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Abstract

We review how leaky competing accumulators (LCAs) can be used to model decision making

in two-alternative, forced-choice tasks, and we show how they reduce to drift diffusion (DD) pro-

cesses in special cases. As continuum limits of the sequential probability ratio test, DD processes

are optimal in producing decisions of specified accuracy in the shortest possible time. Further-

more, the DD model can be used to derive a speed–accuracy trade-off that optimizes reward rate

for a restricted class of two alternative forced-choice decision tasks. We review findings that com-

pare human performance with this benchmark, and we reveal both approximations to and devia-

tions from optimality. We then discuss three potential sources of deviations from optimality at the

psychological level—avoidance of errors, poor time estimation, and minimization of the cost of

control—and review recent theoretical and empirical findings that address these possibilities. We

also discuss the role of cognitive control in changing environments and in modulating exploitation

and exploration. Finally, we consider physiological factors in which nonlinear dynamics may also

contribute to deviations from optimality.

Keywords: Accumulator; Cognitive control; Costs; Decision making; Drift-diffusion process;

Exploitation; Exploration; Optimality; Robustness; Speed–accuracy trade-off

1. Introduction

In this article, we review mathematical models of simple decision-making tasks and

use these to examine the extent to which human performance approaches but also

deviates from optimality in such tasks. For the sake of analytic tractability, we focus on
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two-alternative forced-choice (2AFC) tasks and consider linear models that are reduced

forms of more biologically realistic models. Despite these restrictions, application of the

models to empirical data suggests that human performance often approaches optimality

but also reveals systematic ways in which it falls short, and it suggests hypotheses about

why this is so. These include biased expectations, constraints on parameter estimation,

and other factors—in particular the costs of cognitive control required for optimization—
that are often neglected in analyses of cognitive performance.

We begin by considering how nonlinear neural network models of 2AFC decision tasks

can be reduced to a simple, one-dimensional linear model describing a random walk, or drift-

diffusion (DD) process. Such linear models have both behavioral and biological plausibility.

They have long been used to model reaction time distributions and error rates in performance

on 2AFC tasks (Laming, 1968; Ratcliff, 1978; Ratcliff, Van Zandt, & McKoon, 1999; Smith

& Ratcliff, 2004; Stone, 1960). Furthermore, in studies of nonhuman primates performing

such tasks, direct recordings from neurons in oculomotor regions, including the lateral intra-

parietal area (LIP), frontal eye fields, and superior colliculus, have shown that firing rates in

these areas evolve over the course of a decision like sample paths of a DD process, rising to

a threshold prior to response initiation (Gold & Shadlen, 2001; Mazurek, Roitman, Ditterich,

& Shadlen, 2003; Ratcliff, Cherian, & Segraves, 2003; Ratcliff, Hasegawa, Hasegawa,

Smith, & Segraves, 2006; Roitman & Shadlen, 2002; Schall, 2001; Shadlen & Newsome,

2001). Here, we review analyses showing how DD-based models predict optimal strategies

for maximizing rewards (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Gold & Shad-

len, 2002) and describe data that test such predictions. We consider possible sources for devi-

ations from optimality that the data reveal, describe recent findings that address these

possibilities, and finally discuss broader issues in the cognitive control of decision processes.

2. Optimal performance in simple decisions

How to best characterize human decision-making performance, even for tasks as sim-

ple as 2AFC, has been the subject of intense investigation and controversy. The two most

commonly considered types of models are (a) “high-level” (low-dimensional) neural net-

works—often called leaky competing accumulators (LCAs)—that describe the accumula-

tion of evidence (Usher & McClelland, 2001); and (b) even simpler linear models

implementing DD processes (Ratcliff, 1978; Ratcliff et al., 1999) that can be derived

from LCAs in a special case.

The DD process is a continuum limit of the sequential probability ratio test (Wald &

Wolfowitz, 1948), and for statistically stationary tasks, it yields decisions of specified aver-

age accuracy in the shortest possible time (Bogacz et al., 2006; Gold & Shadlen, 2002). We

use this property to derive an optimal speed–accuracy trade-off that maximizes reward rate,

and then describe experiments that reveal both approximations to and failures to optimize,

prompting further analyses and experiments. Our main tool is the optimal performance

curve of Fig. 1, which can be used to assess performance across conditions, tasks, and even

individuals, irrespective of differences in task difficulty or timing. The reader wishing to
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skip mathematical detail can find this described following Eq. (10) and refer back to

Sections 2.1 and 2.2 as desired.

2.1. Leaky competing accumulators and drift-diffusion processes

In the simplest LCA model, appropriate for 2AFC tasks, two units with activity levels

