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Why measure from the brain during decision-making?
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Idea 1:  multi-neuron recordings for better moment-
by-moment estimates of internal signals

Two ideas running in the background:

Idea 2:  most neural activity is of unknown function, 
yet is coordinated across neurons and brain regions. 
What’s going on with this “dark matter of the brain?”
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electrophysiological
recordings in PPC

Shadlen and Newsome (1996); 
Roitman & Shadlen (2002)
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similarity suggests PPC firing rates r encode value of a

but this is based on averages over trials — what happens on single trials?
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NEURONAL MODELING

Single-trial spike trains in parietal
cortex reveal discrete steps during
decision-making
Kenneth W. Latimer,1,2 Jacob L. Yates,1,2 Miriam L. R. Meister,2,3

Alexander C. Huk,1,2,4,5 Jonathan W. Pillow1,2,5,6*

Neurons in the macaque lateral intraparietal (LIP) area exhibit firing rates that appear to
ramp upward or downward during decision-making. These ramps are commonly assumed
to reflect the gradual accumulation of evidence toward a decision threshold. However,
the ramping in trial-averaged responses could instead arise from instantaneous jumps at
different times on different trials. We examined single-trial responses in LIP using
statistical methods for fitting and comparing latent dynamical spike-train models. We
compared models with latent spike rates governed by either continuous diffusion-to-bound
dynamics or discrete “stepping” dynamics. Roughly three-quarters of the choice-selective
neurons we recorded were better described by the stepping model. Moreover, the inferred
steps carried more information about the animal’s choice than spike counts.

R
amping responses have been observed in a
variety of brain areas during decision-
making and have been widely interpreted
as the neural implementation of evidence
accumulation for forming decisions (1–7).

However, ramping can only be observed by aver-
aging together responses from many trials (and,
often, many neurons), which obscures the dy-
namics governing responses on single trials. In
particular, a discrete “stepping” process (8, 9), in
which the spike rate jumps stochastically from
one rate to another at some time during each
trial, can also create the appearance of ramping

(10, 11). Although decision-making at the behav-
ioral level is well described as an accumulation
process (12, 13), whether the brain computes deci-
sions through a direct neural correlate (ramping)
or a discrete implementation (stepping) re-
mains a central, unresolved question in sys-
tems neuroscience.
We used advanced statistical methods to iden-

tify the single-trial dynamics governing spike
trains in the lateral intraparietal (LIP) area of
macaques performing a well-studied motion-
discrimination task (Fig. 1A) (3, 14). We formu-
lated two spike-trainmodels with stochastic latent

dynamics governing the spike rate: one defined
by continuous ramping dynamics and the other
by discrete stepping dynamics (see the supple-
mentary methods for mathematical details). In
the ramping model, also known as “diffusion-to-
bound,” the spike rate evolves according to a
Gaussian randomwalk with linear drift (Fig. 1B).
The slope of drift depends on the strength of sen-
sory evidence, and each trial’s trajectory contin-
ues until hitting an absorbing upper bound.
Alternatively, in the stepping model, the latent
spike rate jumps instantaneously from an initial
“undecided” state to one of two discrete decision
states during the trial (Fig. 1C). The probability
of stepping up or stepping down and the timing
of the step are determined by the strength of
sensory evidence. For both models, we assumed
that spiking follows an inhomogeneous Poisson
process given the time-varying spike rate.
Both latent variable models are “doubly sto-

chastic” in the sense that the probability of an
observed spike train given the sensory stimu-
lus depends on both the noisy trajectory of the
latent spike rate and the Poisson variability in
the spiking process. Fitting such latent variable
models requires integrating over all latent tra-
jectories consistentwith the observed spike trains,
which is not analytically tractable. We therefore
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Fig. 1. Motion discrimination task and spike-train models. (A) Schematic
of moving-dot direction-discrimination task. The monkey views and discrim-
inates the net direction of a motion stimulus of variable motion strength and
duration and indicates its choice by making a saccade to one of two choice
targets 500 ms after motion offset. One choice target is in the response field
of the neuron under study (RF, shaded patch on left); the other is outside it.
(B) Ramping (diffusion-to-bound) model. Spike rate trajectories (solid traces)
were sampled from a diffusion-to-bound process for each of three motion
coherences (strong positive, zero, and strong negative). The model param-
eters include an initial spike rate, a slope for each coherence, noise variance,
and an upper bound. We do not include a lower bound, consistent with the

competing integrator (race) model of LIP (5). Spike trains (below) obey an
inhomogeneous Poisson process for each spike rate trajectory. (C) Discrete
stepping model. Spike rate trajectories (above) begin at an initial rate and
jump up or down at a random time during each trial, and spike trains (below)
once again follow a Poisson process, given the latent rate.The step times take
a negative binomial distribution, which resembles the time-to-bound dis-
tribution under a diffusion model. Parameters include the spike rates for the
three discrete states and two parameters governing the distribution over step
timing and direction for each motion coherence. Both models were fit using
the spike trains and coherences for each neuron, without access to the ani-
mal’s choices.
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Single-trial spike trains in parietal
cortex reveal discrete steps during
decision-making
Kenneth W. Latimer,1,2 Jacob L. Yates,1,2 Miriam L. R. Meister,2,3

Alexander C. Huk,1,2,4,5 Jonathan W. Pillow1,2,5,6*

Neurons in the macaque lateral intraparietal (LIP) area exhibit firing rates that appear to
ramp upward or downward during decision-making. These ramps are commonly assumed
to reflect the gradual accumulation of evidence toward a decision threshold. However,
the ramping in trial-averaged responses could instead arise from instantaneous jumps at
different times on different trials. We examined single-trial responses in LIP using
statistical methods for fitting and comparing latent dynamical spike-train models. We
compared models with latent spike rates governed by either continuous diffusion-to-bound
dynamics or discrete “stepping” dynamics. Roughly three-quarters of the choice-selective
neurons we recorded were better described by the stepping model. Moreover, the inferred
steps carried more information about the animal’s choice than spike counts.

R
amping responses have been observed in a
variety of brain areas during decision-
making and have been widely interpreted
as the neural implementation of evidence
accumulation for forming decisions (1–7).

