Longterm Memory: Distributed Representation and Semantics

- Processing in longterm memory:
 - activation of representations in a semantic network

- Processing in longterm memory:
 - activation of representations in a semantic network

• Processing in longterm memory:

activation of representations in a semantic network

Project for a Scientific Psychology, 1895

• Processing in longterm memory:

- activation of representations in a semantic network
- spread of activation to related items (Quillian, 1967; Collins and Loftus, 1975)

• Processing in longterm memory:

- activation of representations in a semantic network
- spread of activation to related items (Quillian, 1967; Collins and Loftus, 1975)

• Evidence: lexical priming studies...

- Meyer & Schvaneveldt (1973):
 - Present a pair of words in sequence: PRIME.... TARGET

- Present a pair of words in sequence: PRIME.... TARGET
- Observe the prime, respond to target:

- Present a pair of words in sequence: PRIME.... TARGET
- Observe the prime, respond to target:
 - lexical decision task: decide if target is a word (sometimes it is not, e.g. FLURX)

- Present a pair of words in sequence: PRIME.... TARGET
- Observe the prime, respond to target:
 - lexical decision task: decide if target is a word (sometimes it is not, e.g. FLURX)
 - word naming task: just say the target out loud

- Present a pair of words in sequence: PRIME.... TARGET
- Observe the prime, respond to target:
 - lexical decision task: decide if target is a word (sometimes it is not, e.g. FLURX)
 - word naming task: just say the target out loud
- Manipulate relatedness of cue and probe

- Present a pair of words in sequence: PRIME.... TARGET
- Observe the prime, respond to target:
 - lexical decision task: decide if target is a word (sometimes it is not, e.g. FLURX)
 - word naming task: just say the target out loud
- Manipulate relatedness of cue and probe
- Result: faster response if prime is *related* to target: DOCTOR.... NURSE

- Present a pair of words in sequence: PRIME.... TARGET
- Observe the prime, respond to target:
 - lexical decision task: decide if target is a word (sometimes it is not, e.g. FLURX)
 - word naming task: just say the target out loud
- Manipulate relatedness of cue and probe
- Result: faster response if prime is *related* to target: DOCTOR.... NURSE

- Present a pair of words in sequence: PRIME.... TARGET
- Observe the prime, respond to target:
 - lexical decision task: decide if target is a word (sometimes it is not, e.g. FLURX)
 - word naming task: just say the target out loud
- Manipulate relatedness of cue and probe
- Result: faster response if prime is *related* to target: DOCTOR.... NURSE

- Present a pair of words in sequence: PRIME.... TARGET
- Observe the prime, respond to target:
 - lexical decision task: decide if target is a word (sometimes it is not, e.g. FLURX)
 - word naming task: just say the target out loud
- Manipulate relatedness of cue and probe
- Result: faster response if prime is related to target: DOCTOR.... NURSE

slower if prime is *not* related to the target: BUTTER.... NURSE

- Present a pair of words in sequence: PRIME.... TARGET
- Observe the prime, respond to target:
 - lexical decision task: decide if target is a word (sometimes it is not, e.g. FLURX)
 - word naming task: just say the target out loud
- Manipulate relatedness of cue and probe
- Result: faster response if prime is related to target: DOCTOR.... NURSE

slower if prime is *not* related to the target: BUTTER.... NURSE

• Semantic priming

- subjects respond faster to a word following a related vs. unrelated word

• Semantic priming

- subjects respond faster to a word following a related vs. unrelated word
- mechanism:

activation spreads from activated node to related nodes pre-activated nodes are *primed*, facilitating processing

• Semantic priming

- subjects respond faster to a word following a related vs. unrelated word
- mechanism:

activation spreads from activated node to related nodes pre-activated nodes are *primed*, facilitating processing

• Frequency effects:

- faster to say "robin" than "emu"

• Semantic priming

- subjects respond faster to a word following a related vs. unrelated word
- mechanism:

activation spreads from activated node to related nodes pre-activated nodes are *primed*, facilitating processing

Frequency effects: faster to say "robin" than "emu" mechanism: base level of activation is different for different nodes

robin

• Semantic priming

- subjects respond faster to a word following a related vs. unrelated word
- mechanism:

activation spreads from activated node to related nodes pre-activated nodes are *primed*, facilitating processing

chicken

- "bird" primes "robin" more than it does "chicken"

