
Longterm Memory:
Distributed Representation

and Semantics

Longterm (Semantic) Memory

Longterm (Semantic) Memory

• Processing in longterm memory:
– activation of representations in a semantic network

Longterm (Semantic) Memory

• Processing in longterm memory:
– activation of representations in a semantic network

Longterm (Semantic) Memory

Project for a Scientific Psychology, 1895

• Processing in longterm memory:
– activation of representations in a semantic network

Longterm (Semantic) Memory

• Processing in longterm memory:
– activation of representations in a semantic network
– spread of activation to related items

 (Quillian, 1967; Collins and Loftus, 1975)

fruit

pear

banana yellow

green

orange

red

tulip

flower

apple

rose

daffodil

car

truck

vehicle

bus

school teacher

student

lecture

slides

titles

Longterm (Semantic) Memory

• Processing in longterm memory:
– activation of representations in a semantic network
– spread of activation to related items

 (Quillian, 1967; Collins and Loftus, 1975)

• Evidence: lexical priming studies…

Lexical Priming

Lexical Priming

• Meyer & Schvaneveldt (1973):
– Present a pair of words in sequence: PRIME…. TARGET

Lexical Priming

• Meyer & Schvaneveldt (1973):
– Present a pair of words in sequence: PRIME…. TARGET
– Observe the prime, respond to target:

Lexical Priming

• Meyer & Schvaneveldt (1973):
– Present a pair of words in sequence: PRIME…. TARGET
– Observe the prime, respond to target:

– lexical decision task: decide if target is a word (sometimes it is not, e.g. FLURX)

Lexical Priming

• Meyer & Schvaneveldt (1973):
– Present a pair of words in sequence: PRIME…. TARGET
– Observe the prime, respond to target:

– lexical decision task: decide if target is a word (sometimes it is not, e.g. FLURX)
– word naming task: just say the target out loud

Lexical Priming

• Meyer & Schvaneveldt (1973):
– Present a pair of words in sequence: PRIME…. TARGET
– Observe the prime, respond to target:

– lexical decision task: decide if target is a word (sometimes it is not, e.g. FLURX)
– word naming task: just say the target out loud

– Manipulate relatedness of cue and probe

Lexical Priming

• Meyer & Schvaneveldt (1973):
– Present a pair of words in sequence: PRIME…. TARGET
– Observe the prime, respond to target:

– lexical decision task: decide if target is a word (sometimes it is not, e.g. FLURX)
– word naming task: just say the target out loud

– Manipulate relatedness of cue and probe
– Result: faster response if prime is related to target: DOCTOR…. NURSE

Lexical Priming

• Meyer & Schvaneveldt (1973):
– Present a pair of words in sequence: PRIME…. TARGET
– Observe the prime, respond to target:

– lexical decision task: decide if target is a word (sometimes it is not, e.g. FLURX)
– word naming task: just say the target out loud

– Manipulate relatedness of cue and probe
– Result: faster response if prime is related to target: DOCTOR…. NURSE

DOCTOR

NURSE

Lexical Priming

• Meyer & Schvaneveldt (1973):
– Present a pair of words in sequence: PRIME…. TARGET
– Observe the prime, respond to target:

– lexical decision task: decide if target is a word (sometimes it is not, e.g. FLURX)
– word naming task: just say the target out loud

– Manipulate relatedness of cue and probe
– Result: faster response if prime is related to target: DOCTOR…. NURSE

DOCTOR

NURSE

Lexical Priming

• Meyer & Schvaneveldt (1973):
– Present a pair of words in sequence: PRIME…. TARGET
– Observe the prime, respond to target:

– lexical decision task: decide if target is a word (sometimes it is not, e.g. FLURX)
– word naming task: just say the target out loud

– Manipulate relatedness of cue and probe
– Result: faster response if prime is related to target: DOCTOR…. NURSE

slower if prime is not related to the target: BUTTER…. NURSE

DOCTOR

NURSE BUTTER

BREAD

TOAST

BURN

NURSE

Lexical Priming

• Meyer & Schvaneveldt (1973):
– Present a pair of words in sequence: PRIME…. TARGET
– Observe the prime, respond to target:

– lexical decision task: decide if target is a word (sometimes it is not, e.g. FLURX)
– word naming task: just say the target out loud

– Manipulate relatedness of cue and probe
– Result: faster response if prime is related to target: DOCTOR…. NURSE

slower if prime is not related to the target: BUTTER…. NURSE

DOCTOR

NURSE BUTTER

BREAD

TOAST

BURN

NURSE

Additional Empirical Support

wings

flies

sings

bird

robin

Additional Empirical Support

wings

flies

sings

bird

robin

• Semantic priming
– subjects respond faster to a word following a related vs. unrelated word

