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1 Learning and Connectionist
Representations

David E. Rumelhart and Peter M. Todd

1.1 INTRODUCTION: REPRESENTATIONAL TOOLS IN
CONNECTIONIST NETWORKS

Connectionist modeling is undergoing a renaissance. As the merits of brain-
style computation (Rumelhart 1990) have become apparent, a bewildering
variety of connectionist applications has cropped up throughout the cognitive
sciences and engineering (for instance, see Lippmann, Moody, and Touretzky
1991). One of the central issues in all of these models is the representation of
knowledge in the connectionist network. Getting a coherent picture of “what
goes on” inside a network as it develops, manipulates, and alters the represen-
tation of the knowledge it processes is vital for our understanding of connec-
tionist information processing, and likely for our understanding of the minds
these systems model. In this chapter we explore the sorts of representations
that connectionist systems employ and the crucial role learning plays in con-
structing them.

The representational materials that connectionist systems have to work
with are remarkably simple. A connectionist network can basically be de-
scribed as a collection of simple processing units, each of which has a current
state of activation, linked together by a set of connections, each of which has a
current strength or weight (see fig. 1.1). The weighted connections modify the
activation values that they pass among the processing units. One set of units
is typically assigned the special role of receiving inputs from the “external
world”; these input units have their activation values set (at least in part) by an
external stimulus. Another set of units is usually designated as the outputs of
the system; the activation values of these output units is monitored as the final
result of processing by the network. Units that fall into neither of these classes
are often called hidden units, and they play a key role in the representation of
knowledge in the network. We can further abstract the system’s description to
a simple vector A[i] of activation values of all the units in the network, and a
matrix Wi, j] of the weights on the connections between units in the network.
From this standpoint, there are now basically just two representational formats
in which information is held in a connectionist network.

The first is the overall pattern of activation, A[i], across all the units of the
network. This pattern of activation corresponds to the state of processing of
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Figure 1.1 Generalized structure of a connectionist network, showing the input, hidden, and
output processing units (e.g., i and j) and weighted interconnections (e.g., Wij).

the system at any point in time and determines what information is currently
being represented and acted on by the network. It is important to note that
this representational format achieves its meaning not through its internal
structure, but through its relationship to the structure and meaning of the
inputs and outputs of the system. While we usually impose a semantic inter-
pretation on the network’s inputs and outputs, the network is typically under
no constraints to develop internal representations that we can comprehend
and instead will come up with whatever best fits the task (i.e., the input-output
mapping) at hand. Thus there may be no simple interpretation of the network’s
overall pattern of activation in terms easily understood by a human observer.
The meaning of the pattern is rather determined by what causes it and what it
causes (i.e., the network’s inputs and outputs, respectively).

The second representational format in a connectionist system is the pattern
of connectivity in the network, that is, the matrix WIi, j] of connection strengths
among the units of the network. This pattern is even more difficult to interpret
than the pattern of activation in the network. Yet the pattern of connectivity
is, in a sense, the more critical representational tool in connectionist networks,
since it corresponds to the current state of knowledge of the system. The
knowledge stored in the network’s connectivity determines the effects of the
inputs on the system’s overall pattern of activation, and the effects of that
activation on the behavior and outputs of the system as a whole. Thus, the
network’s pattern of activation can be thought of as simply a consequence of
the pattern of connectivity of the system. As we will see, learning serves to
modify the connection strengths in the network—its knowledge—so that it
will produce the proper activations (particularly at the outputs) in response
to various inputs—its processing.

These connectionist representational tools may seem at first unduly weak
when compared to the formal logic predicates, semantic networks, frames and
scripts, and other relatively sophisticated schemes for representing knowledge
developed over the years in artificial intelligence (AI) and cognitive science
(cf. Rumelhart and Norman 1988, Brachman and Levesque 1985). But there are
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in fact great advantages inherent in these simpler representational devices.
Before turning to a detailed discussion of connectionist representation meth-
ods, it is useful to gain a historical perspective on this issue, by looking
briefly at the history of representational systems and the (negative) correlation
between interest in learning systems and interest in complex representation
schemes. Many early Al systems, such as Oliver Selfridge’s Pandemonium
model of pattern recognition (Selfridge 1959), Frank Rosenblatt’s perceptron
model (Rosenblatt 1962), and the checkers-playing system of Arthur Samuel
(Samuel 1959), had a strong focus on learning but a relatively weak and
simple representational format. As interest in more sophisticated representa-
tion schemes grew, interest in learning per se correspondingly diminished. The
idea was roughly that if we didn't know how the information was ultimately
to be represented, we couldn’t know what exactly should be learned in the first
place. This view appears to have dominated most Al research during the
1970s.

With the 1980s, however, came some change of heart. Many researchers
have recently developed increasingly simplified representational systems for
which relatively simple learning procedures can be defined. One example of
such work is the Soar system developed by Allen Newell and his colleagues
(Newell 1990). They dropped many of the most complicated aspects of
1970s-era representation schemes and retained only a rather streamlined repre-
sentational system, further enabling them to develop appropriate learning
rules for the system. The connectionist paradigm goes one step further in
simplifying its representational system and focusing even more on learning as
a mechanism for developing representations. Given the large numbers of units
and connections in a typical network, it is virtually impossible to “hand-wire”
a connectionist system capable of very sophisticated behavior. This results in
an increasing dependence on learning rules and mechanisms to “wire up”
networks, and thereby to determine the details of connectionist representa-
tional formats. In the remainder of this chapter, we will focus on the distinc-
tions made among the classes of such representations, the reasons and mecha-
nisms for learning them, and some of the examples of their usefulness in
connectionist systems.

1.2 DISTRIBUTED VERSUS LOCALIST REPRESENTATIONS

Perhaps the simplest representational scheme within the connectionist frame-
work is the localist representation system (cf. Feldman and Ballard 1982). In this
case, each unit in a network corresponds to a single concept. This one-
concept—one-unit representational system has the advantage of simplicity and
clarity. First of all, it is easy to see how the units should connect to one
another—"hand-wiring” of localist networks is little problem. Furthermore,
when a set of concepts is to be represented, we simply turn on each of the
units corresponding to those individual concepts. McClelland and Rumelhart
employed such a localist scheme in a word perception model designed to
account for the word-superiority effect, the phenomenon in which letters are
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Figure 1.2 Example of a connectionist network using localist representations for word percep-
tion from letters and their subfeatures.

more easily recognized when presented in the context of normal words than
in random letter strings (McClelland and Rumelhart 1981; Rumelhart and
McClelland 1982). As seen in figure 1.2, this network had three sets of
interconnected localist units: features, letters, and words. Connecting the units
in this network was quite straightforward. Visual feature units were connected
to the letters that contained them (e.g., vertical and horizontal bar detecting
units were connected to the “T” letter unit), and letter units were similarly
connected to the words in which they were found (e.g., “T” and “R” were
connected to the word unit representing “CART”). Very useful results were
obtained from this relatively simple model; but, as is typical of localist systems,
the representations it used were all predetermined and of little interest com-
pared to its processing behavior.

An alternative and rather more powerful representational system is the
distributed representation format (described in detail in Hinton, McClelland,
and Rumelhart 1986). In this case, a concept is represented not by the activa-
tion of a single unit, but rather by a pattern of activation over several units at
once. Thus, each concept incoporates many units, and each unit participates in
the representation of many concepts. It is useful to think of the individual
units as representing what Hinton calls microfeatures (Hinton, McClelland, and
Rumelhart 1986). A particular concept, then, is represented by a particular
pattern of microfeatures. This leads to a natural measure of similarity between
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concepts: two concepts are similar to the extent that they share the same set
of microfeatures. The key role of similarity as a fundamental processing
strategy makes distributed connectionist systems unique, as we will see in the
next section.

Because learning in a distributed-representation network occurs as modifica-
tion of connections among microfeatures rather than among concepts directly,
generalization and transfer of learning between concepts is inescapable. In-
creasing or decreasing connection strengths among the microfeatures of one
concept inevitably affects the representation—and thus the meaning and
consequences—of other concepts. This transfer of learning or generalization
process can be both good and bad: good in that similar concepts should
generally be responded to similarly, but bad, however, when important dis-
tinctions must be made between concepts that are very similar. In the former
case, the system must learn which common microfeatures similar concepts
share, while in the latter case, it must learn distinctive microfeatures that
differentiate otherwise similar concepts. Learning is thus a key means of
discovering relevant representations in both cases.

Another important aspect of distributed representations is their ability to
represent a very large number of potential concepts in terms of a finite number
of representational elements. If we use localist representations, with one unit
corresponding to one concept, then with n units we have a vocabulary of
n possible concepts. This finiteness of concept vocabulary is somewhat
worrying—the combinatorics of the situation are definitely not in our favor.
However, in a distributed representation we can have an enormous vocabulary
of possible concepts with a relatively small number of representational ele-
ments. For example, if we have # binary units (which can take on activations
of 0 or 1 only) available, we have a vocabulary of 2" concepts we can possibly
represent. For even small values of n, such as 100 or 1000, the vocabulary of
possible concepts is 21°° or 21°°°—enormous numbers by any measure.

Of course, we pay a price for this large vocabulary. In a distributed repre-
sentation we can represent any one of a very large number of concepts at one
time, but we cannot represent many concepts at the same time. In a localist
representation, as we mentioned earlier, we can simultaneously represent any
desired combination of the possible individual concepts. Generally, in the
parallel distributed processing (PDP) connectionist framework, we believe that
the advantage of a large vocabulary of possible distributed concepts out-
weighs the advantage of being able to simultaneously represent arbitrary
combinations of localist concepts. And it is still possible to represent a number
of distributed concepts simultaneously, provided that number is reasonably
small.

Perhaps the most serious disadvantage of distributed representations is our
inability to easily interpret the complex patterns developed over the course of
learning. It is this difficulty of interpretation and understanding that makes
distributed representations seem so mysterious. But as we will demonstrate
in the following sections, the patterns need not always be so enigmatic.
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1.3 LEARNING REPRESENTATIONS IN CONNECTIONIST
NETWORKS

Figure 1.3 illustrates a very simple connectionist network. It consists of two
layers of units, the input units and output units, connected by a set of weights.
As a result of the particular connectivity and weights of this network, each
pattern of activation presented at the input units will induce another specific
pattern of activation at the output units. This simple architecture is useful in a
number of ways. If the input and output patterns all use distributed representa-
tions—namely, if they can all be described as sets of microfeatures—then this
network will exhibit the important property mentioned in the previous section
that “similar inputs yield similar outputs,” along with the accompanying
generalization and transfer of learning. Such two-layer networks behave this
way because the activation of a particular output unit is given by a relatively
smooth function of the weighted sum of its inputs. Thus, a slight change in
the value of a particular input unit will yield a similarly slight change in the
values of the output units.

Although this similarity-based processing is mostly useful, it does not
always yield the correct generalizations. In particular, in a simple network of
the kind shown in figure 1.3, the similarity metric employed is determined by
the nature of the inputs themselves. And the “physical similarity” we are
likely to have at the inputs (based on the structure of stimuli from the physical
world) may not be the best measure of the “functional” or “psychological”
similarity we would like to employ at the output (to group together appropri-
ate similar responses). For example, it is probably true that a lowercase a is
physically less similar to an uppercase A than to a lowercase o, but function-
ally and psychologically, a lowercase a and an uppercase A are more similar
to one another than are the two lowercase letters. Thus, physical relatedness
is an inadequate similarity metric for modeling human responses to letter-
shaped visual inputs. It is therefore necessary to transform these input patterns
somehow from their initial physically derived format into another representa-
tional form in which patterns requiring similar (output) responses are indeed
similar to one another. This involves learning new representations.

Input

Figure 1.3 A simple two-layer connectionist network consisting solely of input units connected
to output units.
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Figure 1.4 illustrates a simple layered feedforward network, in which infor-
mation (activation) flows up from the input units at the bottom, through
successive layers of internal (“hidden”) units, to create the final response at the
layer of output units on top. Such a network is useful for illustrating how an
appropriate psychological or functional representation can be created. If we
think of each input vector as a point in some multidimensional space, we can
think of the similarity between two such vectors as the distance between their
two corresponding points. Furthermore, we can think of the weighted connec-
tions from one layer of units to the next as implementing a transformation that
maps each original input vector into some new vector. This transformation can
create a new vector space in which the relative distances among the points
corresponding to the input vectors are different from those in the original
vector space, essentially rearranging the points. And if we use a sequence of
such transformations, each involving certain nonlinearities, by “stacking” them
between successive layers in the network, we can entirely rearrange the
similarity relations among the original input vectors.