• Semantic priming

- subjects respond faster to a word following a related vs. unrelated word
- mechanism:

activation spreads from activated node to related nodes pre-activated nodes are *primed*, facilitating processing

- "bird" primes "robin" more than it does "chicken"
- mechanism:

typical members of a category *(prototypes)* are more centrally placed than others so they are more likely to get activated, and to get more activated than others...

chicken

• Successes

- explicitly specify structure and mechanisms of long term (semantic) memory
- can account for much relevant data

Successes

- explicitly specify structure and mechanisms of long term (semantic) memory
- can account for much relevant data

• Problems:

- don't specify how the structure (nodes and links) got there:
 - presumably experience and learning (we'll get to that)

Successes

- explicitly specify structure and mechanisms of long term (semantic) memory
- can account for much relevant data

• Problems:

- don't specify how the structure (nodes and links) got there:
 - presumably experience and learning (we'll get to that)
 - but what about nodes for things that were never experienced?

Successes

- explicitly specify structure and mechanisms of long term (semantic) memory
- can account for much relevant data

• Problems:

- don't specify how the structure (nodes and links) got there:
 - presumably experience and learning (we'll get to that)
 - but what about nodes for things that were never experienced?
 - Example: people respond to faster to prototypes they've never seen...

Posner & Keele Demo

- You will see dot patterns
- Judge whether each belongs to category A or category B
- Guess at first, but will get better with feedback...

That was Category B.

Now, judge whether or not you have seen the following dot patterns...

Old or New

10

Category A Members

Category B Members

• How do we represent both individual instances and categories?

• How do we represent both individual instances and categories?

- collection of exemplars? (e.g., Atkinson & Shiffrin, 1968)

• How do we represent both individual instances and categories?

- collection of exemplars? (e.g., Atkinson & Shiffrin, 1968)
- abstraction of a prototype? (Rosch, 1983)

• Key features of the model:

- *Recurrent* (attractor) network

$$i_i = \sum a_i w_{ij}$$
$$net_i = i_i + e_i$$

Model of Distributed Memory (MDM)

McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

• Key features of the model:

- *Recurrent* (attractor) network

 $i_i = \sum a_i w_{ij}$ $net_i = i_i + e$

 Trained using Rescorla-Wagner (delta) rule to represent input as a pattern of activity over units in network (auto-associator)

 $\Delta w_{ij} = \eta (e_i - i_i) \ a_j$

(constraint: target value of each unit must be predictable from a linear combination of the other units, since no hidden units)

Model of Distributed Memory (MDM)

McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

• Key features of the model:

- *Recurrent* (attractor) network

$$i_i = \sum a_i w_{ij}$$
$$net_i = i_i + e$$

 Trained using Rescorla-Wagner (delta) rule to represent input as a pattern of activity over units in network (auto-associator)

 $\Delta w_{ij} = \eta (e_i - i_i) \ a_j$

(constraint: target value of each unit must be predictable from a linear combination of the other units, since no hidden units)

- *Non-linear* (sigmoid) activation function

 $\begin{aligned} \Delta a_i &= a_i + net_i \cdot (a_{max} - a_i) \text{ if } net_i > 0\\ \Delta a_i &= a_i - net_i \cdot (a_i - a_{min}) \text{ if } net_i \le 0 \end{aligned}$

Model of Distributed Memory (MDM)

McClelland & Rumelhart (1985, JEP:General, 114(2), 159-188)

• Key features of the model:

- *Recurrent* (attractor) network

$$i_i = \sum a_i w_{ij}$$
$$net_i = i_i + e$$

 Trained using Rescorla-Wagner (delta) rule to represent input as a pattern of activity over units in network (auto-associator)

 $\Delta w_{ij} = \eta (e_i - i_i) \ a_j$

(constraint: target value of each unit must be predictable from a linear combination of the other units, since no hidden units)

- *Non-linear* (sigmoid) activation function $\Delta a_i = a_i + net_i \cdot (a_{max} - a_i) \text{ if } net_i > 0$ $\Delta a_i = a_i - net_i \cdot (a_i - a_{min}) \text{ if } net_i \le 0$

- Exponential weight decay during learning (emphasizes recent experiences)

			N	ame	Pat	tern									Vi	sual	Pat	tern						
Prototype (never shown)	+	-	+	-	+	-	+	-	+	-	+	+	-	-	-	-	+	+	+	+	+	-	-	-
Pattern 1	+	-	-	+	+	+	-	+	+	(+)	+	+	-	-	-	-	+	+	+	+	+	-	-	-
Pattern 2	+	-	-	-	+	-	-	_	+	-	(-) +	-	-	-	_	+	+	+	+	+	(+	-) -	-

