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may have trapped these plants in an 
adaptive peak. Despite this, there are 
examples of plant species that have 
evolved other modes of pollination 
derived from buzz-pollinated 
ancestors. For example, a few species 
of Melastomataceae have evolved 
fl owers with modifi ed anthers that act 
as bellows to release pollen. When a 
pollinator collects fl oral perfumes (non-
buzzing male orchid bees in Solanum) 
or remove the sugar-rich structures at 
the base of modifi ed stamens (birds in 
Melastomataceae), the fl exible anther 
is squeezed, producing a puff of air, 
which fi res pollen onto the pollinator’s 
body. Having lost their need for buzz 
pollinators, these fl owers demonstrate 
the diversity of ways in which plants 
evolve to disperse their pollen.
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Model-based 
decision making and 
model-free learning
Nicole Drummond and Yael Niv

Free will is anything but free. With it 
comes the onus of choice: not only 
what to do, but which inner voice to 
listen to — our ‘automatic’ response 
system, which some consider 
‘impulsive’ or ‘irrational’, or our 
supposedly more rational deliberative 
one. Rather than a devil and angel 
sitting on our shoulders, research 
suggests that we have two decision-
making systems residing in the brain, in 
our basal ganglia. Neither system is the 
devil and neither is irrational. They both 
have our best interests at heart and aim 
to suggest the best course of action 
calculated through rational algorithms. 
However, the algorithms they use are 
qualitatively different and do not always 
agree on which action is optimal. The 
rivalry between habitual, fast action and 
deliberative, purposeful action is an 
ongoing one. 

In this primer, we fi rst expand on 
the theoretical and computational 
basis of each of the two systems and 
their neural substrates. Given the 
evidence that the two systems work in 
tandem, we then discuss how the brain 
arbitrates between them by asking what 
are the conditions under which each 
system is preferentially used. Finally, 
we discuss a task developed to test the 
theoretical assumptions about the two 
modes of decision making in humans. 

Goal-directed versus habitual 
behavior
The idea of two systems of control, 
one dependent on deliberation and 
one based on automatic reactions, has 
roots in the psychological literature 
on instrumental conditioning and the 
differentiation between goal-directed 
and habitual behavior. In instrumental 
conditioning, animals learn which 
action (or series of actions) will bring 
about a desired outcome, for example 
rats learning to press a lever for food 
reward. Outcomes that increase 
the performance of an action are 
‘reinforcers’ — whether appetitive, in 
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the rat example food increasing lever-
pressing, or aversive, as when a shock 
increases escape behavior.

What do animals learn in instrumental 
conditioning? Early theorists suggested 
two main alternatives: according 
to Edward Thorndike, the core of 
instrumental learning is the formation 
of associations between stimuli and 
responses (‘S–R’ learning), with 
the reinforcer ‘stamping in’ these 
associations, but not being part of 
the learned construct. In contrast with 
this behaviorist view, Edward Tolman, 
foreman of the cognitive revolution, 
argued that animals learn more 
elaborate cognitive maps. In these, the 
learned association is between actions 
and their outcomes, broadly construed 
(‘AO’ learning), and the association is 
predicated on their causal contingency 
(which we denote by ).

As highlighted by Robert Rescorla, 
Ruth Colwill, Anthony Dickinson and 
Bernard Balleine, these competing 
models make contradictory predictions: 
Tolman’s AO model suggests that 
behavior should be sensitive to two 
things: changes in the value of the 
outcome, for example, if the outcome is 
no longer desired due to satiety, the rat 
will decrease its rate of pressing; and 
changes in the contingency between 
the action and the outcome, for 
example, if the action no longer leads 
to the outcome, the rat will cease to 
perform the action. 

Thorndike’s theory, on the other 
hand, predicts that learned actions will 
be impervious to such environmental 
(or internal) changes, as once they are 
stamped in, they will not be ‘stamped 
out’ except by aversive outcomes. 
Indeed, not all decisions to press a 
lever are created equal: for an animal to 
make a deliberative, purposeful choice, 
it must choose the action because 
it knows it will result in a food pellet, 
and the food pellet is desirable to it (as 
in Tolman’s model). However, as per 
Thorndike, this is not the only reason an 
animal may choose to press a lever. 

