
s

• Unsupervised Learning
– Hebbian Learning Rule
– Pattern associator
– Self-organized maps
– Topographic structure
– Pattern detectors

• Supervised Learning
– Scalar (Reinforcement) Learning

– Classical and Instrumental Conditioning
– Sequential learning and Prediction

– Vector-Based Learning
– Generalized Delta Rule
– Backpropagation
– Deep Learning

Learning

☞

• Conditioning
– Simple Prediction

Rescorla-Wagner Rule
– Stimulus-Action Associations

Actor-critic model, Q Learning

• Sequence Prediction
– Method of Temporal Differences (TD)
– Model-Free vs. Model-Based RL

• Challenges
– Curse of dimensionality

‣ Hierarchical RL: policies and options
‣ State space abstraction

– Explore-exploit
‣ Meta-control

Reinforcement Learning
👉

Conditioning

Conditioning

• Conditioning is “supervised” associational learning

– Can be thought of as the experimenter controlling the environment
– But the learning is still associational

Conditioning

• Conditioning is “supervised” associational learning

– Can be thought of as the experimenter controlling the environment
– But the learning is still associational

• Based on similar principles of associative learning,
 but with a twist…

Conditioning

Classical (Pavlovian) Conditioning

pair stimulus (CS)

Classical (Pavlovian) Conditioning

...with significant event (US)
pair stimulus (CS)

Classical (Pavlovian) Conditioning

...with significant event (US)
pair stimulus (CS)

measure anticipatory behavior (CR)

Classical (Pavlovian) Conditioning

Classical (Pavlovian) Conditioning

Conditioned
Stimulus (CS)

Classical (Pavlovian) Conditioning

Unconditioned
Stimulus (US)

Conditioned
Stimulus (CS)

Classical (Pavlovian) Conditioning

Unconditioned
Stimulus (US)

Unconditioned
Responses (URs)

Conditioned
Stimulus (CS)

Conditioning

Unconditioned
Stimulus (US)

Unconditioned
Response (UR)

Conditioning

Conditioned
Stimulus (CS)

Unconditioned
Stimulus (US)

Unconditioned
Response (UR)

Conditioning

Conditioned
Stimulus (CS)

Unconditioned
Stimulus (US)

Unconditioned
Response (UR)Hebbian

Conditioning

Conditioned
Stimulus (CS)

Unconditioned
Stimulus (US)

Unconditioned
Response (UR)Hebbian

Pure Hebbian learning is purely about contiguity

Conditioning

Conditioned
Stimulus (CS)

Unconditioned
Stimulus (US)

Unconditioned
Response (UR)

Conditioned
Stimulus (CS)

Hebbian

Pure Hebbian learning is purely about contiguity

Conditioning

Conditioned
Stimulus (CS)

Unconditioned
Stimulus (US)

Unconditioned
Response (UR)

Conditioned
Stimulus (CS) ?

Hebbian

Pure Hebbian learning is purely about contiguity

Blocking

Phase 1

Kamin (1968)

Blocking

Phase 1 Phase 1I

+

Kamin (1968)

Blocking

Phase 1 Phase 1I

+

?

Kamin (1968)

Blocking

Phase 1 Phase 1I

+

Kamin (1968)

Blocking

Phase 1 Phase 1I

+

?

Kamin (1968)

Blocking

Phase 1 Phase 1I

+

Kamin (1968)

Blocking

Conditioned
Stimulus (CS)

Unconditioned
Stimulus (US)

Unconditioned
Response (UR)

Conditioned
Stimulus (CS) X

Hebbian

Conditioning must be about more than just contiguity…

Contingency

Contingency

Rescorla’s experiment:

Standard

Contingency

Rescorla’s experiment:

Standard

Conditioning:

√

Contingency

Rescorla’s experiment:

Random
control

Standard

Conditioning:

√

Contingency

Rescorla’s experiment:

Random
control

Standard

Conditioning:

√
X

Contingency

Rescorla’s experiment:

Temporal contiguity is not enough, need contingency

Random
control

Standard

Conditioning:

√
X

Contingency

Rescorla’s experiment:

Temporal contiguity is not enough, need contingency
Contingency ⇒ Prediction

Random
control

Standard

Conditioning:

√
X

Contingency
Prediction

Contingency
Failure of Prediction

Prediction Learning

• Rescorla-Wagner Learning Rule (1972)
(also known as “delta rule,” or “reward prediction learning”)

Prediction Learning

• Rescorla-Wagner Learning Rule (1972)
(also known as “delta rule,” or “reward prediction learning”)

– the idea: error-driven learning

associations are learned (strengthened) as a function of
the difference between the actual and predicted outcome:

Prediction Learning

• Rescorla-Wagner Learning Rule (1972)
(also known as “delta rule,” or “reward prediction learning”)

– the idea: error-driven learning

associations are learned (strengthened) as a function of
the difference between the actual and predicted outcome:

where:
rt is the actual value of the CS

Prediction Learning

Prediction error

∆v = rt - vt

?

