Learning

• Unsupervised Learning

- Hebbian Learning Rule
- Pattern associator
- Self-organized maps
- Topographic structure
- Pattern detectors

Supervised Learning

- Scalar (Reinforcement) Learning

- Classical and Instrumental Conditioning
- Sequential learning and Prediction
- Vector-Based Learning
 - Generalized Delta Rule
 - Backpropagation
 - Deep Learning

Reinforcement Learning

Conditioning

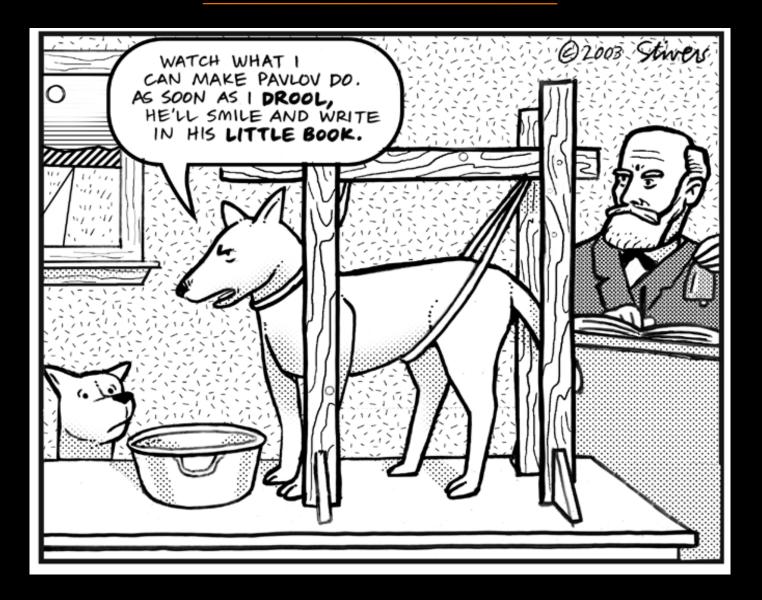
- Simple Prediction Rescorla-Wagner Rule
- Stimulus-Action Associations Actor-critic model, Q Learning

• Sequence Prediction

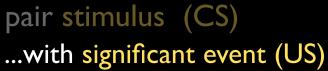
- Method of Temporal Differences (TD)
- Model-Free vs. Model-Based RL
- Challenges
 - Curse of dimensionality
 - Hierarchical RL: policies and options
 - State space abstraction
 - Explore-exploit
 - Meta-control

- Conditioning is "supervised" associational learning
 - Can be thought of as the experimenter controlling the environment
 - But the learning is still associational

- Conditioning is "supervised" associational learning
 - Can be thought of as the experimenter controlling the environment
 - But the learning is still associational
- Based on similar principles of associative learning, but with a twist...

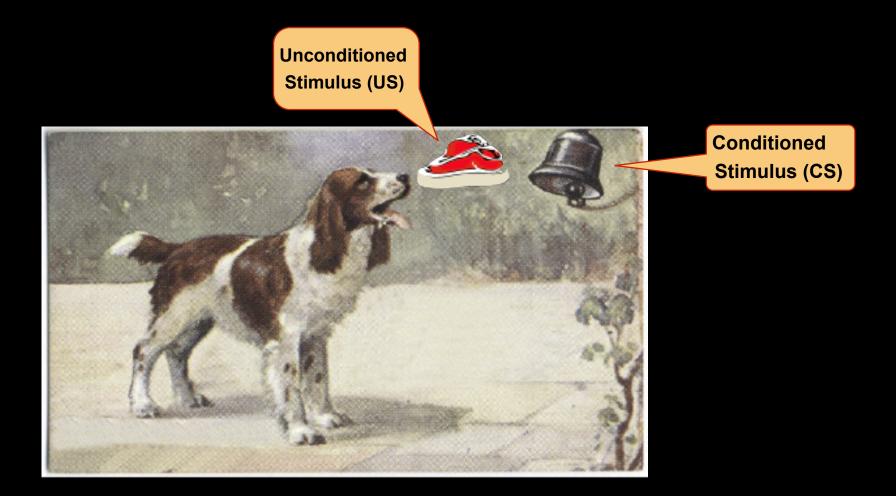


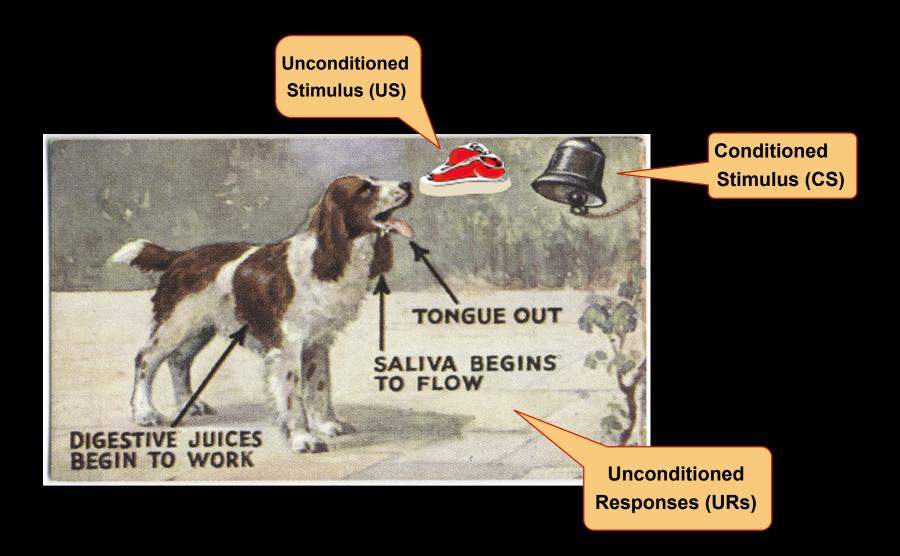
pair stimulus (CS)

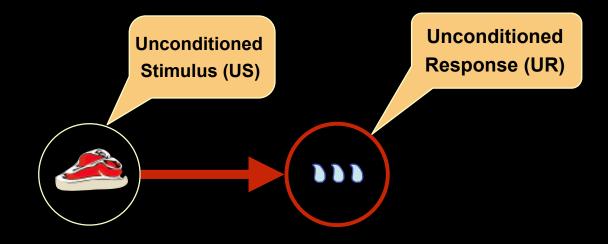


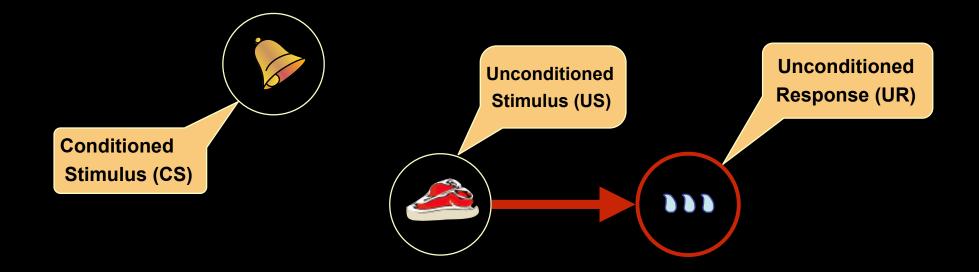
pair stimulus (CS) ...with significant event (US)

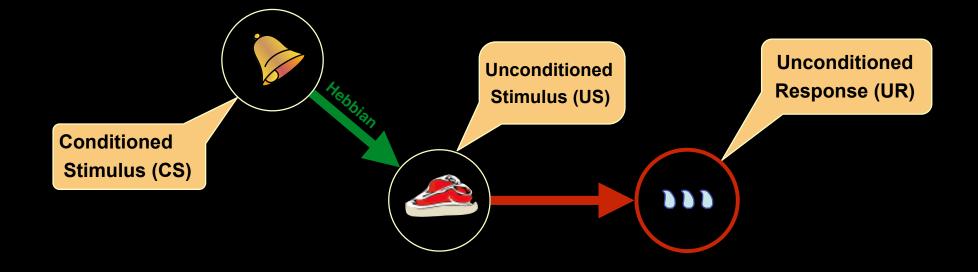
measure anticipatory behavior (CR)

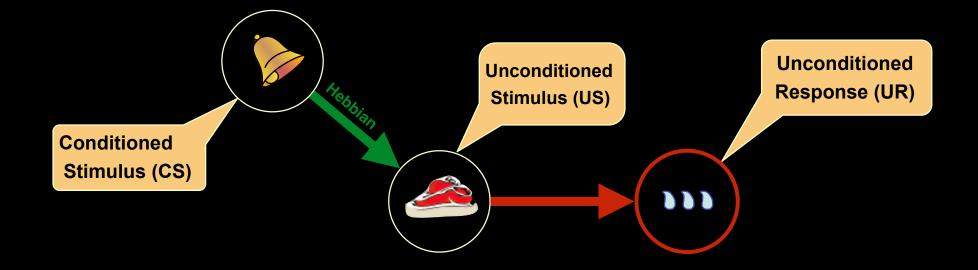




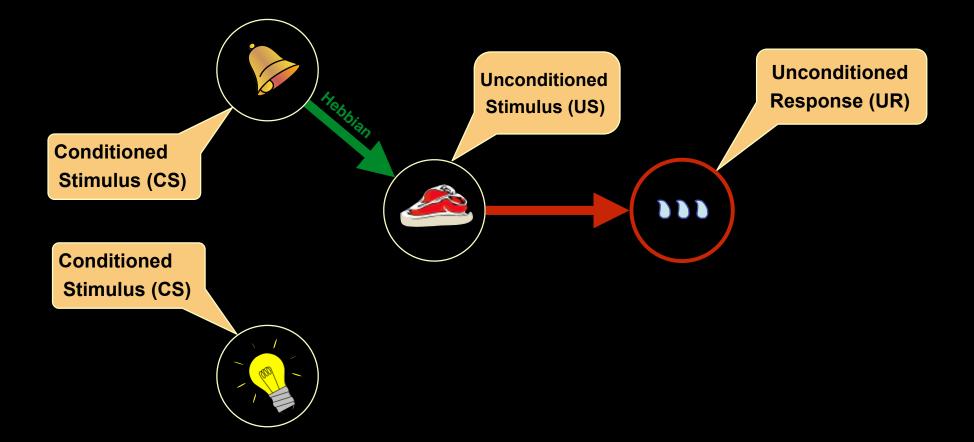




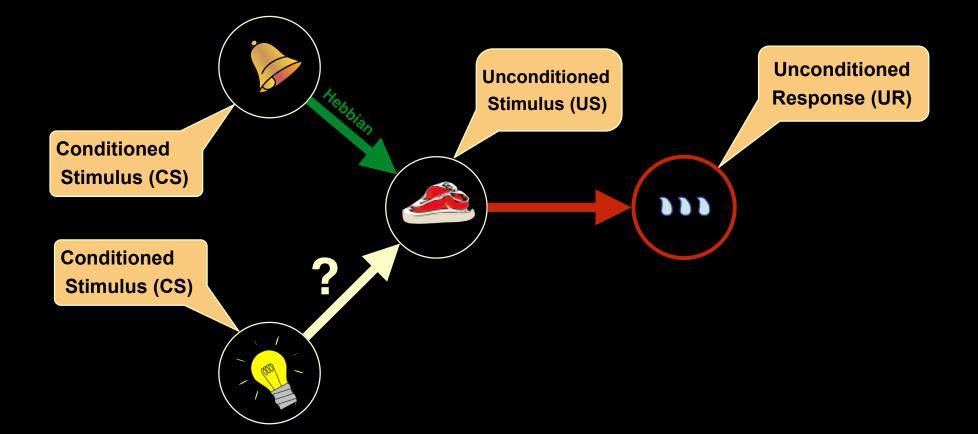




Pure Hebbian learning is purely about contiguity

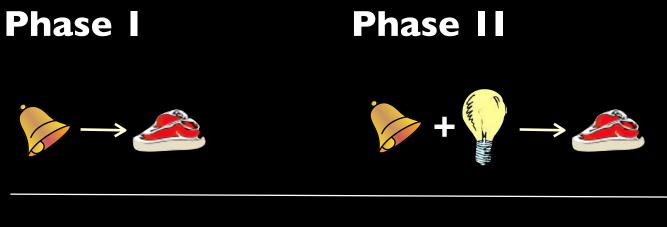


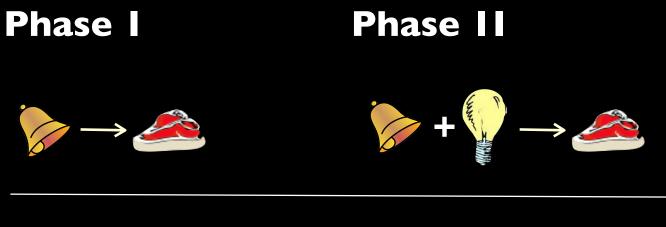
Pure Hebbian learning is purely about contiguity

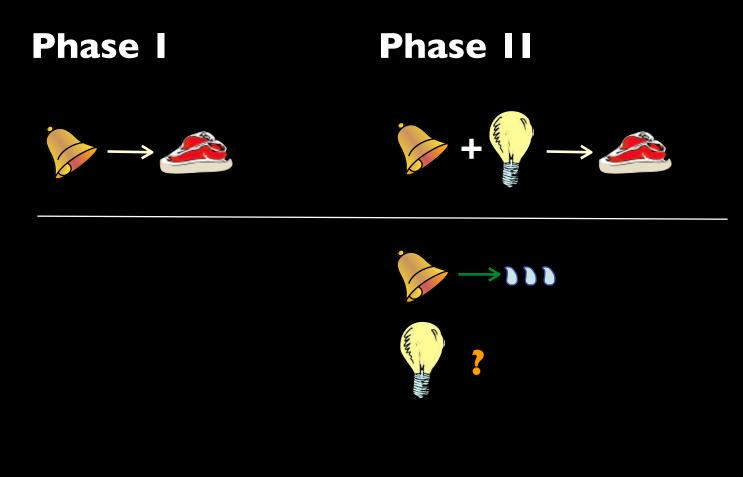


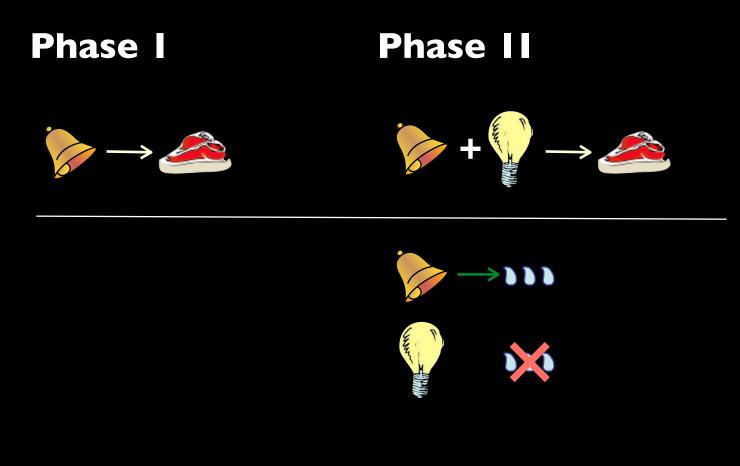
Pure Hebbian learning is purely about contiguity