(x1, x2) represent pools of neurons selectively responsive to the stimuli (Usher & McClel-

land, 2001). They mutually inhibit via input–output or frequency–current (f–I) functions

that express neural activity (e.g., short-term firing rates) in terms of inputs. These include

constant currents representing mean stimulus levels and i.i.d. Wiener processes modeling

noise that pollute the stimuli and/or enter the local circuit from other brain regions. The

dynamics are governed by the following stochastic differential equations:

dx1 ¼ ½�cx1 � bf ðx2Þ þ l1�dt þ rdW1; ð1Þ

dx2 ¼ ½�cx2 � bf ðx1Þ þ l2�dt þ rdW2; ð2Þ

where the state variables xj denote unit activities (spike rates), c, b are the leak and inhibi-

tion rates, and lj,r are the means and standard deviation of the noisy stimuli. A decision is

recorded when the first activity xj(t) exceeds a fixed threshold xj,th, adjustment of which is

used to tune the speed–accuracy trade-off. Similar effects may be obtained by changing

baseline activity or initial conditions, mechanisms that also appear likely, and to which we
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Fig. 1. (A) The optimal performance curve (OPC) of Eq. (10) relates mean normalized decision time 〈DT〉/
Dtot to error-rate p(err). Triangles and circles mark hypothetical performances under eight different task con-

ditions; diamonds mark suboptimal performances resulting from thresholds at �1.25hop for SNR = 1 and

Dtot = 2; both reduce RR by �1.3%. (B) OPC (curve) and data from 80 human participants (boxes) sorted

according to total rewards accrued over all conditions. White: all participants; lightest: lowest 10% excluded;

medium: lowest 50% excluded; darkest: lowest 70% excluded. Vertical lines show SEs. From Bogacz et al.

(2006) and Zacksenhouse et al. (2010).
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return in Section 3.2. See Grossberg (1988), Rumelhart and McClelland (1986) and Usher

and McClelland (2001) for background on related connectionist networks, and Miller and

Fumarola (2012) on the equivalence of different integrator models.

The function f(�) characterizing neural response is typically sigmoidal:

f ðxÞ ¼ 1

1þ exp½�gðx� bÞ� ; ð3Þ

and if the gain g and bias b are set appropriately, Eqs. (1–2) without noise (r = 0) can have

one or two stable equilibria, separated by a saddle point. These correspond to two “choice

attractors” in the noisy system, and if c and b are sufficiently large, a one-dimensional,

attracting curve exists that contains the three equilibria and orbits connecting them (see

Brown et al., 2005; Feng, Holmes, Rorie, & Newsome, 2009; fig. 2). Hence, after rapid tran-

sients have decayed following stimulus onset, the dynamics relax to that of a nonlinear Orn-

stein-Uhlenbeck (OU) process (Brown et al., 2005; Roxin & Ledberg, 2008). The dominant

terms are found by linearizing Eqs. (1–2) and subtracting to yield one equation for the dif-

ference x = x1 � x2:

dx ¼ ½ðl1 � l2Þ þ ðb� cÞx�dt þ rdW : ð4Þ

In Section 3.5, we note that models of networks of spiking neurons can be reduced to

nonlinear LCAs, providing a theoretical path from biophysical detail to analytically trac-

table linear models.

2.2. An optimal speed–accuracy trade-off

If leak and inhibition are balanced (b = c), and initial data are unbiased, appropriate

when stimuli appear with equal probability and have equal reward value, Eq. (4) becomes

a DD process

dx ¼ Adt þ rdW ; xð0Þ ¼ 0; ð5Þ

where A = l1 � l2 denotes the drift rate. Responses are given when x, identified with

the logarithmic likelihood ratio, first crosses a threshold �xth; if A > 0, then crossing of

+xth corresponds to a correct response and crossing �xth to an incorrect one. The error

rate and mean decision time, quantifying accuracy and speed, are

pðerrÞ ¼ 1

1þ expð2ghÞ and hDTi ¼ h
expð2ghÞ � 1

expð2ghÞ þ 1

� �
: ð6Þ

(see Bogacz et al., 2006, appendix; Busemeyer & Townsend, 1993). Note that the param-

eters A,r and xth reduce to two quantities g≡(A/r)2 (signal-to-noise ratio [SNR], having

units of inverse time), and h � jxth=Aj (threshold-to-drift ratio, the first passage time for

the noise-free process x(t) = At).
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If SNR and mean response-to-stimulus interval DRSI remain constant across each block

of trials, block durations are fixed, and rewards are insensitive to time, then optimality is

achieved by maximizing reward rate; that is, average accuracy divided by average trial

duration:

RR ¼ 1� pðerrÞ
hDTi þ T0 þ DRSI

: ð7Þ

Here T0 is that part of the reaction time due to non-decision-related (e.g., sensory and

motor) processing. As T0 and g also typically remain (approximately) constant for each

participant, we may substitute Eqs. (6) into (7) and maximize RR for fixed g, T0 and

DRSI, obtaining a unique threshold-to-drift ratio h = hop for each pair (g,Dtot):

expð2ghopÞ � 1 ¼ 2gðDtot � hopÞ; where Dtot ¼ T0 þ DRSI: ð8Þ

Inverting the relationships (6) to obtain

h ¼ hDTi
1� 2pðerrÞ and g ¼ 1� 2pðerrÞ

2hDTi log
1� pðerrÞ
pðerrÞ

� �
; ð9Þ

the parameters hop,g in Eq. (8) can be replaced by the performance measures, p(err) and
〈DT〉, yielding a unique, parameter-free relationship describing the speed–accuracy trade-

off that maximizes RR:

hDTi
Dtot

¼ 1

pðerrÞ log 1�pðerrÞ
pðerrÞ

h iþ 1

1� 2pðerrÞ

2
4

3
5
�1

: ð10Þ

Eq. (10) defines an optimal performance curve (OPC) (Bogacz et al., 2006), shown in

Fig. 1(A). Each point (p(err),〈DT〉/Dtot) along the OPC corresponds to an optimal thresh-

old-to-drift ratio hop specified by Eq. (8) which, in turn, is associated with a particular

decision time and error rate combination that maximizes RR: Any other threshold, lower

or higher, associated with responses that are faster or slower (diamonds in Fig. 1(A)),

yields smaller net rewards. Different points on the curve represent hops and corresponding

speed–accuracy trade-offs for different values of g (i.e., task difficulty) and Dtot (i.e., task

timing). Critically, the shape of the OPC itself is parameter free. Thus, it can be used to

assess performance with respect to optimality and compare this across conditions, tasks,

and even individuals, irrespective of differences in task difficulty or timing.