Additional Empirical Support

wings

flies

sings

bird

robinrobin

• Semantic priming
– subjects respond faster to a word following a related vs. unrelated word
– mechanism:

activation spreads from activated node to related nodes
pre-activated nodes are primed, facilitating processing

Additional Empirical Support

wings

flies

sings

bird

robin

emu

• Semantic priming
– subjects respond faster to a word following a related vs. unrelated word
– mechanism:

activation spreads from activated node to related nodes
pre-activated nodes are primed, facilitating processing

• Frequency effects:
– faster to say “robin” than “emu”

Additional Empirical Support

wings

flies

sings

bird

robin

emu

robin

• Semantic priming
– subjects respond faster to a word following a related vs. unrelated word
– mechanism:

activation spreads from activated node to related nodes
pre-activated nodes are primed, facilitating processing

• Frequency effects:
– faster to say “robin” than “emu”
– mechanism:

base level of activation is different for different nodes

chicken

Additional Empirical Support

wings

flies

sings

bird

robin

emu

robinrobin

• Semantic priming
– subjects respond faster to a word following a related vs. unrelated word
– mechanism:

activation spreads from activated node to related nodes
pre-activated nodes are primed, facilitating processing

• Frequency effects:
– faster to say “robin” than “emu”
– mechanism:

base level of activation is different for different nodes

• Typicality effects:
– “bird” primes “robin” more than it does “chicken”

chicken

Additional Empirical Support

wings

flies

sings

bird

robin

emu

robinrobin

• Semantic priming
– subjects respond faster to a word following a related vs. unrelated word
– mechanism:

activation spreads from activated node to related nodes
pre-activated nodes are primed, facilitating processing

• Frequency effects:
– faster to say “robin” than “emu”
– mechanism:

base level of activation is different for different nodes

• Typicality effects:
– “bird” primes “robin” more than it does “chicken”
– mechanism:

typical members of a category (prototypes) are more centrally placed than others
so they are more likely to get activated, and to get more activated than others…

Success and Failures of Simple Spreading Activation Models

Success and Failures of Simple Spreading Activation Models

• Successes
– explicitly specify structure and mechanisms of long term (semantic) memory
– can account for much relevant data

Success and Failures of Simple Spreading Activation Models

• Successes
– explicitly specify structure and mechanisms of long term (semantic) memory
– can account for much relevant data

• Problems:
– don’t specify how the structure (nodes and links) got there:

– presumably experience and learning (we’ll get to that)

Success and Failures of Simple Spreading Activation Models

• Successes
– explicitly specify structure and mechanisms of long term (semantic) memory
– can account for much relevant data

• Problems:
– don’t specify how the structure (nodes and links) got there:

– presumably experience and learning (we’ll get to that)
– but what about nodes for things that were never experienced?

Success and Failures of Simple Spreading Activation Models

• Successes
– explicitly specify structure and mechanisms of long term (semantic) memory
– can account for much relevant data

• Problems:
– don’t specify how the structure (nodes and links) got there:

– presumably experience and learning (we’ll get to that)
– but what about nodes for things that were never experienced?

– Example: people respond to faster to prototypes they’ve never seen…

Posner & Keele Demo

• You will see dot patterns

• Judge whether each belongs to
category A or category B

• Guess at first,
but will get better with feedback…

That was Category B.

That was Category A.

That was Category A.

That was Category B.

That was Category B.

That was Category A.

That was Category A.

That was Category B.

That was Category A.

That was Category B.

Now, judge whether or not
you have seen the following dot patterns…

Old or New

1

2

Old or New

3

Old or New

4

Old or New

5

Old or New

6

Old or New

7

Old or New

8

Old or New

9

Old or New

10

Old or New

Category A Members

PROTOTYPE-A
6th stimulus

low
distortion

high
distortion

Category B Members

low
distortion

high
distortion

PROTOTYPE-B
9th stimulus

ca
lle

d
 O

LD

0

22.5

45

67.5

90

pattern type

proto low
distortion

high
distortion

ca
lle

d
 O

LD

0

22.5

45

67.5

90

pattern type

proto low
distortion

high
distortion

ca
lle

d
 O

LD

0

0.75

1.5

2.25

3

pattern type
proto old new

Exemplars vs. Prototypes

bird

flies

robin
wings

sings

penguin

chicken

sparrow

hawk

• How do we represent both individual instances and categories?