Phase I

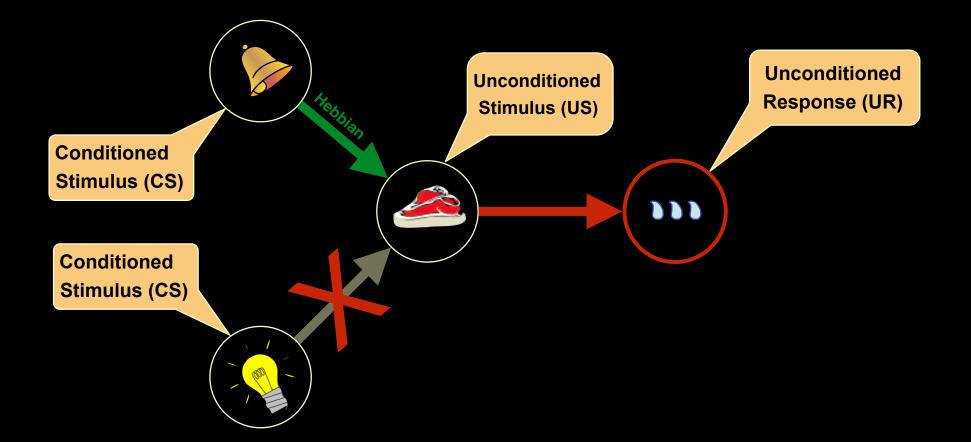






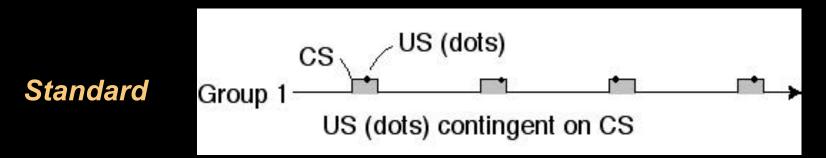


Blocking



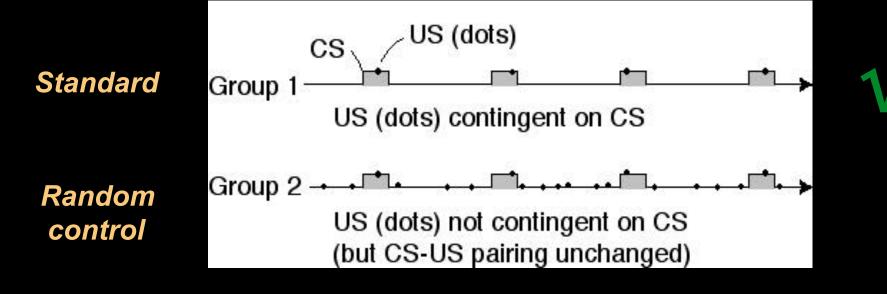
Conditioning must be about more than *just contiguity*...

Rescorla's experiment:

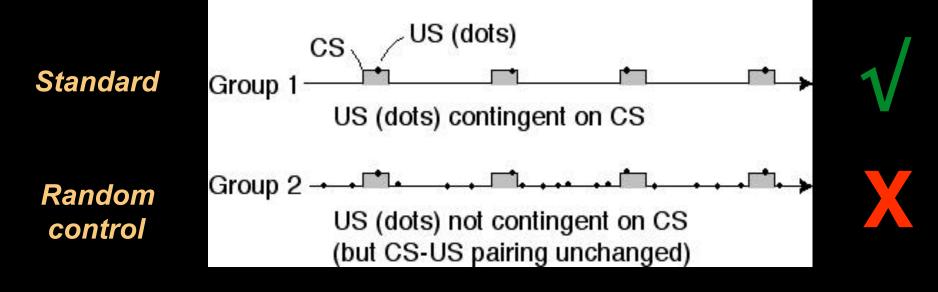


Rescorla's experiment: Conditioning: Standard Group 1 CS US (dots) US (dots) contingent on CS V

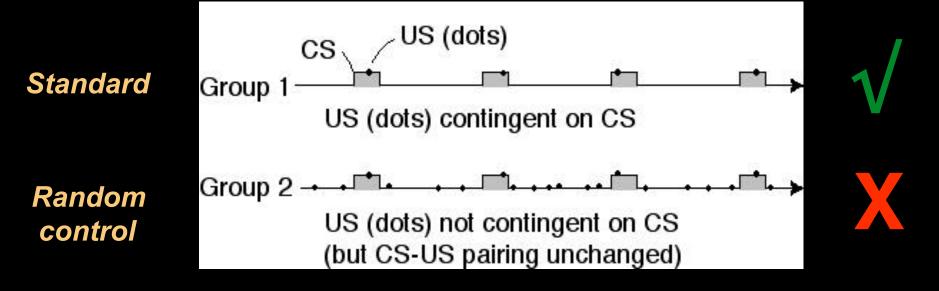
Rescorla's experiment:



Rescorla's experiment:

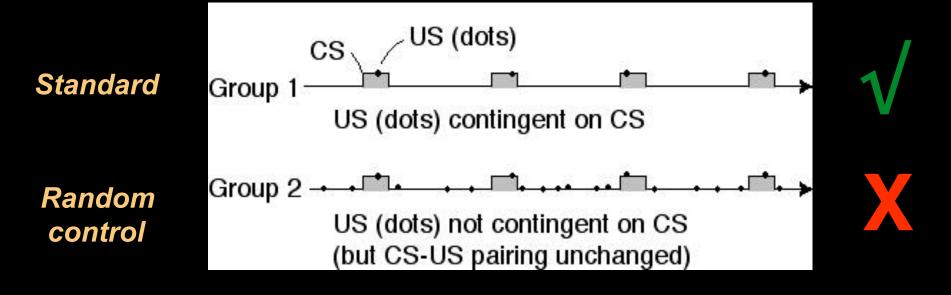


Conditioning:



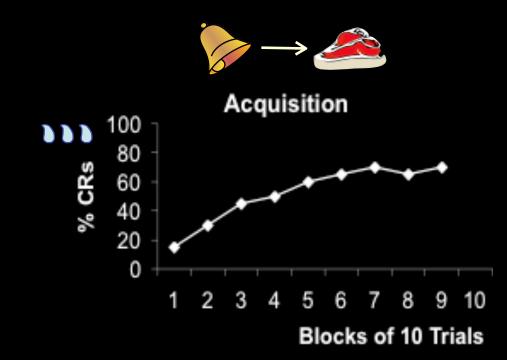
Temporal contiguity is not enough, need contingency

Conditioning:

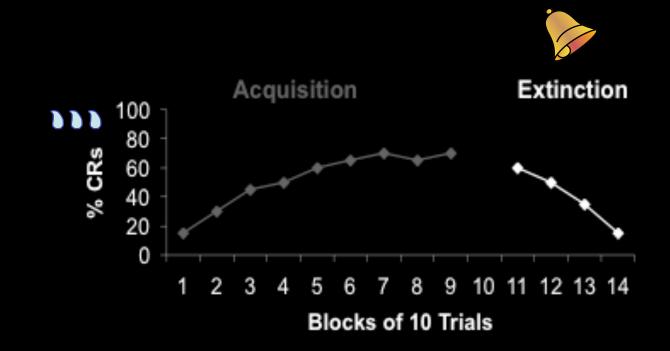


Contingency ⇒ *Prediction*

Prediction



Failure of **Prediction**



Prediction Learning

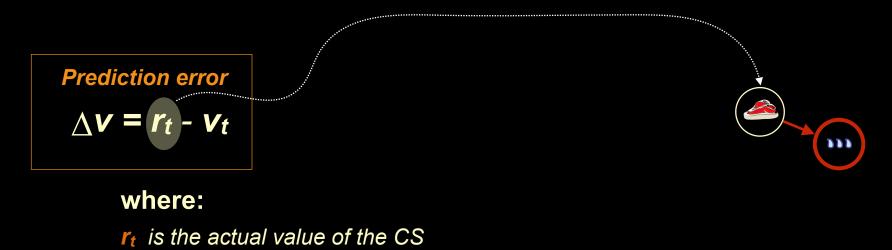
• Rescorla-Wagner Learning Rule (1972) (also known as "delta rule," or "reward prediction learning")

- Rescorla-Wagner Learning Rule (1972) (also known as "delta rule," or "reward prediction learning")
 - the idea: error-driven learning

associations are learned (strengthened) as a function of the difference between the *actual* and *predicted* outcome:

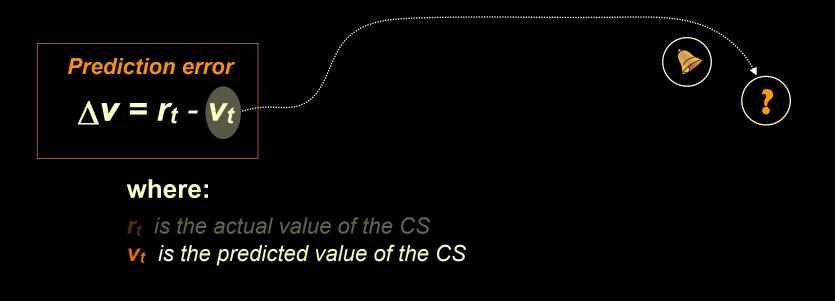
- Rescorla-Wagner Learning Rule (1972) (also known as "delta rule," or "reward prediction learning")
 - the idea: error-driven learning

associations are learned (strengthened) as a function of the difference between the *actual* and *predicted* outcome:



- Rescorla-Wagner Learning Rule (1972) (also known as "delta rule," or "reward prediction learning")
 - the idea: error-driven learning

associations are learned (strengthened) as a function of the difference between the *actual* and *predicted* outcome:



- Rescorla-Wagner Learning Rule (1972) (also known as "delta rule," or "reward prediction learning")
 - the idea: error-driven learning

associations are learned (strengthened) as a function of the difference between the *actual* and *predicted* outcome:

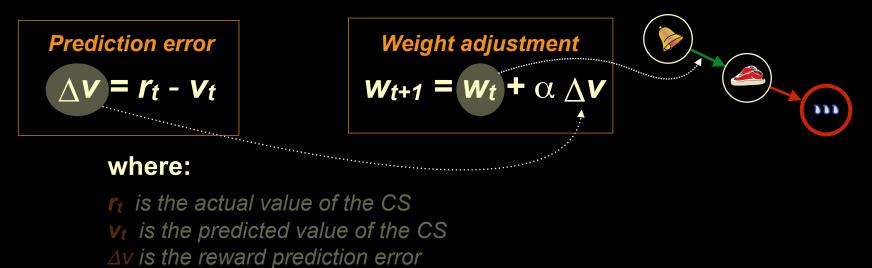
$$Prediction error$$
$$\Delta \mathbf{v} = \mathbf{r}_t - \mathbf{v}_t$$

where:

r_t is the actual value of the CS **v**_t is the predicted value of the CS Δv is the reward prediction error

- Rescorla-Wagner Learning Rule (1972) (also known as "delta rule," or "reward prediction learning")
 - the idea: error-driven learning

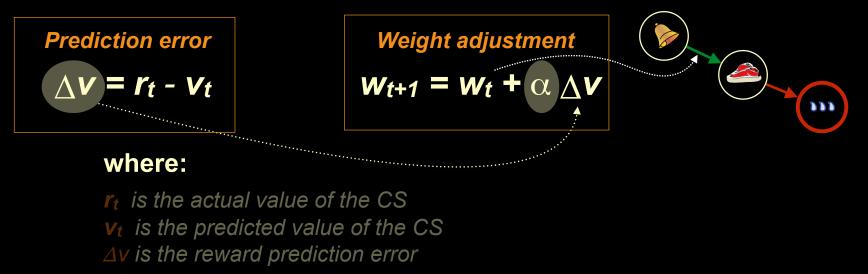
associations are learned (strengthened) as a function of the difference between the *actual* and *predicted* outcome:



*w*_t is the strength of the association between the CS and US

- Rescorla-Wagner Learning Rule (1972) (also known as "delta rule," or "reward prediction learning")
 - the idea: error-driven learning

associations are learned (strengthened) as a function of the difference between the *actual* and *predicted* outcome:

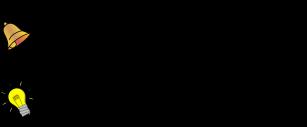


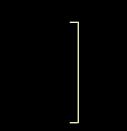
*w*_t is the strength of the association between the CS and US

 α is the learning rate

Prediction error

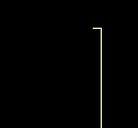
 $\Delta \mathbf{v} = \mathbf{r}_t - \mathbf{v}_t$





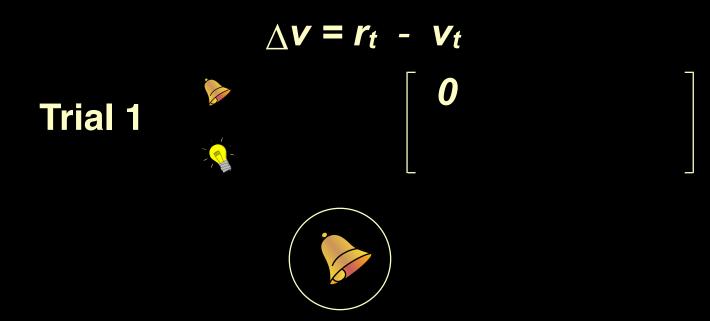
Prediction error

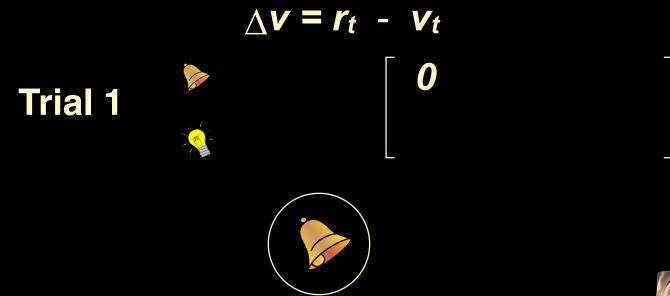
 $\Delta \mathbf{v} = \mathbf{r}_t - \mathbf{v}_t$

