Why measure from the brain during decision-making?
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Two ideas running in the background:

Idea 1: multi-neuron recordings for better moment-
by-moment estimates of internal signals

Idea 2: most neural activity is of unknown function,
yet is coordinated across neurons and brain regions.
What’s going on with this “dark matter of the brain?”
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Roitman & Shadlen (2002)

similarity suggests PPC firing rates r encode value of a

but this is based on averages over trials — what happens on single trials?
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stepping model
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The stepping versus ramping controversy
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Comment on “Single-trial spike trains
in parietal cortex reveal discrete steps
during decision-making”

Michael N. Shadlen,'* Roozbeh Kiani,> William T. Newsome,? Joshua I. Gold,*
Daniel M. Wolpert,” Ariel Zylberberg,® Jochen Ditterich,? Victor de Lafuente,?
Tianming Yang,® Jamie Roitman'®

Latimer et al. (Reports, 10 July 2015, p. 184) claim that during perceptual decision
formation, parietal neurons undergo one-time, discrete steps in firing rate instead of
gradual changes that represent the accumulation of evidence. However, that conclusion
rests on unsubstantiated assumptions about the time window of evidence accumulation,
and their stepping model cannot explain existing data as effectively as evidence-
accumulation models.

It's both: some neurons look more like ramping,
some neurons more like stepping
Zoltowski ... Pillow, Neuron 2019

But this was still all single neurons !!!
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Using multielectrode recordings to greatly improve
prediction of behavior in single trials
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A simple linear model predicts behavior very well

Firing rates r(t) of N neurons
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A simple linear model predicts behavior very well

Firing rates r(t) of N neurons
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DV(t) in four example trials

Decision variable
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Two ideas running in the background:

Idea 1: multi-neuron recordings for better moment-
by-moment estimates of internal signals

Idea 2: most neural activity is of unknown function,
yet is coordinated across neurons and brain regions.
What’s going on with this “dark matter of the brain?”
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Idea 2: the “dark matter” of the brain ...

Neural activity variance:

"'1 O % correlated with
5 % Ny
/1 7 uninstructed movements % ’? ’? ’)

explained by known (but we don’t know why)

task variables, i.e., what we study (Musall...Churchland 2019, we. .. don’t know

(International Brain Lab 2023; our data) Wang... Svoboda Druckmann 2023;
our data)

* most neural activity looks like
noise but is coordinated
across neurons and regions.

(Arieli 1996, Fiser 2004, Stringer 2019, Manley 2024)
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Two ideas running in the background:

Idea 1: multi-neuron recordings for better moment-
by-moment estimates of internal signals

Idea 2: most neural activity is of unknown function,
yet is coordinated across neurons and brain regions.
What’s going on with this “dark matter of the brain?”
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On to the main talk
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Luo ’23
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decision-making Luo '23

Behavior level:
the “drift-diffusion model” (DDM)

C accounts for data in:
a
— e social decisions (e.g., Krajbich 2012)
< - ¢ sensory decisions (e.g., Newsome, 1989)
accumulation - e economic decisions (e.g., Gluth 2012)
inputs drive dynamics —> e gambling decisions (e.g., Busemeyer, 1993)
T :{ < —> * memory decisions (e.g., Ratcliff, 1978)
Got § ‘ Go R e visual search decisions (e.g., Purcell, 2010)
‘ | —> « value decisions (e.g., Milosavljevic 2012)
et <
Iefftwards(_ —>
evidence
1
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decision-making

Behavior level:
the “drift-diffusion model” (DDM)

-C 0% .c
>
E 4
accumulation
inputs drive dynamics —>
L —>
g.
! —>
l
commitment <«
inputs are irrelevant 3
to the dynamics
A

a=0
GolL decision GoR
boundary

evo

lves

en

ds

at the neural level:

how do decisions evolve?
and how do they end?
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Behavior level:
the “drift-diffusion model” (DDM)
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Neural level:
the “line attractor” hypothesis
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Behavior level:
the “drift-diffusion model” (DDM)
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Neural level:
the “line attractor” hypothesis

pattern of firing rates
rq across neurons
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Behavior level:
the “drift-diffusion model” (DDM)
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Behavior level:
the “drift-diffusion model” (DDM)
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Why not just measure the flow lines and find what the data says?

