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Error driven learning: Vie— Vi+a(r(+ Ve, )=V

Equivalently: =ar+(l-a)V,

Tarn+a(l-a)r+a(l—-a)lr,+..

the delta rule estimates its expected reward using a weighted running average
of rewards received during stimuli

recent trials are weighted more strongly (steepness determined by 1-a)
* why does this make sense?
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error-driven estimation
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(Sugrue et al. 2004) (Bayer and Glimcher 2005)




Causality: DAergic reinforcement in mice
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(Parker et al., Nature Neuroscience 2016)



temporal difference learning

Temporal-difference learning (Sutton & Barto):
Want V(s;) = r(s¢) + r(seq) + r(sesn) + ...
= r(sy) + V(se)

Use prediction error &, = [r(s;) + V(s1.1)] — VAst)

* learn to predict cumulative future rewards r(s;) + r(Se1) + r(Ses) + ...
* learn using what | predict at time t+1 (V/(s,;) ) as stand in for all future rewards
* soldon’t have to waitforever to learn

* att+l llearnwhatis s..; (remember, this can be unexpected)

* learn consistent predictions based on temporal difference V(s;,1) — V(s;)
o if V(sw) = V(s,), my predictions are consistent
o if V(seq) > V(s,), things got unexpectedly better

o if V(seq) < V(s,), things got unexpectedly worse

-> and these act like reward to generate prediction error and learning
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The setting

reward action
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Trial and error learning in sequential tasks, where choices lead to more choices
* Maximize long-term objective (expected total points; chance of final win)
* ”Value function”: expected cumulative, discounted reward



What makes this difficult?

Q(se ar) =r(sy) + Z P(st41lse ar) [T(Stﬂ) + z P(s¢y2lSes1, are)[r(seq2) + -1

St+2

St+1

Outcomes of actions are delayed & contingent

* choice requires connecting actions to
consequences nonlocally over space and time
- “planning,” “mental simulation”
- “credit assignment”
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* hard to learn by trial and error
* hard even to compute given full knowledge




The objective function

Q(se ar) =r(sy) + Z P(st41lse ar) [T(Stﬂ) + z P(s¢y2lSes1, are)[r(seq2) + -1

St+1

St+2

expected cumulative (discounted) future reward
- ... over “tree” of future states (nested sums)
- This is hard to compute, even if you know the
one-step contingencies

- Knowing it reduces choice to comparison

ﬁ_‘¢" t:‘:l

How do we estimate this (particularly in trial-and-
error learning)?
- two predominant approaches in Al




“model-based” learning

_ e Easy part: learn one-step
QGs0a) =150 + Y Plsearlsi,a) [r<st+1> £y ] Cosy art eam onestep

St+2 “map” P(s¢41l5e ap)
* (why is this easy?)

St+1
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-
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(Silver et al, 2017)
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“model-free” learning

Qs ar) =71(se) + Z P(s¢r1lse ar) |1(se4q) + Z ]

St+1 St+2

shortcut: store endpoints of computation (long-
run action values)
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: ] model free” (TD learning)
o] = =
- J Q(stw at)
of] @ B = & Q: =
: =r(sy) + z P(seialse, a) Q(seyr, apyn)
D l:] O
; St+1
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* example: DeepMind Atari “Deep Q Network”

(Mnih et al., 2015)
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Model-based and model-free learning
Q(sp,ar) =1r(sy) + z P(sey1lse, ap) [r(seqq) + z ]

DQNs St+1 St+2
AlphaGo
“Model-based” learning = 9
< “Model-free” learning  brain: anticipatory activity e.g. HE
* brain: dopamine, prediction errors spatial paths in hippocampus
* behavior: habits, slips of action * behavior: flexible planning 4
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*‘ Idea (Daw ea 2005): the brain 8
implements both approaches
(Mnih et al 2015) in parallel

(Silver et al 2017)



outline

Estimating action values: model-based vs. model-free learning
1. Intro: dopamine and credit assighment

2. Examples
* habits and instrumental reward devaluation
* rodent spatial navigation
* RL in humans; compulsion

3. Hippocampal replay and planning



MF learning

Ildea: brain learns long-run action values Q experientially
chooses by comparing them

* Behavioral idea: goes back to Thorndike “law of effect”

* Neural idea: dopamine, prediction errors, temporal difference
learning (Schultz, Dayan, Montague)

Weird prediction: if decision variable is scalar summary of previous
experiences, animals should be blind to certain changes in task
contingencies (until they relearn action values from experience)
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@_c New ﬁk Eimes

Tuna sushi purchased from 20 restaurants and stores in Manhattan | E [V(a)] - 2O P (O | a) V(O)

The New York Times in October was tested for mercury. Analysts
examined at least two pieces of sushi from each place and calculat

[1]
the level of methylmercury, a form linked to health problems, in part “ model mOdel'
per million. They then determined how many pieces it would take to ’ b du
reach what the Environmental Protection Agency calls a weekly -free ase

reference dose (RfD), what it considers an acceptable level to be
regularly consumed. (Pieces varied in size.) Figures below are for th
piece of sushi with the highest level of mercury at each place. ( Daw et a l. 20 05)



Classic test for MB vs MF

Stage
- <2 = learn to leverpress
1. guarl] gg}g ':L —_— 0% for food
pair food with illness;
] oo ] develop aversion
2. devaluation 9% > control: no pairing

will animals work for

.f:’ ? food they don’t want?