What do animals do when the 
environment changes in such ways? 
It depends. In particular, early fi ndings 
showed that rats that were trained 
extensively to press the lever indeed 
persisted in pressing for an undesirable 
outcome, as predicted by stimulus–
response learning. However, rats 
that were only trained for a moderate 
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Figure 1. Outcome-devaluation test of goal-directed versus habitual control. 
(A) In phase 1, rats are trained to press a lever (the prototypical instrumental action) in order to 
obtain food. Training may be for a short duration (for example, four daily sessions) or extensive 
(15 sessions). In phase 2, the outcome is devalued, for instance by injecting lithium chloride after 
consumption, which causes the animal to feel ill. The effects of the manipulation are then tested in 
a third phase by assessing how eagerly rats will press the lever. In phase 3, the test is performed 
in extinction (without new outcomes) so as to assess only the products of previous learning: will 
the value of lever pressing have changed, given the experience in the second phase? Habitual 
control predicts that it will not (as neither the stimulus nor the response from training were ex-
perienced in the devaluation phase, and therefore the stimulus–response association should be 
intact). In contrast, if the animal is using goal-directed control, it will realize that the action leads 
to a no-longer-valuable outcome, and therefore the action is moot. Figure adapted from Dickin-
son and Balleine (1994). (B) After extensive training (in the fi rst phase), rats continue pressing the 
lever even after devaluation (sham lesion control). However, lesions of the dorsolateral striatum 
reinstate goal-directed control (lesion group). Blocking dopamine transmission to the dorsolateral 
striatum during training also shows a similar pattern (not shown here). Plotted is the rate of lever 
pressing at test, as compared to the last session of training. Figure adapted from Yin et al. (2005). 
(C) In contrast, after only moderate training, rats’ lever pressing still diminishes after devaluation 
(sham lesion control). This devaluation-sensitivity, however, requires an intact prelimbic cortex 
(lesion group), as well as other brain areas comprising the same cortico-basal-ganglia loop (not 
shown). Figure adapted from Killcross and Coutureau (2003).
amount decreased their lever-pressing 
substantially if the outcome of a lever-
press was devalued, consistent with 
actionoutcome learning (Figure 1). 
Indeed, the distinction between ‘goal-
directed’ and ‘habitual’ instrumental 
actions hinges on whether said actions 
maintain adaptability in response to 
changes in outcome and/or contingency 
is considered, or are impervious to 
such changes, respectively. Mirroring 
these two behavioral patterns, there is 
evidence for two separate systems for 
action control in the brain, as we will 
detail below.

Humans, too, show both habitual 
and goal-directed modes of action: 
after moving house, we can fl exibly 
plan a new route home from work; 
however, if we are talking to a friend, 
or listening to the radio, we might 
habitually make the wrong turn to 
our old address instead. As in rats, 
habits are bred through repetition — 
but they are not context independent 
or ‘irrational’. As stimulus–response 
associations, habits can be exquisitely 
context dependent, that is, dependent 
on local stimuli. You can walk home 
habitually, but you will turn left at the 
correct intersection. These actions have 
habitized precisely because they have 
consistently led to favorable outcomes 
in the past. Further, as the example here 
suggests, goal-directed action requires 
more cognitively effortful deliberation, 
and action selection may give way to 
habits if those cognitive resources are 
otherwise occupied, as we discuss 
below.

Model-based versus model-free 
reinforcement learning
Machine learning theory offers 
another, computational, framework 
for understanding these two decision-
making systems. Specifi cally, Nathaniel 
Daw and colleagues used the framework 
of reinforcement learning to provide a 
formal description of the habitual versus 
deliberative choice mechanisms in 
terms of model-based and model-free 
action selection. Reinforcement learning 
refers to the interaction between a 
learning agent and its environment in 
terms of decision making (that is, action 
selection) within a Markov Decision 
Process. The Markov Decision Process 
is a description of the environment as 
a set of states that transition between 
each other probabilistically (possibly 
dependent on an agent’s actions), and a
set of rewards that may be available in 
each state. Most reinforcement learning 
algorithms predicate action choices on 
‘values’: the expected sum of future 
rewards if a specifi c action were to be 
taken at a specifi c state. 