Thus, a layered network can be viewed simply as a mechanism for trans-
forming the original set of input stimuli into a new similarity space with a new
set of distances among the input points. For example, it is possible to move
the initially distant “physical” input representations of a lowercase a and
an uppercase A so that they are very close to one another in a transformed
“psychological” output representation space, and simultaneously to transform
the distance between the lowercase a4 and a lowercase o output representa-
tions so that they are rather distant from one another. (Generally, we seek
to attain a representation in the second-to-last layer that is sufficiently trans-
formed for us to rely on the principle that similar patterns yield similar
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Figure 1.4 A multilayer connectionist network with several hidden layers interposed between
the input and output layers; each hidden layer computes a transformation T of the representa-
tion structure.
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outputs at the final layer.) The problem is to find an appropriate sequence of
transformations that accomplish the desired input-to-output change in similar-
ity structures.

The backpropagation learning algorithm is a simple procedure for discover-
ing such a sequence of transformations. In fact, we can see the role of learning
in general as a mechanism for constructing the transformations that will
convert the original physically based configuration of the input vectors into an
appropriate functional or psychological space, with the proper similarity rela-
tionships between concepts for making generalization and transfer of learning
occur automatically and correctly. The details of the backpropagation learning
procedure are described in Rumelhart, Hinton, and Williams (1986) and will
not be repeated here. However, the basic idea is the following: A performance
measure is defined for how well a network satisfies some set of predefined
criteria, such as producing a desired output for a given input. Backpropagation
works by simply computing the gradient of this performance measure with
respect to each of the weights in the network and then modifying those
weights to improve the performance measure on a subsequent learning trial
(e.g., the next input—desired output pair). This simple gradient search method
has turned out to be quite effective in developing new and appropriate
representations for many rather complex problems, by constructing similarly
complex sequences of transformations.

In the remainder of the chapter, we will describe three different examples of
the application of such a simple learning procedure and illustrate the interest-
ing and useful representations it can create.

1.4 AUTOENCODERS

Perhaps the simplest mechanism for creating new and useful representations is
the autoencoder.! The basic architecture of the autoencoder is illustrated in
figure 1.5. The network has what may be called an hourglass architecture. The
input and output vectors are of high and equal dimensionality—that is,
there are n input units and n output units, where n is relatively large. The
middle layer of hidden units has much lower dimensionality, containing m
units, with m « n. The target for the output units is simply the input vector.
Thus, the goal of an autoencoder is to take a high-dimensional input vector,
recode it in a lower-dimensional space, and then use this low-dimensional
representation to reproduce the original input vector again. This process of
recoding is similar in many respects to ordinary principle components analysis
(PCA). However, since the hidden units and output units are usually nonlinear,
the network performs a nonlinear variant of PCA.

To illustrate how an autoencoder network can find a useful re-representation
of its input, consider the set of visual patterns illustrated in figure 1.6.
Imagine the set of characters that can be created out of the four line segments
shown in the figure. We can create the letter O by having all four line segments
on. We can create the letter L by turning on left and bottom line segments.
The letter C consists of the top, bottom, and left line segment, and so forth.

10 Rumelhart and Todd

Downloaded from http://direct.mit.edu/books/edited-volume/chapter-pdf/2320806/9780262290906_caf.pdf by Princeton University Library user on 10 February 2025


https://doi.org/10.7551/mitpress/1477.001.0001

This is a portion of the eBook at doi:10.7551/mitpress/1477.001.0001

(a) ]
n Output Units
QOO Q e00 O
m Hidden Units
me<n
() O O O ooo ()
n Input Units
(b)

Internal Representation

O

OOOooo OOOooo

\ Input = OutputJ

Figure 1.5 Basic structure of an autoencoder network (a) showing its hourglass architecture, and
(b) emphasizing the identity of inputs and outputs.

Figure 1.6 Examples of characters created from a set of four line segments, for use in an
autoencoding experiment.
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There are a total of sixteen possible images that can be constructed out of the
four line segments. This includes the image in which no line segments are on.
Now imagine that we use a 10 X 10 square array of pixels as our input and
simply turn on just those pixels along each edge of the square corresponding
to the line segments in the desired character. In this experiment, we know a
priori that all sixteen possible input characters can be created out of four
underlying features (line segments). It doesn’t matter that the inputs are one
hundred-dimensional vectors—there is a simple and much more compact
representation of the set of input vectors that can actually occur. We want to
see if a network can actually learn this simpler representation.

In a series of experiments involving a network with one hundred input units,
four hidden units, and one hundred output units, trained on all sixteen charac-
ters as input and output using the backpropagation learning algorithm, we
found that the four hidden units always turned out to correspond to the four
underlying line segments. The autoencoder had effectively extracted the
underlying structure of the population of input (and output) vectors and had
learned the proper connection weights needed to implement the transforma-
tions back and forth between the full 100-dimensional vector representation
and the reduced four-dimensional representation. In a variation on this experi-
ment we used noisy input character vectors. In this case, the input essentially
consisted of the desired line segments superimposed on a field of noise, so that
each element of the input vector had a .25 probability of having the wrong
value. (That is, units that were supposed to be on would be off 25 percent of
the time, and vice versa.) This generated a very messy set of input vectors for
the network to try to learn. But since the noise was random and unpredictable,
it could not be extracted in the form of stable features of the input to be used
in the reduced representation. Rather, we found that the four hidden units
again picked up the four reliable underlying features—the line segments—of
the character set.

This robust behavior under noisy data conditions is a further demonstration
of the ability of PDP connectionist systems to learn useful distributed repre-
sentations and to generalize and transfer that learning appropriately between
inputs. In particular, with the autoencoder we have a system capable of
extracting those features from the input vectors that are best able to predict
the structure of the entire vector. Since the noise in the previous example was
unpredictable it was ignored, and only the useful features were learned. In this
way, the network builds representations that have as much information as
possible about the input patterns, but that are also as concise as possible.