• Training patterns made up of two parts:

	1.3		N	ame	Pat	tern			1						Vi	sual	Pat	tern						
Prototype (never shown)	+	-	+	-	+	-	+	-	+	-	+	+	-	-	-	-	+	+	+	+	+	-	-	_
Pattern 1	+	-	-	+	+	+	-	+	+	(+)) +	+	-	-	-	-	+	+	+	+	+	-	-	-
Pattern 2	+	-	-	-	+	-	-	-	+	-	(-) +	-	-	-	-	+	+	+	+	+	(+) –	-

- Training patterns made up of two parts:
 - name part: random vectors (e.g, dog names)

			Na	ame	Patt	ern							1	1	Vis	ual	Patt	ern							
Prototype (never shown)	+	-	+	-	+	-	+	-	+	-	+	+	-	-	-	-	+	+	+	+	+	-	-	-	
Pattern 1	+	-	-	+	+	+	-	+	+	(+)) +	+	-	-	-	-	+	+	+	+	+	-	-	-	
Pattern 2	+	_	-	-	+	-	-		+	-	(-) +	-	-	-	-	+	+	+	+	+	(+) –	-	
Wea	kl	V	י כ נ	or	re	le	at	e (

• Training patterns made up of two parts:

- name part: random vectors (e.g, dog names)
- visual part: variants of a prototype (e.g., different dogs) (bit flipped in each element with p = 0.2)

			Na	ame	Pat	tern									Vi	sual	Pat	tern						
Prototype (never shown)	+	-	+	-	+	-	+	-	+	-	+	+	-	-	-	-	+	+	+	+	+	-	-	-
Pattern 1	+	-	-	+	+	+	-	+	+	(+))+	+	-	-	-	-	+	+	+	+	+	-	-	-
Pattern 2	+	-	-	-	+	-	-	_	+	-	(-) +	-	-	-	-	+	+	+	+	+	(+	-) –	

Strongly Correlated

• Training patterns made up of two parts:

- name part: random vectors (e.g, dog names)
- visual part: variants of a prototype (e.g., different dogs) (bit flipped in each element with p = 0.2)

			Na	ame	Pat	tern									Vi	sual	Pat	tern						
Prototype (never shown)	+	-	+	-	+	-	+	-	+	-	+	+	-	-	-	-	+	+	+	+	+	-	-	-
Pattern 1	+	-	_	+	+	+	-	+	+	(+)	+	+	-	-	-	-	+	+	+	+	+	-	-	-
Pattern 2	+	-	-	-	+	-	-	_	+	-	() +	-	-	-	-	+	+	+	+	+	(+	-) –	-

- Model trained on 50 such patterns

• Training patterns made up of two parts:

- name part: random vectors (e.g, dog names)
- visual part: variants of a prototype (e.g., different dogs) (bit flipped in each element with p = 0.2)

			N	ame	Pat	tern								V	isual	Pat	tern						
Prototype (never shown)	+	-	+	-	+	-	+	-	+		+ +	-	_	-	-	+	+	+	+	+	-	-	-
Pattern 1	+	-	-	+	+	+	-	+	+	(+) +	- +	-	_	-	-	+	+	+	+	+	-	-	-
Pattern 2	+	-	-	-	+	-	-	-	+	- (-) -			_	-	+	+	+	+	+	(+	-) -	-

- Model trained on 50 such patterns

- Learns to recognize the prototype even though it was never explicitly presented
 - Responds to prototype more strongly than any given exemplar
 - Doesn't retrieve individual names very well, although it can remember the most recent ones

- Can learn (and keep separate) multiple, non-orthogonal prototypes: *implicit categorization*
 - increasing similarity produces increased confusability *initially*, but resolved by further *training*

			Nar	me	Patt	ern										Vi	sual	Pat	tern						
Pattern for dog prototype	+	-	+	-	+	-	+	-		+		+	+	-	-	-	-	+	+	+	+	+	-	-	-
Response to dog name																									
Response to dog visual pattern																									
Pattern for cat prototype	+	+	-	-	+	+	-	-		+	-	+	+	-	-	-	-	+	-	+	-	+	+	-	+
Response to cat name																									
Response to cat visual pattern																									
Pattern for bagel prototype	+	-	-	+	+	-	-	+		+	+		+	-	+	+	-	+	-	-	+	+	+	+	-
Response to bagel name																									
Response to bagel visual pattern																									

