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Theoretical Traction




Theoretical Traction

e Optimal decision making process

- Continuous (NLDS) analog of the sequential probability ratio test (SPRT)
(used by Turing to crack German Enigma code in WWII)




Theoretical Traction

e Optimal decision making process

- Fastest to reach a decision for given threshold and error rate

and most accurate for a given decision time
(Wald, 1948; Turing [Good, 1979]; Rouder, 1996)




Theoretical Traction

e Optimal decision making process

- Guarantees arbitrarily low error rate as threshold is increased
(Bogacz et al., 2006)




Theoretical Traction

e However, presents optimization problem of its own:



Theoretical Traction

e However, presents optimization problem of its own:
- How to set parameters (e.g., threshold and starting point)?



Theoretical Traction

e However, presents optimization problem of its own:

- Can think of this in terms of optimization confrol/ comes in...



DDM and Control




DDM and Control

e DDM specifies psychologically relevant confrol parameters




DDM and Control

e DDM specifies psychologically relevant confrol parameters

- Starting point: expectations (priors)




DDM and Control

e DDM specifies psychologically relevant confrol parameters

- Drift rate: signal strength / attention




DDM and Control

e DDM specifies psychologically relevant confrol parameters

- Threshold: speed-accuracy trade-off




DDM and Control

e Empirical question:

- Do people in fact adjust these parameters to optimize performance?




DDM and Control

e Empirical question:

- Analyze DDM to determine optimal parameters
under various experimental conditions
— generate testable predictions
(for example, what is the optimal threshold, and do people use this?)



DDM and Control

e Empirical question:

- First, however, must define “objective function”
— the function that control seeks to optimize



Reward Rate Optimization

1-Error Rate

Reaction Time + Delay




Reward Rate Optimization

e Reward rate (RR): 1-Error Rate

Reaction Time + Delay




Reward Rate Optimization

e Re-express RT and ER in terms of DDM parameters:

Error Rate (ER) - 2eDrifteThreshold
1 + e Noise?

Threshold Tan h( DrifteThreshold )

Drift Noise?

Decision Time (DT) =




Reward Rate Optimization

e Re-express RT and ER in terms of DDM parameters:

- Delay - {Delay-

Drift
Threshold

RR =

. 2e¢DrifteThreshold
Drift QT
Threshold




Reward Rate Optimization

e Solve for threshold that maximizes RR:

Threshold

Thresh*Drift
= Noise? i

Drift Noise
(Bogacz et al., 2006)

Delay



Reward Rate Optimization

e Predict changes in speed-accuracy tradeoff (threshold)
that optimize RR as a function of task parameters:
delay, drift, and noise



Predictions: Effects of Stimulus Frequency

¢ If one stimulus is more frequent than the other:

- it is optimal to move the starting point (“prior”),
not the threshold (assuming constant drift [SNR]):

Starting Point

threshold A l z;hreshold B
Stimulus A = 50% Stimulus B = 50%
Stimulus A = 50% Stimulus B = 50%



Predictions: Effects of Stimulus Frequency

¢ If one stimulus is more frequent than the other:

- it is optimal to move the starting point (“prior”),
not the threshold (assuming constant drift [SNR]):

Starting Point

threshold A l z;hreshold B
Stimulus A = 50% Stimulus B = 50%
Stimulus A = 25% Stimulus B=75%



Predictions: Effects of Stimulus Frequency

Starting Point

l

imulus A=10% Stimulus B —] 90%



Predictions: Effects of Stimulus Frequency

e For sufficiently extreme frequencies:
- the optimal starting point exceeds the optimal threshold

Starting Point

l

e
Stimulus A= 10% Stimulus B — 90%



Predictions: Effects of Stimulus Frequency

e For sufficiently extreme frequencies:

- the model predicts a switch from integration (decision making)

Starting Point

l

e
Stimulus A= 10% Stimulus B — 90%



Predictions: Effects of Stimulus Frequency

e For sufficiently extreme frequencies:

- the model predicts a switch from integration (decision making)
to simple signal detection (stereotyped responding)

Starting Point

l

o
Stimulus A= 10% Stimulus B — 90%



Predictions: Effects of Stimulus Frequency

e For sufficiently extreme frequencies:

- the stimulus frequency at which this occurs varies according to delay and drift...

Starting Point

l

o
Stimulus A= 10% Stimulus B — 90%



Data: Effects of Stimulus Frequency

Empirical Data
(Simen et al., 2009)
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Data: Effects of Stimulus Frequency
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Optimal Performance Curve




Optimal Performance Curve

e The fact that there is a single optimal threshold
for a given set of task parameters, means that the DDM equations:




Optimal Performance Curve

e The fact that there is a single optimal threshold
for a given set of task parameters, means that the DDM equations:

1

2e¢DrifteThreshold

- Error Rate (ER) =
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. . . Threshold DrifteThreshold
— Decision Time (DT) = Tanh—— )
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Optimal Performance Curve

e The fact that there is a single optimal threshold
for a given set of task parameters, means that the DDM equations:

can be solved for DT as a function of ER =[ 1 )

(under the assumption of optimality): =

total

ERIn:ER  1-2ER




Optimal Performance Curve

e In other words, there is a single optimal speed-accuracy curve
that should quantitatively define performance...



Optimal Performance Curve

Theoretical Prediction
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Optimal Performance Curve

Empirical Data
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(Bogacz et al., 2006)



Optimal Performance Curve

DT

(mean normalized)
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Summary

e Drift Diffusion Model (DDM) can be used to:




Summary

e Drift Diffusion Model (DDM) can be used to:

- explain human RT distributions and accuracy in simple decision tasks




Summary

e Drift Diffusion Model (DDM) can be used to:

- explain dynamics of neural firing in simple decision tasks




Summary

e Drift Diffusion Model (DDM) can be used to:

- formally analyze neural network models of simple decision tasks




Summary

e Drift Diffusion Model (DDM) can be used to:

- describe parameters of optimal performance (maximizing reward rate)




Summary

e Drift Diffusion Model (DDM) can be used to:

- predict influence of task parameters on speed-accuracy tradeoff
that approximate those observed empirically




Summary

e Drift Diffusion Model (DDM) can be used to:

- define, in formal terms, the mechanisms underlying decision making
in simple two alternative forced choice tasks




Summary

e Drift Diffusion Model (DDM) can be used to:

- define, in formal terms, variables that are subject to regulation
by control mechanisms to optimize outcomes



Summary

e Drift Diffusion Model (DDM) can be used to:

- be approximated by neurally-plausible mechanism:
leaky competitive accumulator (LCA)



Summary

e Drift Diffusion Model (DDM) can be used to:

- makes contact with abstract, mathematical modeling of psychological function:
(e.g. normative models based on Bayesian inference)