With slight modifications in the hourglass network architecture, we can
build what are basically autoencoders that ignore other irrelevant aspects of
the input. Imagine, for instance, that we have a large visual field that some-
where contains a single much smaller character of the type described earlier in
this section. We may be interested in the character itself, without caring where
it occurs—in essence, we want a sort of position-invariant attentional mecha-
nism that represents the fype of character and ignores its spatial location. A
network that will do precisely this is shown in figure 1.7. The input visual field
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Figure 1.7 Modified autoencoder architecture for abstracting location-invariant features from a
character in a larger visual field.

is a 15 X 15 array, in which our 10 X 10 character can appear at any of 36
(6 x 6) positions. The output is the same 10 X 10 character in canonical
position. Feeding into the output is our layer of four hidden units, as before.
But we also add one more layer to this network, consisting of eight hidden
units, interposed between the input array and the four-unit hidden layer. The
task of this second hidden layer is to create an intermediate representation of
the input visual stimuli in which the position information has been discarded.
The four-unit hidden layer can then transform that representation into one that
is more useful at the output layer. This network was trained using only eleven
of the sixteen possible characters, those that have two or more segments so
that their position in the input array can be unambiguously determined. Each
of these characters was presented at each of the thirty-six positions in the
input, for a total of 396 training patterns. Once the network had learned
to perform this task suitably well, we found that as before the four-unit hidden
layer had adopted a one-unit-per-line-segment representation. Thus, again
only the information needed for the task at hand—reconstructing the charac-
ter and ignoring its position—was abstracted by the network for its auto-
encoded representation.

1.5 REPRESENTING SEMANTIC NETWORKS IN
CONNECTIONIST SYSTEMS

One of the classic representational systems much studied in the 1970s was the
semantic network (Quillian 1968; Collins and Quillian 1970). Figure 1.8 shows
a fairly standard example of a semantic network, represented as a tree structure
that can be interpreted as a concise summary of a large number of individual

Learning and Connectionist Representations

Downloaded from http://direct.mit.edu/books/edited-volume/chapter-pdf/2320806/9780262290906_caf.pdf by Princeton University Library user on 10 February 2025


https://doi.org/10.7551/mitpress/1477.001.0001

This is a portion of the eBook at doi:10.7551/mitpress/1477.001.0001

grow
can
_.—’?Ilvmg
living thing
is- .
skin
roots )/ move
a lmat/
Ieaves
b is is-a teath is-a fI gIIIs
ar eathers ly
kh‘\“ % sw:m
as, ree
~, wmgs{ scales
branches
:s a is- a' is- is-a
is-a S “.
;lak plne rose dalsy C, nary robin '- salmon sunf:sh
' ) ca
IS [
big green d yeIIow. sing yelloerd ld yellow
is-a} fs-a /not-fly
sparrow .
P ostrich °@"

Figure 1.8 A semantic network encoding explicit and implicit (“inherited”) facts about plants
and animals.

facts. For example, the semantic network in figure 1.8 directly encodes the fact
that a canary is a bird, a bird can fly, a bird is an animal, an animal has skin, an
animal is a living thing, and a living thing can grow. It also contains the fact
that a canary can fly, a canary has skin, and so forth. These secondary facts are
implicit in the network through the principle of inheritance: if an xisay and ay
has a certain property, then generally speaking x can be said to have inherited
that property. Inheritance allows a great number of implicit facts to be cap-
tured in a semantic network. How can we represent this collection of facts and
inferences in a connectionist network?

In answering this question, one might first be tempted to design a localist
representation in which each term or node of the semantic network such as
canary or bird or sing is represented by a single unit in a connectionist network;
then when the canary unit is activated, perhaps it would activate the units for
sing and yellow and bird and animal and so on. This way of modeling semantic
networks may be straightforward and easily followed, but it adds little to the
representational characteristics of the traditional semantic network. (But see
Shastri 1988a, b for an essentially localist connectionist instantiation of a
semantic network that shows useful processing abilities.)

A more interesting approach is to represent the semantic network’s informa-
tion in a distributed fashion. With this approach, the problem becomes how to
represent terms such as canary and robin and relations such as is-a, has, and can
as distributed patterns in our connectionist network. One possible solution is
shown in figure 1.9—a simple connectionist network architecture designed to
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Figure 1.9 A connectionist network designed to learn distributed representations for the facts
contained in a semantic network.

learn the appropriate distributed representations for the concepts in a semantic
network. The idea is to train the network to map from concept-relation pairs
as inputs to a listing of all terms that stand in that relation to that concept as
outputs. For example, given canary and can as inputs, we want to produce sing,
fly, move, and grow as outputs. Similarly, given daisy and is as inputs we want
yellow and living as outputs, and free and has as inputs should produce bark,
leaves, and roots. If we represent these inputs and outputs in a localist fashion,
then in order to perform this mapping the network will have to learn to
reencode the localist representations of the inputs into appropriate distributed
representations at the hidden layers from which the outputs can be pro-
duced. Hinton (1986) has employed a similar method to learn about family
relationships.

To get the network to perform this mapping, we trained it in the following
way. First, all the facts contained in the semantic network (both explicitly, and
implicitly via inheritance) were converted into input/output training pairs.
Each fact in the semantic network has the form term1-relation-term2; to convert
these into training pairs for the network, we essentially collected all the facts
that related to a specific fermI and relation and compressed them into a
single statement of the form term1I-relation-(set of terms). Thus the facts bird
has feathers and bird has wings were compressed into the single statement
bird has { feathers and wings). These compressed facts were turned into the
training pairs by using the first two parts, term1 and relation, as inputs, and the
last part, {set of terms), as the outputs.

After constructing these input/output pairs, training the network then
consisted of turning on the “node” input unit corresponding to ferm1 (e.g.,
bird, fish, daisy, etc.) and the “relation” input unit corresponding to relation
(i.e., is-a, has, is, or can) (see fig. 1.9). The output units corresponding to each
of the terms in {set of ferms) were also turned on. Depending on the relation
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type turned on in the input, the outputs turned on would all be in one of the
four clusters of output units corresponding to nodes, properties, qualities, or
actions in the semantic network. For example, if the relation type was is-a in
the input, then only node output units would be turned on (e.g., living-thing);
if the relation type has was turned on, then some set of the property units
would be turned on (e.g., feathers); the relation is would turn on qualities (e.g.,
red); and the relation can would turn on actions (e.g., swim). The network was
trained on input-output pairs of this type by backpropagation until it was able
to produce correctly the appropriate pattern over the output units for each
input pattern. This required several hundred pairings of each input-output pair.

