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• Unsupervised Learning 
– Hebbian Learning Rule 
– Pattern associator 
– Self-organized maps 
– Topographic structure 
– Pattern detectors 

• Supervised Learning 
– Scalar (Reinforcement) Learning 

– Classical and Instrumental Conditioning 
– Sequential learning and Prediction 

– Vector-Based Learning 
– Generalized Delta Rule 
– Backpropagation 
– Deep Learning

Learning

☞ 



• Conditioning 
– Simple Prediction 

Rescorla-Wagner Rule 
– Stimulus-Action Associations 

Actor-critic model, Q Learning 

• Sequence Prediction 
– Method of Temporal Differences (TD) 
– Model-Free vs. Model-Based RL 

• Challenges 
– Curse of dimensionality 

‣ Hierarchical RL: policies and options 
‣ State space abstraction 

– Explore-exploit 
‣ Meta-control

Reinforcement Learning
👉
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• Based on similar principles of associative learning,  
    but with a twist…
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Blocking

Conditioned 
Stimulus (CS)

Unconditioned 
Stimulus (US)

Unconditioned 
Response (UR)

Conditioned 
Stimulus (CS) X

Hebbian

Conditioning must be about more than just contiguity…
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Contingency ⇒ Prediction 
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(also known as “delta rule,” or “reward prediction learning”)

– the idea:  error-driven learning 
 
associations are learned (strengthened) as a function of 
the difference between the actual and predicted outcome:

where:
rt  is the actual value of the CS
vt  is the predicted value of the CS
𝛥v is the reward prediction error
wt  is the strength of the association between the CS and US
α  is the learning rate
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• Conditioning 
– Simple Prediction 

Rescorla-Wagner Rule 
– Stimulus-Action Associations 

Actor-critic model, Q Learning 

• Sequence Prediction 
– Method of Temporal Differences (TD) 
– Model-Free vs. Model-Based RL 

• Challenges 
– Curse of dimensionality 

‣ Hierarchical RL: policies and options 
‣ State space abstraction 

– Explore-exploit 
‣ Meta-control

Supervised Learning:  Scalar

👉
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Prediction Learning
• Overall logic:

– Want:  Vs(t) = rs(t)  (predicted value in state s at time t)

– Error signal:  δ(t) = rs(t) – Vs(t)   (observed minus predicted)

– Update:  Vs(t+1) ← Vs(t) + ε * δ(t)

– Predictions are weights that designate exepcted value:  

– Implicit, not “active”

– Conditional (i.e., from a given state) not general
Normally think of prediction as something active, 
but easier to think about them here as weights 
so you can think about existing ones you would make  
in a given state
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• Starting point for most RL applications
– TD Gammon (1992)
– Atari (2013)
– Alpha Go (2015)

• Optimal learner, given:
– a stationary (stable) environment
– sufficient time to learn
– all information needed for prediction is observable at the time it is relevant…

• Closely related to Markov Chains (MC):
– MC: set of observable states  

        and transition probabilities between them  (e.g., a maze)
– RL learns the summed (discounted) value of future rewards for each state,  

based on the the transition probabilities emanating from each state

• TD can be used to predict, but what about actions?
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TD and Action Learning

• TD error can be used to assign value not just to states, 
but also actions (based on the states to which they lead)

– Actor-critic model

– Q-learning  
(value of an action 
in a given state values)

– Gating and LSTMs…
TD learner:

Choice rule 
(usually softmax)
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– state space abstraction:  organize into meaningful (generalizable)  
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– Hierarchical Reinforcement Learning (HRL): 

policies vs. “options”

• What if the world changes?
– Standard RL is stuck between between flexible and rigid

– if the learning rate is high:
–  adjusts quickly, but may thrash

– if the learning rate is low:
–  integrates over more experience (wisdom), but is slow to adapt

– Model-free vs. model-based RL
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Model-Free vs. Model-Based RL

• Model-based (“deliberation”):

– Maintain a “mental model” of the value of each state on its own 
(i.e., not its future value, just the value of being in that state)

– When in a state, mentally simulate all paths forward, and 
pick the one that has the best cumulative (or ultimate) outcome

– Advantage:
– flexible:  easy to update the value of a state to its current value

– Problem: 
– slow, effortful and possibly intractable to simulate all future paths



• Conditioning 
– Simple Prediction 

Rescorla-Wagner Rule 
– Stimulus-Action Associations 

Actor-critic model, Q Learning 

• Sequence Prediction 
– Method of Temporal Differences (TD) 
– Model-Free vs. Model-Based RL 

• Challenges 
– Curse of dimensionality 

‣ State space abstraction 
‣ Hierarchical RL: policies and options 

– Explore-exploit 
‣ Meta-control

Supervised Learning:  Scalar