• Rescorla-Wagner Learning Rule (1972)
(also known as “delta rule,” or “reward prediction learning”)

– the idea: error-driven learning

associations are learned (strengthened) as a function of
the difference between the actual and predicted outcome:

where:
rt is the actual value of the CS
vt is the predicted value of the CS

Prediction Learning

Prediction error

∆v = rt - vt∆v

?

• Rescorla-Wagner Learning Rule (1972)
(also known as “delta rule,” or “reward prediction learning”)

– the idea: error-driven learning

associations are learned (strengthened) as a function of
the difference between the actual and predicted outcome:

where:
rt is the actual value of the CS
vt is the predicted value of the CS
𝛥v is the reward prediction error

Prediction Learning

Prediction error

∆v = rt - vt∆v

• Rescorla-Wagner Learning Rule (1972)
(also known as “delta rule,” or “reward prediction learning”)

– the idea: error-driven learning

associations are learned (strengthened) as a function of
the difference between the actual and predicted outcome:

where:
rt is the actual value of the CS
vt is the predicted value of the CS
𝛥v is the reward prediction error
wt is the strength of the association between the CS and US

Prediction Learning

Prediction error

∆v = rt - vt wt+1 = wt + α ∆v
Weight adjustment

∆v

• Rescorla-Wagner Learning Rule (1972)
(also known as “delta rule,” or “reward prediction learning”)

– the idea: error-driven learning

associations are learned (strengthened) as a function of
the difference between the actual and predicted outcome:

where:
rt is the actual value of the CS
vt is the predicted value of the CS
𝛥v is the reward prediction error
wt is the strength of the association between the CS and US
α is the learning rate

Prediction Learning

Prediction error

∆v = rt - vt wt+1 = wt + α ∆v
Weight adjustment

∆v

0

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆v

0

0

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆v

0
Trial 1

0

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆v

0
Trial 1

0

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆v

0
0Trial 1

0

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆v

0
0Trial 1

0

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆v

0
0Trial 1

0

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆v

+
0

0Trial 1

0

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆v

++
0

0+Trial 1

0

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆v

++
0

0 +Trial 1

+ 0

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆v

++
0

0 +Trial 1

+

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆vwt+1 + α ∆v

0

+

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆vwt+1 + α ∆vwt+2 = wt+1 + α ∆v

0
Trial 2

+

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆vwt+1 + α ∆vwt+2 = wt+1 + α ∆v

0
Trial 2

+

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆vwt+1 + α ∆vwt+2 = wt+1 + α ∆v

0
Trial 2

+

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆vwt+1 + α ∆vwt+2 = wt+1 + α ∆v

0
+
0

Trial 2

+

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆vwt+1 + α ∆vwt+2 = wt+1 + α ∆v

0
+
0

Trial 2

+

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆vwt+1 + α ∆vwt+2 = wt+1 + α ∆v

0
++
0

Trial 2

+

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆vwt+1 + α ∆vwt+2 = wt+1 + α ∆v

0
++0
0

Trial 2 0

+

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆vwt+1 + α ∆vwt+2 = wt+1 + α ∆v

0
++ 0
0

Trial 2 0

+ +

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆vwt+1 + α ∆vwt+2 = wt+1 + α ∆v

0
++ 0
0 0

Trial 2 0

+ +

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆vwt+1 + α ∆vwt+2 = wt+1 + α ∆v

0
++ 0
0 0

X

Trial 2 0

+ +

Reward Prediction
Prediction error

∆v = rt - vt

Weight adjustment

wt+1 = wt + α ∆vwt+1 + α ∆vwt+2 = wt+1 + α ∆v

0
++ 0
0 0

X

Trial 2

X

0

Prediction Learning
• Rescorla-Wagner Learning Rule

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment
rs(t) - ws(t)

Prediction Learning
• Rescorla-Wagner Learning Rule

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

ws(t+1) = ws(t) + α ()rs(t) - ws(t))αα

Prediction Learning
• Rescorla-Wagner Learning Rule

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

ws(t+1) = ws(t) + α ()rs(t) - ws(t)

ws(t+1) = ws(t) rs(t) - ws(t))
)

α α+

Prediction Learning
• Rescorla-Wagner Learning Rule

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

ws(t+1) = ws(t) + α ()rs(t) - ws(t)

ws(t+1) = ws(t) rs(t) - ws(t))

ws(t+1) = ws(t))

)

+ αrs(t)- αws(t)

α α+

Prediction Learning
• Rescorla-Wagner Learning Rule

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

ws(t+1) = ws(t) + α ()rs(t) - ws(t)

ws(t+1) = ws(t) rs(t) - ws(t))

ws(t+1) = ws(t))

ws(t+1) = (1-) ws(t) + α rs(t))

)

+ αrs(t)- αws(t)