Exemplars vs. Prototypes

bird

flies

robin
wings

sings

penguin

chicken

sparrow

hawk

• How do we represent both individual instances and categories?
– collection of exemplars? (e.g., Atkinson & Shiffrin, 1968)

Exemplars vs. Prototypes

bird

flies

robin
wings

sings

penguin

chicken

sparrow

hawk

exemplars?

• How do we represent both individual instances and categories?
– collection of exemplars? (e.g., Atkinson & Shiffrin, 1968)
– abstraction of a prototype? (Rosch, 1983)

Exemplars vs. Prototypes

bird

flies

robin
wings

sings

penguin

chicken

sparrow

hawk

exemplars? prototype?

Model of Distributed Memory (MDM)
McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

• Key features of the model:

- Recurrent (attractor) network
ii = Σaiwij
neti = ii + ei

Model of Distributed Memory (MDM)
McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

• Key features of the model:

- Recurrent (attractor) network
ii = Σaiwij
neti = ii + ei

- Trained using Rescorla-Wagner (delta) rule
to represent input as a pattern of activity
over units in network (auto-associator)

Δwij = η(ei − ii) aj

(constraint: target value of each unit
must be predictable from a linear combination
of the other units, since no hidden units)

Model of Distributed Memory (MDM)
McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

• Key features of the model:

- Recurrent (attractor) network
ii = Σaiwij
neti = ii + ei

- Trained using Rescorla-Wagner (delta) rule
to represent input as a pattern of activity
over units in network (auto-associator)

Δwij = η(ei − ii) aj

(constraint: target value of each unit
must be predictable from a linear combination
of the other units, since no hidden units)

- Non-linear (sigmoid) activation function

Δai = ai + neti ⋅ (amax − ai) if neti > 0
Δai = ai − neti ⋅ (ai − amin) if neti ≤ 0

Model of Distributed Memory (MDM)
McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

6420-2-4-6

Net Input
Ac

tiv
at

io
n

0.0

0.2

0.4

0.6

0.8

1.0

• Key features of the model:

- Recurrent (attractor) network
ii = Σaiwij
neti = ii + ei

- Trained using Rescorla-Wagner (delta) rule
to represent input as a pattern of activity
over units in network (auto-associator)

Δwij = η(ei − ii) aj

(constraint: target value of each unit
must be predictable from a linear combination
of the other units, since no hidden units)

- Non-linear (sigmoid) activation function

Δai = ai + neti ⋅ (amax − ai) if neti > 0
Δai = ai − neti ⋅ (ai − amin) if neti ≤ 0

- Exponential weight decay during learning (emphasizes recent experiences)

Model of Distributed Memory (MDM)
McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

6420-2-4-6

Net Input
Ac

tiv
at

io
n

0.0

0.2

0.4

0.6

0.8

1.0

Prototype learning

Prototype (never shown)

Pattern 1

Pattern 2

• Training patterns made up of two parts:

Prototype learning

Prototype (never shown)

Pattern 1

Pattern 2

• Training patterns made up of two parts:
– name part: random vectors (e.g, dog names)

Prototype learning

Prototype (never shown)

Pattern 1

Pattern 2

Weakly correlated

• Training patterns made up of two parts:
– name part: random vectors (e.g, dog names)
– visual part: variants of a prototype (e.g., different dogs)

 (bit flipped in each element with)p = 0.2

Prototype learning

Prototype (never shown)

Pattern 1

Pattern 2

Weakly correlated Strongly Correlated

• Training patterns made up of two parts:
– name part: random vectors (e.g, dog names)
– visual part: variants of a prototype (e.g., different dogs)

 (bit flipped in each element with)p = 0.2

– Model trained on 50 such patterns

Prototype learning

Prototype (never shown)

Pattern 1

Pattern 2

Prototype learning

• Training patterns made up of two parts:
– name part: random vectors (e.g, dog names)
– visual part: variants of a prototype (e.g., different dogs)

 (bit flipped in each element with)

– Model trained on 50 such patterns

• Learns to recognize the prototype
 even though it was never explicitly presented

– Responds to prototype more strongly than any given exemplar
– Doesn’t retrieve individual names very well,

although it can remember the most recent ones

p = 0.2

Prototype (never shown)

Pattern 1

Pattern 2

Prototype learning
• Can learn (and keep separate) multiple, non-orthogonal

prototypes: implicit categorization
– increasing similarity produces increased confusability initially,

but resolved by further training

Prototype learning
• Can learn (and keep separate) multiple, non-orthogonal

prototypes: implicit categorization
– increasing similarity produces increased confusability initially,

but resolved by further training

Prototype learning
• Can learn (and keep separate) multiple, non-orthogonal

prototypes: implicit categorization
– increasing similarity produces increased confusability initially,

but resolved by further training

Co-existence of Prototype and Exemplars

♦

♦

• Train on two specific exemplars with names,
and many other random distortions with category label