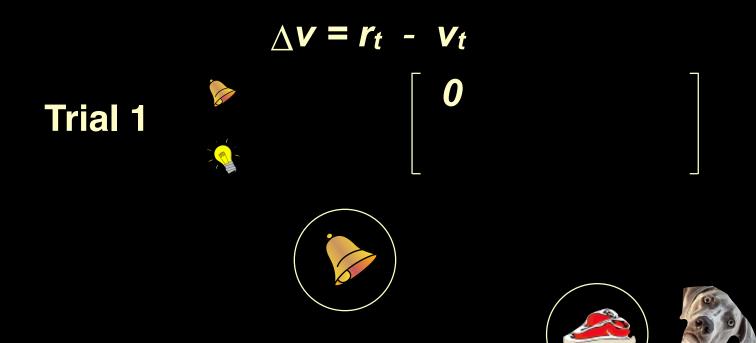


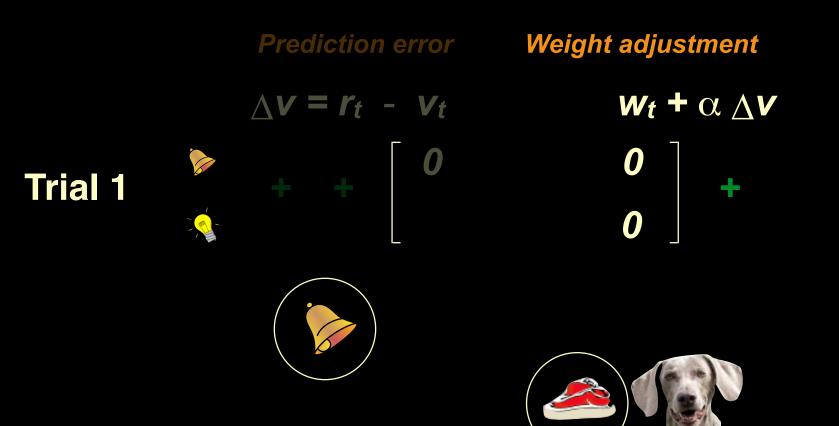
Prediction error

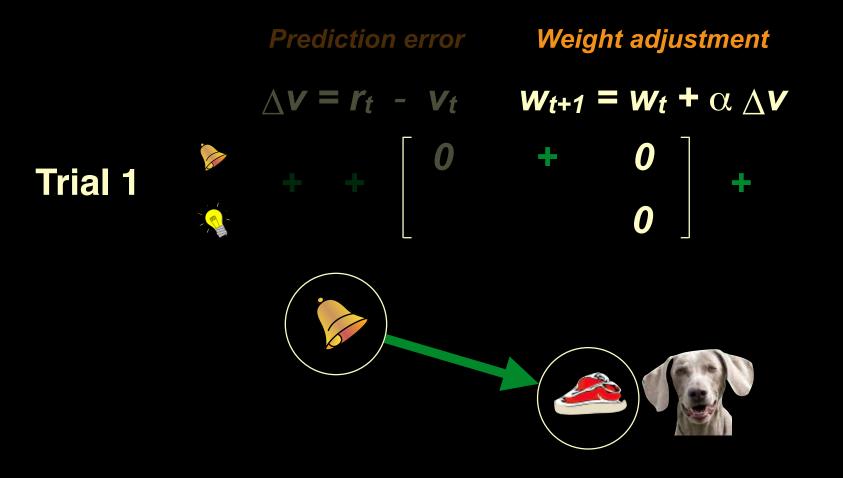
 $\Delta \mathbf{v} = \mathbf{r}_t - \mathbf{v}_t$