In model-based reinforcement 
learning, action values are computed by
mentally simulating the consequences 
of said actions within a representational 
map of the world that includes the 
states, the transition probabilities 
between them, and the rewards in 
each state — a ‘world model’, hence 
model-based reinforcement learning. 
The decision-making agent can learn 
a model of the environment from 
experience, by observing and keeping 
track of sequences of states, and the 
rewards available in each state, for 
instance, implemented through learning 
from state prediction errors. To decide 
what action to take, the agent can then 
search through different trajectories of 
the mental map — ‘planning’ or mental 
simulation in a ‘forward model’ — and 
choose a path that yields the best 
estimated long-run outcome. 
Current Bio
A benefi t of making decisions based 
on a stored mental map is that the map 
can easily be updated when changes 
in the environment occur, meaning 
that actions that are computed using 
the map will also fl exibly change 
as needed. So if, for example, the 
agent learns that a particular route 
home is unexpectedly blocked, it 
can immediately re-plan accordingly. 
However, searching through all possible 
action trajectories before making a 
choice is computationally costly, and in 
some situations, prohibitively so. Such 
planning and re-planning also takes 
time, which may not be available for 
certain decisions that are time-sensitive. 
This model-based method of action 
selection maps directly to Tolman’s 
actionoutcome model of learning: the 
world model includes the contingency 
relationships between actions and 
outcomes in the state transitions, as 
well as the subjective worth of the 
different outcomes. Planning within 
the model therefore realizes Anthony 
Dickinson’s goal-directed combination 
of contingency and outcome 
information in order to make a decision.
logy 30, R841–R870, August 3, 2020 R861
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Figure 2. Uncertainty-based arbitration between model-free and model-based control. 
(A) The sequence of actions required from the rats in Balleine et al. (1995). (B) Each system esti-
mates the value of pressing the lever, as well as its own confi dence in that value (error bar). Here, 
after devaluation, the model-free system has more confi dence in its value of pressing the lever, 
while the model-based system is more accurate in evaluating the utility of chain pulling. (C) As 
a result, after devaluation rats press the lever (action distal from reward) but refrain from subse-
quently pulling the chain (action proximal to reward). Figure adapted from Balleine et al. (1995).
In contrast, in model-free 
reinforcement learning, decisions 
are made without a world model. 
Instead, values for different actions 
are learned directly, through trial-and-
error interaction with the environment 
every time an action is performed. 
Decisions then rely on those values 
that embody a cached summary of 
past experience. In particular, on each 
trial, the agent observes the current 
state, performs an action based on the 
estimated values of different actions 
at that state, and observes the results: 
the outcome it receives, and the state it 
transitions to. The agent then computes 
a reward prediction error: the difference 
between the outcomes obtained and 
the amount of expected reward (the 
original estimated value of the action 
taken). Importantly, because values 
refl ect expected future rewards (not just 
the immediate reward), to estimate the 
outcomes obtained, the agent sums up 
the immediate reward and the value of 
the new state (the rewards expected 
from that state onward). The prediction 
error is then used to determine the 
magnitude and direction of an update 
of the value of the action taken: if 
the prediction error is positive (the 
action yielded better outcomes than 
expected), the action value is increased,
and vice versa if the prediction error is 
negative. 

Through this process of updating 
values trial-by-trial, prediction errors 
are minimized and the scalar value of 
each action eventually approximates 
the true future expected rewards. 
Action selection based on model-free 
R862 Current Biology 30, R841–R870, Aug
reinforcement learning is therefore 
optimal once learning converges. 
However, because the values refl ect 
the accumulation of previous rewards 
and transitions, this method of 
learning is less fl exible in adapting 
to abrupt change. Known changes 
in the environment — for instance, 
hearing about the road block — cannot 
be incorporated into learned values 
without directly experiencing prediction 
errors. This is not just an algorithmic 
quirk: because cached values embody 
long-term expected rewards, that is, 
expected sums of rewards in future 
states, it is not possible to cleave out 
the portion of the value that should 
be changed given a change in one of 
the state contingencies or predicted 
outcomes. The information that would 
allow such dissection — the breakdown
of the different components of the total 
value — is simply not stored in this type 
of algorithm. Model-free action selection
therefore formalizes Thorndike’s 
stimulus-response model: responding 
is driven by the learned value of a 
response at a specifi c state, without 
explicating the expected outcome. 