The OPC’s shape may be intuitively understood by observing that very noisy stimuli

(g � 0) contain little information, so that, if they are equally likely, it is optimal to choose

at random, giving p(err) = 0.5 and 〈DT〉 = 0 (cf. SNR = 0.1 at the right of Fig. 1(A)). At

its left, as g?∞, stimuli become so easy to discriminate that both 〈DT〉 and p(err) approach
zero (cf. SNR = 100). For intermediate SNRs, it is advantageous to accumulate evidence

for just long enough (e.g., SNRs = 1 and 10). Thus, to maximize rewards, optimal perfor-
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mance is achieved by balancing speed versus accuracy, and not by systematically favoring

accuracy. Human data appear to present a challenge to this model, as we now consider.

2.3. Experimental evidence: Failures to optimize

Two 2AFC experiments (Bogacz et al., 2006; Bogacz, Hu, Cohen, & Holmes, 2010)

have directly tested whether humans optimize reward rate in accord with the OPC

derived above. In the first, 20 participants viewed motion stimuli (Britten, Shadlen,

Newsome, & Movshon, 1993) and were rewarded for each correct discrimination. The

experiment was divided into 7-min blocks with different response to stimulus intervals

in each block. In the second, 60 participants discriminated if the majority of 100 loca-

tions on a static display were filled with stars or empty. Blocks lasted for 4 min, and

two difficulty conditions were used. In all cases, participants were instructed to maxi-

mize their total earnings, and unrewarded practice blocks were administered before

testing began.

As noted above, one of the appeals of the OPC is that it is independent of the parame-

ters defining the DD process, with Dtot entering only as the denominator in Eq. (10). This

allows data to be pooled across all participants and task conditions. That is, findings con-

cerning actual performance can be compared with optimal performance irrespective of

task difficulty, timing, or individual differences. For the experiments of (Bogacz et al.,

2006, 2010), 〈DT〉’s were estimated by fitting the DD model to reaction time distribu-

tions, the 0–50% error rate range was divided into 10 bins, and 〈DT/Dtot〉 were computed

for each bin by averaging over those results and conditions with error rates in that bin.

This yields the open (tallest) bars in Fig. 1(B); the shaded bars derive from similar analy-

ses restricted to subgroups of participants ranked by their total rewards accrued over all

blocks of trials and conditions.

The top 30% group clearly performs close to the OPC, supporting the DD model as

an account of human decision-making performance, and the conjecture that (at least

some) participants can achieve near-optimal performance. Nonetheless, a majority

achieve substantially lower total scores. Interestingly, this is due to longer decision

times and greater accuracy than are required to maximize reward rate (Bogacz et al.,

2010). This particular pattern of deviations from optimality raises two possibilities: (a)

Participants seek to optimize some other criterion of performance, such as accuracy, in

place of, or in addition to, maximizing monetary reward. (b) Participants seek to maxi-

mize reward but fall short in a systematic way due to specific constraint(s) on perfor-

mance and/or the influence of other cognitive factor(s). We address these possibilities

in the following sections.

2.4. A preference for accuracy?

There is a long-standing literature that suggests that humans favor accuracy over speed

in reaction time tasks (e.g., Myung & Busemeyer, 1989). This could explain the observa-

tions in Fig. 1(B), insofar as decision times that are longer than optimal are typically
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associated with more accurate responses. Participants may try to maximize accuracy in

addition to (or even instead of) rewards, as postulated in Bohil and Maddox (2003) and

Maddox and Bohil (1998). This can be formalized by combining accuracy with reward

rate in at least two ways (Bogacz et al., 2006):

RA ¼ RR� qpðerrÞ
Dtot

; or RRm ¼ ð1� pðerrÞÞ � qpðerrÞ
hDTi þ Dtot

: ð11Þ

The first (RA) subtracts a fraction of error rate from RR of Eq. (7); the second (RRm)

penalizes errors by reducing previous winnings. Critically, both include a free parameter

q 2 (0,1) that specifies the relative weight placed on accuracy. Increasing q drives the

OPC upward (Bogacz et al., 2006; fig. 13), consistent with the empirical observations

shown in Fig. 1(B), suggesting that participants may indeed include accuracy in their

objective function. One reason for this may be that they (incorrectly) assume that errors

are explicitly penalized, at least early during their experience with the task. This possibil-

ity is addressed by further empirical findings discussed below.

However, there are at least two alternative accounts of the data that preserve the

assumption that participants seek primarily to optimize rewards. One is that timing uncer-

tainty corrupts estimates of reward rate, systematically biasing performance toward longer

decision times. The other is that participants factor into their estimates of reward rate the

costs associated with fine-grained adjustment of parameters (such as response threshold),

the advantages of which may be small relative to those costs. We consider each of these

in turn and compare them with accuracy-based models in their abilities to account for

empirical data.

2.5. Robust decisions in the face of uncertainty?

In the analyses of Sections 2.2 and 2.4, it is assumed that participants maximize an

objective function for the DD model, given the exact task parameters. However, it is unli-

kely that participants can perfectly infer these. For example, RR depends on inter-trial

delays as well as SNR. Delays, in particular, may be hard to estimate. Information-gap

theory (Ben-Haim, 2006) allows parameters to lie within a bounded uncertainty set and

uses a maximin strategy to identify parameters that optimize a worst-case scenario.

Interval timing studies (Buhusi & Meck, 2005) indicate that time estimates are

normally distributed around the true duration with a standard deviation proportional

to it (Gibbon, 1977). This prompted the assumption in Zacksenhouse, Bogacz,

and Holmes (2010) that the estimated delay Dtot lies in a set

Upðap; ~DtotÞ ¼ fDtot [ 0 : jDtot � ~Dtotj � ap ~Dtotg, of size proportional to the actual

delay ~Dtot, with presumed level of uncertainty ap analogous to the coefficient of variation

in scalar expectancy theory (Gibbon, 1977). In place of the optimal threshold of Eq. (8),

the maximin strategy selects the threshold hMM that maximizes the worst RR that can

occur for Dtot 2 Upðap; ~DtotÞ. For uncertainties in delay, it predicts a one-parameter fam-

ily of maximin performance curves (MMPCs) that are scaled versions of the OPC (10):
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hDTi
Dtot

¼ cð1þ apÞ 1

pðerrÞ log 1�pðerrÞ
pðerrÞ

� �þ 1

1� 2pðerrÞ

2
4

3
5
�1

; ð12Þ

where c � ~Dtot=Dtot (Zacksenhouse et al., 2010). Like the objective functions (11) that

emphasize accuracy, these curves also predict longer mean decision times than the OPC

(10). Uncertain SNRs can be treated similarly, yielding families of MMPCs that differ

from both the OPC Eq. (10) and MMPC for timing uncertainty Eq. (12), rising to peaks

at progressively smaller p(err) as uncertainty increases. An alternative strategy, also

investigated in Zacksenhouse et al. (2010), yields robust-satisficing performance curves
(RSPCs) that provide poorer fits and thus are not discussed here.

Fig. 2 shows data fits to the parameter-free OPC, the objective functions of Eq. (11),

to MMPCs for timing uncertainty and SNR, and to RSPCs for timing uncertainty. While

there is little difference among fits to the top 30%, data from the middle 60% and lowest

10% subgroups exhibit patterns that distinguish among the theories. Maximum likelihood

computations show that MMPCs for uncertainties in delays provide the best fits, followed

by RSPCs for uncertainties in delays and RA (Zacksenhouse et al., 2010). These findings

indicate that optimizing reward rate given timing uncertainty leads to slower and more

accurate decisions than those predicted by the OPC, which assumes perfect knowledge of

delays. Greater accuracy can be considered a consequence of maximizing reward rate

under uncertainty, and not the objective of optimization.

2.6. Experimental evidence: Practice and timing uncertainty

To test whether deviations from the OPC can be better explained by an emphasis on

accuracy or by timing uncertainty, Balci and colleagues (2011) conducted a 2AFC

experiment with motion stimuli encompassing a range of discriminabilities (moving dot

displays with 0%, 4%, 8%, 16%, and 32% coherences [Britten et al., 1993], kept fixed

in each block) and administered interval timing tests in parallel (Buhusi & Meck,

2005). Seventeen participants completed at least 13 sessions in each condition, insuring

the greatest likelihood of achieving optimal performance by providing participants with

extensive training and affording the opportunity to examine practice effects (Dutilh,

Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009; Petrov, Van Horn, & Ratcliff,

2011). Four main results emerged, three of which we now summarize; the fourth is

described in Section 3.2.

First, average performance converges toward the OPC with increasing practice.

Fig. 3(A) shows the mean normalized decision times (dots) for five error bins averaged

over sessions 1, 2–5, 6–9, and 10–13. Performance during the final two sets of sessions is

indistinguishable from the OPC for higher coherences, but decision times remain signifi-

cantly above the OPC for the two lowest coherences.

Second, the accuracy-weighted objective function RRm of Eq. (11) is superior to the

OPC in fitting decision times across the full range of error rates during the early sessions,
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with accuracy weight decreasing monotonically through sessions 1�9 and thereafter

remaining at q � 0.2 (data not shown here, see Balci et al., 2011; fig. 9), suggesting that

participants may indeed favor accuracy early during training, but that this diminishes with

practice. This is consistent with the idea that participants come to such tasks expecting

that errors are associated with explicitly negative outcomes (e.g., immediate losses, as

may be common in real-world settings), rather than being limited to opportunity costs (as

assumed by the OPC). With practice, they may adjust their beliefs to accord with the fact

that errors incur only opportunity costs.

Third, as shown in Fig. 4, deviations from the OPC are stably related to timing ability.