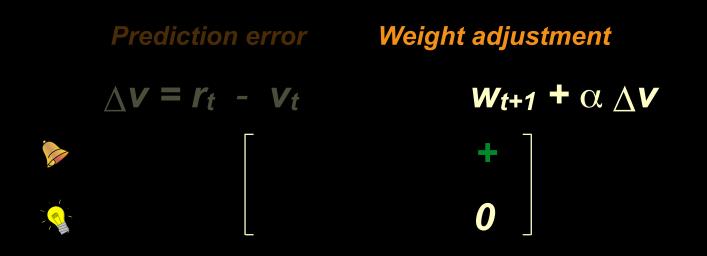


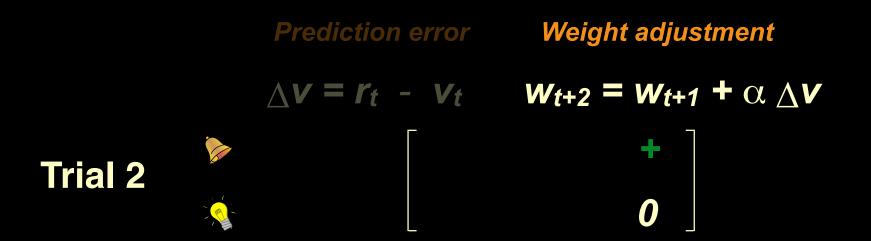


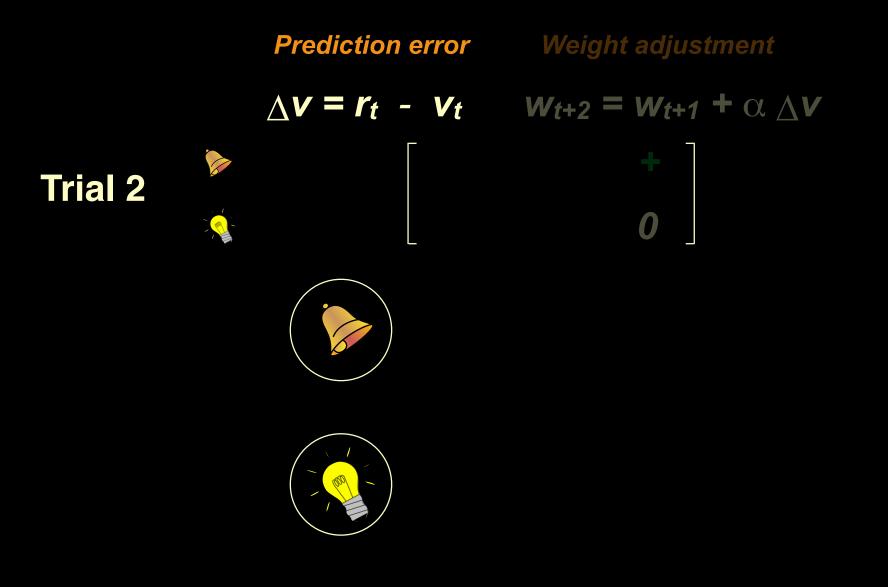


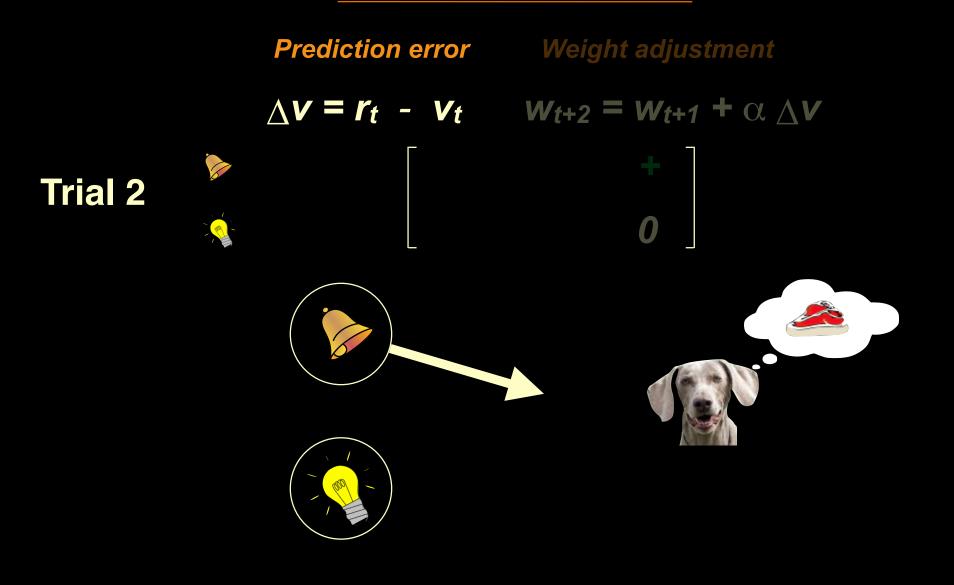


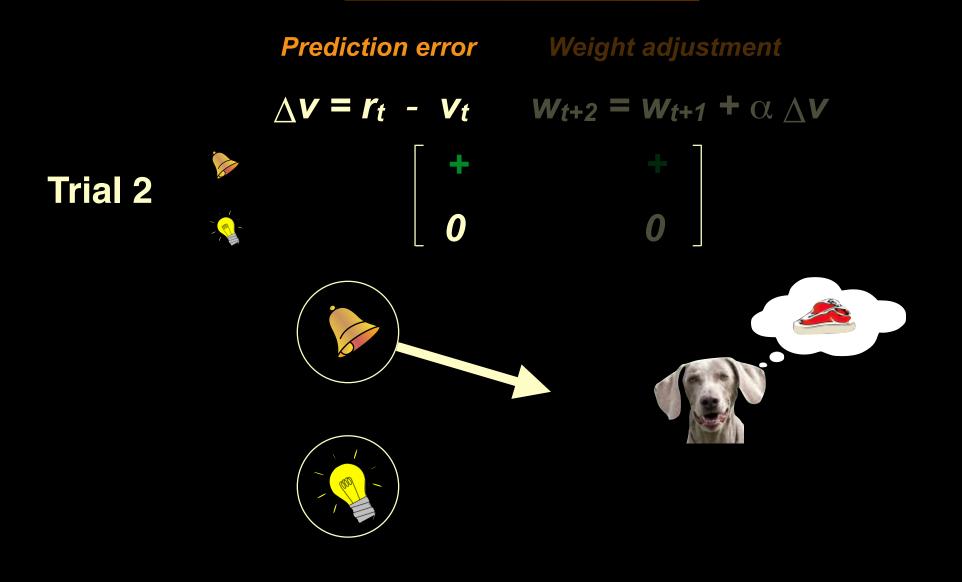


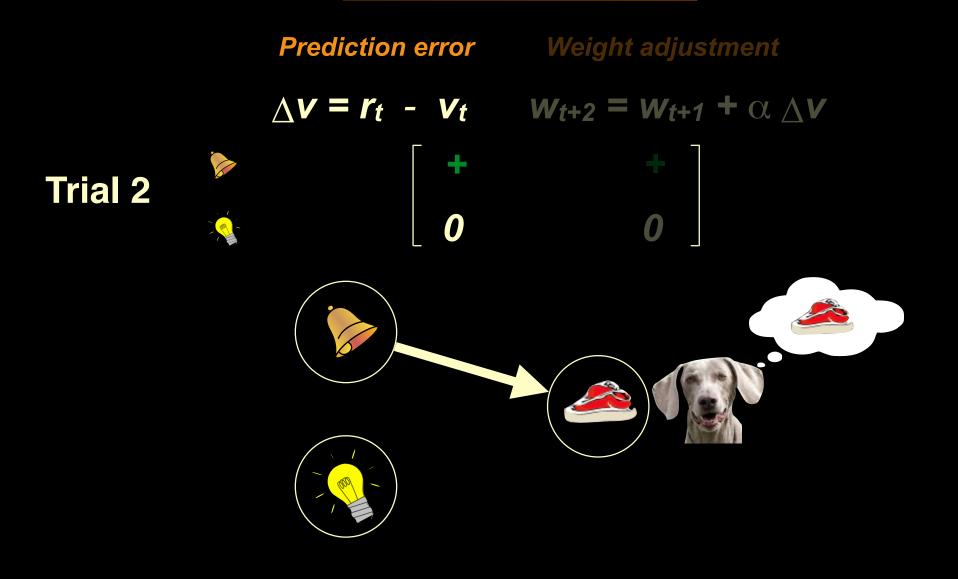


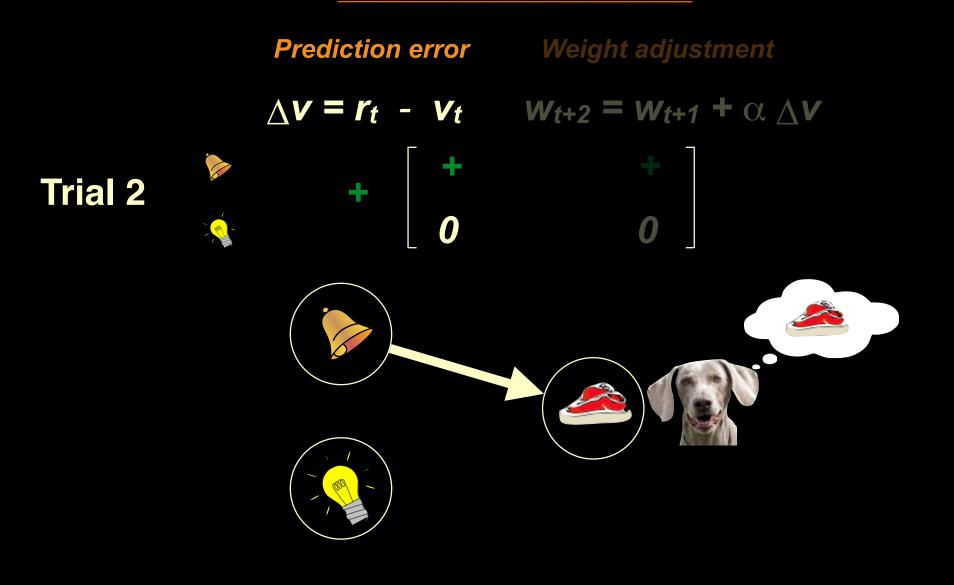


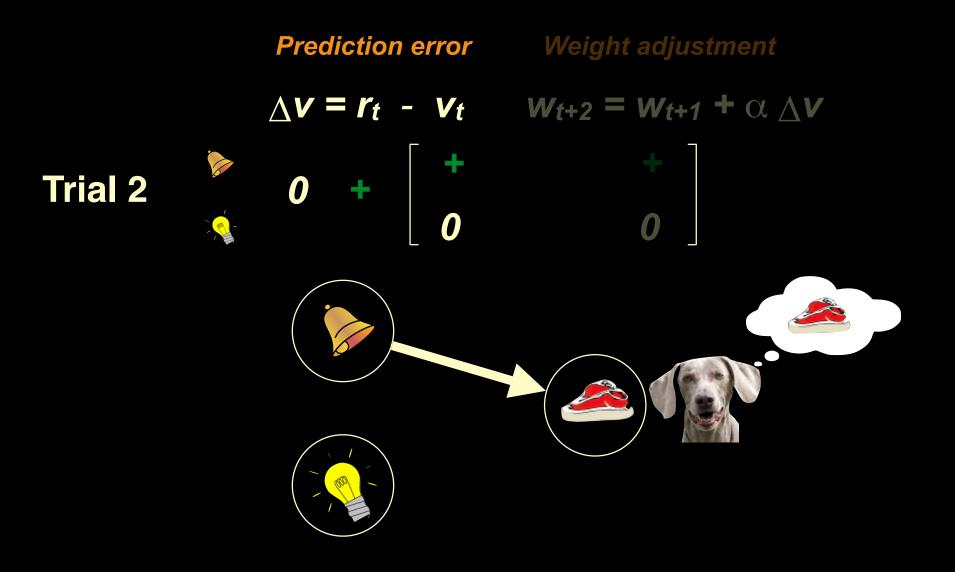


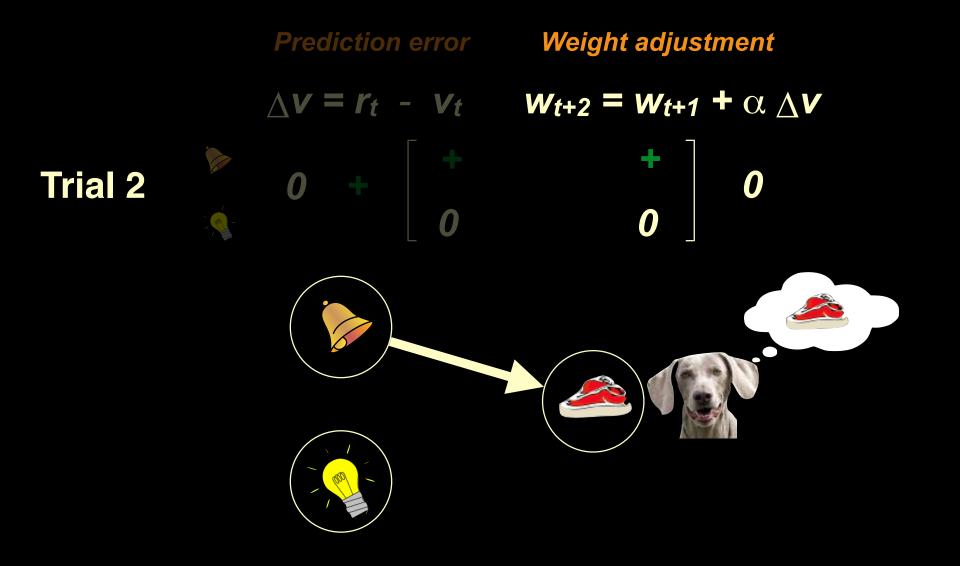


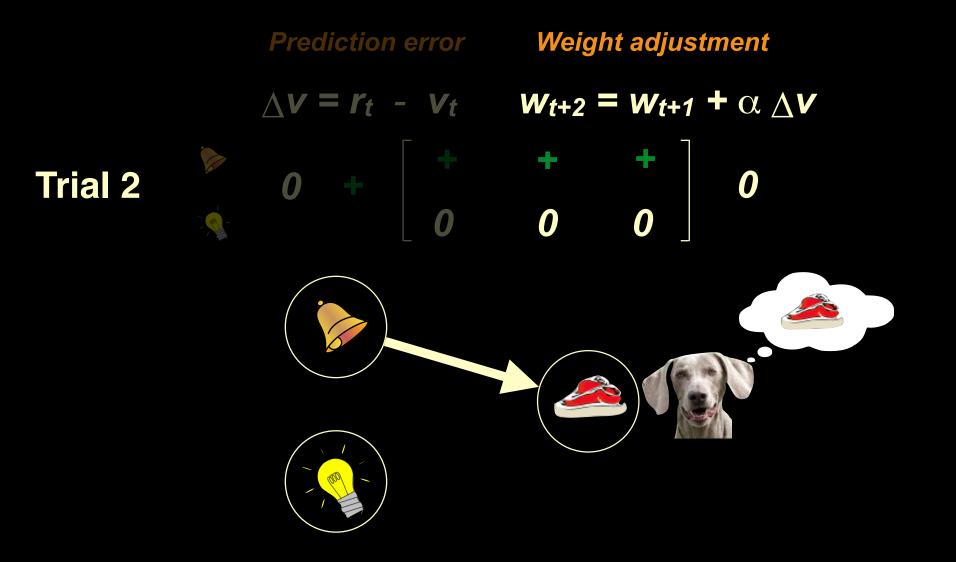


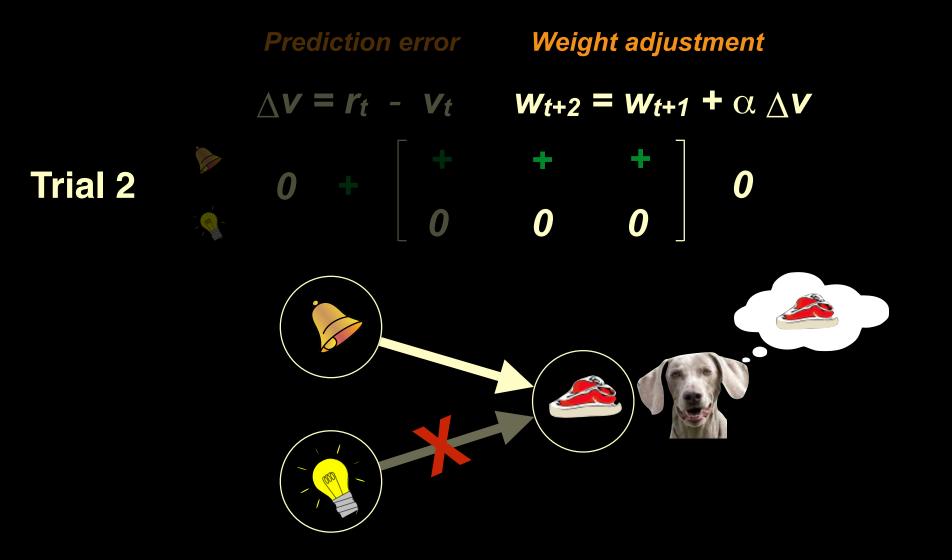


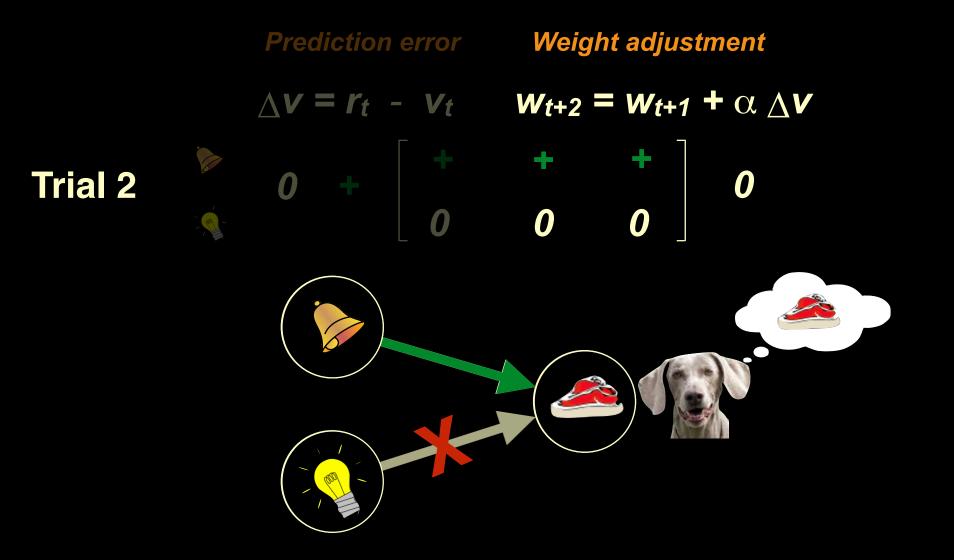












• Rescorla-Wagner Learning Rule

Prediction errorWeight adjustment $\Delta W_S = r_{s(t)} - W_{s(t)}$ $W_{s(t+1)} = W_{s(t)} + \alpha \Delta W_s$

• Rescorla-Wagner Learning Rule

Prediction error Weight adjustment

 α $r_{s(t)}$ - $W_{s(t)}$

Rescorla-Wagner Learning Rule

Prediction error Weight adjustment

 $\mathbf{W}_{S(t+1)} = \mathbf{W}_{S(t)} + \alpha \mathbf{r}_{S(t)} - \alpha \mathbf{W}_{S(t)})$

Rescorla-Wagner Learning Rule

Prediction error Weight adjustment

 $\mathbf{W}_{S(t+1)} = \mathbf{W}_{S(t)} - \alpha \mathbf{W}_{S(t)} + \alpha \mathbf{r}_{S(t)}$

• Rescorla-Wagner Learning Rule

Prediction error Weight adjustment

 $\mathbf{W}_{s(t+1)} = (1 - \alpha) \mathbf{W}_{s(t)} + \alpha \mathbf{r}_{s(t)})$

• Rescorla-Wagner Learning Rule

Prediction error

Weight adjustment

 $\boldsymbol{W}_{s(t+1)} = (1-\alpha) \boldsymbol{W}_{s(t)} + \alpha \boldsymbol{r}_{s(t)}$

Learn to predict rewards by averaging:

• Rescorla-Wagner Learning Rule

Prediction error

Weight adjustment

 $W_{s(t+1)} = (1-\alpha) W_{s(t)} + \alpha r_{s(t)})$

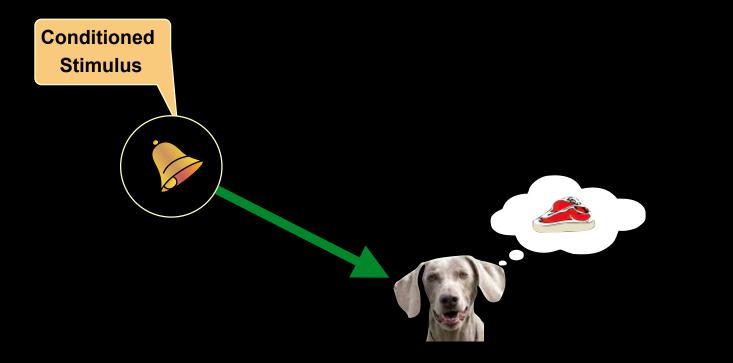
Learn to predict rewards by averaging: learned predictions

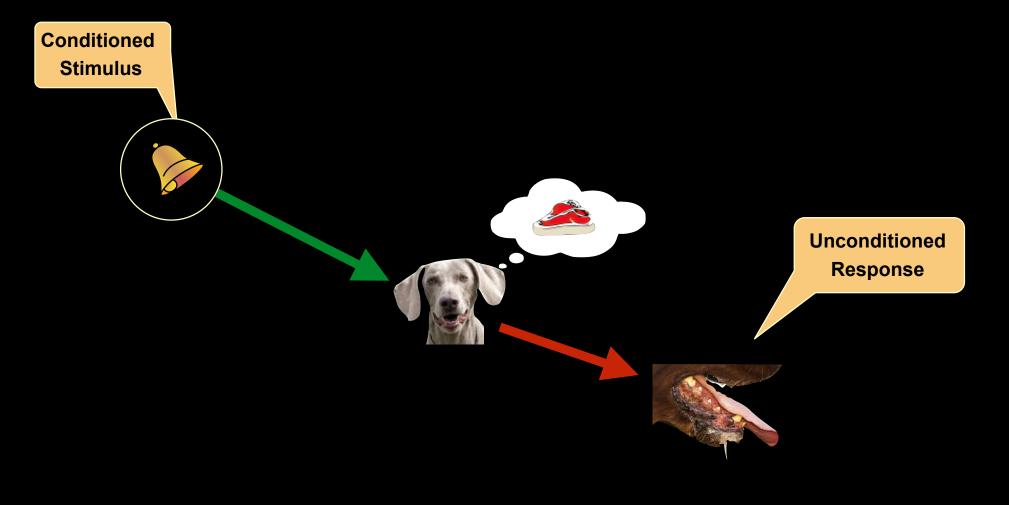
• Rescorla-Wagner Learning Rule

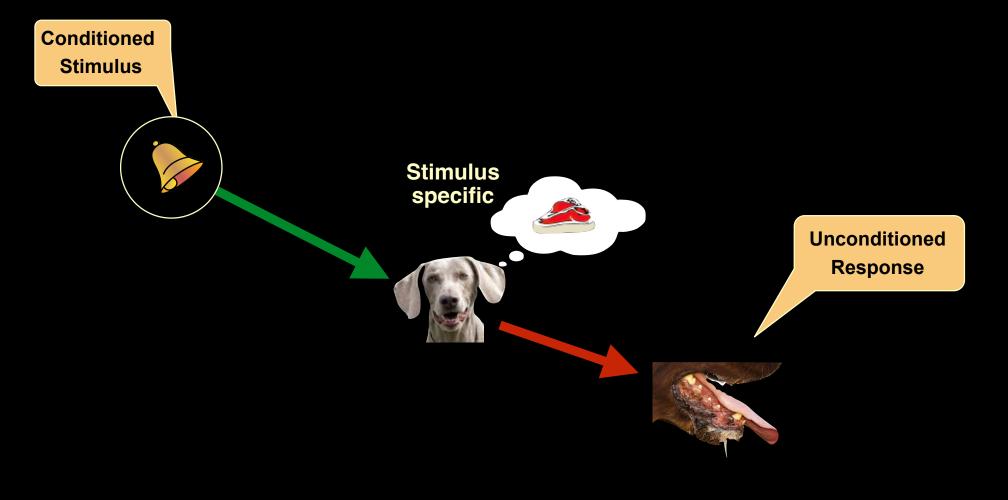
Prediction error

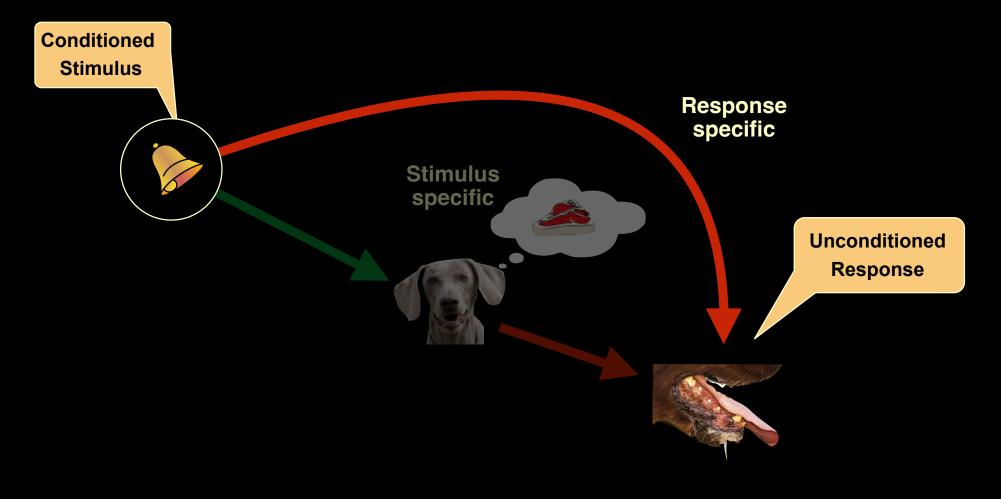
Weight adjustment

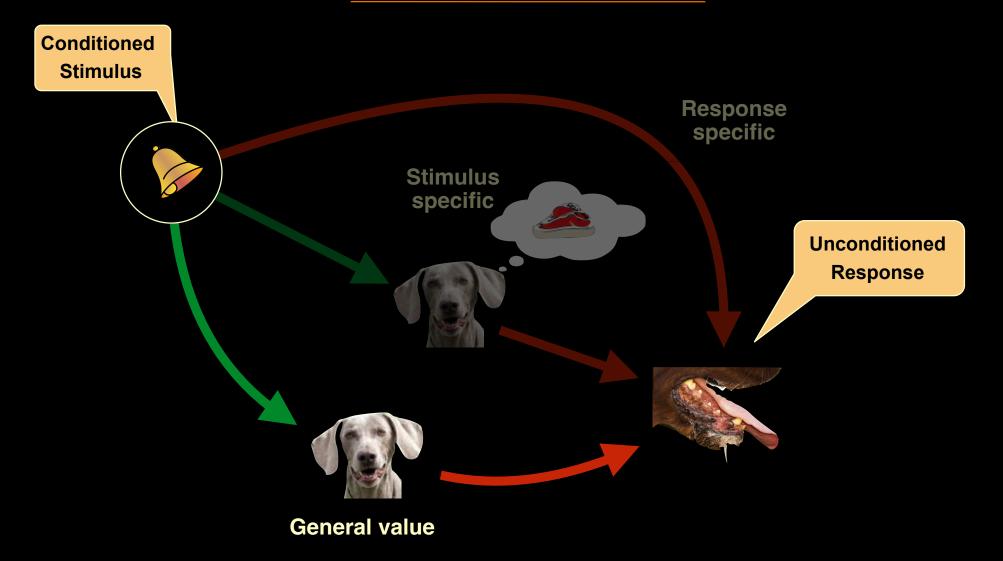
 $w_{s(t+1)} = (1-\alpha) w_{s(t)} + \alpha r_{s(t)}$ Learn to predict rewards by averaging: learned predictions with present reward -