The network architecture used here is slightly more complicated than a
standard three-layer form. The node input units project first onto a layer of
hidden units called representation units, before being combined with the
relation inputs at the second hidden layer, made up of what we call relational
units. This structure is used because we want the first layer of weights to
transform the localist input representations of the node terms into distributed
representations of the concepts involved, at the representation units. These
distributed representations interact with the relational inputs through the layer
of relational hidden units and then finally project onto the output units.

The distributed representations of the node input concepts developed at the
representation unit hidden layer are our main concern in this experiment. We
expect that similar concepts will have similar representations at this trans-
formed level, in spite of the fact that at the input level all concepts are equally
similar to one another (since they are represented in a localist manner and thus
have no inherent differential similarity). This representational structure will
develop because similar responses at the output level are to be given to similar
concepts at the input level, but since this similarity is not captured in the input
representation, it must be introduced in the distributed hidden-layer represen-
tation. Thus, for example, on the whole oak and pine are to be responded to
similarly. As a result, the distributed representation of oak and of pine should
be very similar.

Figure 1.10 shows the representations developed from one experiment, in
which we used eight representation hidden units. The figure is essentially the
semantic network “tree” of concepts laid on its side. Thus, to the left we see
the leaves of the tree—ouak, pine, rose, daisy, and so forth; to their right we find
the representations for the next higher order terms—tree, flower, bird, and fish;
then further right are the still higher order terms—plant and animal, and finally
at the far right we have the representation for living-things. The representations
are shown in terms of the weights from the node input units to the representa-
tion hidden units. Positive weights are indicated by pluses, negative weights
by minuses, and weights near zero by “?’s. What we find is that the major
conceptual dimensions of the semantic network are represented by particular
features in the connectionist network. For example, the first feature is positive
for all plants, and negative (or at least nof positive, in the case of fish) for
all animals. Thus, feature 1 seems to represent the plant/animal distinction
(though it is purely chance that the first unit out of all eight picked up this
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oak F—t—t—F— \

+—t——t+—

. /\ N (tree)
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+P4++? 24—

rose ++24———— \ (plant)

+tttt———

(flower)
daisy F——tt—— +—t—tt+-
(living-thing)

canary ——+—+?+—+

—f—t——tt

(bird)
robin e St e \ —Ft—t+++
bird/fish (animal)

salmon —--?++——

P ———t++

(fish)

sunfish —+-—++++

Figure 1.10 The representations for various concepts developed by a connectionist network
with eight hidden units, showing interpretations of some of the microfeatures.

feature, as we will see in the next example). Similarly, if we are representing a
plant, then feature 4 captures the tree/flower distinction; and interestingly this
very same feature (hidden unit 4) encodes the bird/fish distinction in the case
of animals. This ability for the same unit to represent different things condi-
tional on the value of some other unit is a useful way in which connectionist
representations differ from simple feature lists. By using hidden units for
“double-duty” (or triple or more) conditional encoding of microfeatures, dis-
tributed representations can be much more compact than feature-list represen-
tations that have different slots allocated in the case of different concept types.

Figure 1.11 shows the results of another experiment, this time with six
rather than eight representation hidden units. Here again we see that one
feature, in this case the fifth, represents the plant/animal distinction, while
feature 1 represents the bird/fish distinction (for animals) and feature 4 the
tree/flower distinction (for plants). (The doubling up onto the same hidden unit
we saw for these features in the previous example is absent here; there are
enough hidden units for the representations that doubling up is not required
but may happen in some cases nonetheless.) The other three features are rather
more difficult to interpret and appear to represent the remaining idiosyncratic
characteristics of the various node concepts.

One of the primary features of the semantic network is its inheritance
property, as we mentioned earlier. New information can be added to the
network and it will “inherit” many additional facts. For example, we could add
the fact that a sparrow is-a bird to the semantic network, as indicated in figure
1.8 by the dotted line (an is-a link) from sparrow to bird. If we know that a
sparrow is-a bird, we also immediately know by inheritance from bird, animal,
and living-thing that a sparrow can fly, a sparrow has feathers, a sparrow has skin,
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(tree)
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- ?
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rose +4+P4+4— \
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(flower)

daisy +24++— vino-thi
(living-thing)
canary — ———4—4
robin _V\ /_ﬁ;—ir_¢17+
ostrich ————— ird/fi .
bird/fish (animal)

salmon  ++-4—— \ +

(fish)

sunfish +——+2?+

Figure 1.11 Representations developed by another connectionist network, with six hidden
units.

a sparrow can grow, and so on—all of which is captured naturally and directly
by the semantic network representation. Now switching back to our connec-
tionist model we can ask, if we train the PDP network on the fact that a sparrow
is-a bird, will it correctly generalize to these additional characteristics?

To answer this question, we first trained the six-representation-unit network
without any initial concept of sparrow (but with an unused node input unit for
later use) and achieved the representations illustrated in figure 1.11. After this,
we further trained the network on just the proposition that a sparrow is-a bird.
This was achieved by presenting sparrow and is-a as the two inputs (turning
on the previously unused node input unit to stand for sparrow) and bird
as the desired output. The difference between the actual activation on the bird
output unit and the desired output (1.0) was backpropagated as the error
signal to use in modifying the weights in the network. The error from the bird
output unit was the only error signal used in training on this additional fact.
Furthermore, only the weights from the new sparrow input unit to the repre-
sentation hidden units were changed during learning—all other weights in the
network were kept fixed, so that the other representations would not be
adversely affected by this further training.