- Can learn (and keep separate) multiple, non-orthogonal prototypes: *implicit categorization*
 - increasing similarity produces increased confusability initially, but resolved by further training

- Can learn (and keep separate) multiple, non-orthogonal prototypes: *implicit categorization*
 - increasing similarity produces increased confusability initially, but resolved by further training

• Train on two *specific* exemplars with names, and many other random distortions with category label

• Train on two *specific* exemplars with names, and many other random distortions with category label

Train on two specific exemplars with names, and many other random distortions with category label

Train on two specific exemplars with names, and many other random distortions with category label

- Can retrieve:
 - features of the labeled exemplars

Train on two specific exemplars with names, and many other random distortions with category label

- Can retrieve:
 - features of the labeled exemplars
 - the names of each exemplar from each features

Train on two specific exemplars with names, and many other random distortions with category label

- Can retrieve:
 - features of the labeled exemplars
 - the names of each exemplar from each features

- Retrieves prototype for all others

RESUI	LTS OF TESTS WITH PROTOTYPH	E AND SPECIFIC EXEMPLAR PATTERNS	
	Name Pattern	Visual Pattern	
Pattern for dog prototype	+ - + - + - + -	+ - + + + + + + +	prototypical
Response to prototype name		+4 -5 +3 +3 -4 -3 -3 -3 +3 +3 +4 +3 +4 -3 +4 -4	eyes, tail and e
Response to prototype visual pattern	+5 -4 +4 -4 +5 -4 +4 -4		
Pattern for Fido exemplar	+ +	+ - (-) + + + + + + (+)	
Response to Fido name		+4 -4 -4 +4 -4 -4 -4 -4 +4 +4 +4 +4 +4 +4 -4 -4 -4	
Response to Fido visual pattern	+5 -5 -3 -5 +4 -5 -3 -5		
Pattern for Rover exemplar	+ + + + - +	+ (+) + + + + + + +	
Response to Rover name		+4 +5 +4 +4 -4 -4 -4 -4 +4 +4 +4 +4 +4 -4 -4 -4 -4	
Response to Rover visual pattern	+4 -4 -2 +4 +4 +4 -2 +4		

 The model can extract the prototype (central tendency) from a set of patterns (series of exemplars)

 It can do this for several different prototypes using the same set of connections

• It does not depend on being presented with labels

Representations of specific distinguishable instances can co-exist with knowledge of the prototype

• Fits empirical data:

Both! exemplars prototype penguin bird sparrow hawl sings winas robin chicken flies
best (fastest) response to prototype

– priming effects (identity > similarity > none)

- interaction of priming and familiarity effects (priming greater for unfamiliar than familiar items)

• So far, we've focused on processing:

•	1	+		,				,	-0-	~	+
-	,	,	+	,	,	,	,	,	-0-	~	₽,
-	,	,	,	-	,	,	,	,	-0-	1	
-	,	,	,	,	-	2	,	,	-0-		
-	,	,	,	,	,		1	1	-0-	1	,
-	,	,	,	2	2	2	-	,	-0-	111	-
-	,		2	,	,		,	t	-0	ttt	,

• So far, we've focused on processing:

- dynamics of encoding and representation information (≈ weather)

• So far, we've focused on processing:

– dynamics of encoding and representation information (~ weather)

• What about learning?

- how is the landscape shaped? (~geology)
- dynamics of acquisition

Simple Pattern Associator

• "Association":

 Network that learns associations (correlations) between input and output patterns; given an input, it can generate the output...

		+1	- 1	- 1	+1			
]	- 1	25	+.25	+.25	25			
Cat	- 1	25	+.25	+.25	25			
•a.	+1	+.25	25	25	+.25			
	+1	+.25	25	25	+.25			
	1							

Weight matrix

Mathemagic!