3. test ,,C'_> . (compared to animals
who skipped stage 2)



results
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results

Sge - Lever presses
vime D & (HoIIancﬁ), 2004) L] valued
10 devalued
2. devaluation _., @ o
5
c
3. test "E_}? é
o 5 . .
o Animals will work for food they
I5 don’t want, sometimes
& —> familiar counterpart: actions
0 become automatic with
moderate extensive repetition
training training
Moderate training: \
, like MB

Outcome insensitive following overtraining
“habitual” like MF



Lesions

Lesions to different networks

appear to differentially disable
these modes of behavior

* Dorsolateral striatum loop:
perpetually devaluation
sensitive (never form habits)

* PFC-dorsomedial striatum loop:
animals: always devaluation
insensitive (no MB stage)

—Behavior arises from
dissociable neural systems
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(Daw & O’Doherty 2013)



rational dual-system arbitration

Interest in dual-system architectures for healthy & disordered behavior
* Healthy: automaticity, habits, slips of action, self-control, willpower

* Dysfunction: compulsion, drugs of abuse (eg Everitt & Robbins, 2005)
* hope to ground symptoms of mental illness in basic mechanisms

implied question: arbitration / control

idea: cost-benefit think vs. act tradeoff

* deliberation costly (delay); when is it likely to benefit:
improve choice, earn more reward?

* e.g.: not usually worthwhile for highly practiced actions
in stable environment

* For math see Keramati et al (PLoS CB 2011)

» cost-benefit arbitration captures many factors affecting
habits in rodents

(Daw, Niv & Dayan, Nature Neuroscience 2005)
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nonlocal credit assigenment by rodents

Rats receive stochastic rewards at

corners

* repeatedly choose next corner
balancing reward probability
and distance

e continually learn facing
periodic changes to barriers or
outcome probabilities

(Krausz, Comrie, Kahn, Frank, Daw & Berke, Neuron 2023)



choice in the hex maze
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* Outcome (R=0/1) at A affects animals’ next A vs. B choice (long-range Same Alternative
Prior path to

credit assignment)
goal port
* ... and next Cvs A choice also affected (off-trajectory credit assignment)

(Krausz, Comrie, Kahn, Frank, Daw & Berke, Neuron 2023)



history: TD, dopamine
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=
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(Krausz, Comrie, Frank, Daw & Berke, bioRxiv 2023)

classic work (Montague, Dayan, Schultz): phasic DA responses carry reward
prediction error signal

* including to reward predictors, theoretically linked to chaining value backward
along repeatedly experienced paths

* but does value really spread this way? unclear!
* & is such experiential, model-free learning enough to explain behavior? no!



measuring the value function neurally
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(Krausz, Comrie, Kahn, Frank, Daw & Berke, Neuron 2023)



measuring value update neurally
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(Krausz, Comrie, Kahn, Frank, Daw & Berke, Neuron 2023)



TD-0 like effects also
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summary

* using dopamine, can directly visualize credit assignment over space

 can see TD(0) chaining but in addition to that
* value (and choice) affected on next trial at long distance
* not just over experienced paths (model-based?)
* these are reflected in choice behavior
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sequential decision task
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T 1

) with prob: 26% 57% 41% 28%

(all slowly changing)
(Doll, Duncan, Simon, Shohamy & Daw Nature Neuroscience 2015)




idea

How does bottom-stage
feedback affect top-stage
choices?

Model-based: actions

N
considered in terms of
second-stage state
—>Feedback generalizes

between equivalents

Model-free: actions Id S
reinforced by

consequences
- Feedback does not
generalize
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(Doll, Duncan, Simon, Shohamy & Daw Nature Neuroscience 2015)



1.0 7 I -
Previous
outcome

0.8 Rew

>
= .No Rew
©
e}
o
o
0.6
g
) {
0.4+

same different
start state: current vs previous

model-free

e
©

Stay probability
°
2

k<4
o

0.5-
different
start state: current vs previous

A0

0.6

0.4

same different
start state: current vs previous

Stay probability

<
@
1

©
(o2}
1

0.4

same different
start state: current vs previous

model-based

<3
o
N

Stay probability
o
T

°
o
1

05-
same different
start state: current vs previous

(Doll, Duncan, Simon, Shohamy & Daw Nature Neuroscience 2015)



reward (MB): p<.0001

ame (MF) p<.005

(mixed effects logit)
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effect size