Co-existence of Prototype and Exemplars

♦

♦

• Train on two specific exemplars with names,
and many other random distortions with category label

Co-existence of Prototype and Exemplars

funny eyes and tail♦

♦

• Train on two specific exemplars with names,
and many other random distortions with category label

Co-existence of Prototype and Exemplars

funny eyes and tail

funny ears

♦

♦

• Train on two specific exemplars with names,
and many other random distortions with category label

– Can retrieve:
♦ features of the labeled exemplars

Co-existence of Prototype and Exemplars

funny eyes and tail

funny ears

♦

♦

• Train on two specific exemplars with names,
and many other random distortions with category label

– Can retrieve:
♦ features of the labeled exemplars
♦ the names of each exemplar from each features

Co-existence of Prototype and Exemplars

funny eyes and tail

funny ears

♦

♦

• Train on two specific exemplars with names,
and many other random distortions with category label

– Can retrieve:
♦ features of the labeled exemplars
♦ the names of each exemplar from each features

– Retrieves prototype for all others

Co-existence of Prototype and Exemplars

funny eyes and tail

funny ears

prototypical
eyes, tail and ears

♦

♦

Model of Distributed Memory (MDM)
McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

• The model can extract the prototype (central tendency)
from a set of patterns (series of exemplars)

Model of Distributed Memory (MDM)
McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

• The model can extract the prototype (central tendency)
from a set of patterns (series of exemplars)

• It can do this for several different prototypes
using the same set of connections

Model of Distributed Memory (MDM)
McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

• The model can extract the prototype (central tendency)
from a set of patterns (series of exemplars)

• It can do this for several different prototypes
using the same set of connections

• It does not depend on being presented with labels

Model of Distributed Memory (MDM)
McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

• The model can extract the prototype (central tendency)
from a set of patterns (series of exemplars)

• It can do this for several different prototypes
using the same set of connections

• It does not depend on being presented with labels
• Representations of specific distinguishable instances

can co-exist with knowledge of the prototype

Model of Distributed Memory (MDM)
McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

hawk

exemplars prototype

chicken

wings

flies

robin

sings

sparrow
birdpenguin

Both!

• The model can extract the prototype (central tendency)
from a set of patterns (series of exemplars)

• It can do this for several different prototypes
using the same set of connections

• It does not depend on being presented with labels
• Representations of specific distinguishable instances

can co-exist with knowledge of the prototype

• Fits empirical data:

Model of Distributed Memory (MDM)
McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

hawk

exemplars prototype

chicken

wings

flies

robin

sings

sparrow
birdpenguin

Both!

• The model can extract the prototype (central tendency)
from a set of patterns (series of exemplars)

• It can do this for several different prototypes
using the same set of connections

• It does not depend on being presented with labels
• Representations of specific distinguishable instances

can co-exist with knowledge of the prototype

• Fits empirical data:
– best (fastest) response to prototype

Model of Distributed Memory (MDM)
McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

hawk

exemplars prototype

chicken

wings

flies

robin

sings

sparrow
birdpenguin

Both!

• The model can extract the prototype (central tendency)
from a set of patterns (series of exemplars)

• It can do this for several different prototypes
using the same set of connections

• It does not depend on being presented with labels
• Representations of specific distinguishable instances

can co-exist with knowledge of the prototype

• Fits empirical data:
– best (fastest) response to prototype
– fastest and most accurate response to familiar items

Model of Distributed Memory (MDM)
McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

hawk

exemplars prototype

chicken

wings

flies

robin

sings

sparrow
birdpenguin

Both!

• The model can extract the prototype (central tendency)
from a set of patterns (series of exemplars)

• It can do this for several different prototypes
using the same set of connections

• It does not depend on being presented with labels
• Representations of specific distinguishable instances

can co-exist with knowledge of the prototype

• Fits empirical data:
– best (fastest) response to prototype
– fastest and most accurate response to familiar items
– priming effects (identity > similarity > none)

Model of Distributed Memory (MDM)
McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

hawk

exemplars prototype

chicken

wings

flies

robin

sings

sparrow
birdpenguin

Both!

