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LC-NE System

• Locus Coeruleus: 
–	 A small nucleus of cells of in 

the rostral pontine tegmentum 
(upper brainstem) 

–	 Innervates all levels of neuraxis, 
source of 99% of norepinephrine  
in neocortex 

•NE is a neuromodulator… 
(like dopamine): 

– modulates gain of activation function 
Servan-Schreiber et al. (Science, 1990)



Two Modes of LC Function



Two Modes of LC Function

•Phasic mode:
– moderate baseline firing rate



Two Modes of LC Function

•Phasic mode:
– moderate baseline firing rate
– phasic response to task-relevant events



Two Modes of LC Function

•Phasic mode:
– moderate baseline firing rate
– phasic response to task-relevant events
– transient increase gain (temporal filter) 
⬆︎responsivity to task-relevant events



Two Modes of LC Function

•Phasic mode:
– moderate baseline firing rate
– phasic response to task-relevant events
– transient increase gain (temporal filter) 
⬆︎responsivity to task-relevant events

– Behavior:  task-focused ⇒ exploitation



Two Modes of LC Function

•Phasic mode:
– moderate baseline firing rate
– phasic response to task-relevant events
– transient increase gain (temporal filter) 
⬆︎responsivity to task-relevant events

– Behavior:  task-focused ⇒ exploitation

•Tonic Mode:
– Higher baseline firing rate



Two Modes of LC Function

•Phasic mode:
– moderate baseline firing rate
– phasic response to task-relevant events
– transient increase gain (temporal filter) 
⬆︎responsivity to task-relevant events

– Behavior:  task-focused ⇒ exploitation

•Tonic Mode:
– Higher baseline firing rate
– diminished/absent phasic responses



Two Modes of LC Function

•Phasic mode:
– moderate baseline firing rate
– phasic response to task-relevant events
– transient increase gain (temporal filter) 
⬆︎responsivity to task-relevant events

– Behavior:  task-focused ⇒ exploitation

•Tonic Mode:
– Higher baseline firing rate
– diminished/absent phasic responses
– indiscriminate increase in gain: 
⬆︎responsivity to noise



Two Modes of LC Function

•Phasic mode:
– moderate baseline firing rate
– phasic response to task-relevant events
– transient increase gain (temporal filter) 
⬆︎responsivity to task-relevant events

– Behavior:  task-focused ⇒ exploitation

•Tonic Mode:
– Higher baseline firing rate
– diminished/absent phasic responses
– indiscriminate increase in gain: 
⬆︎responsivity to noise

– Behavior: distractable ⇒ exploration
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Model Simulates Two Modes of LC Function
Usher et al. (1999)

Empirical Data

•Change in single parameter 
in LC (electronic coupling) 
– Increase in phasic response 

– Decrease in tonic activity

Phasic Mode:

Tonic Mode:

Simulation



Mechanisms of LC Modulation

• Electrotonic coupling (Usher et al., 1999) 

• External drive (Alvarez & Chow, 2001;  Brown et al., 2004) 
– Biophysically realistic, coupled oscillators model…
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•LC phasic response transiently increases gain 
following completion of decision process

•Simplest multi-layered system: Response
Layer

– Decision process occurs at one level
– Response mechanism at a 

subsequent level executes decision
– LC driven by decision process
– Phasic NE release facilitates response:

♦ increases gain globally throughout the system

♦ forces “read-out” of response as soon as 
decision process has crossed threshold

⇒“collapses” processing in system 
around outcome of decision process

< >
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•LC phasic response transiently increases gain 
following completion of decision process: 
 
optimizes performance in multilayer systems 
 
mediates  tradeoff between  
         complexity (multilayer system)  
         and efficiency

< >

Response
Layer

Decision
Layer

LC

tantamount to increasing noise

⇒ random exploration

•LC tonic response produces a 
sustained, indiscriminate increase 
in gain throughout the system

⇒ exploitation

LC Tonic Mode & Exploration
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Aston-Jones & Cohen (2005)

LC and the Pupil
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– engineers (Kaelbling et al., 1996;  Auer et al., 2002, Ogren et al., 2004)
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The Explore/Exploit Tradeoff

exploration
exploitation

In love:
Should I stay or should I go now? 
If I go there will be trouble
And if I stay it may be double
So come on and let me know
Should I stay or should I go?

The Clash

•All species exhibit it
– fungi (Watkinson et al. 2005) 
– ants (Pratt & Sumpter 2006)

– birds (Kacelnik et al.)

– people (Daw et al., 2006;  Wilson et al., 2014)…



The Explore/Exploit Tradeoff

and in war: 
As we know, there are known knowns. 
There are things we know we know. 
We also know there are known unknowns. 
That is to say we know there are some things we do not know. 
But there are also unknown unknowns, 
The ones we don't know we don't know. 
Donald Rumsfeld 
Department of Defense news briefing 
Feb. 12, 2002 
(courtesy of Peter Dayan and Angela Yu)
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– ants (Pratt & Sumpter 2006)

– birds (Kacelnik et al.)