0.4
0.3
0.2
0.1

0.4
0.3

0.2

0.1

-0.1

Interference

_single task

model-free model-based

dual task

dual x model-
based: p< .05

model-free model-based
(Otto et al Psych Science, 2013)

Also:

Individual differences
*Development (Decker ea, 2016)
*Aging (Eppinger ea 2013)

*IQ (Schad ea 2014; Gillan ea 2016)
scognitive control (Otto ea 2015)
sstress (Otto ea 2015)
*Psychopathology (Gillan ea 2016)

PFC (& dopamine there)

*PFC TMS (Smittenaar ea 2013)
*COMT (PFC DA) genotype (Doll ea
2016))

*PFC dopamine PET (Desserno ea
2015)

Hippocampus
* Rodents (Miller et al., 2017)
* Humans (Vikhbladh et al., 2019)



effect size

effect size

Binge eating disorder, n=30

0.4
0.3
0.2

0.1

0
-0.1

model-free model-based

-0.1

Healthy volunteers, n=106

0.4
0.3
0.2
0.1
0

model-free model-based

Stimulant abusers, n=36 OCD, n=35

0.4
0.3
0.2
0.1
0

-0.1

model-free  model-based = model-free model-based

Methamphetamine/cocaine
Abstinent at least 1 wk

(Voon et al., Biological Psychiatry, 2014)



however...

OPEN @ ACCESS Freely available online '.@"PLOS | one

Impairments in Goal-Directed Actions Predict Treatment
Response to Cognitive-Behavioral Therapy in Social
Anxiety Disorder

Gail A. Alvares, Bernard W. Balleine, Adam J. Guastella*

Brain & Mind Research Institute, The University of Sydney, Sydney, New South Wales, Australia

Archival Report

Psychiatry

Corticostriatal Control of Goal-Directed Action
Is Impaired in Schizophrenia

Richard W. Morris, Stephanie Quail, Kristi R. Griffiths, Melissa J. Green, and
Bernard W. Balleine

Journal of Abnormal Psychology © 2016 American Psychological Association
2016, Vol. 125, No. 6, 777-787 0021-843X/16/812,00  http:/dx.doi.org/10.1037/abn0000164

Reduced Model-Based Decision-Making in Schizophrenia

Adam J. Culbreth and Andrew Westbrook Nathaniel D. Daw and Matthew Botvinick

Washington University in Saint Louis Princeton University

Deanna M. Barch

‘Washington University in Saint Louis



Questionnaire

Eating Disorders

Impulsivity

OoCD

Alcohol Misuse

Schizotypy

08 Depression
Trait Anxiety

98 Apathy

Social Anxiety

Binge eating ——»

Impulse buying———»
Repetitive checking ———»
Morning drinking ——

Inability to control thoughts — 5

Disturbing thoughts ——»

F2

Gillan, Kosinski, Whelan, Phelps & Daw, eLife 2016



recap

* RL: connecting actions to outcomes over space and time

* Exact MB planning flexible but intractable
» Speed up with prioritization
 ...or MF learning (caching long run values or policy)
e ...or in between like SR/DR (caching long run trajectories)
e Connections with psychiatry
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ideas: the value function, value updating

Reward
value function:
* measures proximity to reward state
* makes sequential choice local 1 (eg”p)'ace
cells
learning a value function:
. . . . value

* experiential updating: prediction Value (eg NACC)

errors, phasic dopamine (MF) l

. . . « . -
* inferential updating by driving l

same circuit: (MB “planning is

learning from simulated "

experience”) reward PE reward

(DA)

- suggests more granular control (after Montague et al. 1996)

(over updates rather than choice)
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potential mechanism: nonlocal “replay”

e o [
e e Y

i R?
EXPERIMENTAL NEUROLOGY 51, 78-109 (1976) .

i Last visit to

o port: took

Ry alternative

% Place Units in the Hippocampus of the Freely Moving Rat path —

Jou~x O’KEEFE?
» [

Department of Anatomy, University College London,
Gower Street, London WCIE 6BT

Received August 20, 1975

(Pfeiffer and Foster, 2013)
representation of location in hippocampus can run far ahead of animals

potential substrate for on-line mental simulation with world model
— could access evaluation/ choice by driving same learning mechanisms as

experience
- if so, it could give us a window into microstructure of planning

—> what can we learn from this?



planning by replay

what can we learn about planning from
hippocampal SWR replay patterns?

1. replay happens one path at a time

R?

Last visit to
port: took
alternative

path

(search is serial, must be prioritized) _—
2. ...only while the animal is stopped C
(opportunity cost)
3. ...not only ahead but also backward, nonlocal

(both planning and credit assignment?)