Now in order for sparrow to turn on bird, the pattern over the representation
units for sparrow must be similar to the patterns for other node input concepts
that turn on bird. This is in fact what happens, as we find in the representation
developed for sparrow illustrated in figure 1.12. We see that sparrow has
developed a pattern roughly halfway between canary and robin, perhaps a bit
closer to the latter. The figure also shows the generalization results. Although
the network had not been taught anything explicitly about what a sparrow has
or can do (nothing in fact other than that it is-a bird), it correctly inferred that a
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sparrow - ?2-4+ -4
IS-A bird (taught)
IS-A robin(.7),bird,animal,
living thing
HAS wings, feathers, skin,
gills(.1), scales(.1) > inferred
IS living, red

CAN fly,move,grow /

Figure 1.12 Representation developed for a new sparrow concept, showing its resulting inferred
attributes.

sparrow can fly, can move, can grow, has wings, has feathers, has skin, is-an animal,
is-a living-thing, is living, and is red (a good guess as to its color). The network’s
representation of sparrow also gives a strength of 0.1 for having gills and scales
(erroneously, but ignorably) and a value of essentially 0.0 for every other
inappropriate quality, property, and action. Thus, we see that the connectionist
network provides a rather good generalization mechanism that emulates the
inheritance mechanism of the semantic network, turning on the expected
implications of a new concept and ignoring the low-likelihood ones. But,
importantly, the connectionist network achieves all this using a very different
similarity-based learning and processing mechanism.

Another feature of semantic networks is the so-called cancellation principle.
This is illustrated by the example of the ostrich. Although the ostrich is a bird,
the ostrich cannot fly; therefore, the normal inheritance mechanism must
somehow be thwarted in this case. This can be done in traditional semantic
networks by adding the direct characteristic to ostrich that it can not-fly (as
shown in fig. 1.8), and by adding the general principle that no inherited
property can override an explicitly stated property of a concept. (We add the
not-fly action here rather than adding a new type of cannot link.) How does the
connectionist network emulate this principle? Quite simply—we just train the
network with the fact that an ostrich is-a bird and has all the usual bird
attributes, except that we explicitly teach the network that an ostrich can not-fly.
We do this by turning off the fly output unit (giving it a desired activation
value of 0.0) when ostrich and can are given as inputs. Figure 1.11 illustrates
the representation thereby attained for ostrich—in this case all minuses. This
representation captures all the desired facts (and the new exception) about
ostriches.

Having trained the network on ostrich, we then wanted to see how it
generalized to other flightless birds. We further taught the network about a
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new thing we called an emu: an emu is-a bird, but an emu can not-fly. We trained
the network on these two facts about this new creature as we did for the
sparrow, by sending error signals back only from the bird and fly output units
and changing only the weights on the connections from the new emu input
unit to the representation hidden units. We found that the network discovered
a representation for emu that was exactly the same as that for ostrich. Therefore
its responses to all queries were also the same as those for ostrich: it said that
an emu is large, has feathers, has wings, is-an animal, is-a living-thing, and so on.
Since the ostrich was the only example of a flightless bird that the network
knew about, it simply assimilated emu to ostrich and thereby gave the right
answers to essentially every query about emus.

We ran one final experiment in which we presented the network with still
another flightless bird—this time the penguin. We taught the network that a
penguin is-a bird, that a penguin can not-fly, but that it can swim. In this case we
found that the network mistakenly generalized by asserting that, in addition to
being a bird, the penguin is-a fish, and that it has gills and has scales as well as has
feathers and other bird attributes. Not happy with this result, we tried again.
This time we taught the network explicitly that the penguin is-a bird, the
penguin is-a not-fish, the penguin can not-fly, but the penguin can swim. We found
that the network could not both turn on the output unit for swim and turn off
the unit for fish. That is, by modifying weights only from the penguin input
unit to the representation hidden units, we were unable to make the system
differentiate between being able to swim and being a fish. Presumably this is
because the network had learned that whenever anything is-a fish, it can swim,
and vice versa, and it made use of this redundancy to form appropriate
generalizations. The only way the network could assimilate this new swim-
ming penguin fact was to allow it to modify other connections—then it could
eventually learn this peculiar proposition.

The case of the penguin illustrates another important feature of connec-
tionist networks: they work by representing certain classes of concepts as
similar to one another, and by exploiting the redundancies among the charac-
teristics of the concepts within a class to make generalizations. Usually these
generalizations are appropriate, as when the network responded the same way
for emu and ostrich, but sometimes they are not, as when the network had a
hard time learning that penguins can swim but aren’t fish. The network
essentially ends up reflecting the structure of the world (as we humans parse
it, since we make the training sets). To the extent that there are correlations
or commonalities among the (micro)features we perceive for various fishes or
various birds, the network will be able to correctly generalize between mem-
bers of these categories.

Finally, before leaving this semantic network example, it will be useful to
look at another way of viewing the representations developed in these experi-
ments. Figure 1.13 shows a hierarchical clustering view of the hidden unit
representations for still another experiment in this series. Here we see that on
the whole, animals are clustered separately from plants, trees are clustered
separately from flowers, and fish are clustered separately from birds. In addi-
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Figure 1.13 Hierarchical clustering of the representations developed by a connectionist net-
work, showing similarity and hierarchy relations among the concepts.

tion, the most similar pairs in the figure are those of the same type at the same
(low) level in the semantic network hierarchy (e.g., oak and pine). Finally, we
can see how the representation of one concept, the sparrow described earlier,
changed during the course of learning. In the already fully trained network,
the original representation of sparrow was determined simply by the random
initial setting of the weights from its corresponding input node unit. This
ended up by chance to be very close to the learned representation of flower,
as shown. However, after the previously trained network was further taught
that a sparrow is-a bird, we see that the sparrow representation moved to
be very close to that for robin, as we illustrated in figure 1.12.

We've seen in this example that connectionist learning algorithms can
create new representations that abstract the important features from a set
of input-output relations. A trained network can use the features in this
transformed representation to provide appropriately generalized responses
when it learns about new concepts. Knowing only one characteristic of a
new concept—for example, that it is-a bird—the connectionist network can
correctly infer its other major attributes. Although this behavior is compelling
and suggestive, it is of course unrealistic to imagine that humans learn and
develop concepts based on just this sort of mechanism. Our own concept
formation processes are no doubt much more complex. In the next section we
will show how connectionist networks can build representations that may
come closer to the kind that people apparently employ.
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1.6 CONNECTIONIST REPRESENTATIONS AND HUMAN
JUDGMENTS OF SIMILARITY

In the previous sections we showed how connectionist systems can develop
representations that work for performing particular tasks. For a psychological
model, however, in addition to seeking representations that just work, we
would like to constrain the network somehow to develop internal representa-
tions that resemble those employed by humans. One way to do this is to
impose human similarity structures onto the network’s representations, rather
than giving it free rein to modify the similarity structures as needed. In
particular, if we are interested in reconstructing internal human representations
of input stimuli based on human judgments of similarity between those stimuili,
then if we construct a network that is constrained to produce the same
similarity structure between its internal representations of the inputs, the two
representational systems—human and network model-—should match. Sev-
eral years ago we carried out a series of experiments designed to test this
hypothesis (Todd 1987, 1988; see Todd and Rumelhart 1993 for more details.)