theoretical model variants in the literature:

(Bogacz

\\'\\ all have a stable 1-d line
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Neural level:

the “line attractor” hypothesis
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/ autonomous dynamics
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'd
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neurons

very noisy data:

I | I I

re 11 I
r3 Il I
r4 I Il
rs || | |
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stimulus presentation:
auditory clicks ~ 1.0 sec

Left o 2 Right
a 4
l [ ]
5
o)
l [ ]
one trial,
~500/session —
Go L GoR

choice

#R > #L

subjects must
accumulate sensory
evidence over time to
form their decision
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neurons

_ High-yield Neuropixels recordings (1 probe, 2-3 regions/rat)
very noisy data:

dmFC M1 |’ FOF
TR N | mPFC
4.0 mm AP I [Vt \T?v 1.9 mm AP
rz 11 | 4 rats “ 24 mmML 3 rats
ra Il 1 5 rats
rs I |
rs || | |
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0 . 1 (sec)
100 1 I
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neurons

_ High-yield Neuropixels recordings (1 probe, 2-3 regions/rat)
very noisy data:

dmFC M1 |’ FOF
r{ | ¥ | mPFC G 5 dstr A
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neurons

_ High-yield Neuropixels recordings (1 probe, 2-3 regions/rat)
very noisy data:
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fit to data \t ‘l/
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autonomous dynamics : F'(z,u = 0)

input dynamics : F'(z,u= 1] ) — F(z,u=0)
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fit to data
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r ~ Poisson [h (C -7 + b)]
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neural space fit to data
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autonomous dynamics : F'(z,u = O)

/ autonomous dynamics

input dynamics : F'(z,u= 1] ) — F(z,u=0)

e | FADS (Pandarinath, ...
Engel (2023), Duncker, ...

Sussillo, 2018)
e Genkin, ...

e rSLDS (Scott Linderman’s group, used in Nair ....

e Kim et al., “FINDR” (2023)

“Neural ODEs” : Weinan 2017; Chen 2018

+ Stochastic diff. equ. (Li, ...
+ Poisson observations

+ Non-differentiable pulsatile inputs (clicks)
+ F() is a gated NN (Kim et al. 2023)

: F() is a 500-neuron RNN
Sahani (2019) :

Duveneaud 2020) : stochastic dynamics for z

/ input dynamics
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not yet equipped to take time-dependent inputs

Anderson 2023)
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(Bogacz 2006)
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behavioral

DDM: 15
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accumulation
inputs drive dynamics

commitment <
inputs are irrelevant
to the dynamics
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autonomous dynamics : F'(z,u = 0)

0.6

220 2

\/

subject has made up their mind
and committed to a decision?

*
a=0
decision GoR
boundary

autonomous weak, inputs weak,
inputs strong autonomous strong

« dull «

Go L

evidence
strength
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single example trial

simult.
recorded
neurons

“neurally-inferred Time
of commitment” (nTc)

0

stim motion
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stimon NTC  off  onset

single trials

j

— time —
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“neurally-inferred Time
of commitment” (nTc)

stim motion

' nTc
STl off\| onset

BEHAVIOR
weight of clicks on choice
a.u

-0.2 0 0.2

time relative to nTc (sec)
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“neurally-inferred Time : a neural biomarker for covertly

of commitment” (nTc)

choice
a.u.

BEHAVIOR:

weiaht of clicks on

1
—k

o

T stim motion
i nTc
Eliinan ) off., onset

-0.2 0 0.2

making up one’s mind

Luo*, Kim* '23

* new flow line methods led us to nlc ‘s

i

* timing of nTc appears to be
internally determined &/

* Can now read neural activity and Nb
tell if and when a subject secretly -
makes up their mind

(Idea 1: multi-neuron recordings for better moment-
by-moment estimates of internal signals)
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- stim  motion
i nTc
Simonel off. onset

8 simultaneous
Neuropixels probes

— Luo*, Kim* ’23

2 new flow line methods led us to nTc
- T A #¢ '+ Gan now read neural activity and ~2,700 neurons/session / ‘ h
L A il ,’",7 4 tell if and when a subject secretly
v makes up their mind . . )
1 for animals engaged in a task,
0.2 0 0.2

world record # simultaneous

ephys recorded neurons w / /

(“neurally-inferred

Time of commitment”) Sy, O il e 24

frontally-estimated
motion onset

How does nic stimon stim off _/
affect the rest
of the brain?

il

o
(0 0]
Decision Prediction Accuracy

mPFC i - 0.7 ]
onset of motion

MGB 0.6 . .

HPC i Y to report decision
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brain region
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- stim  motion
i nTc
stimon R1C  off  onset

8 simultaneous
Neuropixels probes

—— Luo*, Kim* ’23

2 A new flow line methods led us to nTc
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motion onset

-
How does nTc stim or W simott /

affect the rest _'g S—-—
. 3 #
of the brain? T S .
— time — 8
L
dmFC S
M1 - 0.9 <
aps E
- 0.8 B
2
mPFC 0.7 D&_’
MGB S
HPC - 0.6 3
NAc < 8
. ; . 105 A
j -0.5 0 0.5

brain region

time w.r.t. nTc (s) 35/ 49



stim
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* new flow line methods led us to nTc
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Luo*, Kim* ’23
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) stim motion
SHTE nTe  off onset
__|_¢—’(

| —— Luo®, Kim* ’23
g 2 e discovery of nTc, a neural biomarker
S uar A ¢ for covert decision commitment
Br T op— ‘v’r’\v [y <
P
-0.2 0 0.2

time relative to nTc (sec)

* nTc marks a sweeping state change across the brain

previous analyses, which were not sensitive to nic,
were blurring entirely disparate data together

state1 nTc

0.1 HPC
0

| (note: uninstructed movements don’t Bondy*, Charlton, Luo* '24
motion onset affect these conclusions at all)
&“é " og{
2 M1
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< DV corr.  Sf %
Ke]
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& MGB
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-0.5 0 05
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dmFC-ADS
DV corr. p=0.25.

single
right
choice
) ¢ trials
5. p=0.31 .a*®s# ] ' ,
) \ AR IZAR L single
_ X NZ { left
p=0.22 : 52 \> 53X choice
) * : : T DA ' > trials
om\ Right choice trials
RS ” 0 0.5 1
) | .
@ © Left choice trials time (s) relative to
first click
-9 0 3
dmFC DV

“Decision Variable”

for each region firing rates of neurons in one region

N i \

0 = DV(®) = wiri+wiri+.. 4w

I

weights that best predict
upcoming R v L choice

P(go R)
"#P(go L)

Kiani et al., 2014
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A

Trial

L

A

“Frozen noise” task design

Trial

v

Noise
seed 2

E,

TRIG,

Trial

v

Noise
seed 3

G,

IS

Trial Trial

Noise
seed 2

MG,
TGS

54 unique seeds,
~10 repeats each per session
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Trial 1 Trial 2 Trial 3 Trial 4

clicks R« 1 111 } WEIRI } NEIRI } RN } same stim

& choice

stimulus L «) 1iinim

log-odds
P(go R)
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Trial 1 Trial 2 Trial 3 Trial 4
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What did we discover with the multiprobe recordings? V / C
A
e |

o

Can’t see either one without the multiprobe recordings \V\I /

1. Before nTc, decision-aligned activity is highly “~
correlated across the brain, with correlations

50 ® observed

dominated by a single dimension. B shuffied
o
% Variance
2. nTc marks a previously unknown, sweeping = —Paned
state change across the brain g
09
0!, _
1 5 10
nTc Principal
| motion onset Component
stir\? on nIc stiry off /
—n--r'_._ dmFC
] M1
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9\"[113 0.9 mPFC
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Two ideas running in the background:

Idea 1: multi-neuron recordings for better moment-
by-moment estimates of internal signals

Idea 2: most neural activity is of unknown function,
yet is coordinated across neurons and brain regions.
What’s going on with this “dark matter of the brain?”
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ongoing and future work: moving beyond decision-making ...

nTc is an example of something much broader

Neural activity variance:

o~ 0 .
5% 1 O %% .correlated with
uninstructed movements P . f? t? r?
i 4 (but we don’t know why) Y% 1 & =
explained by known

task variables, i.e., what we study (Musall...Churchland 2019

Wang... Svoboda Druckmann 2023;
our data)

we... don’t know
(International Brain Lab 2023; our data)

: , * most neural activity looks like
what nTc, an internal covert signal, . : .
) . : noise but is coordinated
looked like before we discovered it < .
across neurons and regions.