• The model can extract the prototype (central tendency)
from a set of patterns (series of exemplars)

• It can do this for several different prototypes
using the same set of connections

• It does not depend on being presented with labels
• Representations of specific distinguishable instances

can co-exist with knowledge of the prototype

• Fits empirical data:
– best (fastest) response to prototype
– fastest and most accurate response to familiar items
– priming effects (identity > similarity > none)
– interaction of priming and familiarity effects

(priming greater for unfamiliar than familiar items)

Model of Distributed Memory (MDM)
McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

hawk

exemplars prototype

chicken

wings

flies

robin

sings

sparrow
birdpenguin

Both!

Learning

Learning

• So far, we’ve focused on processing:

Learning

• So far, we’ve focused on processing:
– dynamics of encoding and representation information (≈ weather)

Network State  
(based pattern  

of activity

Energy

high
Energy Landscape  

(“state space”)

low

Learning

• So far, we’ve focused on processing:
– dynamics of encoding and representation information (≈ weather)

• What about learning?
– how is the landscape shaped? (≈geology)
– dynamics of acquisition

Network State  
(based pattern  

of activity

Energy

high
Energy Landscape  

(“state space”)

low

Simple Pattern Associator
• “Association”:

– Network that learns associations (correlations) between input and output patterns;
given an input, it can generate the output…