However, ramping can only be observed by aver-
aging together responses from many trials (and,
often, many neurons), which obscures the dy-
namics governing responses on single trials. In
particular, a discrete “stepping” process (8, 9), in
which the spike rate jumps stochastically from
one rate to another at some time during each
trial, can also create the appearance of ramping

(10, 11). Although decision-making at the behav-
ioral level is well described as an accumulation
process (12, 13), whether the brain computes deci-
sions through a direct neural correlate (ramping)
or a discrete implementation (stepping) re-
mains a central, unresolved question in sys-
tems neuroscience.
We used advanced statistical methods to iden-

tify the single-trial dynamics governing spike
trains in the lateral intraparietal (LIP) area of
macaques performing a well-studied motion-
discrimination task (Fig. 1A) (3, 14). We formu-
lated two spike-trainmodels with stochastic latent

dynamics governing the spike rate: one defined
by continuous ramping dynamics and the other
by discrete stepping dynamics (see the supple-
mentary methods for mathematical details). In
the ramping model, also known as “diffusion-to-
bound,” the spike rate evolves according to a
Gaussian randomwalk with linear drift (Fig. 1B).
The slope of drift depends on the strength of sen-
sory evidence, and each trial’s trajectory contin-
ues until hitting an absorbing upper bound.
Alternatively, in the stepping model, the latent
spike rate jumps instantaneously from an initial
“undecided” state to one of two discrete decision
states during the trial (Fig. 1C). The probability
of stepping up or stepping down and the timing
of the step are determined by the strength of
sensory evidence. For both models, we assumed
that spiking follows an inhomogeneous Poisson
process given the time-varying spike rate.
Both latent variable models are “doubly sto-

chastic” in the sense that the probability of an
observed spike train given the sensory stimu-
lus depends on both the noisy trajectory of the
latent spike rate and the Poisson variability in
the spiking process. Fitting such latent variable
models requires integrating over all latent tra-
jectories consistentwith the observed spike trains,
which is not analytically tractable. We therefore
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Fig. 1. Motion discrimination task and spike-train models. (A) Schematic
of moving-dot direction-discrimination task. The monkey views and discrim-
inates the net direction of a motion stimulus of variable motion strength and
duration and indicates its choice by making a saccade to one of two choice
targets 500 ms after motion offset. One choice target is in the response field
of the neuron under study (RF, shaded patch on left); the other is outside it.
(B) Ramping (diffusion-to-bound) model. Spike rate trajectories (solid traces)
were sampled from a diffusion-to-bound process for each of three motion
coherences (strong positive, zero, and strong negative). The model param-
eters include an initial spike rate, a slope for each coherence, noise variance,
and an upper bound. We do not include a lower bound, consistent with the

competing integrator (race) model of LIP (5). Spike trains (below) obey an
inhomogeneous Poisson process for each spike rate trajectory. (C) Discrete
stepping model. Spike rate trajectories (above) begin at an initial rate and
jump up or down at a random time during each trial, and spike trains (below)
once again follow a Poisson process, given the latent rate.The step times take
a negative binomial distribution, which resembles the time-to-bound dis-
tribution under a diffusion model. Parameters include the spike rates for the
three discrete states and two parameters governing the distribution over step
timing and direction for each motion coherence. Both models were fit using
the spike trains and coherences for each neuron, without access to the ani-
mal’s choices.
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Single-trial spike trains in parietal
cortex reveal discrete steps during
decision-making
Kenneth W. Latimer,1,2 Jacob L. Yates,1,2 Miriam L. R. Meister,2,3

Alexander C. Huk,1,2,4,5 Jonathan W. Pillow1,2,5,6*

Neurons in the macaque lateral intraparietal (LIP) area exhibit firing rates that appear to
ramp upward or downward during decision-making. These ramps are commonly assumed
to reflect the gradual accumulation of evidence toward a decision threshold. However,
the ramping in trial-averaged responses could instead arise from instantaneous jumps at
different times on different trials. We examined single-trial responses in LIP using
statistical methods for fitting and comparing latent dynamical spike-train models. We
compared models with latent spike rates governed by either continuous diffusion-to-bound
dynamics or discrete “stepping” dynamics. Roughly three-quarters of the choice-selective
neurons we recorded were better described by the stepping model. Moreover, the inferred
steps carried more information about the animal’s choice than spike counts.

R
amping responses have been observed in a
variety of brain areas during decision-
making and have been widely interpreted
as the neural implementation of evidence
accumulation for forming decisions (1–7).

However, ramping can only be observed by aver-
aging together responses from many trials (and,
often, many neurons), which obscures the dy-
namics governing responses on single trials. In
particular, a discrete “stepping” process (8, 9), in
which the spike rate jumps stochastically from
one rate to another at some time during each
trial, can also create the appearance of ramping

(10, 11). Although decision-making at the behav-
ioral level is well described as an accumulation
process (12, 13), whether the brain computes deci-
sions through a direct neural correlate (ramping)
or a discrete implementation (stepping) re-
mains a central, unresolved question in sys-
tems neuroscience.
We used advanced statistical methods to iden-

tify the single-trial dynamics governing spike
trains in the lateral intraparietal (LIP) area of
macaques performing a well-studied motion-
discrimination task (Fig. 1A) (3, 14). We formu-
lated two spike-trainmodels with stochastic latent

dynamics governing the spike rate: one defined
by continuous ramping dynamics and the other
by discrete stepping dynamics (see the supple-
mentary methods for mathematical details). In
the ramping model, also known as “diffusion-to-
bound,” the spike rate evolves according to a
Gaussian randomwalk with linear drift (Fig. 1B).
The slope of drift depends on the strength of sen-
sory evidence, and each trial’s trajectory contin-
ues until hitting an absorbing upper bound.
Alternatively, in the stepping model, the latent
spike rate jumps instantaneously from an initial
“undecided” state to one of two discrete decision
states during the trial (Fig. 1C). The probability
of stepping up or stepping down and the timing
of the step are determined by the strength of
sensory evidence. For both models, we assumed
that spiking follows an inhomogeneous Poisson
process given the time-varying spike rate.
Both latent variable models are “doubly sto-

chastic” in the sense that the probability of an
observed spike train given the sensory stimu-
lus depends on both the noisy trajectory of the
latent spike rate and the Poisson variability in
the spiking process. Fitting such latent variable
models requires integrating over all latent tra-
jectories consistentwith the observed spike trains,
which is not analytically tractable. We therefore
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Fig. 1. Motion discrimination task and spike-train models. (A) Schematic
of moving-dot direction-discrimination task. The monkey views and discrim-
inates the net direction of a motion stimulus of variable motion strength and
duration and indicates its choice by making a saccade to one of two choice
targets 500 ms after motion offset. One choice target is in the response field
of the neuron under study (RF, shaded patch on left); the other is outside it.
(B) Ramping (diffusion-to-bound) model. Spike rate trajectories (solid traces)
were sampled from a diffusion-to-bound process for each of three motion
coherences (strong positive, zero, and strong negative). The model param-
eters include an initial spike rate, a slope for each coherence, noise variance,
and an upper bound. We do not include a lower bound, consistent with the

competing integrator (race) model of LIP (5). Spike trains (below) obey an
inhomogeneous Poisson process for each spike rate trajectory. (C) Discrete
stepping model. Spike rate trajectories (above) begin at an initial rate and
jump up or down at a random time during each trial, and spike trains (below)
once again follow a Poisson process, given the latent rate.The step times take
a negative binomial distribution, which resembles the time-to-bound dis-
tribution under a diffusion model. Parameters include the spike rates for the
three discrete states and two parameters governing the distribution over step
timing and direction for each motion coherence. Both models were fit using
the spike trains and coherences for each neuron, without access to the ani-
mal’s choices.
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The stepping versus ramping controversy

Latimer, … Pillow Science 2015

TECHNICAL COMMENT
◥

NEURONAL MODELING

Comment on “Single-trial spike trains
in parietal cortex reveal discrete steps
during decision-making”
Michael N. Shadlen,1* Roozbeh Kiani,2 William T. Newsome,3 Joshua I. Gold,4

Daniel M. Wolpert,5 Ariel Zylberberg,6 Jochen Ditterich,7 Victor de Lafuente,8

Tianming Yang,9 Jamie Roitman10

Latimer et al. (Reports, 10 July 2015, p. 184) claim that during perceptual decision
formation, parietal neurons undergo one-time, discrete steps in firing rate instead of
gradual changes that represent the accumulation of evidence. However, that conclusion
rests on unsubstantiated assumptions about the time window of evidence accumulation,
and their stepping model cannot explain existing data as effectively as evidence-
accumulation models.