According to the computational 
theory, the main benefi t of model-
free decision making is that action 
selection is computationally easy: one 
can simply choose the action with 
the highest cached value. However, 
a large amount of trial-and-error 
experience is required for values to 
become good estimates of future 
rewards. Furthermore, as mentioned, 
the cached values are infl exible and 
trial-and-error learning is needed to 
ust 3, 2020 
update them. Model-based decision 
making is therefore advantageous in 
its adaptability in response to changes 
in outcome values or state transitions. 
But it is either computationally costly 
because of the search over trajectories 
of possible action sequences, or 
inaccurate if not all sequences are 
mentally simulated. As such, neither 
system should dominate in all 
situations, and if the brain uses the 
systems optimally, each is expected to 
have a role to play in decision making. 

As an aside, there are additional 
decision-making algorithms that the 
brain can — and likely does — employ. 
For instance, one can select actions by 
sampling distinct episodic memories (in 
machine learning this would be akin to 
sampling a past trajectory and repeating 
it, with the sampling potentially 
prioritizing trajectories that led to more 
rewards). This algorithm would be most 
appropriate when very few experiences 
with a task exist, and both model-based 
and model-free reinforcement learning 
cannot reliably estimate action values. 

Uncertainty-based arbitration 
between the two systems
If the brain has two mechanisms to 
estimate the value of different actions, 
they may not always agree. This 
then creates a new decision-making 
problem: which system to use? 
Experiments testing for the behavioral 
hallmarks of goal-directed versus 
habitual behavior reveal conditions 
under which each strategy is employed: 
early in learning, devaluation results 
confi rm that behavior is goal directed, 
that is, consistent with a model-based 
reinforcement learning strategy for 
computing action values. But once 
behavior is repeated more extensively 
(‘overtrained’), it turns habitual (see 
control groups in Figure 1B,C). This is 
consistent with the idea that model-
free learning is slower and less effi cient 
than model-based learning, and so the 
model-free system should be used only 
after considerable experience with the 
situation. 

There are also conditions under which 
behavior seems to remain model-
based (that is, sensitive to outcome 
devaluation) even through extensive 
training. In particular, when choosing 
between several different actions 
that lead to different outcomes — for 
example, two levers, one leading to 
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delivery of cherry-fl avored food pellets 
and the other to banana-fl avored 
pellets — behavior seems to remain 
goal-directed for longer. This may be 
because the choice between different 
(fairly equivalent) outcomes halves the 
experience with each action (so there 
are fewer updates to the model-free 
value of that action) or because the 
choice between two actions that are 
equally favorable in terms of model-
free values utilizes the more accurate 
forward-modeling model-based system 
in an attempt to disambiguate the 
options. 

One thing that these results show — 
and that other fi ndings confi rm — is tha
animals can alternate between using 
each of the decision-making systems 
within a given local scenario. We are 
not habitual or goal directed, we can be
either at any point in time, and we can 
switch between decision-making modes
even within a chain of actions. This was
most starkly demonstrated by Balleine 
and colleagues in an experiment 
where rats were required to perform 
a sequence of actions consisting of 
a lever-press followed by a chain pull 
in order to obtain a reward outcome 
(Figure 2A). Animals were trained on 
the sequence when hungry, but then 
tested (in extinction) when sated, as 
a means to devalue the food reward. 
The results showed that the action 
distal from the reward (the lever press) 
was not sensitive to the motivational 
shift, suggesting habitual control, 
whereas the action more proximal to 
the outcome was sensitive to the lower 
value of the reward, supporting goal-
directed control (Figure 2C). That is, the
rats continued to press the lever, but 
substantially reduced their tendency to 
continue to pull on the chain. 