(Arieli 1996, Fiser 2004, Stringer 2019, Manley 2024)

hypothesis: could much
neural activity consist of
undiscovered internal
signals?
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across neurons and regions.  undiscovered internal
signals?

» most neural activity looks like hypothesis: could much
noise but is coordinated neural activity consist of  gmyg
%

generalizing for future discoveries

how nTc was discovered: : L across brain regions
: |
. for pairs of simultaneously recorded regions:
identify structure in : \RN - ,
simultaneous recordings :e y red by modern nonlinear Al
characterize that structure \ e state-of-the-art data-driven Al
step 1 method to identify and separate e large-scale simultaneous
private vs. shared latents recordings + new Al-
: o infar intringi based analysis methods
characteristics — hypotheses infer intrinsic geometry of latents give us access to these
of functional significance : step 1 internal signals

test hypotheses, find meaning

step 2 re
LTI
* T,_" __“_\ our “SPLICE” autoencoder

o 3 architecture
-
o=

min( |ra — ral2 O
o® Koukuntla, 2024
Oy
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noise but is coordinated

» most neural activity looks like hypothesis: could much
neural activity consist of gy
%

across neurons and regions.  undiscovered internal

signals?

how nTc was discovered:

identify structure in
simultaneous recordings
characterize that structure

step 1

characteristics — hypotheses
of functional significance

test hypotheses, find meaning

step 2

generalizing for future discoveries
across brain regions

. for pairs of simultaneously recorded regions:

new: inspired by modern nonlinear Al

\ * state-of-the-art data-driven Al
: method to identify and separate
private vs. shared latents

e infer intrinsic geometry of latents

step 1

Multi-regional
neural activity
reconstruction

Inputs from N
sensory HAe

MGB
activity

neural activity
yi K Poiss { softplus{ f (z;)}}

center
left
right

Ongoing
behavioral
readout

> 8

|
l\/// I/

¢ |arge-scale simultaneous
recordings + new Al-
based analysis methods
give us access to these
internal signals

e dynamical models of all
simultaneously recorded
neurons across the brain,
together, to understand
cross-brain single-trial
dynamics.
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e most neural activity looks
ike'noisebut is coordinated

acrossi neurons and regions.

e discovered internal signa
., a neural biomarker for
covert decision commitment

. marks a sweeping state
change across the brain

hQuarttativecogelitive rodent behavior
neural activity consist of Povar

Auditory Pulses L

undi§eqweggqp intemab%ggs
signats 2z, £

£ Y

Ele Wﬁm?(@f

= FRQ Cx N
‘ Past =
K\ cue ‘

High Freq. (14.2 KHz)
Nieh*, Schottdorf* 21

Low Freq. (6.5 KHz)

Pagan ’22

* large-scale simultaneous
recordings + new Al-
based analysis methods
give us access to these
internal signals
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e discovered internal signal
., a neural biomarker for
covert decision commitment

. marks a sweeping state
change across the brain

e most neural activity looks
like noise but is coordinated
across neurons and regions.

could much
neural activity consist of
undiscovered internal
signals?

* large-scale simultaneous
recordings + new Al-
based analysis methods
give us access to these
internal signals

8 8
% of activity

inner conversation of

the mind?

Quantitative cognitive rodent behavior

Auditory Pulses
Stlmull
nght

e /t\
ngh Freq. (14.2 KHz)
Low Freq. (6.5 KHz)

T|me (s)

0.6

V4
L

-0.6

LOC Cx

Pagan ’22

Choice: go R/ go L Reward

goR
#R>#L°<:goL

7/90 R
#Hl >#L07 ool

Az\

Nieh*, Schottdorf* ’21

Large-scale simultaneous

recordings / -
(/ LY
cran oot @I

24

Al-based large-scale data analysis

Luo*, Kim* ’23
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