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• Optimal decision making process
– Continuous (NLDS) analog of the sequential probability ratio test (SPRT) 

(used by Turing to crack German Enigma code in WWII)

– Fastest to reach a decision for given threshold and error rate  
and most accurate for a given decision time 
(Wald, 1948;  Turing [Good, 1979];  Rouder, 1996)

– Guarantees arbitrarily low error rate as threshold is increased 
(Bogacz et al., 2006)

• However, presents optimization problem of its own:
– How to set parameters (e.g., threshold and starting point)?

– Can think of this in terms of optimization  control comes in…  
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• DDM specifies psychologically relevant control parameters
– Starting point:  expectations (priors)

– Drift rate:  signal strength / attention

– Threshold:  speed-accuracy trade-off

• Empirical question:

– Do people in fact adjust these parameters to optimize performance?

– Analyze DDM to determine optimal parameters  
under various experimental conditions 
  → generate testable predictions 
 (for example, what is the optimal threshold, and do people use this?)

– First, however, must define “objective function” 
 → the function that control seeks to optimize



Reward Rate Optimization
       1-Error Rate 
Reaction Time + Delay



• Reward rate (RR):

Reward Rate Optimization
       1-Error Rate 
Reaction Time + Delay



• Reward rate (RR):

• Re-express RT and ER in terms of DDM parameters:

Reward Rate Optimization
       1-Error Rate 
Reaction Time + Delay

Error Rate (ER) =  

Decision Time (DT) = Tanh(            )Threshold 

Drift

Drift•Threshold 

Noise2

1 + e
2•Drift•Threshold

Noise2

1



• Reward rate (RR):

• Re-express RT and ER in terms of DDM parameters:

Reward Rate Optimization
       1-Error Rate 
Reaction Time + Delay

- Delay - Delay-Drift 
Threshold

Drift 
Threshold

e
2•Drift•Threshold

Noise2RR =

Error Rate (ER) =  

Decision Time (DT) = Tanh(            )Threshold 

Drift

Drift•Threshold 

Noise2

1 + e
2•Drift•Threshold

Noise2

1



• Reward rate (RR):

• Re-express RT and ER in terms of DDM parameters:

• Solve for threshold that maximizes RR:
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• Reward rate (RR):

• Re-express RT and ER in terms of DDM parameters:

• Solve for threshold that maximizes RR:

• Predict changes in speed-accuracy tradeoff (threshold) 
that optimize RR as a function of task parameters:  
                           delay, drift, and noise
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thresholdB

• For sufficiently extreme frequencies:
– the optimal starting point exceeds the optimal threshold
– the model predicts a switch from integration (decision making)

               to simple signal detection (stereotyped responding)
– the stimulus frequency at which this occurs varies according to delay and drift…

Predictions: Effects of Stimulus Frequency
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Data:  Effects of Stimulus Frequency
Empirical Data 

(Simen et al., 2009)
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• The fact that there is a single optimal threshold  
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– Error Rate (ER) = 

– Decision Time (DT) =
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• The fact that there is a single optimal threshold  
for a given set of task parameters, means that the DDM equations: 

– Error Rate (ER) = 

– Decision Time (DT) =

– Reward Rate (RR) =

can be solved for DT as a function of ER 
(under the assumption of optimality):
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• The fact that there is a single optimal threshold  
for a given set of task parameters, means that the DDM equations: 

– Error Rate (ER) = 

– Decision Time (DT) =

– Reward Rate (RR) =

can be solved for DT as a function of ER 
(under the assumption of optimality):

• In other words, there is a single optimal speed-accuracy curve 
that should quantitatively define performance…
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– define, in formal terms, the mechanisms underlying decision making 

in simple two alternative forced choice tasks
– define, in formal terms, variables that are subject to regulation 

by control mechanisms to optimize outcomes
– be approximated by neurally-plausible mechanism: 

leaky competitive accumulator (LCA)

– makes contact with abstract, mathematical modeling of psychological function: 
(e.g. normative models based on Bayesian inference)

• Drift Diffusion Model (DDM) can be used to:


