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Longterm (Semantic) Memory

• Processing in longterm memory:
– activation of representations in a semantic network
– spread of activation to related items 

          (Quillian, 1967; Collins and Loftus, 1975)

• Evidence:  lexical priming studies…
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Additional Empirical Support
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• Semantic priming
– subjects respond faster to a word following a related vs. unrelated word
– mechanism:

activation spreads from activated node to related nodes
pre-activated nodes are primed, facilitating processing

• Frequency effects:
– faster to say “robin” than “emu”
– mechanism:

base level of activation is different for different nodes

• Typicality effects:
– “bird” primes “robin” more than it does “chicken”
– mechanism:

typical members of a category (prototypes) are more centrally placed than others 
so they are more likely to get activated, and to get more activated than others…



Success and Failures of Simple Spreading Activation Models



Success and Failures of Simple Spreading Activation Models

• Successes
– explicitly specify structure and mechanisms of long term (semantic) memory
– can account for much relevant data



Success and Failures of Simple Spreading Activation Models

• Successes
– explicitly specify structure and mechanisms of long term (semantic) memory
– can account for much relevant data

• Problems:
– don’t specify how the structure (nodes and links) got there:

– presumably experience and learning (we’ll get to that)



Success and Failures of Simple Spreading Activation Models

• Successes
– explicitly specify structure and mechanisms of long term (semantic) memory
– can account for much relevant data

• Problems:
– don’t specify how the structure (nodes and links) got there:

– presumably experience and learning (we’ll get to that)
– but what about nodes for things that were never experienced? 



Success and Failures of Simple Spreading Activation Models

• Successes
– explicitly specify structure and mechanisms of long term (semantic) memory
– can account for much relevant data

• Problems:
– don’t specify how the structure (nodes and links) got there:

– presumably experience and learning (we’ll get to that)
– but what about nodes for things that were never experienced? 

– Example: people respond to faster to prototypes they’ve never seen…
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• You will see dot patterns 

• Judge whether each belongs to 
category A or category B 

• Guess at first,  
but will get better with feedback…
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Now, judge whether or not  
you have seen the following dot patterns…



Old     or     New

1



2

Old     or     New



3

Old     or     New



4

Old     or     New



5

Old     or     New



6

Old     or     New



7

Old     or     New



8

Old     or     New



9

Old     or     New



10

Old     or     New



Category A Members

PROTOTYPE-A
6th stimulus

low 
distortion

high 
distortion



Category B Members

low 
distortion

high 
distortion

PROTOTYPE-B
9th stimulus



ca
lle

d 
 O

LD
  

0

22.5

45

67.5

90

pattern type

proto low 
distortion

high 
distortion



ca
lle

d 
 O

LD
  

0

22.5

45

67.5

90

pattern type

proto low 
distortion

high 
distortion

ca
lle

d 
 O

LD
  

0

0.75

1.5

2.25

3

pattern type
proto old new



Exemplars vs. Prototypes

bird

flies

robin
wings

sings

penguin

chicken

sparrow

hawk



• How do we represent both individual instances and categories?

Exemplars vs. Prototypes

bird

flies

robin
wings

sings

penguin

chicken

sparrow

hawk



• How do we represent both individual instances and categories?
– collection of exemplars? (e.g., Atkinson & Shiffrin, 1968) 

Exemplars vs. Prototypes

bird

flies

robin
wings

sings

penguin

chicken

sparrow

hawk

exemplars?



• How do we represent both individual instances and categories?
– collection of exemplars? (e.g., Atkinson & Shiffrin, 1968) 
– abstraction of a prototype? (Rosch, 1983)
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• Key features of the model:

- Recurrent (attractor) network
ii = Σaiwij
neti = ii + ei

- Trained using Rescorla-Wagner (delta) rule 
to represent input as a pattern of activity 
over units in network (auto-associator)

Δwij = η(ei − ii) aj

(constraint:  target value of each unit 
must be predictable from a linear combination 
of the other units, since no hidden units)

