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(Schultz et al 1997)



Error driven learning: Vt ← Vt + α (rt (+ Vt+1 ) – Vt)

Equivalently: = α rt + (1 – α) Vt 
 = α rt + α (1 – α) rt-1 + α (1 – α)2 rt-2 + …

the delta rule estimates its expected reward using a weighted running average 
of rewards received during stimuli

recent trials are weighted more strongly (steepness determined by 1-α)
• why does this make sense?
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error-driven estimation
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(Sugrue et al. 2004)
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(Bayer and Glimcher 2005)



Causality: DAergic reinforcement in mice

(Parker et al., Nature Neuroscience 2016)

timed suppression of dopamine 
neurons on 10% of trials



temporal difference learning
Temporal-difference learning (Sutton & Barto):

Want  V(st) = r(st) + r(st+1) + r(st+2) + …

          = r(st) + V(st+1)  

Use prediction error t = [r(st) + V(st+1)] – V(st) 

• learn to predict cumulative future rewards r(st) + r(st+1) + r(st+2) + …

• learn using what I predict at time t+1 (V(st+1) ) as stand in for all future rewards

• so I don’t have to wait forever to learn

• at t+1 I learn what is st+1 (remember, this can be unexpected)

• learn consistent predictions based on temporal difference V(st+1) – V(st)

• if V(st+1) = V(st), my predictions are consistent

• if V(st+1) > V(st), things got unexpectedly better

• if V(st+1) < V(st), things got unexpectedly worse

 → and these act like reward to generate prediction error and learning



The setting

Trial and error learning in sequential tasks, where choices lead to more choices
• Maximize long-term objective (expected total points; chance of final win)
• ”Value function”: expected cumulative, discounted reward



What makes this difficult?

Outcomes of actions are delayed & contingent

• choice requires connecting actions to 
consequences nonlocally over space and time
→ “planning,” “mental simulation”
→ “credit assignment”

• hard to learn by trial and error
• hard even to compute given full knowledge

𝑄 𝑠𝑡 , 𝑎𝑡 = 𝑟 𝑠𝑡 + ෍

𝑠𝑡+1

𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝑟 𝑠𝑡+1 + ෍

𝑠𝑡+2

𝑃 𝑠𝑡+2 𝑠𝑡+1, 𝑎𝑡+1 𝑟 𝑠𝑡+2 + ⋯



The objective function

𝑄 𝑠𝑡 , 𝑎𝑡 = 𝑟 𝑠𝑡 + ෍

𝑠𝑡+1

𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝑟 𝑠𝑡+1 + ෍

𝑠𝑡+2

𝑃 𝑠𝑡+2 𝑠𝑡+1, 𝑎𝑡+1 𝑟 𝑠𝑡+2 + ⋯

expected cumulative (discounted) future reward
→ … over “tree” of future states (nested sums)
→ This is hard to compute, even if you know the 
one-step contingencies 
→ Knowing it reduces choice to comparison

How do we estimate this (particularly in trial-and-
error learning)?
→ two predominant approaches in AI



“model-based” learning

𝑄 𝑠𝑡 , 𝑎𝑡 = 𝑟 𝑠𝑡 + ෍

𝑠𝑡+1

𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝑟 𝑠𝑡+1 + ෍

𝑠𝑡+2

…
• Easy part: learn one-step 

reward 𝑃 𝑟𝑡 𝑠𝑡  & transition 
“map” 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡  

• (why is this easy?) 

• Hard part: iterative, tree-
structured computation at 
choice time;

• … like mental 
simulation

• example: AlphaGo

(Silver et al, 2017)



Lee Sedol (human master): ~3500

(Silver et al, 2017)



“model-free” learning

𝑄 𝑠𝑡 , 𝑎𝑡 = 𝑟 𝑠𝑡 + ෍

𝑠𝑡+1

𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝑟 𝑠𝑡+1 + ෍

𝑠𝑡+2

…

shortcut: store endpoints of computation (long-
run action values)
• these can be learned directly from experience, 

”model free” (TD learning) 
𝑄 𝑠𝑡 , 𝑎𝑡

= 𝑟 𝑠𝑡 + ෍

𝑠𝑡+1

𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝑄 𝑠𝑡+1, 𝑎𝑡+1

• simplifies choice-time computation (just 
retrieve)

• example: DeepMind Atari “Deep Q Network”

(Mnih et al., 2015)