Throughout training, the timing inaccuracy of participants, independently assessed by

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Error rate

M
ea

n 
no

rm
al

iz
ed

 d
ec

is
io

n 
tim

e

Top 30%

 

 

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Error rate

M
ea

n 
no

rm
al

iz
ed

 d
ec

is
io

n 
tim

e

Middle 60%

 

 

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

Error rate

M
ea

n 
no

rm
al

iz
ed

 d
ec

is
io

n 
tim

e

Bottom 10%

 

 
data
maximin

D

maximin
SNR

robust
D

RR
m

RA

RR

Fig. 2. Comparisons of performance curves with mean normalized decision times (with SE bars) for three

groups of participants sorted by total rewards acquired. Different curves are identified by line style and gray

scale in the key, in which maximinD and maximinSNR refer to maximin performance curves (MMPCs) for

uncertainty in total delay Eq. (12) and noise variance respectively, robustD to robust-satisficing performance

curves (RSPCs) for uncertainty in total delay, RA and RRm denote the accuracy-weighted objective functions

of Eq. (11), and RR the OPC Eq. (10). Note different vertical axis scales in upper and lower panels. From

Zacksenhouse et al. (2010).
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their coefficients of variation in a peak-interval timing task (Rakitin et al., 1998), is sig-

nificantly positively correlated with their distance from the OPC (Balci et al., 2011). Fur-

thermore, this relationship provides a better account of deviations from the OPC than

emphasis on accuracy (as indexed by the weight parameter q in the objective function

RRm). This suggests that participants may choose decision parameters that maximize

reward rate, taking into account their timing uncertainty, as discussed in the previous sec-

tion.

Collectively, these results support the hypothesis that, given sufficient practice, humans

can learn to approach optimal performance (maximizing rewards) by devaluing accuracy,

with a deviation from optimality that is inversely related to timing ability. Nevertheless,

MMPCs based on timing uncertainty fall short of fully capturing performance, especially

for the two lowest coherences: Fig. 3(A). Thus, even after accounting for timing uncer-

tainty, reward rates are suboptimal according to the DD model. This suggests that other

factors may be involved.

One of these is persistent variability across trials. The extended DDM accounts for this

by drawing drift rates A and starting points x(0) from distributions on each trial (Bogacz

et al., 2006; Ratcliff et al., 1999), thus allowing slow and fast errors, respectively. The

former may explain deviations from the OPC seen for high error rates in Fig. 3(A). How-

ever, as yet, there is no principled way to determine which factor (variability in drift vs.

(A) (B)

Fig. 3. Mean normalized decision times (dots) grouped by coherence vs. error proportions for sessions 1

(red), 2–5 (blue), 6–9 (green), and 10–13 (pink). (A) Performance compared with the OPC (black) and with

best-fitting MMPCs for each coherence condition. With training, performance converges toward the OPC, but

DTs remain relatively high at high error rates. (B) Performance compared with DD fits to single threshold for

all coherences. Solid and dotted horizontal lines connect model fits and dotted vertical lines connect data

points from different sessions having the same coherence. Fits connected by solid lines exclude 0 and 4% co-

herences; fits connected by dotted lines include all five coherences; fits from sessions 6–9 and 10–13 almost

superimpose. Fits to a single threshold better capture longer DTs at high error rates relative to OPC and

MMPCs. Panel (B) adapted from Balci et al. (2011).
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starting point) should dominate. Moreover, each additional parameter brings with it a

family of OPCs (as in Sections 2.4 and 2.5), and analytical expressions are not available

for those derived from extended DDMs. Both Balci et al. (2011) and Simen et al. (2009)

(cf. Section 3.2 below) include extended DDM fits in their optimality analyses, but we

are unaware of any systematic studies of the effects of deviations from optimality due to

such variability. In contrast, considering the costs of cognitive control may provide a nor-

mative account of these effects, to which we now turn.

3. The role of control in optimization

So far, our focus has been on optimization of performance in which task conditions

are stationary: Models have assumed fixed task parameters, and data were analyzed

for the most part condition-by-condition (e.g., each coherence condition was consid-

ered independently in Fig. 3). However, in both the real world and the laboratory,

task conditions change and participants must adapt their decision parameters accord-

ingly. Cognitive control has been defined as the set of processes (and underlying

mechanisms) responsible for assessing task conditions and outcomes and adjusting

behavior accordingly (Botvinick & Cohen, 2014). We now review work that begins to

explore the role of control processes in optimization and their influence on the

dynamics of performance.

Fig. 4. Mean square deviation of decision times from optimal performance curve vs. interval timing coeffi-

cients of variation for individual participants, averaged over all coherences and sessions 2–13. Line shows

linear regression fit.
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3.1. The cost of control

It has long been recognized that cognitive control is associated with mental effort (Pos-

ner & Snyder, 1975). Accordingly, the effort associated with adjusting parameters as con-

ditions change (i.e., engagement of control) may register as a cost. The fourth finding of

Balci et al. (2011) supports the hypothesis that participants may take account of such

costs and weigh them against benefits that would accrue from optimizing performance for

each task condition. The OPCs of Fig. 3 assume that the decision threshold was opti-

mized for the coherence (SNR) in each block. However, block-by-block adjustments

would engage cognitive control that may have been perceived as effortful. Accordingly,

especially if the benefits of such adjustments were small, participants may have sought a

single threshold that does best over all conditions, relieving them of the need to estimate

coherences and adjust thresholds from block to block.