+1 -1 - 1 +1

-.25 +.25 +.25 -.25 - 1

-.25 +.25 +.25 -.25 - 1

+.25 -.25 -.25 +.25 +1

+.25 -.25 -.25 +.25 +1

- 1 +1 - 1 +1

+.25 -.25 +.25 -.25 - 1

-.25 +.25 -.25 +.25 +1

-.25 +.25 -.25 +.25 +1

+.25 -.25 +.25 -.25 - 1

Assoc
B

Visual Pattern

Speech
Pattern

Weight matrix

Weight matrix

Assoc.
A Cat

Pattern Associator

Visual

Verbal

Associations

+1 -1 - 1 +1

-.25 +.25 +.25 -.25 - 1

-.25 +.25 +.25 -.25 - 1

+.25 -.25 -.25 +.25 +1

+.25 -.25 -.25 +.25 +1

- 1 +1 - 1 +1

+.25 -.25 +.25 -.25 - 1

-.25 +.25 -.25 +.25 +1

-.25 +.25 -.25 +.25 +1

+.25 -.25 +.25 -.25 - 1

Assoc
B

Visual Pattern

Speech
Pattern

Weight matrix

Weight matrix

Assoc.
A Cat

Pattern Associator

Visual

Verbal

Associations: projections

+1 -1 - 1 +1

-.25 +.25 +.25 -.25 - 1

-.25 +.25 +.25 -.25 - 1

+.25 -.25 -.25 +.25 +1

+.25 -.25 -.25 +.25 +1

- 1 +1 - 1 +1

+.25 -.25 +.25 -.25 - 1

-.25 +.25 -.25 +.25 +1

-.25 +.25 -.25 +.25 +1

+.25 -.25 +.25 -.25 - 1

Assoc
B

Visual Pattern

Speech
Pattern

Weight matrix

Weight matrix

Assoc.
A Cat

Pattern Associator

Visual

Verbal

Associations: projections

Associations: weight matrix

+1 -1 - 1 +1

-.25 +.25 +.25 -.25 - 1

-.25 +.25 +.25 -.25 - 1

+.25 -.25 -.25 +.25 +1

+.25 -.25 -.25 +.25 +1

- 1 +1 - 1 +1

+.25 -.25 +.25 -.25 - 1

-.25 +.25 -.25 +.25 +1

-.25 +.25 -.25 +.25 +1

+.25 -.25 +.25 -.25 - 1

Assoc
B

Visual Pattern

Speech
Pattern

Weight matrix

Weight matrix

Assoc.
A Cat

+1 -1 - 1 +1

-.25 +.25 +.25 -.25 - 1

-.25 +.25 +.25 -.25 - 1

+.25 -.25 -.25 +.25 +1

+.25 -.25 -.25 +.25 +1

- 1 +1 - 1 +1

+.25 -.25 +.25 -.25 - 1

-.25 +.25 -.25 +.25 +1

-.25 +.25 -.25 +.25 +1

+.25 -.25 +.25 -.25 - 1

Assoc
B

Visual Pattern

Speech
Pattern

Weight matrix

Weight matrix

Assoc.
A Cat

Pattern Associator

Associations: weight matrix

Associations: weight matrix

Dog

+1 -1 - 1 +1

-.25 +.25 +.25 -.25 - 1

-.25 +.25 +.25 -.25 - 1

+.25 -.25 -.25 +.25 +1

+.25 -.25 -.25 +.25 +1

- 1 +1 - 1 +1

+.25 -.25 +.25 -.25 - 1

-.25 +.25 -.25 +.25 +1

-.25 +.25 -.25 +.25 +1

+.25 -.25 +.25 -.25 - 1

Assoc
B

Visual Pattern

Speech
Pattern

Weight matrix

Weight matrix

Assoc.
A

Dog

+1 -1 - 1 +1

-.25 +.25 +.25 -.25 - 1

-.25 +.25 +.25 -.25 - 1

+.25 -.25 -.25 +.25 +1

+.25 -.25 -.25 +.25 +1

- 1 +1 - 1 +1

+.25 -.25 +.25 -.25 - 1

-.25 +.25 -.25 +.25 +1

-.25 +.25 -.25 +.25 +1

+.25 -.25 +.25 -.25 - 1

Assoc
B

Visual Pattern

Speech
Pattern

Weight matrix

Weight matrix

Assoc.
A

+1 -1 - 1 +1

-.25 +.25 +.25 -.25 - 1

-.25 +.25 +.25 -.25 - 1

+.25 -.25 -.25 +.25 +1

+.25 -.25 -.25 +.25 +1

- 1 +1 - 1 +1

+.25 -.25 +.25 -.25 - 1

-.25 +.25 -.25 +.25 +1

-.25 +.25 -.25 +.25 +1

+.25 -.25 +.25 -.25 - 1

Assoc
B

Visual Pattern

Speech
Pattern

Weight matrix

Weight matrix

Assoc.
A Cat

+1 -1 - 1 +1

-.25 +.25 +.25 -.25 - 1

-.25 +.25 +.25 -.25 - 1

+.25 -.25 -.25 +.25 +1

+.25 -.25 -.25 +.25 +1

- 1 +1 - 1 +1

+.25 -.25 +.25 -.25 - 1

-.25 +.25 -.25 +.25 +1

-.25 +.25 -.25 +.25 +1

+.25 -.25 +.25 -.25 - 1

Assoc
B

Visual Pattern

Speech
Pattern

Weight matrix

Weight matrix

Assoc.
A Cat

Pattern Associator

Associations: weight matrix

Associations: weight matrix

Dog

- 1 +1 - 1 +1

+.25 -.25 +.25 -.25 - 1

-.25 +.25 -.25 +.25 +1

-.25 +.25 -.25 +.25 +1

+.25 -.25 +.25 -.25 - 1

Assoc

Weight matrix

Weight matrix

Dog

- 1 +1 - 1 +1

+.25 -.25 +.25 -.25 - 1

-.25 +.25 -.25 +.25 +1

-.25 +.25 -.25 +.25 +1

+.25 -.25 +.25 -.25 - 1

Assoc

Weight matrix

Weight matrix

+1 -1 - 1 +1

-.25 +.25 +.25 -.25 - 1

-.25 +.25 +.25 -.25 - 1

+.25 -.25 -.25 +.25 +1

+.25 -.25 -.25 +.25 +1

- 1 +1 - 1 +1

Visual Pattern

Speech
Pattern

Weight matrix

Assoc.
Cat

+1 -1 - 1 +1

-.25 +.25 +.25 -.25 - 1

-.25 +.25 +.25 -.25 - 1

+.25 -.25 -.25 +.25 +1

+.25 -.25 -.25 +.25 +1

- 1 +1 - 1 +1

Visual Pattern

Speech
Pattern

Weight matrix

Assoc.
Cat

Pattern Associator

A +1

B - 1

- 1

+1

- 1

- 1

+1

+1
A B

0 0 +.5 -.5 - 1 - 1

-.5 +.5 0 0 - 1 +1

0 0 -.5 +.5 +1 +1

+.5 -.5 0 0 +1 -1

Cat Dog

A +1

B - 1

- 1

+1

- 1

- 1

+1

+1
A B

0 0 +.5 -.5 - 1 - 1

-.5 +.5 0 0 - 1 +1

0 0 -.5 +.5 +1 +1

+.5 -.5 0 0 +1 -1

A +1

B - 1

- 1

+1

- 1

- 1

+1

+1
A B

0 0 +.5 -.5 - 1 - 1

-.5 +.5 0 0 - 1 +1

0 0 -.5 +.5 +1 +1

+.5 -.5 0 0 +1 -1

Mathemagic!