α α+

α

Prediction Learning
• Rescorla-Wagner Learning Rule

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

ws(t+1) = ws(t) + α ()rs(t) - ws(t)

ws(t+1) = ws(t) rs(t) - ws(t))

ws(t+1) = ws(t))

ws(t+1) = (1-) ws(t) + α rs(t))
Learn to predict rewards
by averaging:

)

+ αrs(t)- αws(t)

α α+

α

Prediction Learning
• Rescorla-Wagner Learning Rule

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

ws(t+1) = ws(t) + α ()rs(t) - ws(t)

ws(t+1) = ws(t) rs(t) - ws(t))

ws(t+1) = ws(t))

 learned predictions

ws(t+1) = (1-) ws(t) + α rs(t))
Learn to predict rewards
by averaging:

ws(t)

)

+ αrs(t)- αws(t)

α α+

α

Prediction Learning
• Rescorla-Wagner Learning Rule

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

ws(t+1) = ws(t) + α ()rs(t) - ws(t)

ws(t+1) = ws(t) rs(t) - ws(t))

ws(t+1) = ws(t))

 learned predictions

ws(t+1) = (1-) ws(t) + α rs(t))
Learn to predict rewards
by averaging: with present reward

ws(t) α rs(t)

)

+ αrs(t)- αws(t)

α α+

α

Conditioning and Prediction

Conditioning and Prediction
Conditioned

Stimulus

Conditioning and Prediction
Conditioned

Stimulus

Unconditioned
Response

Conditioning and Prediction
Conditioned

Stimulus

Stimulus  
specific

Unconditioned
Response

Conditioning and Prediction
Conditioned

Stimulus

Response  
specific

Stimulus  
specific

Unconditioned
Response

Conditioning and Prediction
Conditioned

Stimulus

Response  
specific

Stimulus  
specific

General value

Unconditioned
Response

2nd Order Conditioning

Sequential prediction:

2nd Order Conditioning

Sequential prediction:Sequential prediction:

2nd Order Conditioning

Sequential prediction:Sequential prediction:

2nd Order Conditioning

Sequential prediction:Sequential prediction:

2nd Order Conditioning

Rescorla-Wagner Rule can’t handle this,
 can only learn to predict the value of the current event
 (cue does not generate an actual reward)

Sequential prediction:Sequential prediction:

2nd Order Conditioning

Rescorla-Wagner Rule can’t handle this,
 can only learn to predict the value of the current event
 (cue does not generate an actual reward)

Sequential prediction:Sequential prediction:

2nd Order Conditioning

Rescorla-Wagner Rule can’t handle this,
 can only learn to predict the value of the current event
 (cue does not generate an actual reward)

Sequential prediction:Sequential prediction:

• Conditioning
– Simple Prediction

Rescorla-Wagner Rule
– Stimulus-Action Associations

Actor-critic model, Q Learning

• Sequence Prediction
– Method of Temporal Differences (TD)
– Model-Free vs. Model-Based RL

• Challenges
– Curse of dimensionality

‣ Hierarchical RL: policies and options
‣ State space abstraction

– Explore-exploit
‣ Meta-control

Supervised Learning: Scalar

👉

Rescorla-Wagner:

Prediction Learning

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

Predict current reward:
 ws(t) = rs(t)

Rescorla-Wagner:

Prediction Learning

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

Predict current reward:
 ws(t) = rs(t)

Currently 
predicted
reward

Rescorla-Wagner:

Prediction Learning

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

Predict current reward:
 ws(t) = rs(t)

Currently 
predicted
reward

Received
reward

Rescorla-Wagner:

Prediction Learning

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

Predict current reward:
 ws(t) = rs(t)

Currently 
predicted
reward

Received
reward

Old prediction of  
expected  
reward

Updated
prediction

Rescorla-Wagner:

Prediction Learning

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

Temporal Difference:
(Sutton & Barto, 1981)

Predict current reward:
 ws(t) = rs(t)

Predict all future rewards:
 ws(t) = rs(t) + rs(t+1) + rs(t+2) + …
 = rs(t) + ws(t+1)
 [Bellman equation]
by updating existing (“OLD”) predictions

Currently 
predicted
reward

Received
reward

Old prediction of  
expected  
reward

Updated
prediction

Rescorla-Wagner:

Prediction Learning

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

Temporal Difference:
(Sutton & Barto, 1981)

∆ws = rs(t) + ws(t) - ws(t-1)

Predict current reward:
 ws(t) = rs(t)

Predict all future rewards:
 ws(t) = rs(t) + rs(t+1) + rs(t+2) + …
 = rs(t) + ws(t+1)
 [Bellman equation]
by updating existing (“OLD”) predictions

Currently 
predicted
reward

Received
reward

Old prediction of  
expected  
reward

Updated
prediction

Rescorla-Wagner:

Prediction Learning

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

Temporal Difference:
(Sutton & Barto, 1981)

∆ws = rs(t) + ws(t) - ws(t-1)

Predict current reward:
 ws(t) = rs(t)