To assess this possibility, Balci et al. (2011) computed the single threshold that was

optimal when applied over all coherence conditions. Fig. 3(B) shows that the resulting

curve fits the full range of performance for the later sessions (6–13), suggesting that, at

least with practice, participants came to adopt a single threshold that maximized reward

across all conditions. Consistent with this strategy, it was found that rewards for this sin-

gle threshold differed minimally from those accrued using the individual thresholds, opti-

mized for the different conditions. Thus, the cost–benefit trade-off appears to have

weighed against exercising control on a condition-by-condition basis, and in favor of a

single threshold. Hence, allowing for presumed costs of control, participants may have

indeed been optimizing performance.

The analysis above highlights the need for an independent assessment of the costs of

control. Recent work has begun to quantify costs associated with cognitive control (Botvi-

nick, Huffstetler, & McGuire, 2009) and to incorporate these in formal analyses of behav-

ioral performance (e.g., Todd, Botvinick, Schwemmer, Cohen, & Dayan, 2011). Insofar

as such costs offset the rewards associated with performance, a better understanding of

these, and factoring them into analyses of behavior, promises to permit more accurate

assessments of the extent to which people perform optimally. That said, there is increas-

ing evidence that, under many circumstances, people do actively adjust decision parame-

ters in response to changes in task conditions (Gratton, Coles, Sirevaag, Eriksen, &

Donchin, 1988; Henik, Bibi, Yanai, & Tzelgov, 1997; Laming, 1979; Lindsay & Jacoby,

1994; Logan & Zbrodoff, 1979; Rabbitt, 1966). Information needed to make such adjust-

ments can come from several sources, including prior experience (i.e., expectations), the

current stimulus, and assessments of the outcome of performance itself (e.g., accuracy,

speed, processing conflict, confidence, etc.).

Recent studies have begun to address the mechanisms responsible for making such

adjustments, with a particular focus on how they are driven by performance outcomes

(Botvinick, Braver, Barch, Carter, & Cohen, 2001; Brown & Braver, 2005; Holroyd &

Coles, 2002; Kiani & Shadlen, 2009; Simen, Cohen, & Holmes, 2006; Yeung, Botvinick,

& Cohen, 2004). However, few of these studies have involved normative models that

explicitly address the extent to which adjustments in decision parameters serve optimiza-
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tion. Below, we review two areas of recent work that attempt to do this: One addresses

trial-to-trial adjustments based on prior knowledge, and the other considers the dynamics

of adjustment within individual trials under stimulus variability.

3.2. Prior expectations and trial-to-trial adjustments

Given prior information on the probability of observing each stimulus in a 2AFC task,

a DD process can be optimized by appropriately shifting the initial condition; biased

rewards favoring one response over the other can be accommodated in a similar manner

(Bogacz et al., 2006). Comparisons of these predictions with human behavioral data were

carried out in Simen et al. (2009). As in the experiments described above, stimulus dis-

criminability and other conditions were fixed over each block of trials. On average, par-

ticipants achieved 97% –99% of maximum reward, and some performed essentially

optimally.

A related study of monkeys used a cued-response paradigm with a fixed stimulus pre-

sentation period that relieves the need for a speed–accuracy trade-off, but in which

motion coherences varied randomly from trial to trial, and differences in reward contin-

gencies for the two responses were signaled before each trial. The monkeys came within

0.5% and 2%, respectively, of maximum possible rewards by adjusting the balance

between preferring the higher reward and accurately assessing the noisy stimulus (Feng

et al., 2009). This implies appropriate shifts in the psychometric (accuracy vs. discrimina-

bility) function depending on coherence, which can be effected by either biasing drift

rates or by shifting initial conditions. That the latter is more likely was established in Ro-

rie, Gao, McClelland, and Newsome (2010) by fitting LIP recordings. Behavioral studies

of humans discriminating low aspect ratio rectangles also revealed near-optimal shifts in

initial conditions in response to changes in reward bias (Gao, Tortell, & McClelland,

2011).

In the above cases, participants were shown to perform (near) optimally based on

their estimates of stimulus or reward probabilities, when explicitly informed of them.

Humans also exhibit adjustment effects in response to patterns of repetitions and alter-

nations that necessarily occur in random sequences, presumably based on a general

expectation that locally observed patterns will persist or recur. Models that address

RT and accuracy effects reflective of such adjustments appear in Cho et al. (2002);

Gao, Wong-Lin, Holmes, Simen, and Cohen (2009); Goldfarb, Wong-Lin, Schwemmer,

Leonard, and Holmes (2012); and Jones et al. (2002). These models further support

the view that participants adapt by shifting the initial conditions of the decision pro-

cess. While such adjustments typically degrade performance in response to truly ran-

dom sequences (they are suboptimal), the ability to extract patterns in natural

situations is advantageous, as it allows people to adapt prior beliefs to better match

context-specific, stationary (or slowly changing) environments, once they have learned

relevant statistics. This possibility is explored in Yu and Cohen (2009).
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3.3. Stimulus variability and within-trial adjustments

The work described in the previous subsection indicates that participants make trial-to-

trial adjustments in decision parameters, especially when patterns are present or apparent

in the sequence of stimuli. Modeling work has also suggested that participants can adapt

decision parameters within trials, especially when task conditions vary from trial to trial.