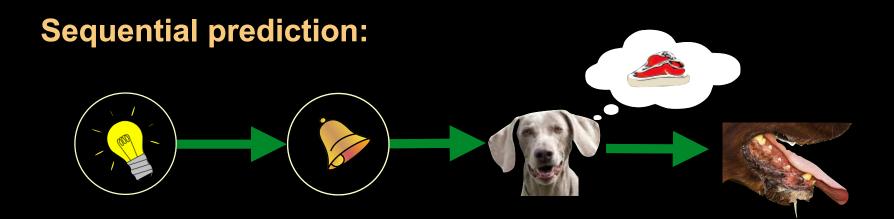


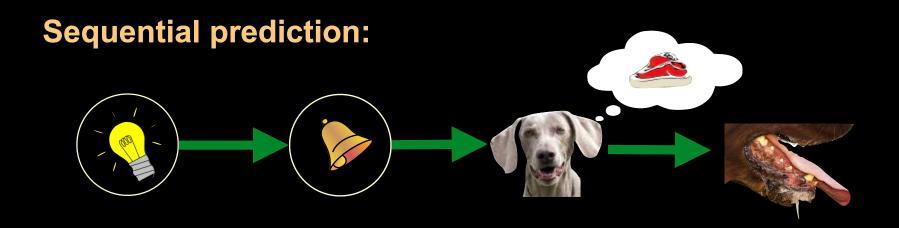


Sequential prediction:

Sequential prediction:

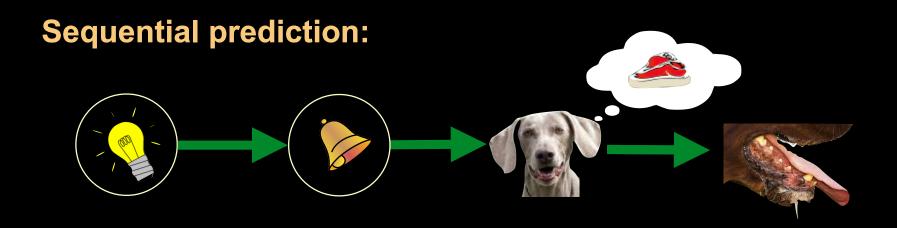
Sequential prediction:





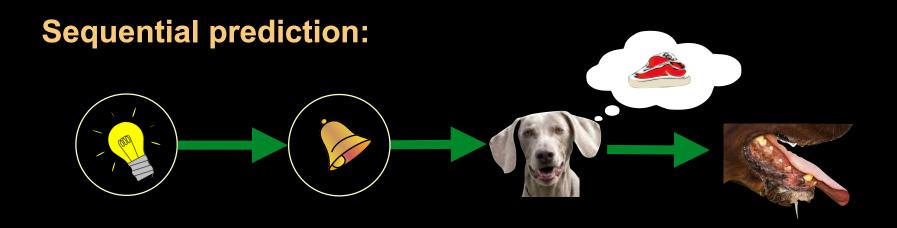
Rescorla-Wagner Rule can't handle this,

can only learn to predict the value of the current event (cue does not generate an *actual* reward)



Rescorla-Wagner Rule can't handle this,

can only learn to predict the value of the current event (cue does not generate an *actual* reward)



Rescorla-Wagner Rule can't handle this,

can only learn to predict the value of the current event (cue does not generate an *actual* reward)

Supervised Learning: Scalar

• Conditioning

- Simple Prediction
 - Rescorla-Wagner Rule
- Stimulus-Action Associations Actor-critic model, Q Learning

Sequence Prediction

- Method of Temporal Differences (TD)
- Model-Free vs. Model-Based RL
- Challenges
 - Curse of dimensionality
 - Hierarchical RL: policies and options
 - State space abstraction
 - Explore-exploit
 - Meta-control

Prediction error

Weight adjustment

Rescorla-Wagner:

$$\Delta \boldsymbol{w}_{s} = \boldsymbol{r}_{s(t)} - \boldsymbol{w}_{s(t)}$$

 $W_{s(t+1)} = W_{s(t)} + \alpha \Delta W_s$

Predict current reward: $W_{S(t)} = \Gamma_{S(t)}$

Prediction error

Weight adjustment

Rescorla-Wagner:

Predict current reward: $W_{S(t)} = \Gamma_{S(t)}$

$$\Delta w_{s} = r_{s(t)} - w_{s(t)}$$
Currently
predicted

reward

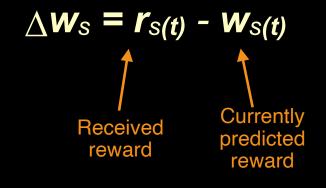
$$W_{s(t+1)} = W_{s(t)} + \alpha \Delta W_s$$

Prediction error

Weight adjustment

Rescorla-Wagner:

Predict current reward: $W_{S(t)} = \Gamma_{S(t)}$



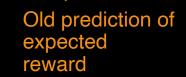
$$W_{s(t+1)} = W_{s(t)} + \alpha \Delta W_{s}$$

Prediction error

Weight adjustment

Rescorla-Wagner:

Predict current reward: $W_{S}(t) = \Gamma_{S}(t)$



Prediction error

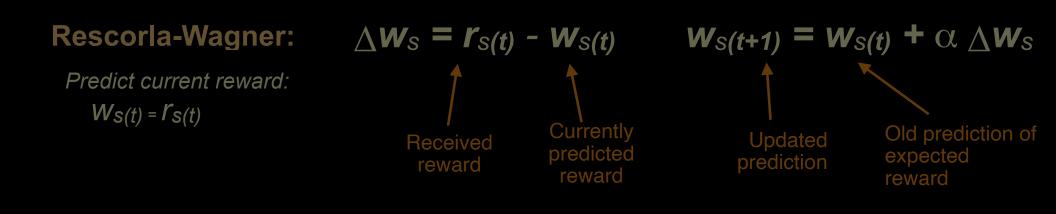
Weight adjustment

Rescorla-Wagner: $\Delta W_s = r_{s(t)} - W_{s(t)}$ $W_{s(t+1)} = W_{s(t)} + \alpha \Delta W_s$ Predict current reward: $M_{s(t)} = r_{s(t)}$ $M_{s(t)} = r_{s(t)}$ $M_{s(t+1)} = W_{s(t)} + \alpha \Delta W_s$ Ws(t) = r_{s(t)} $M_{s(t)} = r_{s(t)}$ $M_{s(t)} = W_{s(t)}$ $M_{s(t+1)} = W_{s(t)} + \alpha \Delta W_s$ Ws(t) = r_{s(t)} $M_{s(t)} = r_{s(t)}$ $M_{s(t)} = W_{s(t)}$ $M_{s(t)} = W_{s(t)}$ Ws(t) = r_{s(t)} $M_{s(t)} = r_{s(t)}$ $M_{s(t)} = W_{s(t)}$ $M_{s(t)} = W_{s(t)}$ Ws(t) = r_{s(t)} $M_{s(t)} = r_{s(t)}$ $M_{s(t)} = W_{s(t)}$ $M_{s(t)} = W_{s(t)}$ Ws(t) = r_{s(t)} $M_{s(t)} = r_{s(t)}$ $M_{s(t)} = W_{s(t)}$ $M_{s(t)} = W_{s(t)}$ Ws(t) = r_{s(t)} $M_{s(t)} = r_{s(t)}$ $M_{s(t)} = W_{s(t)}$ $M_{s(t)} = W_{s(t)}$ Ws(t) = r_{s(t)} $M_{s(t)} = R_{s(t)}$ $M_{s(t)} = W_{s(t)}$ $M_{s(t)} = W_{s(t)}$ Ws(t) = r_{s(t)} $M_{s(t)} = R_{s(t)}$ $M_{s(t)} = W_{s(t)}$ $M_{s(t)} = W_{s(t)}$ Ws(t) = r_{s(t)} $M_{s(t)} = R_{s(t)}$ $M_{s(t)} = W_{s(t)}$ $M_{s(t)} = W_{s(t)}$ Ws(t) = R_{s(t)} $M_{s(t)} = R_{s(t)}$ $M_{s(t)} = W_{s(t)}$ $M_{s(t)} = W_{s(t)}$ Ws(t) = R_{s(t)} $M_{s(t)} = R_{s(t)}$ $M_{s(t)} = R_{s(t)}$ $M_{s(t)} = W_{s(t)}$ Ws(t) = R_{s(t)} $M_{s(t)} = R_{s(t)}$ $M_{s(t)} = R_{s(t)}$ $M_{s(t)} = R_{s(t)}$ Ws(t) = R_{s(t)} $M_{s(t)} = R_{s(t)}$ $M_{s(t)} = R_{s(t)}$ $M_{s(t)} = R_{s(t)}$ Ws(t) = R_{s(t)} $M_{s(t)} = R_{s(t)}$ $M_{s(t)} = R_{s(t)}$ $M_{s(t)} = R_{s(t)}$ Ws(t) = R_

Temporal Difference: (Sutton & Barto, 1981) Predict all future rewards: $W_{s}(t) = \Gamma_{s}(t) + \Gamma_{s}(t+1) + \Gamma_{s}(t+2) + ...$ $= \Gamma_{s}(t) + W_{s}(t+1)$ [Bellman equation] by updating existing ("OLD") predictions

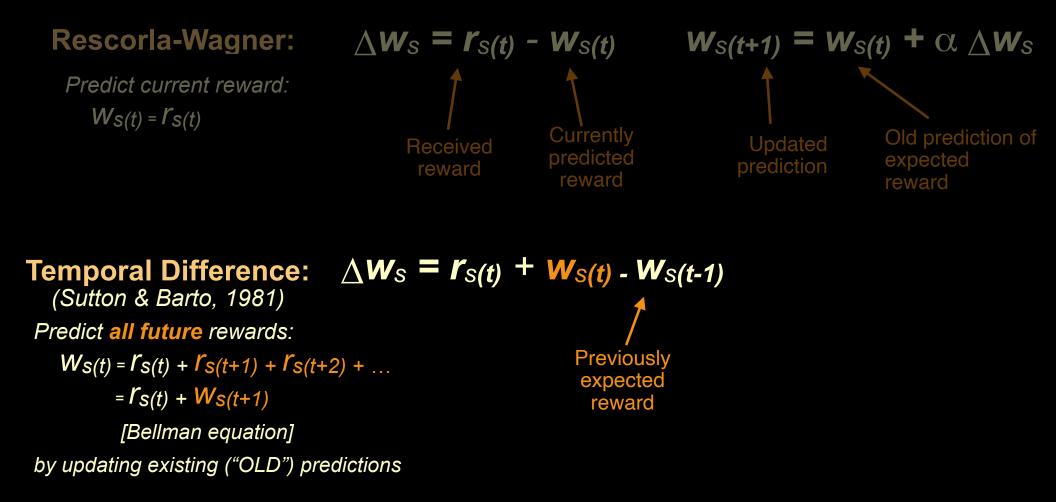
Prediction error

Weight adjustment

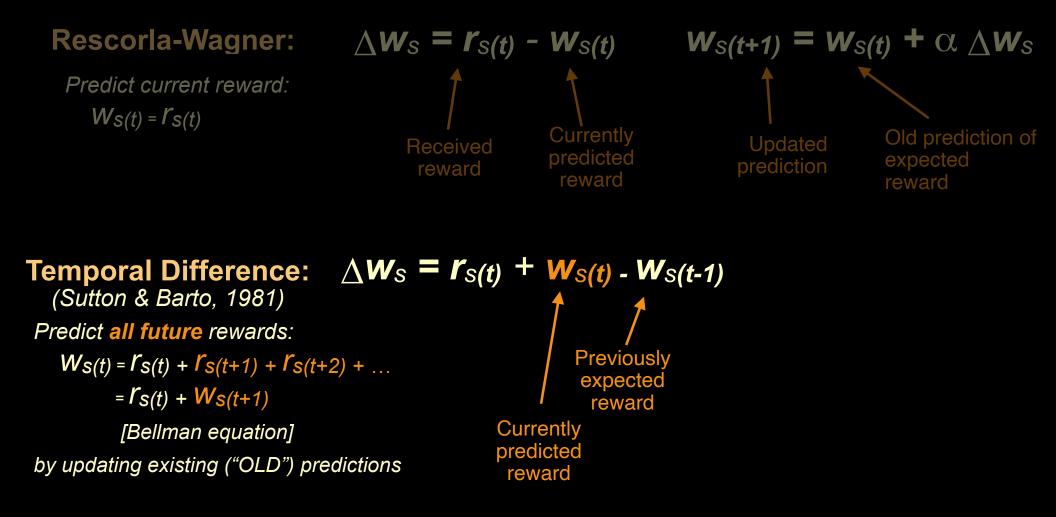


Temporal Difference: $\Delta W_s = r_{s(t)} + W_{s(t)} - W_{s(t-1)}$ (Sutton & Barto, 1981) Predict all future rewards: $W_{s(t)} = r_{s(t)} + r_{s(t+1)} + r_{s(t+2)} + \dots$ $= r_{s(t)} + W_{s(t+1)}$ [Bellman equation] by updating existing ("OLD") predictions