- highlights selection: what to think about &
when?

—>can this explain why these patterns occur in
different circumstances?

(Mattar & Daw Nature Neuroscience 2018; Agrawal, Mattar, Cohen & Daw Psych Review 2021)



computational ideas

how do we connect
actions to outcomes
distant in space and
time?

value function:

* measures
proximity to
reward

* makes sequential
choice more local

Reward

[

two nonlocal operations:

* update . %
* build
value function, e.g.
propagate received
reward to distal locations

* long distance activations

* retrieve Y

* figure out where to go
by querying nearby value |

* short distance retrieval
during behavior




suggestive data

During running, the
decoded place
representation sweeps
ahead of the rat

(1/4 speed)

Krausz, Berke et al unpub



new model: prioritized backups

basic operation: Bellman backup (Dyna; Sutton 1991)
Q(a) « 17+ Quext

Fundamental building block
Pushes value between adjacent states
Over actual trajectories (experiential
TD learning)
Over stored/simulated experiences
(local or remote planning)
Both can use same DA circuit

guestion: at which locations to perform
backups, in what order?

proposal: at each step, prioritize by utility
(“expected value of backup”)

- why does planning carry utility??

(Mattar & Daw Nature Neuroscience 2018)



expected value of backup

EVB(s,a): how much (cumulative future discounted)
reward do | expect to earn following a backup at that
location, compared to before?

EVB(s,a) = Need(s) - Gain(s,a)
/ \

if | get there, how much more will | earn?

how likely am | to visit s soon?
-> drives activity backward

- drives activity forward

expected, discounted future occupancy value change under updated policy
Yret Vr_tasf,s Za(nnew(alsk) - nold(alsk))anew(sk; a)

-> idea: prioritize retrieval according to EVB, balancing need and gain

(Mattar & Daw Nature Neuroscience 2018)



* higher for
locations likely
to be visited
soon

* favors forward
replay of
imminent
trajectories

start o end
(Mattar & Daw Nature Neuroscience 2018)



gain

> Gain start —— end
Value Need

* how much can | learn at a particular spot?

 drives reverse replay upon learning new information



theory predicts place cell replay

model data
a d ) L
Diba & Buzsaki (2007)
g 08 1,000 ¢
2 [ Before run [ Before run
5 £ 800}
2 06 W After run = W After run
g 2
> 2 600
= 04 S
=z 8 400}
° £
k3 0.2 2 200 |
S
>
= (0]
Forward Reverse Forward Reverse
correlated correlated correlated correlated

gain explains why
some surprises trigger
replay while others
don’t
& why some trajectories

are replayed but avoide '

/=
d ._v%__
52

— 3
—

(Widloski & Foster 2018)

need vs gain promote
forward vs backward
replay in different
circumstances

Cheng & Frank (2008) O'Neill et al (2008)

[ = Novel
Familiar

[ Novel arm
W Familiar arm

e
=3
&

P<0.001
—

=
»5
28
=0
g 8% oo
Z 04 .04
= P<0.001 Lo L
— ©
é ¢ Z o0z
c o ® L
g 02 gg 0
g £
8 °z r
< § -0.02 1 L 1 | J
0 1 2 3 4 5
Day 1 Day 2 Day 3 Time in cofiring field (min)

seemingly contradictory changes in
replay with experience explained
by evolution of need vs gain

(Mattar & Daw Nature Neuroscience 2018)



recap, thoughts

1. behavior, neural value correlates suggest the brain does nonlocal (“model-
based”) credit assignment, but not exhaustively (MF, habits)

2. hippocampal replay as a window into this process
* key role for selection: which locations to consider when

—>more granular view on metacontrol
* real issue is not so much whether to think, but what to think about, when

experimental tests
* examine (& intervene upon) predicted relationships in animals doing RL tasks
experience = replay = value (or model) update = ramps, choices)

psychiatry
» generalizes habit models beyond neglect, to highlight importance of precomputation &
selection
* worry, rumination, craving, obsession, re-experiencing trauma



Other topics

* DAergic heterogeneity (Engelhard et al 2018; Lee et al 2024)
* fitting RL models to choice and neural data (Daw, 2010)
» States and generalization (deep RL; but also latent state inference, Gershman et al. 2010)

* Hierarchical, continuous, or high dimensional actions (connections with motor control;
Botvinick et al, 2009; Shadmehr tomorrow)

* Exploration (Agrawal et al., 2021)

* Punishment and avoidance (Uchida; Palminteri et al, 2015)

* Uncertainty, volatility, and learning rate control (Behrens et al 2007; Piray & Daw 2021)
* Connections with sensory uncertainty, perceptual decision making (Lak et al, 2017)

ndaw @princeton.edu
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