For example, in 2AFC experiments with mixed motion coherences, it has been proposed

that slow decisions, typically associated with low SNR and lack of confidence, may be

accelerated by a monotonically rising “urgency” signal corresponding to increasing drift

rate, a proposal supported by fits to LIP recordings (Hanks, Mazurek, Kiani, Hopp, &

Shadlen, 2011). A recent analysis of DD models applied to variable discriminability stim-

uli shows that drift rate adjustments are suboptimal compared to setting initial conditions

(van Ravenzwaaij, Mulder, Tuerlinckx, & Wagenmakers, 2012), but also that human par-

ticipants appear to combine the two strategies in a similar manner for both fixed and vari-

able discriminability, in contrast to the claims that drift rate bias should dominate in the

latter case (Hanks et al., 2011), and that this is necessary for optimality (Yang et al.,

2005).

The Eriksen flanker task (Eriksen & Eriksen, 1974) has also been used to study

within-trial dynamics of processing and attentional control (e.g., Botvinick et al., 2001;

Cohen, Servan-Schreiber, & McClelland, 1992; Gratton et al., 1988). In this task, partici-

pants carry out a standard 2AFC on a central stimulus, flanked by stimuli that either

invite the same response (compatible) or its alternative (incompatible). Accuracy is lower

for incompatible trials and, plotted against RT, displays a dip below 50% followed by a

rise to the same asymptote as for compatible trials (see Gratton et al., 1988; fig. 1). The

network model of Cohen et al. (1992) suggested that these effects could be explained by

dynamic shifts of attention within each trial. In this model, separate units accumulate

bottom-up perceptual evidence from the central and flanker stimuli, while subject to top-

down attentional influences (Cohen et al., 1992; fig. 8), so that processing of the central

stimulus eventually prevails. Subsequently, Liu, Holmes, and Cohen (2008) showed that

shifting attention can be captured by a time varying drift rate A(t) in a one-dimensional

OU model. Representing A(t) as a sum of exponentials, it was possible to fit accuracy/

RT data and RT distributions with fewer parameters than the network of Cohen et al.

(1992).

A normative interpretation has been provided by a Bayesian analysis that models task

performance as dynamic updating of the joint probability distribution for stimulus identity

and trial type (compatible/incompatible) (Yu, Dayan, & Cohen, 2009). Updating Bayesian

posteriors may seem unrelated to the model of Cohen et al. (1992) or its reduction (Liu

et al., 2008), but for Gaussian stimulus probabilities with sufficiently large variance, it

can be well approximated by a set of uncoupled DD processes that allow analytical esti-

mation of the evolving posteriors, and hence of accuracy and RT distributions (Liu, Yu,

& Holmes, 2009). These also fit the data of Cohen et al. (1992), suggesting both that par-

ticipants adjust decision parameters within each trial, and that the network of Cohen et al.

(1992) represents a neurally plausible model of this (near-) optimal computation.
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3.4. Exploration, exploitation, and neuromodulation

Thus far, we have focused on studies that examine performance in the context of a

particular task. While the decision parameters optimal for that task may vary over stim-

uli, more general task features have remained constant (e.g., the domain of the stimuli,

responses and rewards, the relevant set of stimulus-response mappings, etc.). Under such

stationary conditions, good performance implies exploitation of a well-defined strategy.

However, real-world conditions can change, requiring exploration of different possible

goals (i.e., what new tasks should be performed). This typically involves forgoing

immediate rewards in the service of greater ones over the longer term. Balancing this

trade-off involves a higher level form of optimization. While there is no general solution

to this problem, a growing body of research seeks to understand how organisms, includ-

ing humans, manage the exploitation/exploration trade-off (Cohen, McClure, & Yu,

2007).

One theory proposes that the neuromodulatory brainstem nucleus locus coeruleus (LC)

contributes to regulating this balance, by dynamically modulating neural responsivity

through the phasic release of norepinephrine (NE; Aston-Jones & Cohen, 2005; Servan-

Schreiber, Printz, & Cohen, 1990; Usher, Cohen, Servan-Schreiber, Rajkowsky, & Aston-

Jones, 1999). According to this adaptive gain theory, transient increases in LC-NE activity

promote exploitation by increasing the gain of task-relevant processes, and thereby

optimize performance of the current task (Brown et al., 2005; Shea-Brown, Gilzenrat, &

Cohen, 2008). In contrast, sustained (and therefore task-indiscriminate) increases in LC-

NE activity favor off-task processes, promoting exploration. Shifts between these modes

are driven by ongoing assessments of task utility, such that sustained increases favor

exploitation, while prolonged decreases favor exploration (Aston-Jones & Cohen, 2005). A

closely related proposal suggests that fluctuations in uncertainty can similarly drive the

LC-NE system (Yu & Dayan, 2005).