(+1	- 1	- 1	+1		
}	-1	+1	- 1	+1	Cat	Dog
	0	0	+.5	5	-1	- 1
	5	+.5	0	0	- 1	+1
	0	0	5	+.5	+1	+1
	+.5	5	0	0	+1	- 1

	Input				Output			
ε=.25	Tail	Bark	Meow	Chirp	"Cat"	"	"Bird"	
Cat	+1	-1	+1	-1	+1	0	0	
Dog	+1	+1	-1	-1	0	+1	0	
Bird	+1	-1	-1	+1	0	0	+1	

	Input				Output			
ε=.25	Tail	Bark	Meow	Chirp	"Cat"	" "Dog"	"Bird"	
Cat	+1	-1	+1	-1	+1	0	0	
Dog	+1	+1	-1	-1	0	+1	0	
Bird	+1	-1	-1	+1	0	0	+1	

Input				Output			
Tail	Bark	Meow	Chirp	"Cat"	' "Dog"	"Bird"	
+1	-1	+1	-1	+1	0	0	
+1	+1	-1	-1	0	+1	0	
+1	-1	-1	+1	0	0	+1	
	Tail +1 +1 +1	Tail Bark +1 -1 +1 +1 +1 -1	Tail Bark Meow +1 -1 +1 +1 +1 -1 +1 +1 -1 +1 -1 -1	Tail Bark Meow Chirp +1 -1 +1 -1 +1 +1 -1 -1 +1 +1 -1 +1 +1 -1 +1 +1	Tail Bark Meow Chirp "Cat" +1 -1 +1 -1 +1 +1 +1 -1 -1 0 +1 -1 -1 +1 0	Tail Bark Meow Chirp "Cat" "Dog" +1 -1 +1 -1 +1 0 +1 +1 -1 -1 0 +1 +1 -1 -1 +1 0 0	

	Input				Output			
ε=.25	Tail	Bark	Meow	Chirp	"Cat"	' "Dog"	"Bird"	
Cat	+1	-1	+1	-1	+1	0	0	
Dog	+1	+1	-1	-1	0	+1	0	
Bird	+1	-1	-1	+1	0	0	+1	

	Input					Output				
ε=.25	Tail	Bark	Meow	Chirp	"Cat"	"Dog"	"Bird"			
Cat	+1	-1	+1	-1	+1	0	0			
Dog	+1	+1	-1	-1	0	+1	0			
Bird	+1	-1	-1	+1	0	0	+1			
Fox	+1	0	0	-1	+.5	+.5	0			
	Half-way between Cat and Dog				Out	put is b	lend			

• Auto-associator: pattern completion:

• Auto-associator: pattern completion:

 Network that learns associations among parts given a partial pattern, it can complete the pattern

• Auto-associator: pattern completion:

 Network that learns associations among parts given a partial pattern, it can complete the pattern

• Pattern associators are really just a special case of "auto-associators":

• Auto-associator: pattern completion:

 Network that learns associations among parts given a partial pattern, it can complete the pattern

"meow" cat

• Pattern associators are really just a special case of "auto-associators":

 have uni-directional connections from inputs and outputs some units have been labeled as "input" and some units have been labeled as "output"

• You only know what you know:

 If a test input pattern doesn't overlap with (is orthogonal to) to all trained patterns no patterns will become active (since test pattern is not similar to any of the trained patterns)

• You only know what you know:

 If a test input pattern doesn't overlap with (is orthogonal to) to all trained patterns no patterns will become active (since test pattern is not similar to any of the trained patterns)

• Total recall:

 If a test input is similar to one of the trained patterns and doesn't overlap with any of the others, the output will be a scaled version of the output for the one to which it is similar (scaled by the similarity to that pattern)

• You only know what you know:

 If a test input pattern doesn't overlap with (is orthogonal to) to all trained patterns no patterns will become active (since test pattern is not similar to any of the trained patterns)

• Total recall:

 If a test input is similar to one of the trained patterns and doesn't overlap with any of the others, the output will be a scaled version of the output for the one to which it is similar (scaled by the similarity to that pattern)

• Reconstructive memory:

 If a test input is similar to two or more of the trained patterns the output will be a blend of the training patterns to which it is similar (with the contribution of each weighted by the similarity)

• You only know what you know:

 If a test input pattern doesn't overlap with (is orthogonal to) to all trained patterns no patterns will become active (since test pattern is not similar to any of the trained patterns)

• Total recall:

 If a test input is similar to one of the trained patterns and doesn't overlap with any of the others, the output will be a scaled version of the output for the one to which it is similar (scaled by the similarity to that pattern)

• Reconstructive memory:

 If a test input is similar to two or more of the trained patterns the output will be a blend of the training patterns to which it is similar (with the contribution of each weighted by the similarity)

• But... correlation is not causation:

 Correlations are not always sufficient to learn meaningful associations between patterns of activity