Mnih et al, 2015



Model-based and model-free learning

AlphaGo

(Silver et al 2017)

DQNs

(Mnih et al 2015)

“Model-based” learning     →
• brain: anticipatory activity e.g. 

spatial paths in hippocampus
• behavior: flexible planning

 “Model-free” learning
• brain: dopamine, prediction errors 
• behavior: habits, slips of action

𝑄 𝑠𝑡 , 𝑎𝑡 = 𝑟 𝑠𝑡 + ෍

𝑠𝑡+1

𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝑟 𝑠𝑡+1 + ෍

𝑠𝑡+2

…

Idea (Daw ea 2005): the brain 
implements both approaches 
in parallel
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MF learning

Idea: brain learns long-run action values Q experientially
chooses by comparing them

• Behavioral idea: goes back to Thorndike “law of effect”

• Neural idea: dopamine, prediction errors, temporal difference 
learning (Schultz, Dayan, Montague)

Weird prediction: if decision variable is scalar summary of previous 
experiences, animals should be blind to certain changes in task 
contingencies (until they relearn action values from experience)



>

E[V(a)] = o P(o|a) V(o)

>

“model
-free”

“model-
based”

(Daw et al. 2005)

<

?



Classic test for MB vs MF

pair food with illness;

develop aversion

control: no pairing

will animals work for 

food they don’t want?

(compared to animals 

who skipped stage 2)

learn to leverpress 

for food



results
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results

0

5
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(Holland, 2004)
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training

extensive
training

Animals will work for food they 
don’t want, sometimes

→ familiar counterpart: actions 
become automatic with 

repetition
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Moderate training: outcome sensitive
“goal directed”, like MB

Outcome insensitive following overtraining
“habitual” like MF



Lesions

Lesions to different networks 
appear to differentially disable 
these modes of behavior

• Dorsolateral striatum loop: 
perpetually devaluation 
sensitive (never form habits)

• PFC-dorsomedial striatum loop: 
animals: always devaluation 
insensitive (no MB stage)

→Behavior arises from  
dissociable neural systems

(Yin et al 2004)

Overtrained

Control

(Yin et al 2005)

Moderate training

DL str lesion

ControlDM str lesion

(Daw & O’Doherty 2013)



rational dual-system arbitration 

implied question: arbitration / control

idea: cost-benefit think vs. act tradeoff
• deliberation costly (delay); when is it likely to benefit: 

improve choice, earn more reward?
• e.g.: not usually worthwhile for highly practiced actions 

in stable environment
• For math see Keramati et al (PLoS CB 2011)
• cost-benefit arbitration captures many factors affecting 

habits in rodents

Interest in dual-system architectures for healthy & disordered behavior
• Healthy: automaticity, habits, slips of action, self-control, willpower
• Dysfunction: compulsion, drugs of abuse (eg Everitt & Robbins, 2005)

• hope to ground symptoms of mental illness in basic mechanisms

(Daw, Niv & Dayan, Nature Neuroscience 2005)



outline

Estimating action values: model-based vs. model-free learning

1. Intro

2. Examples
• habits and instrumental reward devaluation

• rodent spatial navigation

• RL in humans; compulsion

3. Hippocampal replay and planning



nonlocal credit assignment by rodents

(Krausz, Comrie, Kahn, Frank, Daw & Berke, Neuron 2023)

Rats receive stochastic rewards at 
corners
• repeatedly choose next corner 

balancing reward probability 
and distance

• continually learn facing 
periodic changes to barriers or 
outcome probabilities



choice in the hex maze

• Outcome (R=0/1) at A affects animals’ next A vs. B choice (long-range 
credit assignment)

• … and next C vs A choice also affected (off-trajectory credit assignment)

• Choices balance reward probability & 
distance

• this must be learned.

(Krausz, Comrie, Kahn, Frank, Daw & Berke, Neuron 2023)



(Krausz, Comrie, Frank, Daw & Berke, bioRxiv 2023)

history: TD, dopamine

classic work (Montague, Dayan, Schultz): phasic DA responses carry reward 
prediction error signal

• including to reward predictors, theoretically linked to chaining value backward 
along repeatedly experienced paths

• but does value really spread this way? unclear!
• & is such experiential, model-free learning enough to explain behavior? no!



measuring the value function neurally

• Between phasic 
events, DA 
ramps up

• appears to 
track 
instantaneous 
value function, 
even on single 
trials

(Krausz, Comrie, Kahn, Frank, Daw & Berke, Neuron 2023)



measuring value update neurally

Reward propagates 
long-distance over 
experienced trajectory

And also does so 
similarly over nonlocal 
trajectory (model-
based?)