Pattern Associator

Pattern Associator

Tail Bark Meow Chirp �Cat��������Dog�������Bird�

Cat +1 -1 +1 -1 +1 0 0

Dog +1 +1 -1 -1 0 +1 0
Bird +1 -1 -1 +1 0 0 +1

bark

�cat� �dog� �bird�

tail meow

.25

.25
-.25

-.25 .25

.25
-.25

ε=.25

chirp

.25 .25 -.25

-.25

-.25

“Dog” “Bird”

Input Output

Pattern Associator

Tail Bark Meow Chirp �Cat��������Dog�������Bird�

Cat +1 -1 +1 -1 +1 0 0

Dog +1 +1 -1 -1 0 +1 0
Bird +1 -1 -1 +1 0 0 +1

bark

�cat� �dog� �bird�

tail meow

.25

.25
-.25

-.25 .25

.25
-.25

ε=.25

chirp

.25 .25 -.25

-.25

-.25

Tail Bark Meow Chirp �Cat��������Dog�������Bird�

Cat +1 -1 +1 -1 +1 0 0

Dog +1 +1 -1 -1 0 +1 0
Bird +1 -1 -1 +1 0 0 +1

bark

�cat� �dog� �bird�

tail meow

.25

.25
-.25

-.25 .25

.25
-.25

ε=.25

chirp

.25 .25 -.25

-.25

-.25

“Dog” “Bird”

Input Output

Pattern Associator

Tail Bark Meow Chirp �Cat��������Dog�������Bird�

Cat +1 -1 +1 -1 +1 0 0

Dog +1 +1 -1 -1 0 +1 0
Bird +1 -1 -1 +1 0 0 +1

bark

�cat� �dog� �bird�

tail meow

.25

.25
-.25

-.25 .25

.25
-.25

ε=.25

chirp

.25 .25 -.25

-.25

-.25

Tail Bark Meow Chirp �Cat��������Dog�������Bird�

Cat +1 -1 +1 -1 +1 0 0

Dog +1 +1 -1 -1 0 +1 0
Bird +1 -1 -1 +1 0 0 +1

bark

�cat� �dog� �bird�

tail meow

.25

.25
-.25

-.25 .25

.25
-.25

ε=.25

chirp

.25 .25 -.25

-.25

-.25

Tail Bark Meow Chirp �Cat��������Dog�������Bird�

Cat +1 -1 +1 -1 +1 0 0

Dog +1 +1 -1 -1 0 +1 0
Bird +1 -1 -1 +1 0 0 +1

bark

�cat� �dog� �bird�

tail meow

.25

.25
-.25

-.25 .25

.25
-.25

ε=.25

chirp

.25 .25 -.25

-.25

-.25

“Dog” “Bird”

Input Output

Pattern Associator

Tail Bark Meow Chirp �Cat��������Dog�������Bird�

Cat +1 -1 +1 -1 +1 0 0

Dog +1 +1 -1 -1 0 +1 0
Bird +1 -1 -1 +1 0 0 +1

bark

�cat� �dog� �bird�

tail meow

.25

.25
-.25

-.25 .25

.25
-.25

ε=.25

chirp

.25 .25 -.25

-.25

-.25

Tail Bark Meow Chirp �Cat��������Dog�������Bird�

Cat +1 -1 +1 -1 +1 0 0

Dog +1 +1 -1 -1 0 +1 0
Bird +1 -1 -1 +1 0 0 +1

bark

�cat� �dog� �bird�

tail meow

.25

.25
-.25

-.25 .25

.25
-.25

ε=.25

chirp

.25 .25 -.25

-.25

-.25

Tail Bark Meow Chirp �Cat��������Dog�������Bird�

Cat +1 -1 +1 -1 +1 0 0

Dog +1 +1 -1 -1 0 +1 0
Bird +1 -1 -1 +1 0 0 +1

bark

�cat� �dog� �bird�

tail meow

.25

.25
-.25

-.25 .25

.25
-.25

ε=.25

chirp

.25 .25 -.25

-.25

-.25

Tail Bark Meow Chirp �Cat��������Dog�������Bird�

Cat +1 -1 +1 -1 +1 0 0

Dog +1 +1 -1 -1 0 +1 0
Bird +1 -1 -1 +1 0 0 +1

bark

�cat� �dog� �bird�

tail meow

.25

.25
-.25

-.25 .25

.25
-.25

ε=.25

chirp

.25 .25 -.25

-.25

-.25

“Dog” “Bird”