The basic idea is illustrated in figure 1.14. Essentially, we want a network
to learn a mapping from its inputs to an internal representation, as usual,
but this time we want a natural similarity measure over these representations
to mimic human judgments of similarity between the inputs. The network’s
internal representations will then be a model of those the humans employed
to make their similarity judgments. In our previous examples, the networks
developed a similarity structure over their internal representations that would
work to produce the desired outputs; here, since we want to constrain the
network’s representations to match the ones humans use in making similarity
judgments, we use a little trick: we make the network’s desired outputs be the
human similarity judgments. To do this, we have to construct a network
that compares two input stimuli at a time and produces an output correspond-
ing to their similarity.

The network architecture for this purpose is shown in figure 1.15. Here we
have used two instances of the encoder network from figure 1.14, whose
outputs (the internal representations) are compared by a comparison subnet-
work that produces the final similarity judgment as output. Humans probably

Internal Representation

000~ 0

Encoder Network
(learned)

O00O0 0

Input

Figure 1.14 A simple encoder network that maps inputs into internal representations, for use
in a psychological model of human representations.
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have just one copy of something analogous to the encoder subnetwork and
use it twice in succession to compare two sequentially presented stimuli; in the
network we have converted this use of the encoder twice in time into using
two copies of it in parallel simultaneously. The weights in both copies of the
encoder network are kept equal throughout training (that is, the two encoders
are always constrained to be identical and hence use the same encoding
strategy on both input stimuli).

To train this network, we first collect human similarity judgments on pairs
of stimuli and encode these stimuli into an appropriate form for use as network
inputs with the corresponding similarity value as desired output. Then, for
each judgment, one stimulus, S, , is inserted into the left set of input units, and
the other, S,, is inserted into the right set. Each input stimulus is then mapped
through its own copy of the same encoder subnetwork, to produce two
corresponding internal representations, X; and X, at the two-part hidden-unit
representation layer. These two representations are then compared using the
fixed comparison subnetwork, which embodies some theory of how similarity
judgments are made. The final output of this comparison network is the
predicted similarity of stimuli S, and S,. This predicted similarity is compared
to the actual human similarity judgment, and the difference between them is
used as an error signal to modify the weights in (both copies of) the en-
coder subnetwork. The weights in the comparison subnetwork are held fixed
throughout training. In this way, only the mapping from input stimuli to
internal representation can change during training; the similarity comparison
method itself is assumed to remain constant for humans (at this time scale), and
so it is kept constant in the network model as well. We train the encoder
networks in this way until the similarity judgments are predicted as accurately
as possible. The final results we are interested in are the internal representa-

Output Similarity Judgment
©)

Comparison Network
(fixed)

00O +2:0 O O O 22 O peproontations

Encoder Network Encoder Network
(learned) (learned)

0000 =0 O00O0 <=0

Input Stimulus 1 Input Stimulus 2

Figure 1.15 Architecture of a connectionist network for mapping from pairs of stimuli to
their human-judged similarity, via a learned psychological encoding and a fixed comparison
subnetwork.
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Figure 1.16 The subnetwork structure for comparing two featural dimensions using a Hamming-
like similarity metric, showing the signs of the weights and biases (within unit circles) used.

tions developed by the network, which we expect will mimic those used by
humans to represent these stimuli.

This procedure for modeling human representations can be carried out
under a wide variety of assumptions about the nature of the similarity compari-
son subnetwork. For example, we can easily implement a simple Euclidian-
distance measure of similarity between the representation vectors. In this
case our procedure acts very much like standard multidimemional scaling
(MDS; see Shepard 1980), finding representations in which individual hidden
units capture real-valued featural dimensions of the stimuli. In most of our
experiments we have employed something close to Hamming distance as our
similarity metric, because it is a rough measure of pattern overlap, particularly
suited to the sort of microfeature-vector pattern representations developed in
PDP systems.

Figure 1.16 illustrates the basic structure of our comparison subnetwork for
computing the Hamming-style similarity measure. The featural dimensions are
compared individually; here we see the comparison of feature k alone. If feature
k is about equally present in both input S, and input S,, that is, if hidden units
X, [k] and X, [k] have roughly equal activation values, then the comparison unit
at the top of the subnetwork will also have a high activation value and will
contribute strongly to the overall similarity judgment based on this feature
match. If, however, feature k is present in greatly different amounts in the two
input stimuli, then the output for this feature comparison will be small, indicat-
ing dissimilarity. The comparison results for each featural dimension are inde-
pendently weighted and summed to form the final predicted similarity value.
The entire similarity-judging feature abstraction network with this comparison
subnetwork structure inserted is illustrated in figure 1.17.
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Figure 1.17 The structure of the similarity-judging network, with the Hamming-like comparison
subnetwork inserted for three features.

Table 1.1 Similarity Measures between Kinship Terms

F B S GS 8) N C
GF 7 1 2 8 2 1 1
F 4 7 2 3 1 1
B 7 2 2 2 2
S 5 1 1 1
GS 1 1 2
U 6 7
N .8

We have carried out a number of experiments with this paradigm, and in
this section we provide the results of two of them to illustrate the basic
characteristics of the methodology. In the first experiment we employed data
provided by Roy D’Andrade (personal communication, conversation, 1986) on
judgments of similarities among kinship terms. The terms employed were
grandfather, father, brother, son, grandson, uncle, cousin, and nephew. The matrix
of similarities between these terms is given in table 1.1. We used this data
to train our network by constructing pairs of localist representations of the
terms as inputs (i.e., eight input units for each stimulus, with one turned on at
a time), with their corresponding similarity value as the desired output. So, for
example, to train the network on the pair { grandfather, brother), we turn on the
unit in S; corresponding to grandfather and the unit in S, corresponding to
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Figure 1.18 Representations developed by a similarity-judging network for kinship terms,
showing the three features discovered.

brother and use 0.1 as the desired output value. We used three representation
hidden units in this example.