One explanation for this is that 
proximity to the outcome allows 
more accurate forward-planning (and 
thus promotes model-based control) 
whereas such planning is too costly for 
choices that are farther away from the 
end-point of a sequence of actions, 
hence the reliance on model-free 
values in that case. This is similar to 
what expert chess players report — in 
the middle of a game, they rarely plan 
many steps ahead. Instead, they rely 
on well-honed knowledge of what 
board positions are more favorable 
in the long run (for example, it is in 
general advantageous to have control 
of the center of the board). Close to the 
end of the game, however, all relevant 
sequences of actions by the opponent 
are considered through mental planning

Incidentally, considering the game of 
chess as a model for decision making 
towards a long-term goal suggests a 
third decision-making system: in the 
beginning of a chess game, opening 
plays have been well documented, and 
are studied and memorized by experts, 
to use as needed. Indeed, Lengyel and 
Dayan (2008) suggested that this occurs
in day-to-day decisions as well, where 
episodic memories of past successful 
actions are utilized for decision-making 
very early in learning, before either of 
the model-based or model-free systems
have enough information with which to 
make a recommendation for the best 
action to perform. 

Indeed, these conditions for goal-
directed versus habitual control of 
animal behavior were what led Nathanie
Daw and colleagues to fi rst suggest that
goal-directed behavior can be mapped 
on to model-based reinforcement 
learning, whereas habitual behavior is 
a hallmark of model-free reinforcement 
learning. Moreover, to arbitrate 
between the two decision-making 
systems, they suggested that each 
system computes and reports not only 
values for different actions, but also its 
confi dence in those values (standard 
error bars or confi dence intervals on the
estimated values). Arbitration between 
the systems can then utilize their 
relative confi dence: at each point in 
time, the brain should trust the system 
that is most sure of its value estimate 
(Figure 2B).

One can interpret the behavioral 
fi ndings in this light: the model-free 
system calculates its confi dence 
as proportional to the amount of 
experience with this particular action in 
this situation (state). As in experimental 
science where larger sample sizes 
decrease the error in estimating the 
mean of a population, more experience 
with an action in a certain situation 
decreases the error in estimating the 
future rewards that can be expected if 
that action is chosen. The model-based 
system, in contrast, loses precision 
the farther into the future it has to 
simulate, given that the model it plans 
with is not fully accurate. The more 
iterations of using the model to fi gure 
out the future rewards contingent on 
Current Bio
an action (that is, its value), the more 
errors will accumulate in the estimate. 
Additionally, if the planning tree has 
many branches — that is, there are 
many possible future courses of 
action to evaluate and average over — 
computational noise or working memory 
limitations (or both) can inject noise 
into the value estimate. As such, the 
model-based system might put less 
confi dence in estimates that required 
more computation, as a result of either 
the depth or the width of the simulated 
options. 

This could explain why the action 
more distal from the reward outcome 
was deemed habitual, or model free, 
in Balleine and colleagues’ action 
sequence study, even while the action 
proximal to reward was goal-directed/
model-based. The more the animal 
needs to simulate forward, the more 
uncertain the model-based system, 
whereas the extensive training process 
in that experiment was suffi cient to 
reduce the uncertainty of the model-free 
system for both actions (Figure 2B). 
According to the theory, arbitration 
between the two systems is done on 
a decision-by-decision basis: each 
system provides value estimates for 
each of the possible actions, complete 
with error bars on these estimates, and 
for each action, an arbitration system 
uses the value from the most confi dent 
system (or, alternatively, averages 
the two values inversely weighted 
by precision) to make the fi nal action 
choice. 