L
atimer et al. (1) analyzed the spiking activity
of neurons in the lateral intraparietal (LIP)
area of parietal cortex and challenged the
hypothesis that these neurons represent
the accumulation of noisy evidence bearing

on a perceptual choice (e.g., drift diffusion). They
conclude that these neurons represent jumps (or
steps) from a neutral to a high or low state that
represents the upcoming choice. Accordingly,
the ramplike activity of LIP neurons is an artifact
caused by averaging step functions occurring at
different times. Conceptually, their step model
implies that LIP activity represents either (i) the
outcome of the decision, corresponding to steps
synchronized to the end of the process, or (ii) the
decision process itself, corresponding to the pop-
ulation average of all-or-none steps contributed
by individual neurons at different times. Neither
interpretation is consistent with existing data.
The first interpretation is refuted by choice–

reaction time (RT) experiments (2). Aligned to
the beginning of deliberation, the across-trial
averages of such steps would resemble a ramp.
However, aligned to the end of the decision, syn-
chronous steps should be obvious [e.g., figures
2A and 3A in (1)]. The LIP data are inconsistent

with this idea (Fig. 1A): trials with long RT do not
hover in a neutral state until the end of the de-
cision [see also (3)].
The second interpretation could explain the

ramps aligned to saccadic responses in the RT
experiments. However, this interpretation is in-
consistent with other experiments in which a
sequence of shapes replaces random-dot motion
to furnish discrete packets of evidence. Under these
conditions, LIPneuronsdonot step to stereotyped
high or low states. Instead, they produce graded
responses throughout the decision according to
the sign and strength of the evidence provided by
the current shape (Fig. 1B). Further, the graded
population responses are not simply amixture of
high and low steps (4, 5). If they were, the change

in firing rate induced by a shape should diminish
for later shapes, because the neuron is more like-
ly to have already stepped. This is clearly incor-
rect [see figures 3B and 4B in (4)]. Thus, LIP
neurons encode multiple small, noisy changes
in evidence (not one-time, all-or-nothing steps)
in amanner consistent with diffusion or random-
walk dynamics.
These points question the conclusions in (1).

Then why do their analyses suggest stepping?
Parietal activity can step in the context of quickly
planned eyemovements to visual targets (6, 7). In
contrast, diffusion (ramping) dynamics arisewhen
the decision to make such an eye movement re-
sults from the temporal integration of evidence
over amore prolonged interval. Therefore, before
using models to identify (or refute) neural corre-
lates of an integration-based decision process, it
is essential to (i) know that the neural activity in
question is occurring in a behavioral context that
is actually based on prolonged integration and
(ii) focus any model comparison on the epoch in
which this integration occurs.
Unfortunately, it is difficult to estimate the

integration times from the behavioral data in (1).
They did not use an RT experiment, and their
monkey’s accuracy is flat over the viewing du-
rations they tested (Fig. 2, filled stars). It is possible
to deduce integration times from a follow-up ex-
periment in the same monkey, using a broader
range of durations (Fig. 2, open symbols). Fitting
these datawith bounded diffusion (curves) yields
a median integration time of ~250 ms (across all
motion strengths). However, themonkey’s accuracy
is substantially worse in the earlier data, analyzed
in (1). One possibility is that the poorer accuracy
is explained by a combination of guessing and
overall lower sensitivity—partially compensated
by an elevated decision bound—whose net effect
is longer integration times (~310 ms). Alterna-
tively, the poor accuracy is explained by brief
integration times (~70ms) or possibly a different
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Fig. 1. Experimental evidence in support of a gradual
accumulation of evidence in LIP. (A) LIP neurons ramp,

on average, during an RT task. Averages are sorted by RTquantile (color), using trials in which themonkey
chose the direction associated with the choice target in the neuron’s response field. [Modified from (2),
showing responses from ~200ms after stimulus onset; see also figure 2, B and D, in (11)]. (B) LIP neurons
undergo multiple incremental changes in firing rate on single trials. On this example trial, the monkey
decided in favor of the green target in the neuron’s response field, consistent with the accumulated
evidence from the sequence of shapes [from movie 3 of (4)]. [For more single-trial examples, see the
movies in (4) and movies 1 and 2 in (5). For population analyses, see (4, 5).]
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It’s both: some neurons look more like ramping, 
some neurons more like stepping
Zoltowski … Pillow, Neuron 2019

But this was still all single neurons !!!

NEURONAL MODELING

Single-trial spike trains in parietal
cortex reveal discrete steps during
decision-making
Kenneth W. Latimer,1,2 Jacob L. Yates,1,2 Miriam L. R. Meister,2,3

Alexander C. Huk,1,2,4,5 Jonathan W. Pillow1,2,5,6*

Neurons in the macaque lateral intraparietal (LIP) area exhibit firing rates that appear to
ramp upward or downward during decision-making. These ramps are commonly assumed
to reflect the gradual accumulation of evidence toward a decision threshold. However,
the ramping in trial-averaged responses could instead arise from instantaneous jumps at
different times on different trials. We examined single-trial responses in LIP using
statistical methods for fitting and comparing latent dynamical spike-train models. We
compared models with latent spike rates governed by either continuous diffusion-to-bound
dynamics or discrete “stepping” dynamics. Roughly three-quarters of the choice-selective
neurons we recorded were better described by the stepping model. Moreover, the inferred
steps carried more information about the animal’s choice than spike counts.

R
amping responses have been observed in a
variety of brain areas during decision-
making and have been widely interpreted
as the neural implementation of evidence
accumulation for forming decisions (1–7).