- Non-linear (sigmoid) activation function  
       

      
Δai = ai + neti ⋅ (amax − ai) if neti > 0
Δai = ai − neti ⋅ (ai − amin) if neti ≤ 0

- Exponential weight decay during learning (emphasizes recent experiences)
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Prototype learning

• Training patterns made up of two parts: 
– name part:   random vectors (e.g, dog names) 
– visual part:  variants of a prototype (e.g., different dogs) 

                      (bit flipped in each element with  ) 

– Model trained on 50 such patterns 

• Learns to recognize the prototype  
  even though it was never explicitly presented 

– Responds to prototype more strongly than any given exemplar 
– Doesn’t retrieve individual names very well, 

although it can remember the most recent ones

p = 0.2

Prototype (never shown)

Pattern 1 

Pattern 2



Prototype learning
• Can learn (and keep separate) multiple, non-orthogonal 

prototypes: implicit categorization 
– increasing similarity produces increased confusability initially,  

but resolved by further training 



Prototype learning
• Can learn (and keep separate) multiple, non-orthogonal 

prototypes: implicit categorization 
– increasing similarity produces increased confusability initially,  

but resolved by further training 



Prototype learning
• Can learn (and keep separate) multiple, non-orthogonal 

prototypes: implicit categorization 
– increasing similarity produces increased confusability initially,  

but resolved by further training 



Co-existence of Prototype and Exemplars

♦

♦



• Train on two specific exemplars with names,  
and many other random distortions with category label

Co-existence of Prototype and Exemplars

♦

♦



• Train on two specific exemplars with names,  
and many other random distortions with category label

Co-existence of Prototype and Exemplars

funny eyes and tail♦

♦



• Train on two specific exemplars with names,  
and many other random distortions with category label

Co-existence of Prototype and Exemplars

funny eyes and tail

funny ears

♦

♦



• Train on two specific exemplars with names,  
and many other random distortions with category label

– Can retrieve:
♦ features of the labeled exemplars

Co-existence of Prototype and Exemplars

funny eyes and tail

funny ears

♦

♦



• Train on two specific exemplars with names,  
and many other random distortions with category label

– Can retrieve:
♦ features of the labeled exemplars
♦ the names of each exemplar from each features

Co-existence of Prototype and Exemplars

funny eyes and tail

funny ears

♦

♦



• Train on two specific exemplars with names,  
and many other random distortions with category label

– Can retrieve:
♦ features of the labeled exemplars
♦ the names of each exemplar from each features

– Retrieves prototype for all others

Co-existence of Prototype and Exemplars

funny eyes and tail

funny ears

prototypical 
eyes, tail and ears

♦

♦
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• Fits empirical data:
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• It can do this for several different prototypes  
using the same set of connections

• It does not depend on being presented with labels
• Representations of specific distinguishable instances  

can co-exist with knowledge of the prototype

• Fits empirical data:
– best (fastest) response to prototype
– fastest and most accurate response to familiar items
– priming effects (identity > similarity > none)
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• The model can extract the prototype (central tendency)  
from a set of patterns (series of exemplars)

• It can do this for several different prototypes  
using the same set of connections

• It does not depend on being presented with labels
• Representations of specific distinguishable instances  

can co-exist with knowledge of the prototype

• Fits empirical data:
– best (fastest) response to prototype
– fastest and most accurate response to familiar items
– priming effects (identity > similarity > none)
– interaction of priming and familiarity effects 

(priming greater for unfamiliar than familiar items)
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Learning

• So far, we’ve focused on processing:
– dynamics of encoding and representation information (≈ weather)

• What about learning?
– how is the landscape shaped? (≈geology)
– dynamics of acquisition

Network State  
(based pattern  

of activity

Energy

high
Energy Landscape  

(“state space”)

low





Simple Pattern Associator
• “Association”: 

– Network that learns associations (correlations) between input and output patterns; 
given an input, it can generate the output…
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Associations:  weight matrix