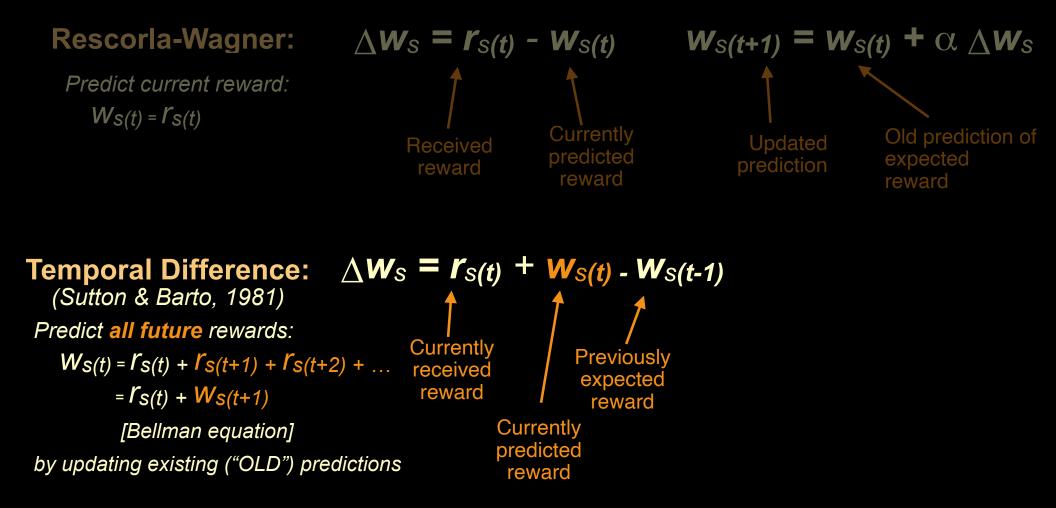
Prediction error



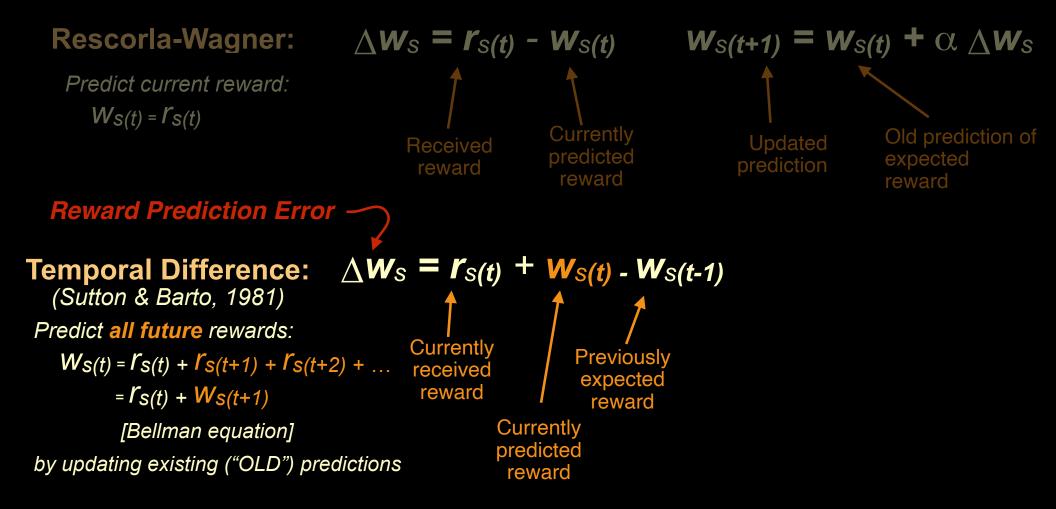
Prediction error



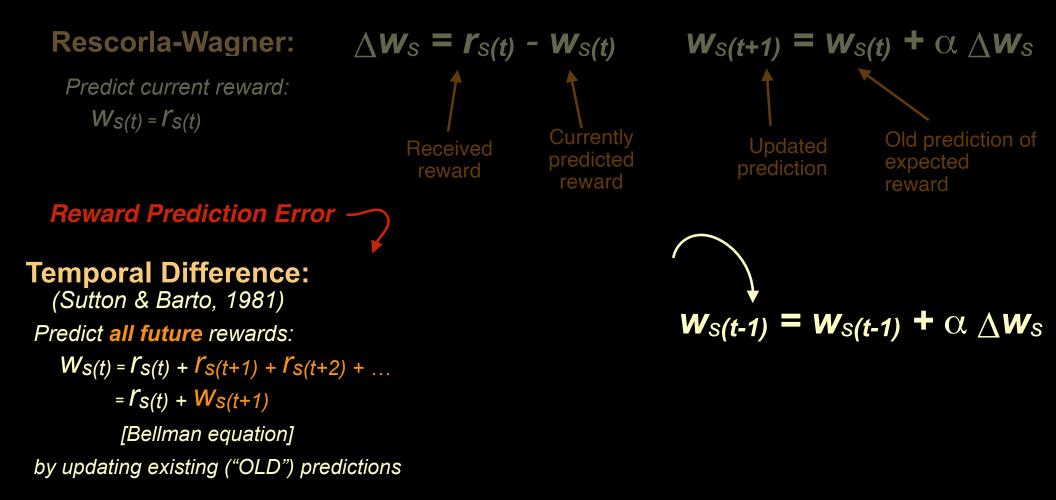
Prediction error



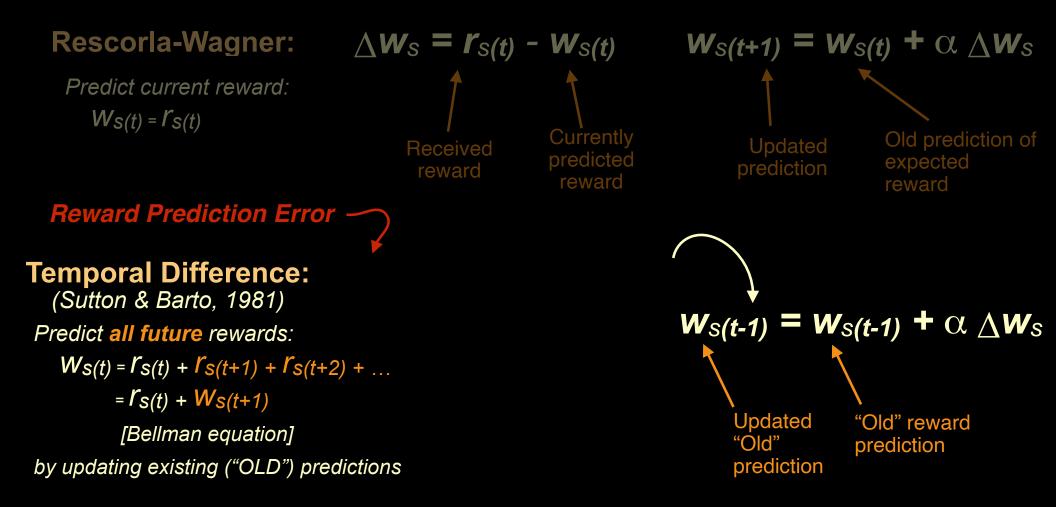
Prediction error



Prediction error



Prediction error



• Overall logic:

• Overall logic:

- Want: $V_s(t) = r_s(t)$ (predicted value in state s at time t)

• Overall logic:

- Error signal: $\delta(t) = r_s(t) - V_s(t)$ (observed minus predicted)

• Overall logic:

- Update: $V_s(t+1) \leftarrow V_s(t) + \varepsilon * \delta(t)$

• Overall logic:

- Update:
$$V_s(t+1) \leftarrow V_s(t) + \epsilon * \delta(t)$$

• Predictions:

- **Predictions** are weights that designate exepcted value:

• Overall logic:

- Update:
$$V_s(t+1) \leftarrow V_s(t) + \epsilon * \delta(t)$$

• Predictions:

- Implicit, not "active"

• Overall logic:

- Update: $V_s(t+1) \leftarrow V_s(t) + \epsilon * \delta(t)$

• Predictions:

- Conditional (i.e., from a given state) not general

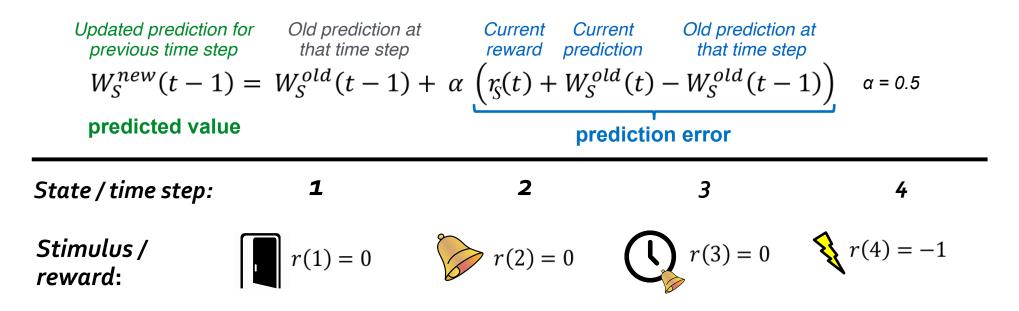
• Overall logic:

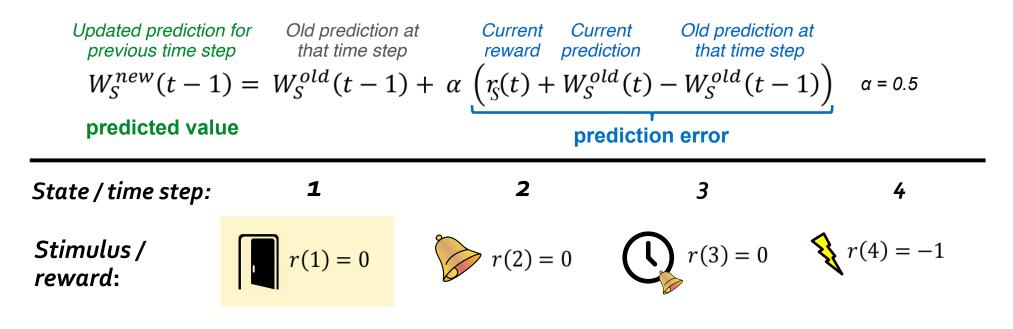
- Update: $V_s(t+1) \leftarrow V_s(t) + \varepsilon * \delta(t)$

• Predictions:

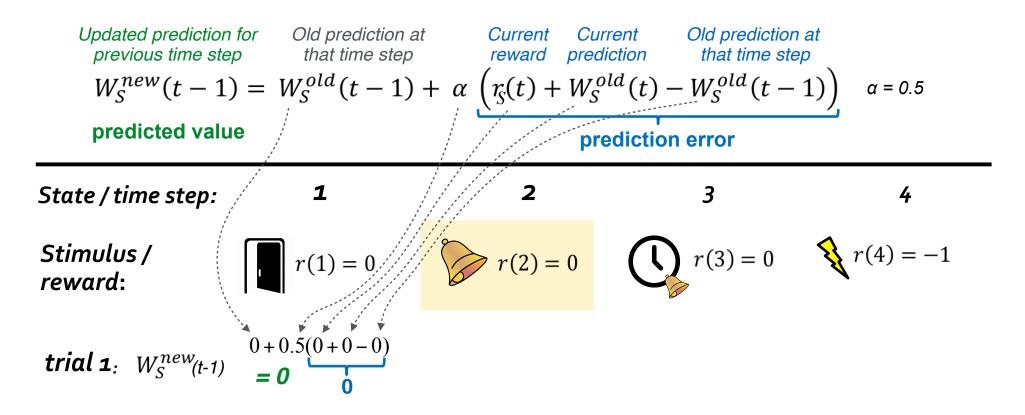
Normally think of prediction as something active, but easier to think about them here as weights so you can think about existing ones you would make in a given state