We note here that we have used 
the term ‘uncertainty’ not in the 
sense of ‘risk’, which is sometimes 
called uncertainty in the fi eld of 
neuroeconomics, but rather in the sense 
of ‘ambiguity’. Risk is a property of the 
stochasticity of the world — tossing 
a fair coin for a $1 reward if heads, 
and $1 loss if tails involves high risk 
as we are maximally uncertain about 
the outcome of the toss. However, this 
risk can be rationally and accurately 
averaged over to produce a mean 
expectation of $0. The uncertainty 
we are referring to is, instead, akin to 
ambiguity about the fairness of the coin, 
that is, not knowing the probability of 
reward itself. Reinforcement learning 
naturally averages over risk as it learns 
expected values (in the statistical notion 
of ‘expectation’). But it is susceptible 
to ambiguity — the whole learning 
logy 30, R841–R870, August 3, 2020 R863
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Figure 3. The ‘two-step task’.
(A) In a version of the task used to study how model-based and model-free control changes over 
development, in the fi rst stage, participants are presented with two options (spaceships) and 
asked to pick one. Each spaceship leads to one ‘planet’ with 70% chance and to the other with 
30% chance. In the second stage, participants meet two ‘aliens’ on the planet they reached, 
and can choose which alien to ask for space treasure. Aliens are associated with different (and 
constantly changing) probabilities of having space-treasure reward to give. (B) The interaction 
between transition type and the effects of reward on subsequent choice that is characteristic of 
model-based learning emerges during adolescence and continues in adulthood. Figures adapted 
from Decker et al. (2016), reprinted from by Permission of SAGE Publications © 2016.
process is aimed at reducing ambiguity 
and estimating the expectation more 
and more accurately. As such, the 
hypothesis above, regarding each 
system estimating its own uncertainty, is
different from ideas about reinforcement
learning tracking risk and not only 
expected values. 

Two distinct but interacting neural 
systems
Supporting the behavioral results 
described above, neuroscientifi c 
studies have shown that the brain 
harbors two largely parallel decision-
making circuits. Habitual control using 
model-free reinforcement learning is 
associated with a decision-making 
R864 Current Biology 30, R841–R870, Augu
loop from cortical afferents, through 
the dorsolateral striatum (putamen in 
primates), the ventrolateral thalamus, 
and back to cortex. Learning in 
cortico-striatal synapses in this loop 
is modulated by dopaminergic signals 
that convey prediction errors, as 
predicted by the theory. A parallel loop 
including the prelimbic cortex (dmPFC 
in primates), the dorsomedial striatum 
(caudate in primates), ventromedial 
thalamus and back to cortex is thought 
to mediate goal-directed control 
and model-based computations. 
Learning in the latter loop seems to 
be dopamine-independent (though 
recent evidence suggests that this 
may be an oversimplifi ed view), but it 
st 3, 2020 
relies on inputs from the hippocampus. 
Lesioning or inactivating either of 
these two loops will revert behavioral 
control to the remaining, intact system 
(Figure 1).

Although we have been discussing 
model-based and model-free 
reinforcement learning as if they are 
exclusive, the chess analogy highlights 
that the two systems might better 
work in tandem. For instance, one can 
use model-based planning to search 
several steps forward in a simulated 
tree of future possibilities, computing 
action values based on cached model-
free values of the end-points of the 
search rather than simulating the game 
until its end. Similarly, early pruning 
of some branches of the search tree 
can be determined based on cached 
values. This may result in failure to 
exploit sequences of actions that 
initially lead to negative outcomes but 
eventually to winning the game (for 
example, sacrifi cing the queen for a 
later check mate). However, pruning 
can allow the decision maker to focus 
cognitive resources on simulating 
action sequences that are more likely 
to be advantageous in the long run. 
Of course, as the model-free system 
improves its estimates, pruning will be 
even more optimal. 

In sum, although the distinction 
between two competing systems may 
seem simplistic, evidence for more 
mixed modes of decision making 
does not necessarily mean that the 
two systems do not exist as separate 
algorithms. It does suggest that 
competition and collaboration can take 
place at the level of individual actions 
and sweeps of forward planning in 
the model. Indeed, the two cortico-
basal-ganglia loops are actually 
interconnected. This connection 
may underlie both the competition 
and cooperation between the two 
systems — the locus of arbitration 
between model-free and model-
based decisions is not yet known. 
Additionally, the neurotransmitter 
norepinephrine has been associated 
with signaling environmental change 
(known as ‘unexpected uncertainty’), 
which should trigger a shift from 
habitual, model-free behavior back 
to deliberative, goal-directed model-
based reasoning. High levels of 
norepinephrine may therefore modulate 
the arbitration between the two 
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sitting on our shoulders, it is now clear 
systems, in addition to increasing 
learning rates for both the world model 
and the cached values. 