(Krausz, Comrie, Kahn, Frank, Daw & Berke, Neuron 2023)



TD-0 like effects also

• Can see “bumps” from 
individual rewards 
propagating backward along 
paths

• (clearly not doing the work 
for the large scale behavior!)

• we think this is distinct 
update mechanism from the 
long-term ramps (not just 
TD-lambda)

(Krausz, Comrie, Kahn, Frank, Daw & Berke, Neuron 2023)



summary

• using dopamine, can directly visualize credit assignment over space

• can see TD(0) chaining but in addition to that
• value (and choice) affected on next trial at long distance

• not just over experienced paths (model-based?)

• these are reflected in choice behavior
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sequential decision task

with prob: 26% 57% 41% 28%

(all slowly changing)
(Doll, Duncan, Simon, Shohamy & Daw Nature Neuroscience 2015)



idea

How does bottom-stage 

feedback affect top-stage 

choices? 

Model-based: actions 

considered in terms of 

second-stage state

→Feedback generalizes 

between equivalents

Model-free: actions 

reinforced by 

consequences

→ Feedback does not 

generalize



predictions

model-free

no generalization
model-based
generalization

(Doll, Duncan, Simon, Shohamy & Daw Nature Neuroscience 2015)



data

model-free model-based

(Doll, Duncan, Simon, Shohamy & Daw Nature Neuroscience 2015)



data

model-free model-based

20 subs x 272 trials each

reward (MB): p<.0001
reward x same (MF) p<.005
(mixed effects logit)

results reject pure reinforcement models

→ suggest mixture of planning and 

reinforcement processes
(Doll, Duncan, Simon, Shohamy & Daw Nature Neuroscience 2015)



data

model-free model-based

20 subs x 272 trials each

reward (MB): p<.0001
reward x same (MF) p<.005
(mixed effects logit)

(Doll, Duncan, Simon, Shohamy & Daw Nature Neuroscience 2015)



(Otto et al Psych Science, 2013)

single task

dual task

dual x model-
based: p< .05

interference

Also:
Individual differences

•Development (Decker ea, 2016)
•Aging (Eppinger ea 2013)

•IQ (Schad ea 2014; Gillan ea 2016)

•cognitive control (Otto ea 2015)
•stress (Otto ea 2015)

•Psychopathology (Gillan ea 2016)

PFC (& dopamine there)

•PFC TMS (Smittenaar ea 2013)
•COMT (PFC DA) genotype (Doll ea 

2016))
•PFC dopamine PET (Desserno ea 

2015)

Hippocampus

• Rodents (Miller et al., 2017)
• Humans (Vikhbladh et al., 2019) 



Binge eating disorder, n=30

Healthy volunteers, n=106

OCD, n=35Stimulant abusers, n=36

(Voon et al., Biological Psychiatry, 2014)

Methamphetamine/cocaine
Abstinent at least 1 wk



however…



Gillan, Kosinski, Whelan, Phelps & Daw, eLife 2016



recap

• RL: connecting actions to outcomes over space and time

• Exact MB planning flexible but intractable
• Speed up with prioritization

• … or MF learning (caching long run values or policy)

• … or in between like SR/DR (caching long run trajectories)

• Connections with psychiatry
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ideas: the value function, value updating

value function:

• measures proximity to reward

• makes sequential choice local

learning a value function:

• experiential updating: prediction 
errors, phasic dopamine (MF)

• inferential updating by driving 
same circuit: (MB “planning is 
learning from simulated 
experience”)

→ suggests more granular control 
(over updates rather than choice)

state
(eg place 
cells)

value
(eg NAcc)

reward PE
(DA)

reward

(after Montague et al. 1996)



potential mechanism: nonlocal “replay”

representation of location in hippocampus can run far ahead of animals 

potential substrate for on-line mental simulation with world model
→ could access evaluation/ choice by driving same learning mechanisms as 

experience
→ if so, it could give us a window into microstructure of planning
→ what can we learn from this?

(Pfeiffer and Foster, 2013)



planning by replay
what can we learn about planning from 
hippocampal SWR replay patterns?

1. replay happens one path at a time
(search is serial, must be prioritized)

2. … only while the animal is stopped 
(opportunity cost)

3. … not only ahead but also backward, nonlocal 
(both planning and credit assignment?)