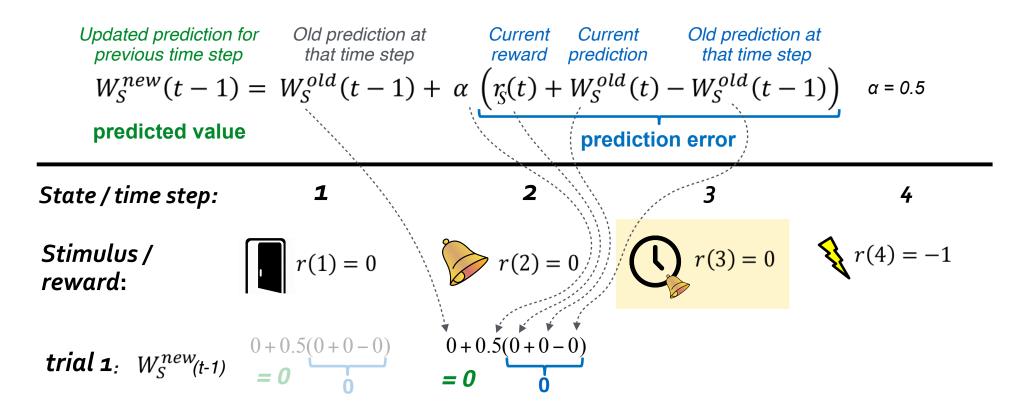
Temporal Difference Learning

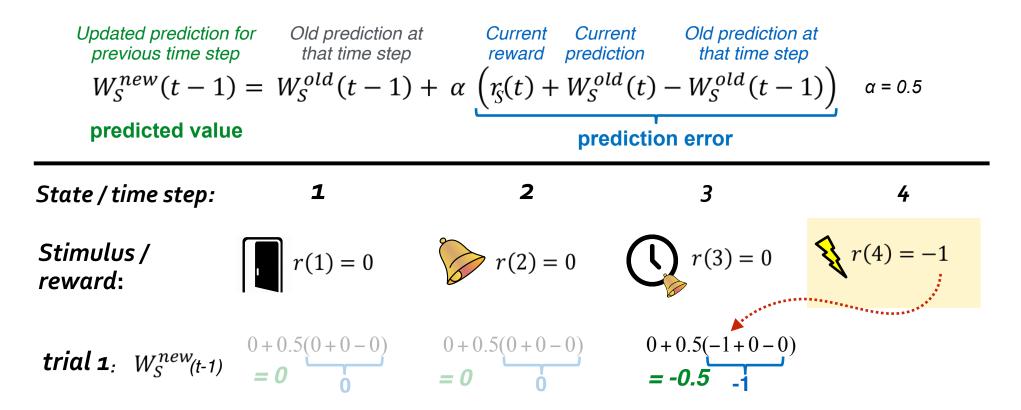


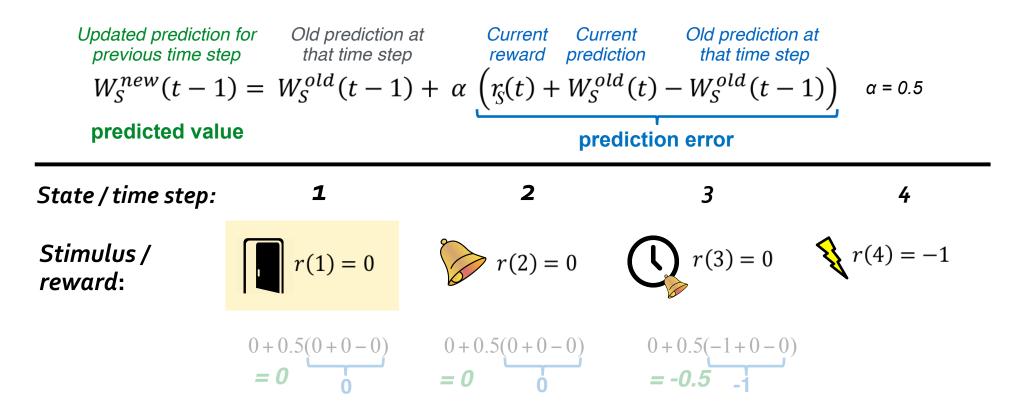


trial 1: $W_S^{new}(t-1)$

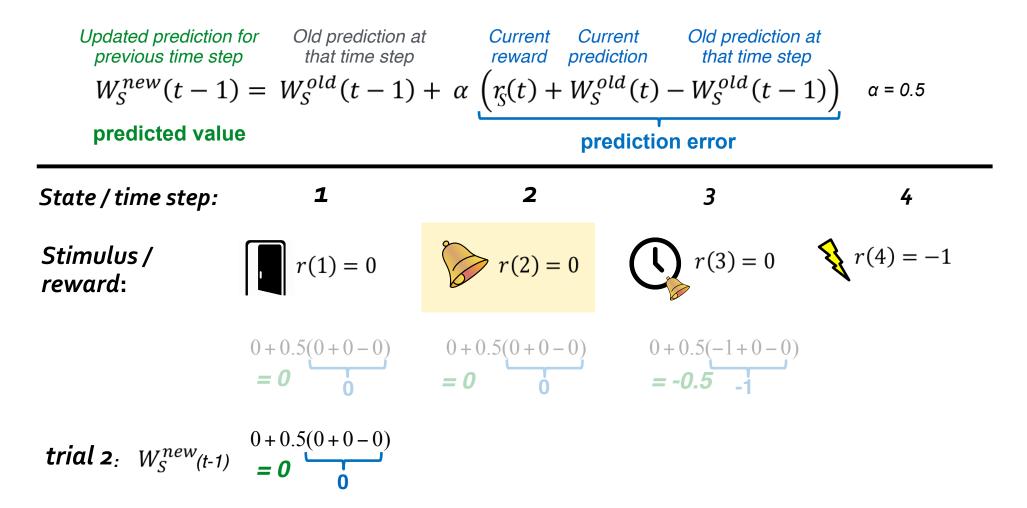


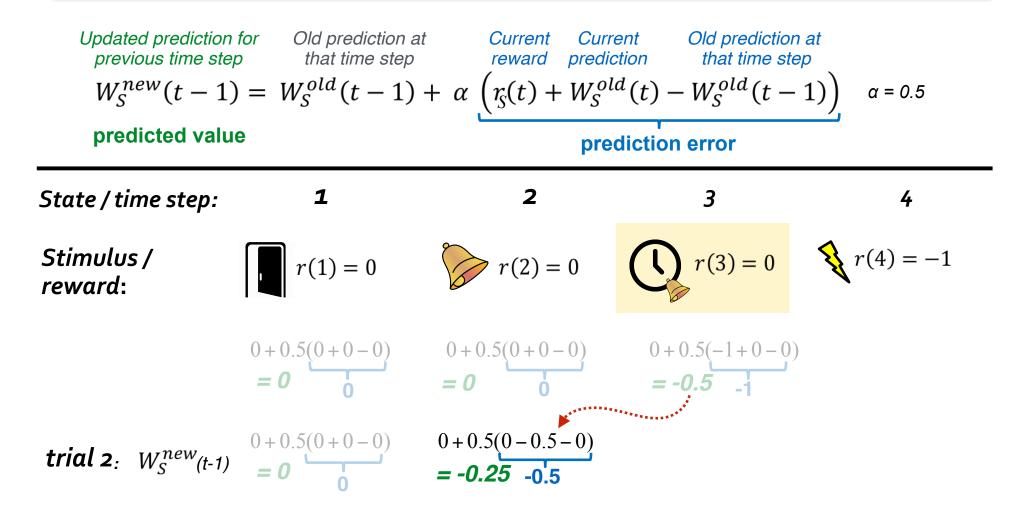


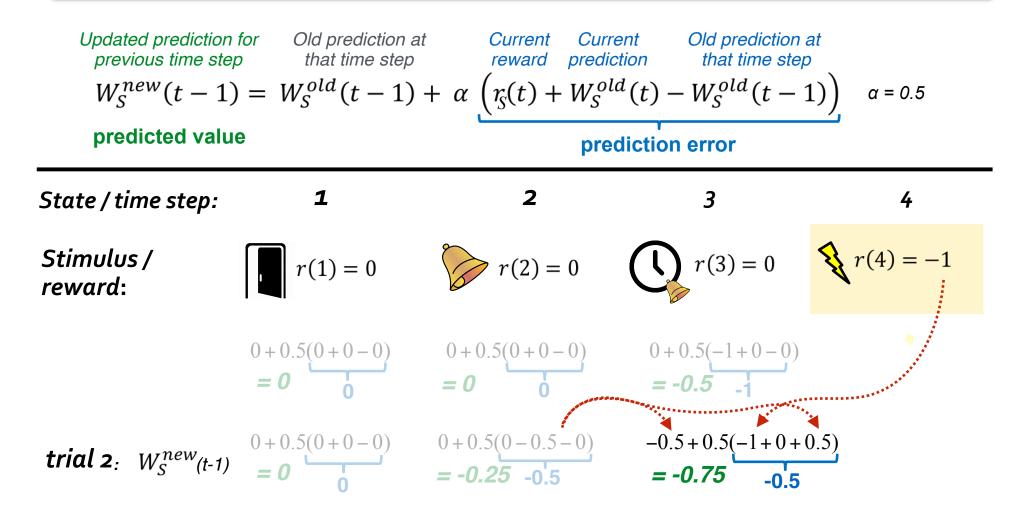


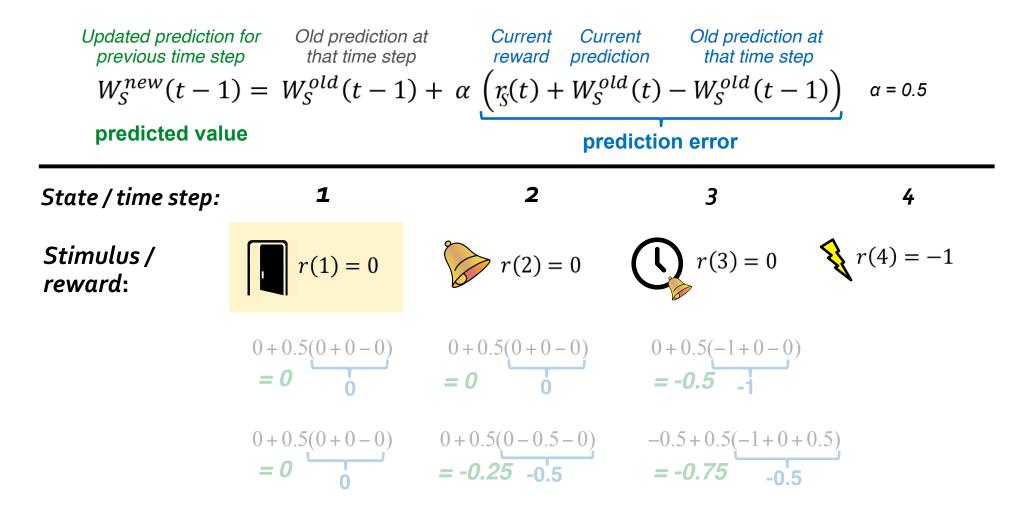


trial 2: $W_S^{new}(t-1)$

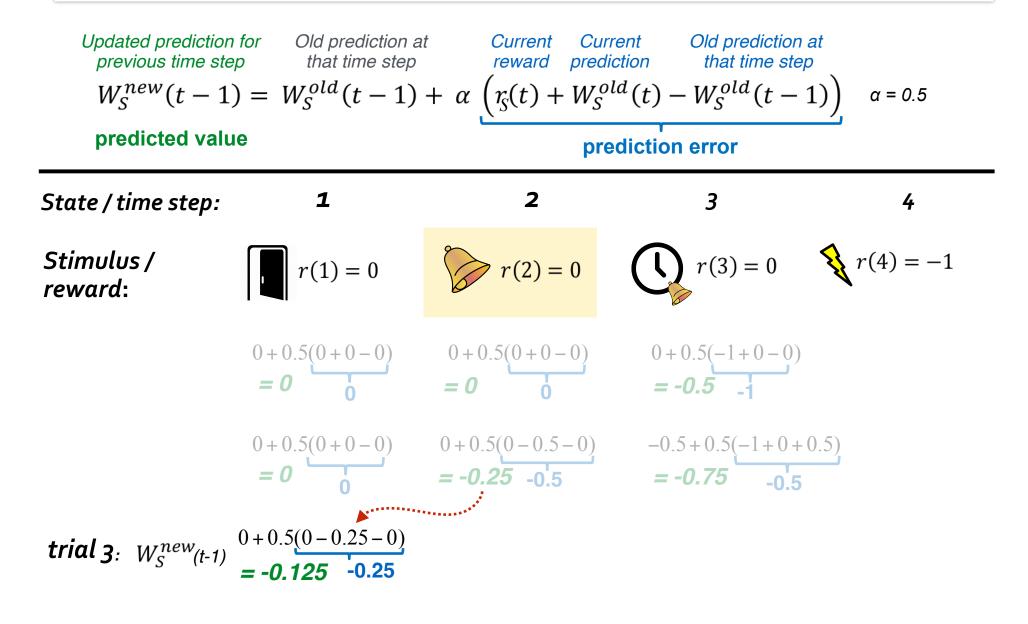


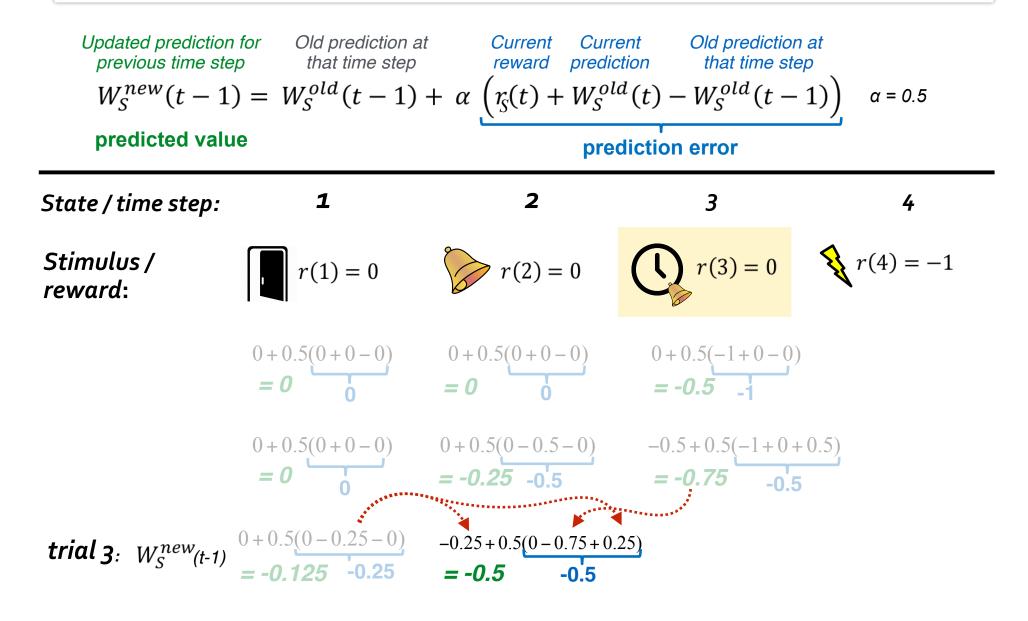


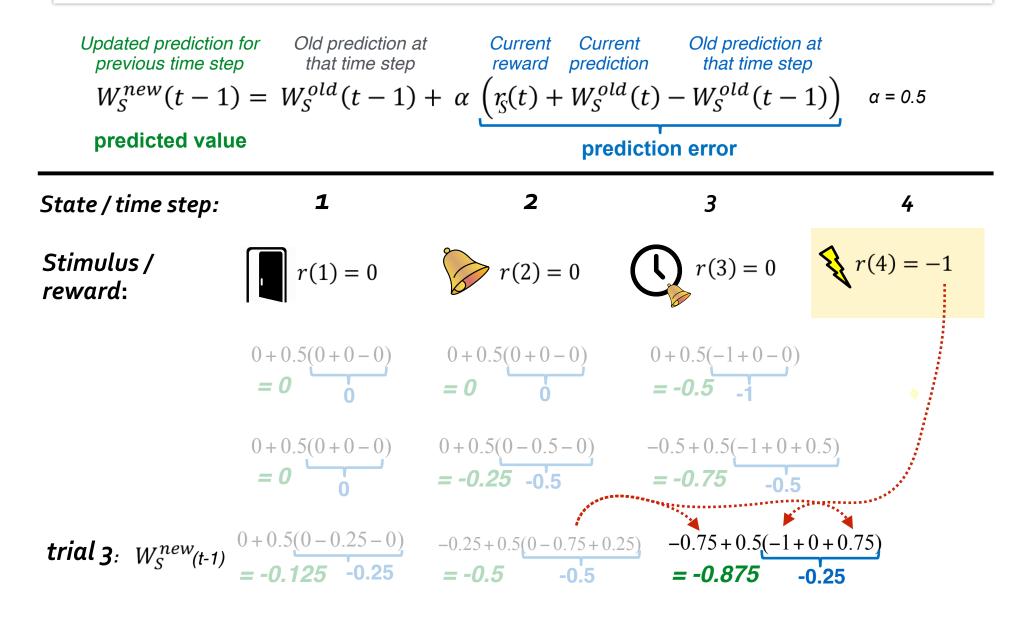




trial 3: $W_S^{new}(t-1)$





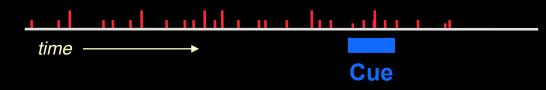


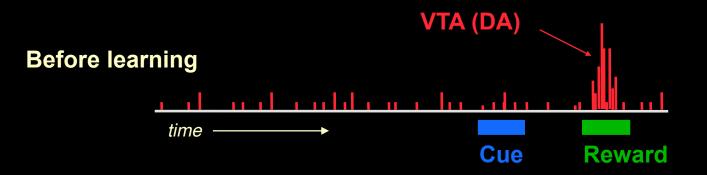
Schulz, 1993; Montague, Dayan & Sejnowski, 1996

Before learning

Schulz, 1993; Montague, Dayan & Sejnowski, 1996

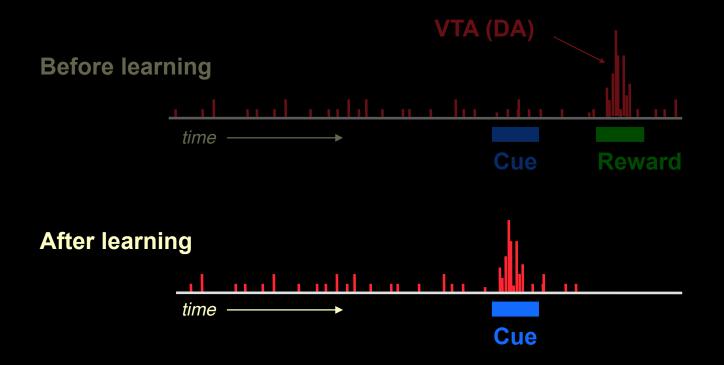
Before learning

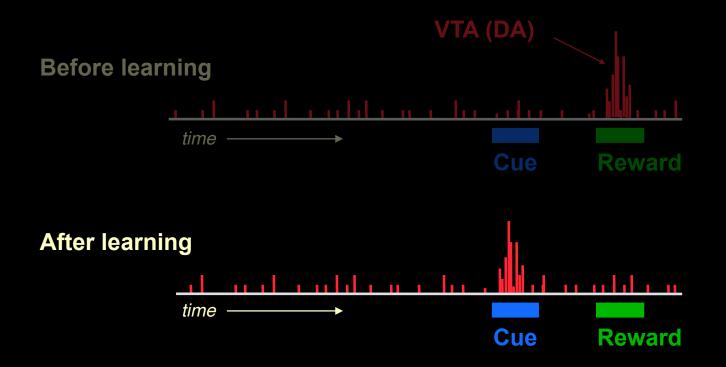




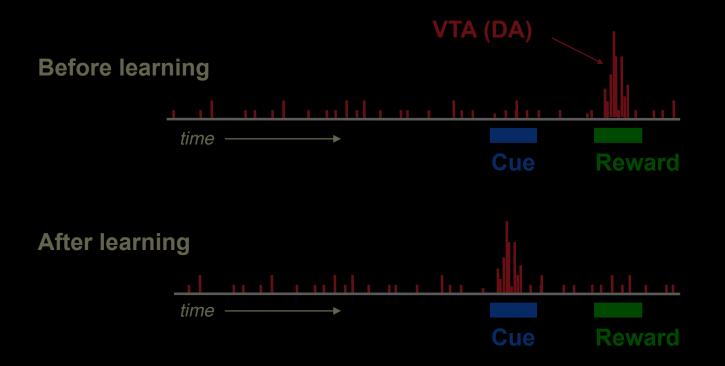
Schulz, 1993; Montague, Dayan & Sejnowski, 1996