However, ramping can only be observed by aver-
aging together responses from many trials (and,
often, many neurons), which obscures the dy-
namics governing responses on single trials. In
particular, a discrete “stepping” process (8, 9), in
which the spike rate jumps stochastically from
one rate to another at some time during each
trial, can also create the appearance of ramping

(10, 11). Although decision-making at the behav-
ioral level is well described as an accumulation
process (12, 13), whether the brain computes deci-
sions through a direct neural correlate (ramping)
or a discrete implementation (stepping) re-
mains a central, unresolved question in sys-
tems neuroscience.
We used advanced statistical methods to iden-

tify the single-trial dynamics governing spike
trains in the lateral intraparietal (LIP) area of
macaques performing a well-studied motion-
discrimination task (Fig. 1A) (3, 14). We formu-
lated two spike-trainmodels with stochastic latent

dynamics governing the spike rate: one defined
by continuous ramping dynamics and the other
by discrete stepping dynamics (see the supple-
mentary methods for mathematical details). In
the ramping model, also known as “diffusion-to-
bound,” the spike rate evolves according to a
Gaussian randomwalk with linear drift (Fig. 1B).
The slope of drift depends on the strength of sen-
sory evidence, and each trial’s trajectory contin-
ues until hitting an absorbing upper bound.
Alternatively, in the stepping model, the latent
spike rate jumps instantaneously from an initial
“undecided” state to one of two discrete decision
states during the trial (Fig. 1C). The probability
of stepping up or stepping down and the timing
of the step are determined by the strength of
sensory evidence. For both models, we assumed
that spiking follows an inhomogeneous Poisson
process given the time-varying spike rate.
Both latent variable models are “doubly sto-

chastic” in the sense that the probability of an
observed spike train given the sensory stimu-
lus depends on both the noisy trajectory of the
latent spike rate and the Poisson variability in
the spiking process. Fitting such latent variable
models requires integrating over all latent tra-
jectories consistentwith the observed spike trains,
which is not analytically tractable. We therefore
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Fig. 1. Motion discrimination task and spike-train models. (A) Schematic
of moving-dot direction-discrimination task. The monkey views and discrim-
inates the net direction of a motion stimulus of variable motion strength and
duration and indicates its choice by making a saccade to one of two choice
targets 500 ms after motion offset. One choice target is in the response field
of the neuron under study (RF, shaded patch on left); the other is outside it.
(B) Ramping (diffusion-to-bound) model. Spike rate trajectories (solid traces)
were sampled from a diffusion-to-bound process for each of three motion
coherences (strong positive, zero, and strong negative). The model param-
eters include an initial spike rate, a slope for each coherence, noise variance,
and an upper bound. We do not include a lower bound, consistent with the

competing integrator (race) model of LIP (5). Spike trains (below) obey an
inhomogeneous Poisson process for each spike rate trajectory. (C) Discrete
stepping model. Spike rate trajectories (above) begin at an initial rate and
jump up or down at a random time during each trial, and spike trains (below)
once again follow a Poisson process, given the latent rate.The step times take
a negative binomial distribution, which resembles the time-to-bound dis-
tribution under a diffusion model. Parameters include the spike rates for the
three discrete states and two parameters governing the distribution over step
timing and direction for each motion coherence. Both models were fit using
the spike trains and coherences for each neuron, without access to the ani-
mal’s choices.
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Using multielectrode recordings to greatly improve 
prediction of behavior in single trials

example 
neuron 2

example 
neuron 1
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A simple linear model predicts behavior very well

Firing rates r(t) of N neurons

(Kiani, …, Newsome Current Biology  2015)
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We adopted a data-driven approach to separate the effects of DVPERL 
and stimulus duration (Supplementary Methods 16.1). In brief, to isolate 
the effect of the magnitude of DVPERL (|DVPERL|), we (1) divided trials into 
eight quantiles for stimulus duration, (2) calculated a residual pulse 
effect for each trial by subtracting the mean pulse effect for each com-
bination of stimulus-duration quantile and baseline motion strength, 
(3) recombined the data across duration quantiles to obtain statistical 
power, and (4) analysed how the residuals varied with |DVPERL|. We refer 
to this as the time-adjusted effect of DVPERL, that is the effect of DVPERL 
that cannot be accounted for by stimulus duration or baseline motion 
strength (Fig. 4e, f). Conversely, to isolate the DV-adjusted effect of 
stimulus duration, we (1) divided trials into |DVPERL| bins, (2) calculated 
residual pulse effects by subtracting the mean effects for each com-
bination of |DVPERL| bin and baseline motion strength, (3) recombined 
the data across all |DVPERL| bins, and (4) analysed how the single-trial 
residuals varied with stimulus duration (Fig. 4g, h).

The time-adjusted magnitudes of both behavioural and neural pulse 
effects decreased systematically with |DVPERL| (Fig. 4e, f, Extended Data 
Fig. 8c, d, g–j), and the DV-adjusted magnitudes of both behavioural and 
neural pulse effects decreased systematically with stimulus duration 
(Fig. 4g, h, Extended Data Fig. 8e, f).

Discussion
In this study, we have combined neural population recordings 
with closed-loop, neurally contingent stimulus control to probe 
moment-to-moment fluctuations in decision states and validate 
their significance for behaviour. We show that large fluctuations in a 
decoded DV in premotor and primary motor cortices are nearly instan-
taneously (<100 ms) predictive of choices. Notably, these intra-trial DV 
fluctuations are not driven predominantly by intra-trial fluctuations 
in stimulus strength, as quantified by motion energy, even in CoM 
trials (Extended Data Fig. 9, Supplementary Note 4). This advance 
enabled real-time detection of covert cognitive events (such as CoM) 
at the neural level.

We exploited this approach to test current models of evidence accu-
mulation and termination in decision making. We introduced weak 
motion pulses at known DV values during naturally evolving decisions. 
Strictly linear, unbounded accumulation models predict a constant 
effect of stimulus pulses irrespective of the momentary decision state 
or the time of pulse presentation during the trial. By contrast, we found 
that the neural and behavioural effects of stimulus pulses were strong-
est when delivered at low DV values or short stimulus durations.
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Fig. 4 | Neurally triggered motion pulses nonlinearly bias choice and DV.  
a, Motion pulse task trial structure (Supplementary Methods 11.3).  
b, Psychometric functions for closed-loop motion pulse trials. Curves fit to 
trials with motion pulses only (Supplementary Methods 11.3, 16). Data points 
show mean (± s.e.m.) proportion of rightward choices. Black, highest 
coherence trials, no pulses presented. c, Average change in post-pulse DV 
aligned to estimated PERL, with mean subtracted. 𝛿DV, difference between DV 
and DVPERL at each time point. Traces (mean ± s.e.m.) are terminated 100 ms 
before each subject’s median reaction time, or 150 ms before the single-trial 
reaction time (whichever came first; Supplementary Methods 16). The mean 
𝛿DV across pulse directions in each time bin has been subtracted for 
visualization. Black dots, time bins in which 𝛿DV differs significantly for 
leftward versus rightward pulse trials (false discovery rate 0.05). Same trials as 
b, pooled across monkeys. d, Average change in post-pulse DV for each DV 
boundary, aligned to PERL (mean subtracted). Same trials and conventions as c, 
sorted by DV boundary. e, Residual behavioural pulse effects over |DVPERL| 
(∆(mean choice†