Input Output

Pattern Associator

Tail Bark Meow Chirp �Cat��������Dog�������Bird�

Cat +1 -1 +1 -1 +1 0 0

Dog +1 +1 -1 -1 0 +1 0
Bird +1 -1 -1 +1 0 0 +1

bark

�cat� �dog� �bird�

tail meow

.25

.25
-.25

-.25 .25

.25
-.25

ε=.25

chirp

.25 .25 -.25

-.25

-.25

Tail Bark Meow Chirp �Cat��������Dog�������Bird�

Cat +1 -1 +1 -1 +1 0 0

Dog +1 +1 -1 -1 0 +1 0
Bird +1 -1 -1 +1 0 0 +1

bark

�cat� �dog� �bird�

tail meow

.25

.25
-.25

-.25 .25

.25
-.25

ε=.25

chirp

.25 .25 -.25

-.25

-.25

Tail Bark Meow Chirp �Cat��������Dog�������Bird�

Cat +1 -1 +1 -1 +1 0 0

Dog +1 +1 -1 -1 0 +1 0
Bird +1 -1 -1 +1 0 0 +1

bark

�cat� �dog� �bird�

tail meow

.25

.25
-.25

-.25 .25

.25
-.25

ε=.25

chirp

.25 .25 -.25

-.25

-.25

Tail Bark Meow Chirp �Cat��������Dog�������Bird�

Cat +1 -1 +1 -1 +1 0 0

Dog +1 +1 -1 -1 0 +1 0
Bird +1 -1 -1 +1 0 0 +1

bark

�cat� �dog� �bird�

tail meow

.25

.25
-.25

-.25 .25

.25
-.25

ε=.25

chirp

.25 .25 -.25

-.25

-.25

Tail Bark Meow Chirp �Cat��������Dog�������Bird�

Cat +1 -1 +1 -1 +1 0 0
Dog +1 +1 -1 -1 0 +1 0
Bird +1 -1 -1 +1 0 0 +1
Fox +1 0 0 -1 +.5 +.5 0

Half-way between Cat and Dog Output is blend

bark

�cat� �dog� �bird�

tail meow

.25

.25
-.25

-.25 .25

.25
-.25

ε=.25

chirp

.25 .25 -.25

-.25

-.25

“Dog” “Bird”

Input Output

Auto-associator

• Auto-associator: pattern completion:

Auto-associator

cat

“meow”

tail

• Auto-associator: pattern completion:
– Network that learns associations among parts

given a partial pattern, it can complete the pattern

Auto-associator

cat

“meow”

tail

• Auto-associator: pattern completion:
– Network that learns associations among parts

given a partial pattern, it can complete the pattern

• Pattern associators are really just a special case of “auto-associators”:

Auto-associator

cat

“meow”

tail

tail bark meow chirp “cat” “dog” “bird”tail bark meow chirp “cat” “dog” “bird”

Auto-associator

• Auto-associator: pattern completion:
– Network that learns associations among parts

given a partial pattern, it can complete the pattern

• Pattern associators are really just a special case of “auto-associators”:
– have uni-directional connections from inputs and outputs

some units have been labeled as “input” and
some units have been labeled as “output”

Auto-associator

cat

“meow”

tail

tail bark meow chirp

“cat” “dog” “bird”

tail bark meow chirp “cat” “dog” “bird”

Pattern Associator
Auto-associator

Associative Learning and Memory

• You only know what you know:
– If a test input pattern doesn’t overlap with (is orthogonal to) to all trained patterns

no patterns will become active
(since test pattern is not similar to any of the trained patterns)

Associative Learning and Memory

• You only know what you know:
– If a test input pattern doesn’t overlap with (is orthogonal to) to all trained patterns

no patterns will become active
(since test pattern is not similar to any of the trained patterns)

• Total recall:
– If a test input is similar to one of the trained patterns

and doesn’t overlap with any of the others,
the output will be a scaled version of the output for the one to which it is similar
(scaled by the similarity to that pattern)

Associative Learning and Memory

• You only know what you know:
– If a test input pattern doesn’t overlap with (is orthogonal to) to all trained patterns

no patterns will become active
(since test pattern is not similar to any of the trained patterns)

• Total recall:
– If a test input is similar to one of the trained patterns

and doesn’t overlap with any of the others,
the output will be a scaled version of the output for the one to which it is similar
(scaled by the similarity to that pattern)

• Reconstructive memory:
– If a test input is similar to two or more of the trained patterns

the output will be a blend of the training patterns to which it is similar
(with the contribution of each weighted by the similarity)

Associative Learning and Memory

• You only know what you know:
– If a test input pattern doesn’t overlap with (is orthogonal to) to all trained patterns

no patterns will become active
(since test pattern is not similar to any of the trained patterns)

• Total recall:
– If a test input is similar to one of the trained patterns

and doesn’t overlap with any of the others,
the output will be a scaled version of the output for the one to which it is similar
(scaled by the similarity to that pattern)

• Reconstructive memory:
– If a test input is similar to two or more of the trained patterns

the output will be a blend of the training patterns to which it is similar
(with the contribution of each weighted by the similarity)

• But… correlation is not causation:
– Correlations are not always sufficient to learn

meaningful associations between patterns of activity

Associative Learning and Memory