→ highlights selection: what to think about & 
when?

→can this explain why these patterns occur in 
different circumstances?

(Mattar & Daw Nature Neuroscience 2018; Agrawal, Mattar, Cohen & Daw Psych Review 2021)



computational ideas
two nonlocal operations:

• update

• build 
value function, e.g. 
propagate received 
reward to distal locations

• long distance activations

• retrieve

• figure out where to go 
by querying nearby value 

• short distance retrieval 
during behavior

how do we connect 
actions to outcomes 
distant in space and 
time?

value function:

• measures 
proximity to 
reward

• makes sequential 
choice more local



suggestive data

Krausz, Berke et al unpub



new model: prioritized backups
basic operation: Bellman backup (Dyna; Sutton 1991)

𝑄 𝑎 ← 𝑟 + 𝑄𝑛𝑒𝑥𝑡

Fundamental building block
Pushes value between adjacent states
Over actual trajectories (experiential 
TD learning)
Over stored/simulated experiences 
(local or remote planning)
Both can use same DA circuit

question: at which locations to perform 
backups, in what order?

proposal: at each step, prioritize by utility 
(“expected value of backup”)

→ why does planning carry utility??

(Mattar & Daw Nature Neuroscience 2018)



expected value of backup

𝐸𝑉𝐵 𝑠, 𝑎 = 𝑁𝑒𝑒𝑑 𝑠 ⋅ 𝐺𝑎𝑖𝑛(𝑠, 𝑎)

how likely am I to visit 𝑠 soon?
→ drives activity forward

expected, discounted future occupancy 
σ𝜏=𝑡

∞ 𝛾𝜏−𝑡𝛿𝑠𝜏,𝑠 

if I get there, how much more will I earn?
→ drives activity backward

value change under updated policy

 σ𝑎 𝜋𝑛𝑒𝑤 𝑎 𝑠𝑘 − 𝜋𝑜𝑙𝑑 𝑎 𝑠𝑘 𝑄𝜋𝑛𝑒𝑤
𝑠𝑘 , 𝑎

𝐸𝑉𝐵 𝑠, 𝑎 : how much (cumulative future discounted) 
reward do I expect to earn following a backup at that 
location, compared to before?

→ idea: prioritize retrieval according to EVB, balancing need and gain

(Mattar & Daw Nature Neuroscience 2018)



need

• higher for 
locations likely 
to be visited 
soon

• favors forward 
replay of 
imminent 
trajectories

(Mattar & Daw Nature Neuroscience 2018)



gain

Gain Need

X

Resulting sequence

=

• how much can I learn at a particular spot?

• drives reverse replay upon learning new information



theory predicts place cell replay

need vs gain promote 
forward vs backward 
replay in different 
circumstances

datamodel

seemingly contradictory changes in 
replay with experience explained 
by evolution of need vs gain

gain explains why 
some surprises trigger 
replay while others 
don’t

(Mattar & Daw Nature Neuroscience 2018)
(Widloski & Foster 2018)

& why some trajectories 
are replayed but avoided



recap, thoughts
1. behavior, neural value correlates suggest the brain does nonlocal (“model-

based”) credit assignment, but not exhaustively (MF, habits)

2. hippocampal replay as a window into this process
• key role for selection: which locations to consider when

→more granular view on metacontrol
• real issue is not so much whether to think, but what to think about, when

experimental tests
• examine (& intervene upon) predicted relationships in animals doing RL tasks

experience → replay → value (or model) update → ramps, choices)

psychiatry
• generalizes habit models beyond neglect, to highlight importance of precomputation & 

selection
• worry, rumination, craving, obsession, re-experiencing trauma



Other topics

• DAergic heterogeneity (Engelhard et al 2018; Lee et al 2024)

• fitting RL models to choice and neural data (Daw, 2010)

• States and generalization (deep RL; but also latent state inference, Gershman et al. 2010)

• Hierarchical, continuous, or high dimensional actions (connections with motor control; 
Botvinick et al, 2009; Shadmehr tomorrow)

• Exploration (Agrawal et al., 2021)

• Punishment and avoidance (Uchida; Palminteri et al, 2015)

• Uncertainty, volatility, and learning rate control (Behrens et al 2007; Piray & Daw 2021)

• Connections with sensory uncertainty, perceptual decision making (Lak et al, 2017)

ndaw@princeton.edu
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