resD)), difference between the mean residuals for 

stimulus-congruent minus incongruent pulse trials (Supplementary Methods 
16.1). †Variable is signed according to the direction of the motion of the baseline 
stimulus. Black, mean (± s.e.m.) residual pulse effects on choice for trials in 
each |DVPERL| bin. Asterisks denote significantly non-zero means at 95% 
confidence (bootstrapped; Supplementary Methods 16.1). Blue, nonlinear 
regression model fit of the residuals to a half Gaussian over |DVPERL| 
(Levenberg–Marquardt algorithm, using the MATLAB fitnlm function), 
including the P value for the fit amplitude coefficient (two-sided t-statistic). 
Same trials as d. f–h, Same trials, conventions and statistics as e. f, Residual 
neural pulse effects over |DVPERL| (∆(mean ∆DV†

resD)). ∆DV, DV averaged over the 
last 50 ms of the time window described in c, minus the DV averaged over the 
50 ms pre-PERL (Supplementary Methods 16.1). Black, mean (± s.e.m.) residual 
pulse effects on ∆DV for each |DVPERL| bin. g, Residual behavioural pulse effects 
over time (∆(mean choice†

resT)). Black, mean (± s.e.m.) residual pulse effects on 
choice for trials in each stimulus-duration quantile. h, Residual neural pulse 
effects over time (∆(mean ∆DV†

resT)). Black, mean (± s.e.m.) residual pulse 
effects on ∆DV for each stimulus-duration quantile.

DV very positive: monkey chooses T1 almost always
DV = 0 : 50/50
DV very negative: monkey chooses T2 almost always
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optimize model params for 90% of the data, 
test on remaining 10%

A simple linear model predicts behavior very well

(Kiani, …, Newsome Current Biology  2015)

Firing rates r(t) of N neurons
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DV(t) in four example trials

one trial
another trial

one trial
another trial

Arrows indicate “changes of mind” ?

(Kiani, …, Newsome Current Biology  2014)
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Idea 1:  multi-neuron recordings for better moment-
by-moment estimates of internal signals

Two ideas running in the background:

Idea 2:  most neural activity is of unknown function, 
yet is coordinated across neurons and brain regions. 
What’s going on with this “dark matter of the brain?”
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1.5 %

explained by known

task variables, i.e., what we study


(International Brain Lab 2023; our data)

Neural activity variance:

~10 %    correlated with 

  uninstructed movements


              (but we don’t know why)


     (Musall…Churchland 2019,

      Wang… Svoboda Druckmann 2023; 

      our data) 

~88 %  ???
we… don’t know

Idea 2: the “dark matter” of the brain …

(Arieli 1996, Fiser 2004, Stringer 2019, Manley 2024) 

•most neural activity looks like 
noise but is coordinated 
across neurons and regions.
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Idea 1:  multi-neuron recordings for better moment-
by-moment estimates of internal signals

Two ideas running in the background:

Idea 2:  most neural activity is of unknown function, 
yet is coordinated across neurons and brain regions. 
What’s going on with this “dark matter of the brain?”
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On to the main talk
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decision-making

• social decisions (e.g., Krajbich 2012)

• sensory decisions (e.g., Newsome, 1989)

• economic decisions (e.g., Gluth 2012) 
• gambling decisions (e.g., Busemeyer, 1993)

• memory decisions (e.g., Ratcliff, 1978)

• visual search decisions (e.g., Purcell, 2010)

• value decisions (e.g., Milosavljevic 2012)

accounts for data in:

→
 tim

e →

+C-C

a =0 

decision 

boundary

accumulation 
inputs drive dynamics

a0

Behavior level:  
the “drift-diffusion model” (DDM)

Go RGo L

Left Righta
0

→
 tim

e →

Go RGo L

Luo ’23

rightwards 
evidence

leftwards 
evidence
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decision-making

→
 tim

e →

+C-C

a =0 

decision 

boundary

accumulation 
inputs drive dynamics

commitment 
inputs are irrelevant 


to the dynamics

a0

Behavior level:  
the “drift-diffusion model” (DDM)

Go RGo L

evolves

ends

at the neural level: 

how do decisions evolve? 
and how do they end?
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a0

→
 tim

e →
a =0 


decision 

boundary

accumulation 
inputs drive dynamics

commitment 
inputs are irrelevant 


to the dynamics

Behavior level:  
the “drift-diffusion model” (DDM)

Neural level:  
the “line attractor” hypothesis

Go RGo L

+C-C
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a0

→
 tim

e →

+C-C

a =0 

decision 

boundary

accumulation 
inputs drive dynamics

commitment 
inputs are irrelevant 


to the dynamics

Behavior level:  
the “drift-diffusion model” (DDM)

Neural level:  
the “line attractor” hypothesis

+C-C

r1

r2

r3r4
r5

Go RGo L

pattern of firing rates 

across neurons
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a0

→
 tim

e →
a =0 


decision 

boundary

accumulation 
inputs drive dynamics

commitment 
inputs are irrelevant 


to the dynamics

Behavior level:  
the “drift-diffusion model” (DDM)

Neural level:  
the “line attractor” hypothesis

r1

r2

r3r4
r5

Go RGo L

+C-C +C
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a0

→
 tim

e →
a =0 


decision 

boundary

accumulation 
inputs drive dynamics

commitment 
inputs are irrelevant 


to the dynamics

Behavior level:  
the “drift-diffusion model” (DDM)

Neural level:  
the “line attractor” hypothesis

r1

r2

r3r4
r5

input dynamics

autonomous dynamics

Go RGo L

+C-C +C

-C
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Neural level:  
the “line attractor” hypothesis

-C

r1

r2

r3r4
r5

input dynamics

autonomous dynamics

Why not just measure the flow lines and find what the data says?

(Bogacz 2006)

(Wong 2006)

(Mante 2013)

theoretical model variants in the literature:

all have a stable 1-d line

+C

-C
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time
0 1 (sec)

very noisy data:
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r4

r5

ne
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Left Right

   #R > #L ?
 

go R if

stimulus presentation: 
auditory clicks ~ 1.0 sec

subjects must 
accumulate sensory 


evidence over time to 
form their decision 

a0

→
 tim

e →

Go RGo L

Optimal accumulation of evidence for decision-making in rats

and humans

Bingni W. Brunton1,2,5, Matthew M. Botvinick1,3 & Carlos D. Brody1,2,4

draft last compiled on September 30, 2012
1
Princeton Neuroscience Institute

2
Department of Molecular Biology

3
Department of Psychology

Princeton University, Princeton, NJ 08544, USA
4
Howard Hughes Medical Institute

5
present address: Dept. of Biology and Dept. of Applied Mathemat-

ics,

University of Washington, Seattle, WA 98195, USA.

Gradual accumulation of evidence is thought to be a funda-
mental component of decision-making1–8. However, its prop-
erties and underlying mechanisms remain unclear. Although
noise in the accumulation is a core feature of most models1, 3, 4, 8,
the properties of this noise have never been isolated and mea-
sured. Here we develop an approach to probe decision-making
that begins with tasks in which sensory evidence is delivered
in pulses whose precisely-controlled timing varies widely within
and across trials. The resulting data are analyzed with models
of evidence accumulation that use the richly detailed informa-
tion of each trial’s pulse timing to distinguish between different
decision mechanisms. The method allowed us to measure, for
the first time, the magnitude of noise in the accumulator’s mem-
ory, separately from noise associated with incoming sensory evi-
dence. Remarkably, we found in both rats and humans that the
accumulator is essentially perfect: its memory is noiseless. In
contrast, the process of adding new sensory evidence is noisy and
is the primary source of variability. Our results put important
constraints on mechanisms underlying accumulation of evidence
for decision-making. More generally, we suggest the combina-
tion of our task design and modeling approach as a powerful
method for revealing the internal properties of decision-making
processes.

Decisions in real life often need to be made based on noisy or
unreliable evidence. Accumulating sensory evidence from a set of
noisy observations made over time makes it possible to average over
different noise samples, thus improving estimates of the underlying
signal. This principle is the basis for the widely influential class of
drift-diffusion models7, 8, first proposed by Ratcliff2 in 1978, which
posit that evidence accumulation is gradual (drift) and noisy (dif-
fusion). These models have been broadly applied to explain a va-
riety of phenomena in biology, from spiking in single neurons9 to
consumer behavior10. Nevertheless, the properties of evidence ac-
cumulation remain under debate4, 11, and key properties of the noise
remain undetermined. Accumulation involves both maintaining a
memory of evidence accrued so far and addition of new evidence to
the memory. Although measures of variance can be powerful indi-
cators of underlying mechanism12, no test to date has distinguished
between noise associated with the accumulator memory itself versus
noise associated with the addition of new sensory evidence.

To quantitatively probe the dynamics of decision-making, we de-
veloped a class of tasks in which subjects are concurrently presented
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Figure 1: Psychophysical tasks and summary of behavior. a, Sequence
of events in each trial of the rat auditory task. Following a center port light
onset, trained rats placed their nose into the port and “fixated” their nose
there for a fixed amount of time until the light was turned off (1-2 sec). Trains
of randomly-timed clicks were played concurrently from left and right free-
field speakers during the last portion of the fixation time. After nose fixation
and sounds ended, the rat made a choice, poking in the left or the right port
to indicate which side played more clicks. Humans performed an analogous
version of the task on a computer while wearing headphones. b, Schematic
diagram of a stimulus in the visual pulses version of the task, performed by
humans on a computer. c, Psychometric curves (fits to a 4-parameter logistic
function for each subject; see methods) for rat subjects. d, Psychometric
curves, as in c, for human subjects. e, Chronometric curves for an example
rat. Difficulty is labeled by the ratio of click rates played on the two sides.
For each difficulty, performance improves with longer stimulus durations.
Dashed lines show the best-fit model predictions for this rat, as described in
the text. The vertical axis shows mean accuracy ±0.95 c.i.

1

choice

one trial,

 ~500/session
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rN ~ Poisson [h (CN1 z1 + CN2 z2 + b)]

r 1 ~ Poisson [h (C11 z1 + C12 z2 + b)]
.
.
.

neural data well-described by few “latent” variables z

2 latent vars

rectifying nonlinearity
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time
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very noisy data:
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High-yield Neuropixels recordings (1 probe, 2-3 regions/rat)

r ~ Poisson [h (C ⋅ z + b)]

neural data well-described by few “latent” variables z

pointwise nonlinearity
z1

z2fit to data

high-D 
neural space
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·z ≡
dz
dt

= F ( z )

26

r ~ Poisson [h (C ⋅ z + b)]
fit to data

high-D 
neural space

input dynamics

autonomous dynamics·z = F ( z, u = ↑ ↓ )

autonomous dynamics : F ( z, u = 0)

·z = F ( z )

inputs

z1

z2

input dynamics : F ( z, u = ↑ ↓ ) − F ( z, u = 0)
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·z = F ( z, u = ↑ ↓ ) + η

27

r ~ Poisson [h (C ⋅ z + b)]
fit to data

high-D 
neural space

input dynamics

autonomous dynamics·z = F ( z, u = ↑ ↓ )

fit to data

autonomous dynamics : F ( z, u = 0)

input dynamics : F ( z, u = ↑ ↓ ) − F ( z, u = 0)

inputs

z1

z2

• LFADS (Pandarinath, … Sussillo, 2018)   :  F() is a 500-neuron RNN 

• Genkin, … Engel (2023), Duncker, … Sahani (2019) :  not yet equipped to take time-dependent inputs 

• rSLDS (Scott Linderman’s group, used in Nair …. Anderson 2023)  : fit our data poorly 

• Kim et al., “FINDR” (2023)  : F() is parametrized by a deep FFNN —  stays low-dz
“Neural ODEs” : Weinan 2017; Chen 2018

+ Stochastic diff. equ. (Li, … Duveneaud 2020) : stochastic dynamics for 

+ Poisson observations

+ Non-differentiable pulsatile inputs (clicks)

+ F() is a gated NN (Kim et al. 2023)

z

z
·z

u
in→ out→

·z = F ( z, u = ↑ ↓ )
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OUR DATA:
autonomous weak, 

inputs strong
inputs weak, 

autonomous strong

autonomous dynamics : F ( z, u = 0) input dynamics : F ( z, u = ↑ ↓ ) − F ( z, u = 0)

Go R

Go L
evidence 
strength

(Bogacz 2006) (Wong 2006) (Mante 2013)
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OUR DATA:

a0

→
 tim
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+C-C

a =0 

decision 

boundary

accumulation 
inputs drive dynamics

commitment 
inputs are irrelevant 


to the dynamics

Go RGo L

behavioral  
DDM:

inputs weak, 
autonomous strong

autonomous dynamics : F ( z, u = 0) input dynamics : F ( z, u = ↑ ↓ ) − F ( z, u = 0)

Go R

Go L
evidence 
strength

autonomous weak, 
inputs strong

subject has made up their mind

and committed to a decision?
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Luo*, Kim* ’23
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stim 
offstim on

motion 
onsetnTc

: a neural biomarker for covertly 
making up one’s mind

“neurally-inferred Time 
of commitment” (nTc) 

• new flow line methods led us to nTc 


• timing of nTc appears to be 
internally determined 


•Can now read neural activity and 
tell if and when a subject secretly 
makes up their mind

(Idea 1:  multi-neuron recordings for better moment-
by-moment estimates of internal signals)
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• discovery of nTc, a neural biomarker 
for covert decision commitment

-0.2 0 0.2
-0.2

0

0.2

0.4

time relative to nTc (sec)
BE

HA
VI

O
RA

L 

pr
ed

ict
io

n

B
E

H
AV

IO
R

: 
w

ei
gh

t o
f c

lic
ks

 o
n 

ch
oi

ce

    2


    1


    0


   -1

a.
u.