Predict all future rewards:
 ws(t) = rs(t) + rs(t+1) + rs(t+2) + …
 = rs(t) + ws(t+1)
 [Bellman equation]
by updating existing (“OLD”) predictions

Currently 
predicted
reward

Received
reward

Old prediction of  
expected  
reward

Updated
prediction

Previously
expected
reward

Rescorla-Wagner:

Prediction Learning

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

Temporal Difference:
(Sutton & Barto, 1981)

∆ws = rs(t) + ws(t) - ws(t-1)

Predict current reward:
 ws(t) = rs(t)

Predict all future rewards:
 ws(t) = rs(t) + rs(t+1) + rs(t+2) + …
 = rs(t) + ws(t+1)
 [Bellman equation]
by updating existing (“OLD”) predictions

Currently 
predicted
reward

Received
reward

Old prediction of  
expected  
reward

Updated
prediction

Previously
expected
reward

Currently  
predicted
reward

Rescorla-Wagner:

Prediction Learning

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

Temporal Difference:
(Sutton & Barto, 1981)

∆ws = rs(t) + ws(t) - ws(t-1)

Predict current reward:
 ws(t) = rs(t)

Predict all future rewards:
 ws(t) = rs(t) + rs(t+1) + rs(t+2) + …
 = rs(t) + ws(t+1)
 [Bellman equation]
by updating existing (“OLD”) predictions

Currently 
predicted
reward

Received
reward

Old prediction of  
expected  
reward

Updated
prediction

Currently
received
reward

Previously
expected
reward

Currently  
predicted
reward

Rescorla-Wagner:

Prediction Learning

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

Temporal Difference:
(Sutton & Barto, 1981)

∆ws = rs(t) + ws(t) - ws(t-1)

Predict current reward:
 ws(t) = rs(t)

Predict all future rewards:
 ws(t) = rs(t) + rs(t+1) + rs(t+2) + …
 = rs(t) + ws(t+1)
 [Bellman equation]
by updating existing (“OLD”) predictions

Currently 
predicted
reward

Received
reward

Old prediction of  
expected  
reward

Updated
prediction

Currently
received
reward

Previously
expected
reward

Currently  
predicted
reward

Reward Prediction Error

Rescorla-Wagner:

Prediction Learning

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

Temporal Difference:
(Sutton & Barto, 1981)

∆ws = rs(t) + ws(t) - ws(t-1)

ws(t-1) = ws(t-1) + α ∆ws

Predict current reward:
 ws(t) = rs(t)

Predict all future rewards:
 ws(t) = rs(t) + rs(t+1) + rs(t+2) + …
 = rs(t) + ws(t+1)
 [Bellman equation]
by updating existing (“OLD”) predictions

Currently 
predicted
reward

Received
reward

Old prediction of  
expected  
reward

Updated
prediction

Currently
received
reward

Previously
expected
reward

Currently  
predicted
reward

Reward Prediction Error

Rescorla-Wagner:

Prediction Learning

Prediction error

∆ws = rs(t) - ws(t) ws(t+1) = ws(t) + α ∆ws

Weight adjustment

Temporal Difference:
(Sutton & Barto, 1981)

∆ws = rs(t) + ws(t) - ws(t-1)

ws(t-1) = ws(t-1) + α ∆ws

Predict current reward:
 ws(t) = rs(t)

Predict all future rewards:
 ws(t) = rs(t) + rs(t+1) + rs(t+2) + …
 = rs(t) + ws(t+1)
 [Bellman equation]
by updating existing (“OLD”) predictions

Currently 
predicted
reward

Received
reward

Old prediction of  
expected  
reward

Updated
prediction

Currently
received
reward

Previously
expected
reward

“Old” reward
prediction

Updated
“Old” 
prediction

Currently  
predicted
reward

Reward Prediction Error

Prediction Learning
• Overall logic:

Prediction Learning
• Overall logic:

– Want: Vs(t) = rs(t) (predicted value in state s at time t)

Prediction Learning
• Overall logic:

– Want: Vs(t) = rs(t) (predicted value in state s at time t)

– Error signal: δ(t) = rs(t) – Vs(t) (observed minus predicted)

Prediction Learning
• Overall logic:

– Want: Vs(t) = rs(t) (predicted value in state s at time t)

– Error signal: δ(t) = rs(t) – Vs(t) (observed minus predicted)

– Update: Vs(t+1) ← Vs(t) + ε * δ(t)

Prediction Learning
• Overall logic:

– Want: Vs(t) = rs(t) (predicted value in state s at time t)

– Error signal: δ(t) = rs(t) – Vs(t) (observed minus predicted)

– Update: Vs(t+1) ← Vs(t) + ε * δ(t)

– Predictions are weights that designate exepcted value:

• Predictions:

Prediction Learning
• Overall logic:

– Want: Vs(t) = rs(t) (predicted value in state s at time t)

– Error signal: δ(t) = rs(t) – Vs(t) (observed minus predicted)

– Update: Vs(t+1) ← Vs(t) + ε * δ(t)