After learning

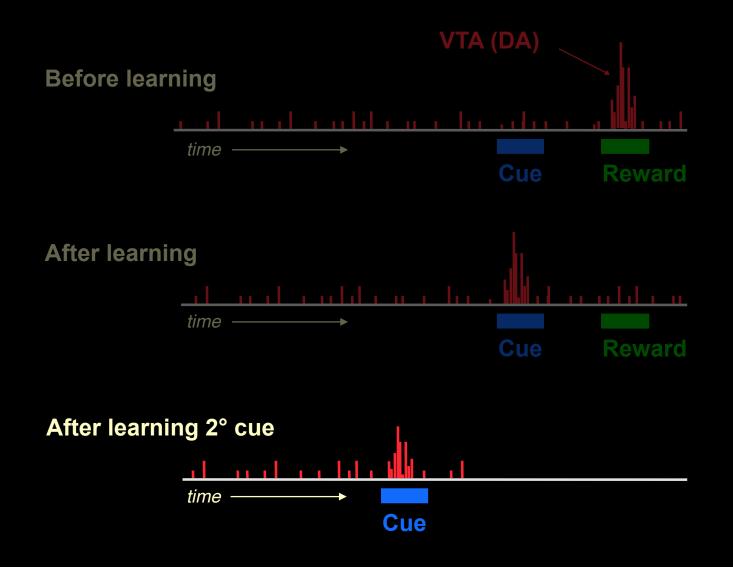


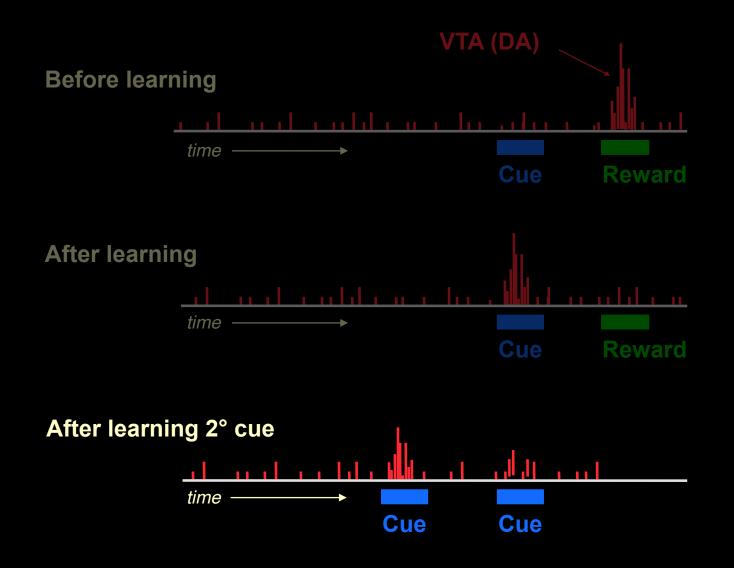


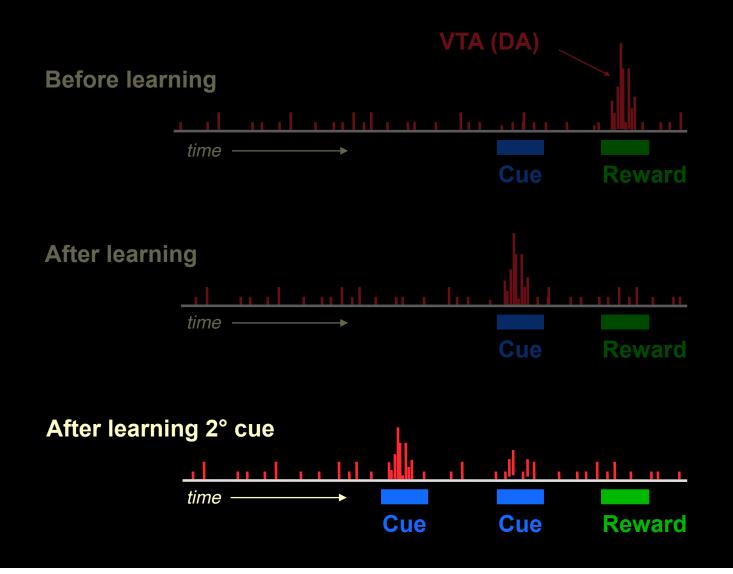
Schulz, 1993; Montague, Dayan & Sejnowski, 1996



After learning 2° cue







- Starting point for most RL applications
 - TD Gammon (1992)
 - Atari (2013)

- Starting point for most RL applications
 - TD Gammon (1992)
 - Atari (2013)
 - Alpha Go (2015)
- Optimal learner, given:
 - a stationary (stable) environment
 - sufficient time to learn

- Starting point for most RL applications
 - TD Gammon (1992)
 - Atari (2013)
 - Alpha Go (2015)
- Optimal learner, given:
 - a stationary (stable) environment
 - sufficient time to learn
 - all information needed for prediction is observable at the time it is relevant...

• Closely related to Markov Chains (MC):

 MC: set of observable states and transition probabilities between them (e.g., a maze)

- Starting point for most RL applications
 - TD Gammon (1992)
 - Atari (2013)
 - Alpha Go (2015)
- Optimal learner, given:
 - a stationary (stable) environment
 - sufficient time to learn
 - all information needed for prediction is observable at the time it is relevant...

• Closely related to Markov Chains (MC):

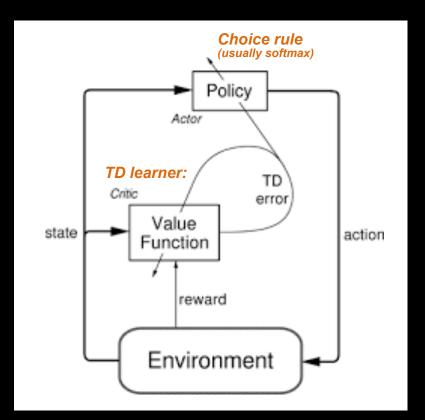
- MC: set of observable states and transition probabilities between them (e.g., a maze)
- RL learns the summed (discounted) value of future rewards for each state, based on the transition probabilities emanating from each state

- Starting point for most RL applications
 - TD Gammon (1992)
 - Atari (2013)
 - Alpha Go (2015)
- Optimal learner, given:
 - a stationary (stable) environment
 - sufficient time to learn
 - all information needed for prediction is observable at the time it is relevant...
- Closely related to Markov Chains (MC):
 - MC: set of observable states and transition probabilities between them (e.g., a maze)
 - RL learns the summed (discounted) value of future rewards for each state, based on the transition probabilities emanating from each state

• TD can be used to predict, but what about *actions*?

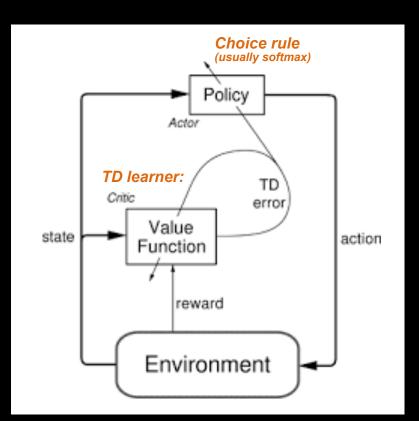
• TD error can be used to assign value not just to states, but also actions (based on the states to which they lead)

- TD error can be used to assign value not just to states, but also actions (based on the states to which they lead)
 - Actor-critic model

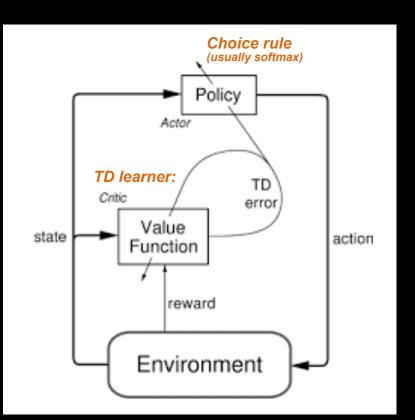


- TD error can be used to assign value not just to states, but also actions (based on the states to which they lead)
 - Actor-critic model
 - Q-learning

 (value of an action in a given state values)



- TD error can be used to assign value not just to states, but also actions (based on the states to which they lead)
 - Actor-critic model
 - **Q-learning** (value of an action in a given state values)
 - Gating and LSTMs...



• Curse of dimensionality

 as the number of states increases, the amount of experience required to learn about them can grow combinatorially

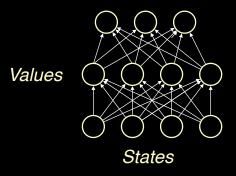
- as the number of states increases, the amount of experience required to learn about them can grow combinatorially
- state space abstraction: organize into meaningful (generalizable)
 "chunks:" states that share the same goals or subgoals:

• Curse of dimensionality

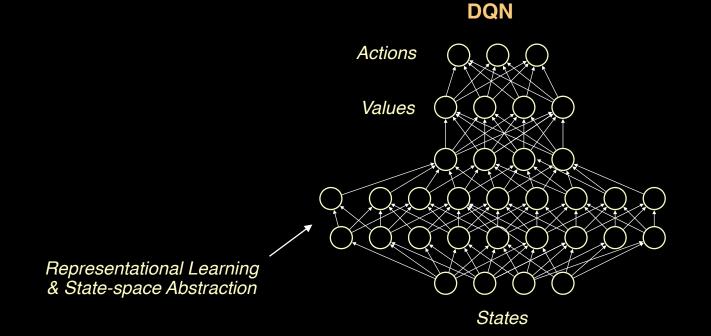
- as the number of states increases, the amount of experience required to learn about them can grow combinatorially
- state space abstraction: organize into meaningful (generalizable)
 "chunks:" states that share the same goals or subgoals:
 - state-space learning:

Standard RL

Actions

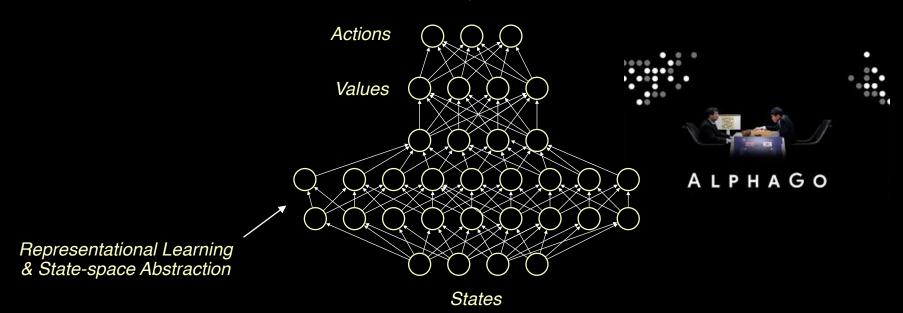


- as the number of states increases, the amount of experience required to learn about them can grow combinatorially
- state space abstraction: organize into meaningful (generalizable)
 "chunks:" states that share the same goals or subgoals:
 - state-space learning: Deep Q-Networks (DQN):



• Curse of dimensionality

- as the number of states increases, the amount of experience required to learn about them can *grow combinatorially*
- state space abstraction: organize into meaningful (generalizable)
 "chunks:" states that share the same goals or subgoals:
 - state-space learning: Deep Q-Networks (DQN):



DQN

- as the number of states increases, the amount of experience required to learn about them can grow combinatorially
- state space abstraction: organize into meaningful (generalizable)
 "chunks:" states that share the same goals or subgoals:
 - Hierarchical Reinforcement Learning (HRL): policies vs. "options"

- as the number of states increases, the amount of experience required to learn about them can grow combinatorially
- state space abstraction: organize into meaningful (generalizable)
 "chunks:" states that share the same goals or subgoals:
 - Hierarchical Reinforcement Learning (HRL): policies vs. "options"
- What if the world changes?

- as the number of states increases, the amount of experience required to learn about them can grow combinatorially
- state space abstraction: organize into meaningful (generalizable)
 "chunks:" states that share the same goals or subgoals:
 - Hierarchical Reinforcement Learning (HRL): policies vs. "options"
- What if the world changes?
 - Standard RL is stuck between between flexible and rigid
 - if the learning rate is high:
 - adjusts quickly, but may thrash

• Curse of dimensionality

- as the number of states increases, the amount of experience required to learn about them can grow combinatorially
- state space abstraction: organize into meaningful (generalizable)
 "chunks:" states that share the same goals or subgoals:
 - Hierarchical Reinforcement Learning (HRL): policies vs. "options"

• What if the world changes?

- Standard RL is stuck between between flexible and rigid

- if the learning rate is high:
 - adjusts quickly, but may thrash
- if the learning rate is low:
 - integrates over more experience (wisdom), but is slow to adapt

• Curse of dimensionality

- as the number of states increases, the amount of experience required to learn about them can grow combinatorially
- state space abstraction: organize into meaningful (generalizable)
 "chunks:" states that share the same goals or subgoals:
 - Hierarchical Reinforcement Learning (HRL): policies vs. "options"

• What if the world changes?

- Standard RL is stuck between between flexible and rigid
 - if the learning rate is high:
 - adjusts quickly, but may thrash
 - if the learning rate is low:
 - integrates over more experience (wisdom), but is slow to adapt
- Model-free vs. model-based RL

• Model-free ("habit learning"):

- Model-free ("habit learning"):
 - Standard RL: learn "cached value" for each state (i.e., summed, discounted future value of that state)

• Model-free ("habit learning"):

- Standard RL: learn "cached value" for each state (i.e., summed, discounted future value of that state)

– Advantages:

- easy and quick decisions: pick the state with the greatest value
- guaranteed to be optimal if the world is stable and observable

• Model-free ("habit learning"):

- Standard RL: learn "cached value" for each state (i.e., summed, discounted future value of that state)

– Advantages:

- easy and quick decisions: pick the state with the greatest value
- guaranteed to be optimal if the world is stable and observable

– Problems:

- takes a long time to learn about all the states and dependencies
- what if the world changes?

• Model-based ("deliberation"):

- Model-based ("deliberation"):
 - Maintain a "mental model" of the value of each state on its own (i.e., not its future value, just the value of being in that state)

Model-based ("deliberation"):

- Maintain a "mental model" of the value of each state on its own (i.e., not its future value, just the value of being in that state)
- When in a state, mentally simulate all paths forward, and pick the one that has the best cumulative (or ultimate) outcome

• Model-based ("deliberation"):

- Maintain a "mental model" of the value of each state on its own (i.e., not its future value, just the value of being in that state)
- When in a state, mentally simulate all paths forward, and pick the one that has the best cumulative (or ultimate) outcome

– Advantage:

• Model-based ("deliberation"):

- Maintain a "mental model" of the value of each state on its own (i.e., not its future value, just the value of being in that state)
- When in a state, mentally simulate all paths forward, and pick the one that has the best cumulative (or ultimate) outcome

– Advantage:

- flexible: easy to update the value of a state to its current value

• Model-based ("deliberation"):

- Maintain a "mental model" of the value of each state on its own (i.e., not its future value, just the value of being in that state)
- When in a state, mentally simulate all paths forward, and pick the one that has the best cumulative (or ultimate) outcome

– Advantage:

- flexible: easy to update the value of a state to its current value

– Problem:

- slow, effortful and possibly intractable to simulate all future paths

Supervised Learning: Scalar

• Conditioning

- Simple Prediction
 - Rescorla-Wagner Rule
- Stimulus-Action Associations Actor-critic model, Q Learning

Sequence Prediction

- Method of Temporal Differences (TD)
- Model-Free vs. Model-Based RL

Challenges

- Curse of dimensionality
 - State space abstraction
 - Hierarchical RL: policies and options

- Explore-exploit

Meta-control