A paradigm for studying model-based 
versus model-free decision making in 
humans
To test for model-based or model-
free behavior in animals, the studies 
described above used a single change 
in the environment (most often: a 
change in the value of the outcome), 
and a subsequent test. However, the 
effects of planning in a model versus 
prediction-error based stimulus–
response learning can be observed 
even without such abrupt changes 
in the environment. In particular, 
Nathaniel Daw has taken advantage of 
the specifi c algorithmic assumptions 
of model-based versus model-free 
learning to develop a task that can 
quantify, on a continuous scale, the 
extent to which human behavior 
conforms with either mechanism. 

This paradigm is known as the ‘two-
step task’ (Figure 3). On each trial, an 
initial choice between two options leads 
probabilistically to either of two second-
stage states (‘planets’ in Figure 3, 
from an adaptation of the original task 
for use with children). At the second 
step, another choice between two 
options (‘aliens’) is made. Rewards at 
the second step are probabilistic and 
change slowly and independently for 
each of the four aliens. As a result, to 
maximize reward, participants must 
constantly learn which alien is best in 
each planet, and which planet is best 
overall. The transition probabilities 
from fi rst to second step are fi xed (and 
sometimes pre-trained): each fi rst-level 
option leads to one planet 70% of the 
time (‘common’ transition), and to the 
other planet 30% of the time (‘rare’ 
transition). 

Teasing apart model-based and 
model-free choice strategies occurs by 
observing how rewards received after a 
rare transition impact fi rst-step choices 
on subsequent trials. In particular, after 
a reward is obtained in the second 
step, model-free reinforcement learning 
suggests that the fi rst-step choice for 
that trial should be repeated in the 
subsequent trial, as this action was 
accompanied by a positive prediction 
error at the end of the two-step chain 
of actions. In contrast, model-based 
reinforcement learning updates the 
probability of reward for that alien, and 
by taking into account the transition 
structure of the task, knows that the 
best way to reach this now-more-
valuable planet is by choosing the 
opposite fi rst-step action. Therefore, 
model-free reinforcement learning 
predicts that choice in the fi rst step 
should, in general, be consistent with 
feedback on the previous trial: repeat 
actions that were rewarded, avoid 
those that were not. Model-based 
reinforcement learning, in contrast, 
takes into account whether the outcom
followed a rare transition or a common 
one to determine whether to repeat or 
avoid the previous action. 

The two-step task has been 
leveraged to test the effects of a host o
manipulations on the trade-off between
model-based and model-free decision-
making. For instance, Ross Otto and 
colleagues showed that a cold-presser 
stress manipulation decreases model-
based decisions in the task, in which 
subjects with better working memory 
demonstrated more resilience in the 
face of stress. In a separate study, they
showed that working memory load 
due to a dual task decreased model-
based decision making, and that this 
competition between the two systems 
could be controlled on a trial-by-trial 
basis by imposing working memory 
constraints that restrict the availability o
cognitive resources. These results can 
be explained by assuming that limiting 
computational resources, by stress or 
a concurrent task, renders the model-
based system more uncertain in its (les
rigorous and more noisy) calculations, 
and therefore control reverts to the 
model-free system. In a developmental
study, Catherine Hartley and colleagues
have shown that young children show 
dominance of model-free learning, with
model-based strategies emerging in 
adolescence and increasing through 
adulthood (Figure 3B). Rodent variants 
of the task have also been developed, 
and are being used to dissect the 
neural mechanisms of both methods 
of decision-making, capitalizing on the 
ability to measure both model-based 
and model-free infl uences throughout 
many sessions of data collection. 

Conclusion
Returning to the image of two 
competing decision-making systems 
Current Bio
why neither is the devil. Values estimated 
by either model-based or model-free 
reinforcement learning are equally 
rational — though not necessarily equal. 
Indeed, because these systems use 
different algorithms to compute action 
values, they are differently susceptible 
to situational elements that can make 
decisions suboptimal or seemingly 
irrational. This may be why the brain 
employs both algorithms: when 
possible, it uses forward planning in 
a sophisticated, prospective, model-
based system. However, the high 
cognitive demands of such decision 
making require exclusive use of precious 
resources, preventing other concurrent 
tasks. Luckily, our good-old habitual, 
model-free reinforcement learning 
system is ever ready to jump in, and to 
allow us to maintain the illusion that we 
can multi-task.
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