– Predictions are weights that designate exepcted value:

– Implicit, not “active”

• Predictions:

Prediction Learning
• Overall logic:

– Want: Vs(t) = rs(t) (predicted value in state s at time t)

– Error signal: δ(t) = rs(t) – Vs(t) (observed minus predicted)

– Update: Vs(t+1) ← Vs(t) + ε * δ(t)

– Predictions are weights that designate exepcted value:

– Implicit, not “active”

– Conditional (i.e., from a given state) not general

• Predictions:

Prediction Learning
• Overall logic:

– Want: Vs(t) = rs(t) (predicted value in state s at time t)

– Error signal: δ(t) = rs(t) – Vs(t) (observed minus predicted)

– Update: Vs(t+1) ← Vs(t) + ε * δ(t)

– Predictions are weights that designate exepcted value:

– Implicit, not “active”

– Conditional (i.e., from a given state) not general
Normally think of prediction as something active,
but easier to think about them here as weights
so you can think about existing ones you would make
in a given state

• Predictions:

	 	 	 	

prediction error

α = 0.5S

predicted value

Current
prediction

Old prediction at 
 that time step

Old prediction at 
that time step

Updated prediction for
previous time step

Current
reward

Temporal	Difference	Learning

Stimulus	/	
reward:

State	/	time	step: 1 2 3 4

	 	 	 	

prediction error

α = 0.5S

predicted value

Current
prediction

Old prediction at 
 that time step

Old prediction at 
that time step

Updated prediction for
previous time step

Current
reward

Temporal	Difference	Learning

Stimulus	/	
reward:

State	/	time	step: 1 2 3 4

trial	1: 	 (t-1)

	 	 	 	

prediction error

α = 0.5S

0+ 0.5(0+ 0− 0)
= 0

predicted value

= 0 0

Current
prediction

Old prediction at 
 that time step

Old prediction at 
that time step

Updated prediction for
previous time step

Current
reward

Temporal	Difference	Learning

Stimulus	/	
reward:

State	/	time	step: 1 2 3 4

trial	1: 	 (t-1)

	 	 	 	

prediction error

α = 0.5S

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(0+ 0− 0)
= 0

predicted value

= 0 = 00 0

Current
prediction

Old prediction at 
 that time step

Old prediction at 
that time step

Updated prediction for
previous time step

Current
reward

Temporal	Difference	Learning

Stimulus	/	
reward:

State	/	time	step: 1 2 3 4

trial	1: 	 (t-1)

	 	 	 	

prediction error

α = 0.5S

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(−1+ 0− 0)
= −0.5

predicted value

= 0 = 0 = -0.50 0 -1

Current
prediction

Old prediction at 
 that time step

Old prediction at 
that time step

Updated prediction for
previous time step

Current
reward

Temporal	Difference	Learning

Stimulus	/	
reward:

State	/	time	step: 1 2 3 4

trial	1: 	 (t-1)

	 	 	 	

prediction error

α = 0.5S

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(−1+ 0− 0)
= −0.5

predicted value

= 0 = 0 = -0.50 0 -1

Current
prediction

Old prediction at 
 that time step

Old prediction at 
that time step

Updated prediction for
previous time step

Current
reward

Temporal	Difference	Learning

Stimulus	/	
reward:

State	/	time	step: 1 2 3 4

trial	2: 	 (t-1)

trial	1: 	 (t-1)

	 	 	 	

prediction error

α = 0.5S

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(−1+ 0− 0)
= −0.5

0+ 0.5(0+ 0− 0)
= 0

predicted value

= 0 = 0 = -0.5

= 0

0 0 -1

0

Current
prediction

Old prediction at 
 that time step

Old prediction at 
that time step

Updated prediction for
previous time step

Current
reward

Temporal	Difference	Learning

Stimulus	/	
reward:

State	/	time	step: 1 2 3 4

trial	2: 	 (t-1)

trial	1: 	 (t-1)

	 	 	 	

prediction error

α = 0.5S

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(−1+ 0− 0)
= −0.5

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(0− 0.5− 0)
= −0.25

predicted value

= 0 = 0 = -0.5

= 0 = -0.25 -0.5

0 0 -1

0

Current
prediction

Old prediction at 
 that time step

Old prediction at 
that time step

Updated prediction for
previous time step

Current
reward

Temporal	Difference	Learning

Stimulus	/	
reward:

State	/	time	step: 1 2 3 4

trial	2: 	 (t-1)

trial	1: 	 (t-1)

	 	 	 	

prediction error

α = 0.5S

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(−1+ 0− 0)
= −0.5

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(0− 0.5− 0)
= −0.25

−0.5+ 0.5(−1+ 0+ 0.5)
= −0.75

predicted value

= 0 = 0 = -0.5

= 0 = -0.25 = -0.75-0.5

0 0 -1

0 -0.5

♦

Current
prediction

Old prediction at 
 that time step

Old prediction at 
that time step

Updated prediction for
previous time step

Current
reward

Temporal	Difference	Learning

Stimulus	/	
reward:

State	/	time	step: 1 2 3 4

trial	2: 	 (t-1)

trial	1: 	 (t-1)

	 	 	 	

prediction error

α = 0.5S

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(−1+ 0− 0)
= −0.5

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(0− 0.5− 0)
= −0.25

−0.5+ 0.5(−1+ 0+ 0.5)
= −0.75

predicted value

= 0 = 0 = -0.5

= 0 = -0.25 = -0.75-0.5

0 0 -1

0 -0.5

Current
prediction

Old prediction at 
 that time step

Old prediction at 
that time step

Updated prediction for
previous time step

Current
reward

Temporal	Difference	Learning

Stimulus	/	
reward:

State	/	time	step: 1 2 3 4

trial	2: 	 (t-1)

trial	3: 	 (t-1)

trial	1: 	 (t-1)

	 	 	 	

prediction error

α = 0.5S

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(−1+ 0− 0)
= −0.5

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(0− 0.5− 0)
= −0.25

−0.5+ 0.5(−1+ 0+ 0.5)
= −0.75

0+ 0.5(0− 0.25− 0)
= −0.125

predicted value

= 0 = 0 = -0.5

= 0 = -0.25 = -0.75

= -0.125

-0.5

0 0 -1

0 -0.5

-0.25

Current
prediction

Old prediction at 
 that time step

Old prediction at 
that time step

Updated prediction for
previous time step

Current
reward

Temporal	Difference	Learning

Stimulus	/	
reward:

State	/	time	step: 1 2 3 4

trial	2: 	 (t-1)

trial	3: 	 (t-1)

trial	1: 	 (t-1)

	 	 	 	

prediction error

α = 0.5S

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(−1+ 0− 0)
= −0.5

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(0− 0.5− 0)
= −0.25

−0.5+ 0.5(−1+ 0+ 0.5)
= −0.75

0+ 0.5(0− 0.25− 0)
= −0.125

−0.25+ 0.5(0− 0.75+ 0.25)
= −0.5

predicted value

= 0 = 0 = -0.5

= 0 = -0.25 = -0.75

= -0.125 = -0.5

-0.5

0 0 -1

0 -0.5

-0.5-0.25

Current
prediction

Old prediction at 
 that time step

Old prediction at 
that time step

Updated prediction for
previous time step

Current
reward

Temporal	Difference	Learning

Stimulus	/	
reward:

State	/	time	step: 1 2 3 4

trial	2: 	 (t-1)

trial	3: 	 (t-1)

trial	1: 	 (t-1)

	 	 	 	

prediction error

α = 0.5S

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(−1+ 0− 0)
= −0.5

0+ 0.5(0+ 0− 0)
= 0

0+ 0.5(0− 0.5− 0)
= −0.25

−0.5+ 0.5(−1+ 0+ 0.5)
= −0.75

0+ 0.5(0− 0.25− 0)
= −0.125

−0.25+ 0.5(0− 0.75+ 0.25)
= −0.5

−0.75+ 0.5(−1+ 0+ 0.75)
= −0.875

predicted value

= 0 = 0 = -0.5

= 0 = -0.25 = -0.75

= -0.125 = -0.5 = -0.875

-0.5

0 0 -1

0 -0.5

-0.5 -0.25-0.25

♦

Current
prediction

Old prediction at 
 that time step

Old prediction at 
that time step

Updated prediction for
previous time step

Current
reward

Temporal	Difference	Learning

Stimulus	/	
reward:

State	/	time	step: 1 2 3 4

trial	2: 	 (t-1)

trial	3: 	 (t-1)

trial	1: 	 (t-1)

Dopamine and TD Learning
Schulz, 1993; Montague, Dayan & Sejnowski, 1996

Dopamine and TD Learning

Before learning

time

Schulz, 1993; Montague, Dayan & Sejnowski, 1996

Cue

Dopamine and TD Learning

Before learning

time

Schulz, 1993; Montague, Dayan & Sejnowski, 1996

Cue

Dopamine and TD Learning

Reward

VTA (DA)
Before learning

time

Schulz, 1993; Montague, Dayan & Sejnowski, 1996

Cue

Dopamine and TD Learning

Reward

VTA (DA)

After learning

time

Before learning

time

Schulz, 1993; Montague, Dayan & Sejnowski, 1996

Cue

Cue

Dopamine and TD Learning

Reward

VTA (DA)

After learning

time

Before learning

time

Schulz, 1993; Montague, Dayan & Sejnowski, 1996

Cue

Cue Reward

Dopamine and TD Learning

Reward

VTA (DA)

After learning

time

Before learning

time

Schulz, 1993; Montague, Dayan & Sejnowski, 1996

Cue

Cue Reward

Dopamine and TD Learning

Reward

VTA (DA)