observed
shuffled

 
−

stim 
offstim on

motion 
onsetnTc

• nTc marks a sweeping state change across the brain

motion onset
stim offstim on

nTc

BLA

HPC
MGB

NAc

TS

S1

mPFC

ADS
M1
dmFC

-0.5 0 0.5
Time w.r.t. to nTc (s)

-1 -0.5 0
Time w.r.t. motion onset (s)

0.5

0.6

0.7

0.8

0.9

1

De
ci

si
on

 P
re

di
ct

io
n 

Ac
cu

ra
cy

Time w.r.t. nTc (s)

0

0.1

0.2

DV corr.

dm
FC
M1AD

S
mP
FC
S1 TS NA

c
MG
B
HP
C
BL
A

dmFC
M1
ADS
mPFC
S1
TS
NAc
MGB
HPC
BLA

BL
A

dm
FC
M1AD

S
mP
FC
S1 TS NA

c
MG
B
HP
C
BL
A

state 1 state 2nTc

Luo*, Kim* ’23

Bondy*, Charlton, Luo* ’24

previous analyses, which were not sensitive to nTc, 

were blurring entirely disparate data together   

(note: uninstructed movements don’t 
affect these conclusions at all)   
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“Frozen noise” task design

Trial Trial Trial Trial Trial 

…
Noise 
seed 1

Noise 
seed 2

Noise 
seed 3

Noise 
seed 2

Noise 
seed 1

54 unique seeds, 
~10 repeats each per session
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1. Before nTc, decision-aligned activity is highly 
correlated across the brain, with correlations 
dominated by a single dimension.


2. nTc marks a previously unknown, sweeping 
state change across the brain

What did we discover with the multiprobe recordings?
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Idea 1:  multi-neuron recordings for better moment-
by-moment estimates of internal signals

Two ideas running in the background:

Idea 2:  most neural activity is of unknown function, 
yet is coordinated across neurons and brain regions. 
What’s going on with this “dark matter of the brain?”
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1.5 %

explained by known

task variables, i.e., what we study


(International Brain Lab 2023; our data)

Neural activity variance:

~10 %    correlated with 

  uninstructed movements


              (but we don’t know why)


     (Musall…Churchland 2019,

      Wang… Svoboda Druckmann 2023; 

      our data) 

~88 %  ???
we… don’t know

what nTc, an internal covert signal, 
looked like before we discovered it

ongoing and future work:  moving beyond decision-making …

nTc is an example of something much broader

hypothesis: could much 
neural activity consist of    
undiscovered internal 
signals?

(Arieli 1996, Fiser 2004, Stringer 2019, Manley 2024) 

•most neural activity looks like 
noise but is coordinated 
across neurons and regions.
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• identify structure in 
simultaneous recordings


• characterize that structure


step 1  

how nTc was discovered:

~88 %  ???

Koukuntla, 2024

deep FFNNs deep FFNNs

our “SPLICE” autoencoder 
architecture

rA

rB

rA

rB

min( |rA  rA|2 


              + |rB  rB|2 )
−

−

rB

rA

new: inspired by modern nonlinear AI

• characteristics  hypotheses 
of functional significance 


• test hypotheses, find meaning


step 2 

→

• state-of-the-art data-driven AI 
method to identify and separate 
private vs. shared latents 


• infer intrinsic geometry of latents


step 1  

   for pairs of simultaneously recorded regions:

generalizing for future discoveries 
across brain regions

•most neural activity looks like 
noise but is coordinated 
across neurons and regions.

• large-scale simultaneous 
recordings + new AI-
based analysis methods 
give us access to these 
internal signals

hypothesis: could much 
neural activity consist of    
undiscovered internal 
signals?
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• dynamical models of all 
simultaneously recorded 
neurons across the brain, 
together, to understand 
cross-brain single-trial 
dynamics.
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evidence axis35. If so, we would expect each right-choice trial to evoke 
different neural sequences, depending on the time courses of evidence 
that the mice encountered throughout the maze (Fig. 1e). Notably, in 
this second scenario, firing fields evaluated in a single dimension—such 
as position—would exist, but would appear unreliable across trials with 
different amounts of accumulated evidence (Fig. 1e, bottom). Unreli-
ability could appear as either missing activity in the place field of the 
cell or variability in the position at which the cell is active.

Joint encoding of position and evidence
To distinguish between these two possibilities, we examined how neural 
activity depended on known behavioural variables such as position, 
choice and evidence. We first calculated ∆F/F for each identified hip-
pocampal CA1 neuron following established methods15,36,37. We then 
measured the mutual information between the neural activity of each 
cell and the position of the mouse along the stem of the T-maze (0 to 
300 cm) and compared it to a shuffled dataset in which the activity of 
each cell was circularly shifted within each trial. CA1 neurons exhib-
ited choice-specific place cell sequences when activity was sorted by 
the position of peak activity (Fig. 2a). However, the response of indi-
vidual cells in these sequences was more variable and unreliable on a 
trial-by-trial basis in comparison to a simpler alternation task (Extended 
Data Fig. 1a, b). This is against the prediction of choice-specific cell maps 

(Fig. 1d), but is consistent with maps in which evidence and position 
are jointly encoded (Fig. 1e). We next measured the mutual informa-
tion between accumulated evidence and the neural activity of each 
cell and found that CA1 neurons formed firing fields in evidence space 
that spanned small segments of evidence values (Fig. 2b and Extended 
Data Fig. 1c), consistent with Fig. 1e.

To directly test the hypothesis that CA1 neurons encode evidence 
and position jointly (Fig. 1e), we measured the amount of mutual infor-
mation between neural activity and occupancy in a two-dimensional 
evidence-by-position (E × Y) space and compared this to the amount 
of mutual information if cells encoded position or evidence indepen-
dently. The neural activity of an example neuron with significant mutual 
information between activity and occupancy in E × Y space is shown in 
Fig. 2c, and 25 of these neurons from a single imaging session are shown 
in Fig. 2d and Extended Data Fig. 2a. For these neurons that jointly 
encode position and evidence, mutual information in E × Y space was 
significantly greater than in two-dimensional spaces in which either 
evidence or position values were shuffled (Fig. 2e and Extended Data 
Fig. 2b, c).