These mechanisms were implemented in a reinforcement learning (RL) model of rever-

sal learning (McClure, Gilzenrat, & Cohen, 2006). This study showed that including the

LC-NE gain regulation mechanism and a simple cortical performance monitoring mecha-

nism in a standard RL model dramatically improved the system’s ability to adapt to

changes in reinforcement contingencies, and it provided a qualitative fit to both behav-

ioral data and direct recordings from the LC in monkeys performing a reversal task (Co-

hen, McClure, Gilzenrat, & Aston-Jones, 2005). Following reversals, the combined

effects of gain modulation and RL allowed fast transitions from exploration to exploita-

tion, whereas with RL alone, such transitions were associated with substantially higher

ERs that persisted for longer. Subsequent studies in humans have used the observation

that pupil diameter closely tracks LC activity (Aston-Jones & Cohen, 2005) to demon-

strate that engagement of the LC-NE system conforms to predictions about its role in reg-

ulating the explore/exploit trade-off (Einh€auser, Stout, Koch, & Carter, 2008; Gilzenrat,

Nieuwenhuis, & Cohen, 2010; Jepma & Nieuwenhuis, 2011; Murphy, Robertson,

Balsters, & O’Connell, 2011). Further work remains to more rigorously test the extent to

which this is achieved optimally, under suitably constrained conditions.
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3.5. Physiological constraints?

Most of the theoretical work reviewed above is based on relatively abstract models.

While these have provided important insights into constraints on optimality at the systems

level, they do not address constraints that may arise from the underlying neural circuits.

Explorations of these have begun by relating abstract models to biophysical aspects of

neural function. For example, spiking-neuron models can be reduced in dimension by

averaging over populations of cells (Eckhoff, Wong, & Holmes, 2011; Wong & Wang,

2006), allowing them to include the effects of synaptic time constants and neurotransmit-

ters such as NE (Eckhoff, Wong, & Holmes, 2009).

The resulting nonlinear differential equations are more complex than the LCA Eqs. (1-2),

and unlike the optimal DD process of Eq. (5), they can possess multiple stable states

(Eckhoff et al., 2011, fig. 13; Wong & Wang, 2006, figs. 4 and 5). Even when there is an

attracting curve, nonlinear dynamics can cause suboptimal integration, and deviations

from the curve can blur the decision thresholds (van Ravenzwaaij, der Maas, & Wagen-

makers, 2012; fig. 7). Adjustments in baseline activity and gain can keep accumulators in

near-linear dynamical ranges (Cohen, Dunbar, & McClelland, 1990; Servan-Schreiber

et al., 1990), but the nonlinear effects suggest that there are physiological obstructions to

optimality, especially when task conditions span a wide range. Improvements of low-

dimensional models, derived from biophysically detailed neural networks and coupled

with multi-unit and multi-area recordings, may help determine whether and how such

constraints cause significant deviations from optimality.

4. Summary and conclusions

We have reviewed leaky accumulator and drift-diffusion models of 2AFC decision

making and shown how the latter can generate normative descriptions of optimal perfor-

mance (Sections 2.1 and 2.2). These low-dimensional models are fast to simulate,

describe behavior remarkably well (Gold & Shadlen, 2001, 2002; Smith & Ratcliff, 2004;

Usher & McClelland, 2001), admit analytical study (Bogacz et al., 2006; Brown et al.,

2005), and provide understanding of mechanisms. They have generated experiments that

revealed failures to optimize (Section 2.3) and motivated the prediction that optimality

demands accurate timing ability (Section 2.5), as well as accounting for the costs of con-

trol. Further experiments revealed that, while practice can improve participants’ strate-

gies, their asymptotic performance is indeed correlated with timing ability (Section 2.6),

and that data across a wide range of stimulus discriminability were also consistent with a

single, fixed decision threshold that minimized the costs of control. The explicit OPC

expression (10), derived from the simple DD model, was crucial to this procedure; we

doubt that such predictions could as readily emerge from computational simulations

alone. Furthermore, the parameter-free OPC provides a normative benchmark against

which choices of speed–accuracy trade-offs can be assessed and compared across differ-

ent tasks, conditions, and individuals, irrespective of task difficulty and/or timing.
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More fundamentally, tests of optimality require precise definitions of objective func-

tions and clear understanding of how decision-making processes are parameterized to

achieve them, raising questions about cognitive control, including its costs (Section 3.1)

and roles in modulating behavior in changing environments (Sections 3.2 and 3.3). The

trade-off between exploitation and exploration is also attracting much attention, as

described in Section 3.4. Such studies of more complex behaviors than binary decisions

will suggest more sophisticated objective functions and thus enable more realistic opti-

mality assays.

The call for this special issue noted that bounds to optimal performance may be set

explicitly, imposed by the task environment, by experience, or by the information-pro-

cessing architecture. The statistically stationary 2AFC task, implicitly requiring maximi-

zation of reward rate, exemplifies both explicit setting, and imposition by environment

(Sections 2.2 and 2.3). Modified reward rates, priors, sequential effects, and within-trial

adjustments (Sections 2.4, 3.2, and 3.3) reflect experience, as do human responses to tim-

ing ability (Sections 2.5 and 2.6) and the costs of control (Section 3.1). Timing ability

and control costs can also be seen as constraints imposed by neural architecture, along

with those due to the nonlinear biophysics of spiking neurons (Section 3.5). All these fac-

tors appear relevant in limiting performance. Nonetheless, they suggest that, given suffi-

cient instruction and experience and allowing for intrinsic constraints, humans can

approximate optimality, at least in simple 2AFC tasks.
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