– people (Daw et al., 2006;  Wilson et al., 2014)…



The Explore/Exploit Tradeoff

and in war: 
it was formulated during the war, and efforts to solve it so sapped 
the energies and minds of Allied analysts that the suggestion 
was made that the problem be dropped over Germany, as  
the ultimate instrument of intellectual sabotage. 
Peter Whittle, 1975 

•All species exhibit it
– fungi (Watkinson et al. 2005) 
– ants (Pratt & Sumpter 2006)

– birds (Kacelnik et al.)

– people (Daw et al., 2006;  Wilson et al., 2014)…
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LC Null Mode 
Low baseline activity 

Lethargy, sleep

“Arousal”
Exploitation
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Tonic LC mode 
High baseline activity 
Distractable behavior

Exploration FreakedOut!



Summary

•LC phasic responses mediate exploration 
mitigate tradeoff between complexity and efficiency 
– Dynamic, event-related adjustment of gain optimizes performance 

•LC phasic vs. tonic modes mediate tradeoff between 
	exploitation and exploration 
– phasic release of NE:  temporal filter — supports current task set 

– tonic NE release:  indiscriminate increase in responsivity 

– modulation of processing “style:”  focus vs. integration
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• Challenge for reinforcement learning:
– rewarding behaviors should be reinforced, others discouraged 

(exploitation)

• reinforcement learning algorithms provably converge on 
optimal reward seeking behavior in a stable environment 
(i.e., when contingencies don’t change)

- however, a highly reinforced behavior will be resistant to change

– this makes it hard to adapt if/when the environment changes 
(exploration)

• Simple example…
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Reversal Conditioning
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♦Not Good!
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Reversal Conditioning
Solution:  Weaker Learning?
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Reversal Conditioning
Solution: Adaptive Annealing

NO
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• Challenge for reinforcement learning: 
– rewarding behaviors should be reinforced, others discouraged 

(exploitation) 

• reinforcement learning algorithms provably converge on 
optimal reward seeking behavior in a stable environment 
(i.e., when contingencies don’t change) 

- however, a highly reinforced behavior will be resistant to change 

– this makes it hard to adapt if/when the environment changes 
(exploration)

Explore / Exploit and RL

• Solution: LC/NE - Dopamine interactions…
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•LC phasic activity
– transiently increases gain in response to task-relevant events

– optimizes performance of current task

	 	   ⇰ exploitation

•LC tonic activity
– produces sustained, indiscriminate increases in gain 

	 effectively increasing noise (e.g., one vs. many amplifiers)

– promotes opportunities to sample other behaviors / 
                                                     identify other sources of reward:

	  ⇰ (random) exploration

Adaptive Gain Hypothesis
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•Assessments of utility in frontal cortex?

– Orbitofrontal cortex (OFC) exhibits both transient  
	 and sustained responses to positively valenced events

–  Anterior cingulate cortex (ACC) exhibits transient (and sustained?)    
    responses to negatively valenced events (pain, fear, errors, conflict)

– Activity in ACC (and OFC?) is associated with  
    trial-trial adjustments in performance 
    (e.g., error and conflict-associated increases in threshold and/or attention)

•Anatomical support:
– OFC and ACC provide strongest cortical projections to LC 
– Physiology?
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•Formalization:

– Short-term (transient) decreases in utility 
	  
	     (indicate need to support task performance)

	 	 ⇒ augment LC phasic mode (exploitation)

– long-term (persistent) decreases in utility 
 
	     (indicate potential value of changing behavior)

⇒ favor LC tonic mode:  (exploration)

– Shifts mediated by changes in simple LC physiological parameters
		 	 (e.g., electronic coupling and/or baseline drive)

What Drives Changes in LC Mode?



LC Mode and Utility

Task Engagement = [1-logistic(short term utility)] * [logistic (long term utility)]LC coupling / drive =

LC
 M

O
D

E

Exploration

Exploitation

Aston-Jones & Cohen (Ann Rev of Neurosci, 2005)



Control, Conflict and Reward

EC = f (reward) x e-(long term conflict) 

1+ e-short term conflict) 



DA-NE & 
REVERSAL CONDITIONING



• Theory: 
– Integrative utility function (OFC/ACC) + Adaptive gain control (LC-NE) 

 
= Auto-regulation of  exploitation vs. exploration (DA) 

• Reversal conditioning (Aston-Jones et al, J. Neurosci. 1997) 
– Acquisition of initial association ➨ increased utility	➨ LC phasic mode
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• Theory:
– Integrative utility function (OFC/ACC) + Adaptive gain control (LC-NE) 

 
= Auto-regulation of  exploitation vs. exploration (DA) 

• Reversal conditioning (Aston-Jones et al, J. Neurosci. 1997)
– Acquisition of initial association ➨ increased utility	➨ LC phasic mode
– Contingency reversal	          ➨ reduced utility	 ➨ LC tonic mode
– Acquisition of new association   ➨ increased utility	➨ LC phasic mode
 
⇒ LC-NE system should augment performance in reversal conditioning

Adaptive Gain Hypothesis & 
Exploration vs. Exploitation
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Reversal
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LC Tonic Activity

Reversal
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