data in both humans and monkeys33–36. 

However, like any scientific advance of importance, these ideas open 

up as many new questions as they answer. There is much exciting and 

challenging work to be done, requiring the continued rich interaction 

between neuroscience, computer science and cognitive science.
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