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An extensive body of empirical research has revealed remark-
able regularities in the acquisition, organization, deployment, and
neural representation of human semantic knowledge, thereby
raising a fundamental conceptual question: What are the the-
oretical principles governing the ability of neural networks to
acquire, organize, and deploy abstract knowledge by integrat-
ing across many individual experiences? We address this question
by mathematically analyzing the nonlinear dynamics of learning
in deep linear networks. We find exact solutions to this learning
dynamics that yield a conceptual explanation for the prevalence
of many disparate phenomena in semantic cognition, including
the hierarchical differentiation of concepts through rapid devel-
opmental transitions, the ubiquity of semantic illusions between
such transitions, the emergence of item typicality and category
coherence as factors controlling the speed of semantic processing,
changing patterns of inductive projection over development, and
the conservation of semantic similarity in neural representations
across species. Thus, surprisingly, our simple neural model qualita-
tively recapitulates many diverse regularities underlying semantic
development, while providing analytic insight into how the sta-
tistical structure of an environment can interact with nonlinear
deep-learning dynamics to give rise to these regularities.

semantic cognition | deep learning | neural networks | generative models

Human cognition relies on a rich reservoir of semantic knowl-
edge, enabling us to organize and reason about our complex

sensory world (1–4). This semantic knowledge allows us to
answer basic questions from memory (e.g., “Do birds have feath-
ers?”) and relies fundamentally on neural mechanisms that can
organize individual items, or entities (e.g., canary or robin), into
higher-order conceptual categories (e.g., birds) that include items
with similar features, or properties. This knowledge of individ-
ual entities and their conceptual groupings into categories or
other ontologies is not present in infancy, but develops during
childhood (1, 5), and in adults, it powerfully guides inductive
generalizations.

The acquisition, organization, deployment, and neural rep-
resentation of semantic knowledge has been intensively stud-
ied, yielding many well-documented empirical phenomena. For
example, during acquisition, broader categorical distinctions are
generally learned before finer-grained distinctions (1, 5), and
periods of relative stasis can be followed by abrupt concep-
tual reorganization (6, 7). Intriguingly, during these periods of
developmental stasis, children can believe illusory, incorrect facts
about the world (2).

Also, many psychophysical studies of performance in semantic
tasks have revealed empirical regularities governing the organi-
zation of semantic knowledge. In particular, category member-
ship is a graded quantity, with some items being more or less
typical members of a category (e.g., a sparrow is a more typical
bird than a penguin). Item typicality is reproducible across indi-
viduals (8, 9) and correlates with performance on a diversity of
semantic tasks (10–14). Moreover, certain categories themselves
are thought to be highly coherent (e.g., the set of things that
are dogs), in contrast to less coherent categories (e.g., the set of
things that are blue). More coherent categories play a privileged
role in the organization of our semantic knowledge; coherent cat-
egories are the ones that are most easily learned and represented
(8, 15, 16). Also, the organization of semantic knowledge power-

fully guides its deployment in novel situations, where one must
make inductive generalizations about novel items and proper-
ties (2, 3). Indeed, studies of children reveal that their inductive
generalizations systematically change over development, often
becoming more specific with age (2, 3, 17–19).

Finally, recent neuroscientific studies have probed the orga-
nization of semantic knowledge in the brain. The method of
representational similarity analysis (20, 21) revealed that the sim-
ilarity structure of cortical activity patterns often reflects the
semantic similarity structure of stimuli (22, 23). And, strikingly,
such neural similarity structure is preserved across humans and
monkeys (24, 25).

This wealth of empirical phenomena raises a fundamental
conceptual question about how neural circuits, upon experienc-
ing many individual encounters with specific items, can, over
developmental time scales, extract abstract semantic knowledge
consisting of useful categories that can then guide our ability
to reason about the world and inductively generalize. While
several theories have been advanced to explain semantic devel-
opment, there is currently no analytic, mathematical theory of
neural circuits that can account for the diverse phenomena
described above. Interesting nonneural accounts for the dis-
covery of abstract semantic structure include the conceptual
“theory-theory” (2, 17, 18) and computational Bayesian (26)
approaches. However, neither currently proposes a neural imple-
mentation that can infer abstract concepts from a stream of
examples. Also, they hold that specific domain theories or a set
of candidate structural forms must be available a priori for learn-
ing to occur. In contrast, much prior work has shown, through
simulations, that neural networks can gradually extract semantic
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structure by incrementally adjusting synaptic weights via error-
corrective learning (4, 27–32). However, the theoretical princi-
ples governing how even simple artificial neural networks extract
semantic knowledge from their ongoing stream of experience,
embed this knowledge in their synaptic weights, and use these
weights to perform inductive generalization, remain obscure.