Dog

- 1 +1 - 1 +1

+.25 -.25 +.25 -.25 - 1

-.25 +.25 -.25 +.25 +1

-.25 +.25 -.25 +.25 +1

+.25 -.25 +.25 -.25 - 1

Assoc

Weight matrix 

Weight matrix 

Dog

- 1 +1 - 1 +1

+.25 -.25 +.25 -.25 - 1

-.25 +.25 -.25 +.25 +1

-.25 +.25 -.25 +.25 +1

+.25 -.25 +.25 -.25 - 1

Assoc

Weight matrix 

Weight matrix 

+1 -1 - 1 +1

-.25 +.25 +.25 -.25 - 1

-.25 +.25 +.25 -.25 - 1

+.25 -.25 -.25 +.25 +1

+.25 -.25 -.25 +.25 +1

- 1 +1 - 1 +1

Visual Pattern

Speech
Pattern

Weight matrix 

Assoc.
Cat

+1 -1 - 1 +1

-.25 +.25 +.25 -.25 - 1

-.25 +.25 +.25 -.25 - 1

+.25 -.25 -.25 +.25 +1

+.25 -.25 -.25 +.25 +1

- 1 +1 - 1 +1

Visual Pattern

Speech
Pattern

Weight matrix 

Assoc.
Cat

Pattern Associator

A +1

B - 1

- 1

+1

- 1

- 1

+1

+1
A B

0 0 +.5 -.5 - 1 - 1

-.5 +.5 0 0 - 1 +1

0 0 -.5 +.5 +1 +1

+.5 -.5 0 0 +1 -1

Cat  Dog

A +1

B - 1

- 1

+1

- 1

- 1

+1

+1
A B

0 0 +.5 -.5 - 1 - 1

-.5 +.5 0 0 - 1 +1

0 0 -.5 +.5 +1 +1

+.5 -.5 0 0 +1 -1

A +1

B - 1

- 1

+1

- 1

- 1

+1

+1
A B

0 0 +.5 -.5 - 1 - 1

-.5 +.5 0 0 - 1 +1

0 0 -.5 +.5 +1 +1

+.5 -.5 0 0 +1 -1

Mathemagic!
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bark 

�cat� �dog� �bird� 

tail meow 

.25 

.25 
-.25 

-.25 .25 

.25 
-.25 

ε=.25

chirp 

.25 .25 -.25 

-.25 

-.25 

“Dog”    “Bird”

Input Output
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Half-way between Cat and Dog    Output is blend
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• Auto-associator: pattern completion:
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given a partial pattern, it can complete the pattern

Auto-associator

cat

“meow”

tail



• Auto-associator: pattern completion:
– Network that learns associations among parts 

given a partial pattern, it can complete the pattern

• Pattern associators are really just a special case of “auto-associators”:

Auto-associator

cat

“meow”

tail

tail bark meow chirp “cat” “dog” “bird”tail bark meow chirp “cat” “dog” “bird”
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• Auto-associator: pattern completion:
– Network that learns associations among parts 

given a partial pattern, it can complete the pattern

• Pattern associators are really just a special case of “auto-associators”:
– have uni-directional connections from inputs and outputs 

some units have been labeled as “input” and 
some units have been labeled as “output”

Auto-associator

cat

“meow”

tail

tail bark meow chirp

“cat” “dog” “bird”

tail bark meow chirp “cat” “dog” “bird”

Pattern Associator
Auto-associator
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• You only know what you know:
– If a test input pattern doesn’t overlap with (is orthogonal to) to all trained patterns 

no patterns will become active  
(since test pattern is not similar to any of the trained patterns)
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• You only know what you know:
– If a test input pattern doesn’t overlap with (is orthogonal to) to all trained patterns 

no patterns will become active  
(since test pattern is not similar to any of the trained patterns)

• Total recall:
– If a test input is similar to one of the trained patterns  

and doesn’t overlap with any of the others, 
the output will be a scaled version of the output for the one to which it is similar 
(scaled by the similarity to that pattern)

• Reconstructive memory:
– If a test input is similar to two or more of the trained patterns  

the output will be a blend of the training patterns to which it is similar 
(with the contribution of each weighted by the similarity)

• But… correlation is not causation:
– Correlations are not always sufficient to learn  

meaningful associations between patterns of activity

Associative Learning and Memory