Geometric representation by a neural manifold
Although the mutual information metric has historically been used to 
measure spatial information in single hippocampal neurons38, it relies 
on the manual selection of predetermined behavioural variables. We 
therefore turned to the unsupervised extraction of neural manifolds 
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Fig. 1 | Imaging of CA1 neural activity in mice performing the accumulating 
towers task. a, Top, schematic of the task in which head-fixed mice navigate a 
virtual-reality evidence-accumulation T-maze task. Insets show example views 
from the perspective of the mice. Bottom, while mice (n = 7) perform the task, 
two-photon calcium imaging is used to record hippocampal CA1 neural 
activity. Scale bars, 200 µm (main image) and 20 µm (magnification).  
b, Psychometric curves of mice performing the towers task. Grey lines, n = 7 
mice; black line, metamouse combining data across mice. Data are 
mean ± binomial confidence interval. c, Logistic regression showing that mice 
use evidence (number of right towers minus number of left towers) from 
throughout the cue period. Grey lines, n = 7 mice; black line, metamouse 
combining data across mice. Data are mean ± s.e.m. d, Firing fields of 
right-choice-selective place cells would not depend on evidence and would 
therefore divide a joint evidence-by-position (E × Y) space into two halves (top). 
Two right-choice trials would generate the same neural sequence (bottom).  
e, Alternatively, if hippocampal neurons encoded evidence jointly with 
position, smaller firing fields that divide the evidence dimension would appear 
in E × Y space (top), and two right-choice trials could have different neural 
sequences that depend on the evidence values traversed (bottom).
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activity of a single neuron in joint evidence-by-position (E × Y) space.  
d, Twenty-five neurons with significant information in E × Y space. Each colour 
represents one cell, and surfaces represent neural activity that exceeds 2σ 
above the shuffled means (Extended Data Fig. 2a). e, Mutual information of 
cells found to have significant information in E × Y space is significantly greater 
than mutual information in two-dimensional spaces in which either evidence 
(RE) or position (RY) has been randomized. Two-tailed paired Student’s t-tests, 
Bonferroni correction, n = 917 neurons; E × Y versus RE × Y, ****P < 0.0001; E × Y 
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Nieh*, Schottdorf*  ’21

Quantitative cognitive rodent behaviorSummary from today

• discovered internal signal 
nTc, a neural biomarker for 
covert decision commitment


• nTc marks a sweeping state 
change across the brain

47

•most neural activity looks 
like noise but is coordinated 
across neurons and regions.

• large-scale simultaneous 
recordings + new AI-
based analysis methods 
give us access to these 
internal signals

hypothesis: could much 
neural activity consist of    
undiscovered internal 
signals?
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evidence axis35. If so, we would expect each right-choice trial to evoke 
different neural sequences, depending on the time courses of evidence 
that the mice encountered throughout the maze (Fig. 1e). Notably, in 
this second scenario, firing fields evaluated in a single dimension—such 
as position—would exist, but would appear unreliable across trials with 
different amounts of accumulated evidence (Fig. 1e, bottom). Unreli-
ability could appear as either missing activity in the place field of the 
cell or variability in the position at which the cell is active.

Joint encoding of position and evidence
To distinguish between these two possibilities, we examined how neural 
activity depended on known behavioural variables such as position, 
choice and evidence. We first calculated ∆F/F for each identified hip-
pocampal CA1 neuron following established methods15,36,37. We then 
measured the mutual information between the neural activity of each 
cell and the position of the mouse along the stem of the T-maze (0 to 
300 cm) and compared it to a shuffled dataset in which the activity of 
each cell was circularly shifted within each trial. CA1 neurons exhib-
ited choice-specific place cell sequences when activity was sorted by 
the position of peak activity (Fig. 2a). However, the response of indi-
vidual cells in these sequences was more variable and unreliable on a 
trial-by-trial basis in comparison to a simpler alternation task (Extended 
Data Fig. 1a, b). This is against the prediction of choice-specific cell maps 

(Fig. 1d), but is consistent with maps in which evidence and position 
are jointly encoded (Fig. 1e). We next measured the mutual informa-
tion between accumulated evidence and the neural activity of each 
cell and found that CA1 neurons formed firing fields in evidence space 
that spanned small segments of evidence values (Fig. 2b and Extended 
Data Fig. 1c), consistent with Fig. 1e.

To directly test the hypothesis that CA1 neurons encode evidence 
and position jointly (Fig. 1e), we measured the amount of mutual infor-
mation between neural activity and occupancy in a two-dimensional 
evidence-by-position (E × Y) space and compared this to the amount 
of mutual information if cells encoded position or evidence indepen-
dently. The neural activity of an example neuron with significant mutual 
information between activity and occupancy in E × Y space is shown in 
Fig. 2c, and 25 of these neurons from a single imaging session are shown 
in Fig. 2d and Extended Data Fig. 2a. For these neurons that jointly 
encode position and evidence, mutual information in E × Y space was 
significantly greater than in two-dimensional spaces in which either 
evidence or position values were shuffled (Fig. 2e and Extended Data 
Fig. 2b, c).

Geometric representation by a neural manifold
Although the mutual information metric has historically been used to 
measure spatial information in single hippocampal neurons38, it relies 
on the manual selection of predetermined behavioural variables. We 
therefore turned to the unsupervised extraction of neural manifolds 
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Fig. 1 | Imaging of CA1 neural activity in mice performing the accumulating 
towers task. a, Top, schematic of the task in which head-fixed mice navigate a 
virtual-reality evidence-accumulation T-maze task. Insets show example views 
from the perspective of the mice. Bottom, while mice (n = 7) perform the task, 
two-photon calcium imaging is used to record hippocampal CA1 neural 
activity. Scale bars, 200 µm (main image) and 20 µm (magnification).  
b, Psychometric curves of mice performing the towers task. Grey lines, n = 7 
mice; black line, metamouse combining data across mice. Data are 
mean ± binomial confidence interval. c, Logistic regression showing that mice 
use evidence (number of right towers minus number of left towers) from 
throughout the cue period. Grey lines, n = 7 mice; black line, metamouse 
combining data across mice. Data are mean ± s.e.m. d, Firing fields of 
right-choice-selective place cells would not depend on evidence and would 
therefore divide a joint evidence-by-position (E × Y) space into two halves (top). 
Two right-choice trials would generate the same neural sequence (bottom).  
e, Alternatively, if hippocampal neurons encoded evidence jointly with 
position, smaller firing fields that divide the evidence dimension would appear 
in E × Y space (top), and two right-choice trials could have different neural 
sequences that depend on the evidence values traversed (bottom).
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Fig. 2 | CA1 neurons jointly encode the position of the mice and 
accumulated evidence in an evidence-accumulation task. a, Choice-specific 
place cell sequences, divided into left-choice-preferring (top), right-choice- 
preferring (middle) and non-preferring (bottom) cells. Cells are shown in the 
same order within each row group. ∆F/F was normalized within each neuron.  
b, CA1 neurons have firing fields in accumulated evidence space (number of 
right towers minus number of left towers). c, Example of the average neural 
activity of a single neuron in joint evidence-by-position (E × Y) space.  
d, Twenty-five neurons with significant information in E × Y space. Each colour 
represents one cell, and surfaces represent neural activity that exceeds 2σ 
above the shuffled means (Extended Data Fig. 2a). e, Mutual information of 
cells found to have significant information in E × Y space is significantly greater 
than mutual information in two-dimensional spaces in which either evidence 
(RE) or position (RY) has been randomized. Two-tailed paired Student’s t-tests, 
Bonferroni correction, n = 917 neurons; E × Y versus RE × Y, ****P < 0.0001; E × Y 
versus E × RY, ****P < 0.0001; RE × Y versus E × RY: ****P < 0.0001. For box plots, 
boundaries, 25–75th percentiles; midline, median; whiskers, minimum–
maximum.
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