
Integration and 
Perceptual Decision Making



Decision Making  
(writ “small”)



Decision Making  
(writ “small”)

• Empirical data in cognitive psychology rely on 
measures of speed and accuracy of response:

– perception and psychophysics (e.g., Sperling task)

– attention (e.g., Stroop task, Posner paradigm)

– short term memory (e.g., Sternberg paradigm, Brown-Petersen paradigm)

– long term memory (e.g., priming, familarity effects, etc.)



Decision Making  
(writ “small”)

• Empirical data in cognitive psychology rely on 
measures of speed and accuracy of response:

– perception and psychophysics (e.g., Sperling task)

– attention (e.g., Stroop task, Posner paradigm)

– short term memory (e.g., Sternberg paradigm, Brown-Petersen paradigm)

– long term memory (e.g., priming, familarity effects, etc.)

• These often (though not always) involve a decision about  
how to respond between two alternatives:

– old or new?



Decision Making  
(writ “small”)

• Empirical data in cognitive psychology rely on 
measures of speed and accuracy of response:

– perception and psychophysics (e.g., Sperling task)

– attention (e.g., Stroop task, Posner paradigm)

– short term memory (e.g., Sternberg paradigm, Brown-Petersen paradigm)

– long term memory (e.g., priming, familarity effects, etc.)

• These often (though not always) involve a decision about  
how to respond between two alternatives:

– old or new?
– yes or no?



Decision Making  
(writ “small”)

• Empirical data in cognitive psychology rely on 
measures of speed and accuracy of response:

– perception and psychophysics (e.g., Sperling task)

– attention (e.g., Stroop task, Posner paradigm)

– short term memory (e.g., Sternberg paradigm, Brown-Petersen paradigm)

– long term memory (e.g., priming, familarity effects, etc.)

• These often (though not always) involve a decision about  
how to respond between two alternatives:

– old or new?
– yes or no?
– red or green?



Decision Making  
(writ “small”)

• Empirical data in cognitive psychology rely on 
measures of speed and accuracy of response:

– perception and psychophysics (e.g., Sperling task)

– attention (e.g., Stroop task, Posner paradigm)

– short term memory (e.g., Sternberg paradigm, Brown-Petersen paradigm)

– long term memory (e.g., priming, familarity effects, etc.)

• These often (though not always) involve a decision about  
how to respond between two alternatives:

– old or new?
– yes or no?
– red or green?
– ⬅ or ➡?



Decision Making  
(writ “small”)

• Empirical data in cognitive psychology rely on 
measures of speed and accuracy of response:

– perception and psychophysics (e.g., Sperling task)

– attention (e.g., Stroop task, Posner paradigm)

– short term memory (e.g., Sternberg paradigm, Brown-Petersen paradigm)

– long term memory (e.g., priming, familarity effects, etc.)

• These often (though not always) involve a decision about  
how to respond between two alternatives:

– old or new?
– yes or no?
– red or green?
– ⬅ or ➡?

• What are the dynamics that underlie these decisions…



Decision Making  
(writ “small”)

• Empirical data in cognitive psychology rely on 
measures of speed and accuracy of response:

– perception and psychophysics (e.g., Sperling task)

– attention (e.g., Stroop task, Posner paradigm)

– short term memory (e.g., Sternberg paradigm, Brown-Petersen paradigm)

– long term memory (e.g., priming, familarity effects, etc.)

• These often (though not always) involve a decision about  
how to respond between two alternatives:

– old or new?
– yes or no?
– red or green?
– ⬅ or ➡?

• What are the dynamics that underlie these decisions…
and how are the controlled?



Outline

• Simple behavioral task: 
  – Two alternative forced choice (2AFC) decision task 

• Current “state of play:” 
  – Behavioral findings 
  – (Some informative) neurobiological findings 
  – PDP models 

• Formal analysis: 
  – Drift diffusion model (DDM) 

Sets the stage for: 
  – Control as optimization
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See dots moving left (     ), 
 press the left button

See dots moving right (    ), 
 press the right button

Measure reaction time (RT) and accuracy
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• Characteristically skewed RT distribution:

• Speed/accuracy tradeoff:
  – faster response ➞ less accurate
  – more accurate ➞ slower response
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Shadlen & Newsome, 1998

Areas LIP 
(parietal cortex) 

and SEF 
(supplementary eye fields): 

control of 
eye movements

♦

♦ ⬅
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Area MT 
(temporal cortex) 

motion sensitive 
  visual cortex

Motion Detection:

Integration:
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Simple PDP Model of 
Two Alternative Decision Task

Competition
• Processing:

– Flow of activity from 
stimulus inputs to a 
pair decision units

– Each decision unit 
accumulates / 
integrates input

– Decision units compete

• Decision:
– Occurs when activity 

of one decision unit 
exceeds a specified 
threshold

Usher & McClelland, 2001

Information
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– Each decision unit 
accumulates / 
integrates input 

– Decision units compete 

• Decision: 
– Occurs when activity 

of one decision unit 
exceeds a specified 
threshold Color 

Stimuli
Word 
Stimuli

wordscolors
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“green”“red”

Verbal Response Dimension
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•Complex dynamics:  hard to characterize and compare
• Theoretical degeneracy:  proliferation of models…
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Some Problems with PDP Models
• Large parameter space:  difficult to parameterize 

– how to set stimulus strength, connection weights, thresholds, etc.

•Complex dynamics:  hard to characterize and compare
• Theoretical degeneracy:  proliferation of models…
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• Focus only on one dimension (Brown & Holmes, 2001) 
assume that most of the “action” is along the decision line 
therefore, decision process can be approximated by a 
one-dimensional process (difference in activity

Simplification & Analysis

Actvity of R2
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R

1 Decision

Co-activation (faster)

Step 5:  Linearization

• Focus on linear range of function
– assume that units in the “focus of attention” 

are on the linear part of their activation function 
(i.e., most sensitive part of their dynamic range) 
Cohen et al (Psychological Review, 1990)
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Simplification
• Drift Diffusion Model (DDM): 

• Can analytically solve for 
 Error Rate and Decision Time:

x = A + c 
A = drift rate 
c = noise 

 P(x,t) = N(At, c√t) 
Process ends when x exceeds ± z  

Error Rate (ER) =  
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• Formal reduction of neural network models 

 (Bogacz et al., 2006)

• Optimal decision making process
– Continuous (NLDS) analog of the sequential probability ratio test (SPRT) 

(used by Turing to crack German Enigma code in WWII)

– Fastest to reach a decision for given threshold and error rate  
and most accurate for a given decision time 
(Wald, 1948;  Turing [Good, 1979];  Rouder, 1996)

– Guarantees arbitrarily low error rate as threshold is increased 
(Bogacz et al., 2006)

• However, presents optimization problem of its own:
– How to set parameters (e.g., threshold and starting point)?

– Here is where control comes in…  
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• DDM specifies psychologically relevant control parameters
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DDM and Control

• DDM specifies psychologically relevant control parameters
– Starting point:  expectations (priors)

– Drift rate:  signal strength / attention

– Threshold:  speed-accuracy trade-off

• Empirical question:

– Do people in fact adjust these parameters to optimize performance?

– Analyze DDM to determine optimal parameters  
under various experimental conditions 
  → generate testable predictions 
 (for example, what is the optimal threshold, and do people use this?)

– First, however, must define “objective function” 
 → the function that control seeks to optimize