After learning 2° cue

time

After learning

time

Before learning

time

Schulz, 1993; Montague, Dayan & Sejnowski, 1996

Cue

Cue Reward

Dopamine and TD Learning

Reward

VTA (DA)

Cue

After learning 2° cue

time

After learning

time

Before learning

time

Schulz, 1993; Montague, Dayan & Sejnowski, 1996

Cue

Cue Reward

Dopamine and TD Learning

Reward

VTA (DA)

Cue Cue

After learning 2° cue

time

After learning

time

Before learning

time

Schulz, 1993; Montague, Dayan & Sejnowski, 1996

Cue

Cue Reward

Dopamine and TD Learning

Reward

VTA (DA)

Cue RewardCue

After learning 2° cue

time

After learning

time

Before learning

time

Schulz, 1993; Montague, Dayan & Sejnowski, 1996

Temporal Difference Learning

• Starting point for most RL applications
– TD Gammon (1992)
– Atari (2013)

Temporal Difference Learning

• Starting point for most RL applications
– TD Gammon (1992)
– Atari (2013)
– Alpha Go (2015)

• Optimal learner, given:
– a stationary (stable) environment
– sufficient time to learn

Temporal Difference Learning

• Starting point for most RL applications
– TD Gammon (1992)
– Atari (2013)
– Alpha Go (2015)

• Optimal learner, given:
– a stationary (stable) environment
– sufficient time to learn
– all information needed for prediction is observable at the time it is relevant…

• Closely related to Markov Chains (MC):
– MC: set of observable states

 and transition probabilities between them (e.g., a maze)

Temporal Difference Learning

• Starting point for most RL applications
– TD Gammon (1992)
– Atari (2013)
– Alpha Go (2015)

• Optimal learner, given:
– a stationary (stable) environment
– sufficient time to learn
– all information needed for prediction is observable at the time it is relevant…

• Closely related to Markov Chains (MC):
– MC: set of observable states

 and transition probabilities between them (e.g., a maze)
– RL learns the summed (discounted) value of future rewards for each state,

based on the the transition probabilities emanating from each state

Temporal Difference Learning

• Starting point for most RL applications
– TD Gammon (1992)
– Atari (2013)
– Alpha Go (2015)

• Optimal learner, given:
– a stationary (stable) environment
– sufficient time to learn
– all information needed for prediction is observable at the time it is relevant…

• Closely related to Markov Chains (MC):
– MC: set of observable states

 and transition probabilities between them (e.g., a maze)
– RL learns the summed (discounted) value of future rewards for each state,

based on the the transition probabilities emanating from each state

• TD can be used to predict, but what about actions?

Temporal Difference Learning

TD and Action Learning

TD and Action Learning

• TD error can be used to assign value not just to states,
but also actions (based on the states to which they lead)

TD and Action Learning

• TD error can be used to assign value not just to states,
but also actions (based on the states to which they lead)

– Actor-critic model

TD learner:

Choice rule
(usually softmax)

TD and Action Learning

• TD error can be used to assign value not just to states,
but also actions (based on the states to which they lead)

– Actor-critic model

– Q-learning
(value of an action
in a given state values)

TD learner:

Choice rule
(usually softmax)

TD and Action Learning

• TD error can be used to assign value not just to states,
but also actions (based on the states to which they lead)

– Actor-critic model

– Q-learning
(value of an action
in a given state values)

– Gating and LSTMs…
TD learner:

Choice rule
(usually softmax)

Challenges

• Curse of dimensionality
– as the number of states increases, the amount of experience required

to learn about them can grow combinatorially

Challenges

• Curse of dimensionality
– as the number of states increases, the amount of experience required

to learn about them can grow combinatorially
– state space abstraction: organize into meaningful (generalizable)

“chunks:” states that share the same goals or subgoals:

Challenges

• Curse of dimensionality
– as the number of states increases, the amount of experience required

to learn about them can grow combinatorially
– state space abstraction: organize into meaningful (generalizable)

“chunks:” states that share the same goals or subgoals:
– state-space learning:

Challenges

States

Values

Actions

Standard RL

• Curse of dimensionality
– as the number of states increases, the amount of experience required

to learn about them can grow combinatorially
– state space abstraction: organize into meaningful (generalizable)

“chunks:” states that share the same goals or subgoals:
– state-space learning:

Challenges

States

Values

Actions

DQN

Representational Learning
& State-space Abstraction

 Deep Q-Networks (DQN):

States

Values

Actions

Standard RL

• Curse of dimensionality
– as the number of states increases, the amount of experience required

to learn about them can grow combinatorially
– state space abstraction: organize into meaningful (generalizable)

“chunks:” states that share the same goals or subgoals:
– state-space learning:

Challenges

States

Values

Actions

DQN

Representational Learning
& State-space Abstraction

 Deep Q-Networks (DQN):

States

Values

Actions

Standard RL

Challenges

• Curse of dimensionality
– as the number of states increases, the amount of experience required

to learn about them can grow combinatorially
– state space abstraction: organize into meaningful (generalizable)

“chunks:” states that share the same goals or subgoals:
– Hierarchical Reinforcement Learning (HRL):

policies vs. “options”

Challenges

• Curse of dimensionality
– as the number of states increases, the amount of experience required

to learn about them can grow combinatorially
– state space abstraction: organize into meaningful (generalizable)

“chunks:” states that share the same goals or subgoals:
– Hierarchical Reinforcement Learning (HRL):

policies vs. “options”

• What if the world changes?