The representations developed by the network are illustrated in figure 1.18.
The three features extracted correspond to rather plausible categories and are
weighted in ratios of approximately 3 to 2 to 2; that is, the first feature was
the most important in terms of determining the similarity, and the second
two features were about equally important. The first feature appears to corre-
spond roughly to the dimension of lineal descent: grandfather, father, son, and
grandson are all given the same featural value (+) and all belong to the same
line of descent. Uncle, cousin, and nephew are given a very different value (—),
and brother is classified somewhere between. The second dimension appears to
correspond to distance from the nuclear family. Thus, father, brother, and
son are all classified together and all belong to the same nuclear family.
Likewise, grandfather and grandson are both equally distant from the nuclear
family and so are classified together with the same feature value, as are
uncle, cousin, and nephew. The third dimension appears to correspond to genera-
tion. In this case all of those older than ego (self) are classified together,
namely, grandfather, father, and uncle. Similarly, those younger—son, grandson,
and nephew—are classified together, as are those of the same generation—
brother and cousin. These featural dimensions discovered by the network are all
readily interpretable by a human observer, supporting our hypothesis that the
network is picking up the same types of features that people use to represent
these concepts. (See Hinton 1986 for an alternative and less psychologically
motivated network representation of family relation concepts.) Finally, it is
interesting that all three dimensions appear to employ trinary values. Since
our comparison subnetwork simply checks to see whether the feature values
are significantly different from one another, a trinary system is easily attained.

One of the particularly nice features of the architecture we have employed
here is that we need not use localist representations for our input stimuli. For
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instance, consider the case in which the input stimuli are geometric forms, like
those shown in figure 1.6, presented in pairs with their corresponding similar-
ity value. Now when the network learns how to encode the input stimuli, it is
picking up something about the relationship between the input's geometric
structure and its internal representation—in this case, that four units alone
can capture the structure inherent in the collection of “line segments” pre-
sented over the input units. This suggests that if we train the network on a
subset of the geometric forms in the pair comparisons, we could then present
it with new examples and it could “predict” their featural representations and
their proper similarity value—even though it has never seen these stimulus
patterns before. Furthermore, this generalization to new stimuli should match
how humans would generalize. In a final experiment we illustrate these
properties.

For this experiment we chose a set of data from a study by Rothkopf (1957;
also reported in Shepard 1963), in which subjects indicated the similarity
among pairs of Morse codes for individual letters and numerals (through
intercode confusions). Since the maximum length of a single Morse code
for a letter or numeral is a collection of five dots and dashes, we represented
each code with ten input units, one for a dot and one for a dash for each of the
five possible positions. A dot in a particular position would turn on the first
of the pair of input units, a dash the second, and the absence of both (indicating
that we were beyond the end of the code) would mean that neither unit at
that position was turned on. Thus the letter E (Morse code “.”) was converted
into the input vector {1,0,0,0,0,0,0,0,0,0), and the numeral 0 (Morse code

letters and numerals could be easily represented.

We ran several simulations in which we trained a network with two featural
representation hidden units on a subset of these Morse codes and then tested
its generalization ability on the untrained patterns. In one case, we trained the
network on pairs using thirty-one out of the thirty-six total letters and
numbers, leaving out I, D, H, V, and 1 completely from the training set. The
resulting representations of all thirty-six codes are illustrated in figure 1.19,
where we've graphed the activation values of the two feature units on the x
and y axes. The interpretation of the two featural dimensions is readily seen.
The x-axis dimension corresponds to the length of the code for the letter or
number involved. On the far left of the figure we see the short codes, and on
the far right the long codes. The y-axis feature roughly corresponds to the
proportion of dots or dashes in the code. Near the top we see the codes for
E, S, H, and 5, which consist entirely of dots, and at the bottom we see 0, O,
and M, which consist entirely of dashes. Intermediate values along both
dimensions correspond to the medium-length, mixed dot-and-dash codes.

These are the same features that Shepard found with his MDS analysis
(Shepard 1963), but in this case they were more easily interpreted, as follows.
Often, the spatial configurations of the stimuli that MDS discovers must be
rotated before the dimensions can be interpreted properly. But because of
anisotropies in our network’s stimulus-to-representation mapping (from the
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Figure 1.19 Representations developed by a similarity-judging network for Morse code signals,
with the two features plotted on the two axes and showing the locations generalized to for five
previously unseen codes (starred).

logistic activation functions used), the features came out directly from the two
hidden units without the need for rotation. As in the previous example, the
features have psychological meanings that we can ascribe to the human
representations of these stimuli. Furthermore, the network in this case can
generalize to new stimuli; the codes that the network never saw during
training are indicated by stars in the positions they are encoded to by the
learned representational mapping. Obviously these codes have taken their
appropriate place in the representational format. The network has been able to
abstract the basic features underlying the human similarity judgments of
Morse code signals, and can generalize from those features to predict the
similarities among stimuli it has never before seen—something that is quite
impossible with standard MDS.

1.7 CONCLUSION

In this chapter we have shown the important role that learning and similarity
play in the construction of representations in connectionist networks. Simple
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learning procedures such as the backpropagation algorithm can discover
sequences of transformations that create the different internal distributed repre-
sentations needed to perform a given input-output mapping task. Along the
way, these transformations must alter the physically based similarity relations
among the input vectors into the psychological and functional similarities
required at the output. The representations learned as a result at the hidden
layers will embody similarity relations that allow proper generalization to
and transfer of learning between new stimuli. This similarity-based ability to
learn and modify internal representations is an essential feature of any complex
information processing system. The examples we described of autoencoders,
connectionist semantic networks, and psychological similarity judgment models
serve to illustrate the power and variety of representation learning approaches
all captured under the unified paradigm of brain-style computation.

NOTE

1. The idea of using the autoencoder to re-represent input patterns was first suggested to me
in 1985 by Geoffrey Hinton. It has since become a popular method.
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