Challenges

• Curse of dimensionality
– as the number of states increases, the amount of experience required

to learn about them can grow combinatorially
– state space abstraction: organize into meaningful (generalizable)

“chunks:” states that share the same goals or subgoals:
– Hierarchical Reinforcement Learning (HRL):

policies vs. “options”

• What if the world changes?
– Standard RL is stuck between between flexible and rigid

– if the learning rate is high:
– adjusts quickly, but may thrash

Challenges

• Curse of dimensionality
– as the number of states increases, the amount of experience required

to learn about them can grow combinatorially
– state space abstraction: organize into meaningful (generalizable)

“chunks:” states that share the same goals or subgoals:
– Hierarchical Reinforcement Learning (HRL):

policies vs. “options”

• What if the world changes?
– Standard RL is stuck between between flexible and rigid

– if the learning rate is high:
– adjusts quickly, but may thrash

– if the learning rate is low:
– integrates over more experience (wisdom), but is slow to adapt

Challenges

• Curse of dimensionality
– as the number of states increases, the amount of experience required

to learn about them can grow combinatorially
– state space abstraction: organize into meaningful (generalizable)

“chunks:” states that share the same goals or subgoals:
– Hierarchical Reinforcement Learning (HRL):

policies vs. “options”

• What if the world changes?
– Standard RL is stuck between between flexible and rigid

– if the learning rate is high:
– adjusts quickly, but may thrash

– if the learning rate is low:
– integrates over more experience (wisdom), but is slow to adapt

– Model-free vs. model-based RL

Challenges

Model-Free vs. Model-Based RL

• Model-free (“habit learning”):

– Standard RL: learn “cached value” for each state
(i.e., summed, discounted future value of that state)

Model-Free vs. Model-Based RL

• Model-free (“habit learning”):

– Standard RL: learn “cached value” for each state
(i.e., summed, discounted future value of that state)

– Advantages:
– easy and quick decisions: pick the state with the greatest value
– guaranteed to be optimal if the world is stable and observable

Model-Free vs. Model-Based RL

• Model-free (“habit learning”):

– Standard RL: learn “cached value” for each state
(i.e., summed, discounted future value of that state)

– Advantages:
– easy and quick decisions: pick the state with the greatest value
– guaranteed to be optimal if the world is stable and observable

– Problems:
– takes a long time to learn about all the states and dependencies
– what if the world changes?

Model-Free vs. Model-Based RL

• Model-free (“habit learning”):

Model-Free vs. Model-Based RL

• Model-based (“deliberation”):

Model-Free vs. Model-Based RL

• Model-based (“deliberation”):

– Maintain a “mental model” of the value of each state on its own
(i.e., not its future value, just the value of being in that state)

Model-Free vs. Model-Based RL

• Model-based (“deliberation”):

– Maintain a “mental model” of the value of each state on its own
(i.e., not its future value, just the value of being in that state)

– When in a state, mentally simulate all paths forward, and
pick the one that has the best cumulative (or ultimate) outcome

Model-Free vs. Model-Based RL

• Model-based (“deliberation”):

– Maintain a “mental model” of the value of each state on its own
(i.e., not its future value, just the value of being in that state)

– When in a state, mentally simulate all paths forward, and
pick the one that has the best cumulative (or ultimate) outcome

– Advantage:

Model-Free vs. Model-Based RL

• Model-based (“deliberation”):

– Maintain a “mental model” of the value of each state on its own
(i.e., not its future value, just the value of being in that state)

– When in a state, mentally simulate all paths forward, and
pick the one that has the best cumulative (or ultimate) outcome

– Advantage:
– flexible: easy to update the value of a state to its current value

Model-Free vs. Model-Based RL

• Model-based (“deliberation”):

– Maintain a “mental model” of the value of each state on its own
(i.e., not its future value, just the value of being in that state)

– When in a state, mentally simulate all paths forward, and
pick the one that has the best cumulative (or ultimate) outcome

– Advantage:
– flexible: easy to update the value of a state to its current value

– Problem:
– slow, effortful and possibly intractable to simulate all future paths

• Conditioning
– Simple Prediction

Rescorla-Wagner Rule
– Stimulus-Action Associations

Actor-critic model, Q Learning

• Sequence Prediction
– Method of Temporal Differences (TD)
– Model-Free vs. Model-Based RL

• Challenges
– Curse of dimensionality

‣ State space abstraction
‣ Hierarchical RL: policies and options

– Explore-exploit
‣ Meta-control

Supervised Learning: Scalar