In this work, our goal is to fill this gap by using a simple
class of neural networks—namely, deep linear networks. Surpris-
ingly, this model class can learn a wide range of distinct types
of structure without requiring either initial domain theories or
a prior set of candidate structural forms, and accounts for a
diversity of phenomena involving semantic cognition described
above. Indeed, we build upon a considerable neural network lit-
erature (27–32) addressing such phenomena through simulations
of more complex nonlinear networks. We build particularly on
the integrative, simulation-based treatment of semantic cogni-
tion in ref. 4, often using the same modeling strategy in a simpler
linear setting, to obtain similar results but with additional ana-
lytical insight. In contrast to prior work, whether conceptual,
Bayesian, or connectionist, our simple model permits exact ana-
lytical solutions describing the entire developmental trajectory
of knowledge acquisition and organization and its subsequent
impact on the deployment and neural representation of seman-
tic structure. In the following, we describe semantic knowledge
acquisition, organization, deployment, and neural representation
in sequence, and we summarize our main findings in Discussion.

A Deep Linear Neural Network Model
Here, we consider a framework for analyzing how neural net-
works extract semantic knowledge by integrating across many
individual experiences of items and their properties, across
developmental time. In each experience, given an item as input,
the network is trained to produce its associated properties or fea-
tures as output. Consider, for example, the network’s interaction
with the semantic domain of living things, schematized in Fig. 1A.
If the network encounters an item, such as a canary, perceptual
neural circuits produce an activity vector x∈RN1 that identifies
this item and serves as input to the semantic system. Simultane-
ously, the network observes some of the item’s properties—for
example, that a canary can fly. Neural circuits produce an activity
feature vector y∈RN3 of that item’s properties which serves as
the desired output of the semantic network. Over time, the net-
work experiences many such episodes with different items and
their properties. The total collected experience furnished by the
environment to the semantic system is thus a set of P examples{

xi , yi
}

, i = 1, . . . ,P , where the input vector xi identifies item i ,
and the output vector yi is a set of features to be associated with
this item.

The network’s task is to predict an item’s properties y from its
perceptual representation x. These predictions are generated by
propagating activity through a three-layer linear neural network
(Fig. 1B). The input activity pattern x in the first layer propa-
gates through a synaptic weight matrix W1 of size N2×N1, to

A B

Fig. 1. (A) During development, the network experiences sequential
episodes with items and their properties. (B) After each episode, the net-
work adjusts its synaptic weights to reduce the discrepancy between actual
observed properties y and predicted properties ŷ.

create an activity pattern h = W1x in the second layer of N2 neu-
rons. We call this layer the “hidden” layer because it corresponds
neither to input nor output. The hidden-layer activity then prop-
agates to the third layer through a second synaptic weight matrix
W2 of size N3×N2, producing an activity vector ŷ = W2h which
constitutes the output prediction of the network. The compos-
ite function from input to output is thus simply ŷ = W2W1x. For
each input x, the network compares its predicted output ŷ to the
observed features y, and it adjusts its weights so as to reduce the
discrepancy between y and ŷ.

To study the impact of depth, we will contrast the learning
dynamics of this deep linear network to that of a shallow network
that has just a single weight matrix, Ws of size N3×N1 link-
ing input activities directly to the network’s predictions ŷ = Wsx.
It may seem that there is no utility in considering deep linear
networks, since the composition of linear functions remains lin-
ear. Indeed, the appeal of deep networks is thought to lie in
the increasingly expressive functions they can represent by suc-
cessively cascading many layers of nonlinear elements (33). In
contrast, deep linear networks gain no expressive power from
depth; a shallow network can compute any function that the
deep network can, by simply taking Ws = W2W1. However, as we
see below, the learning dynamics of the deep network is highly
nonlinear, while the learning dynamics of the shallow network
remains linear. Strikingly, many complex, nonlinear features of
learning appear even in deep linear networks and do not require
neuronal nonlinearities.

To illustrate the power of deep linear networks to capture
learning dynamics, even in nonlinear networks, we compare the
two learning dynamics in Fig. 2. Fig. 2A shows a low-dimensional
visualization of the simulated learning dynamics of a multilay-
ered nonlinear neural network trained to predict the properties
of a set of items in a semantic domain of animals and plants
(for details of the neural architecture and training data see
ref. 4). The nonlinear network exhibits a striking, hierarchical,
progressive differentiation of structure in its internal hidden rep-
resentations, in which animals vs. plants are first distinguished,
then birds vs. fish and trees vs. flowers, and, finally, individual
items. This remarkable phenomenon raises important questions
about the theoretical principles governing the hierarchical dif-
ferentiation of structure in neural networks: How and why do
the network’s dynamics and the statistical structure of the input
conspire to generate this phenomenon? In Fig. 2B, we mathe-
matically derive this phenomenon by finding analytic solutions
to the nonlinear dynamics of learning in a deep linear net-
work, when that network is exposed to a hierarchically structured
semantic domain, thereby shedding theoretical insight onto the
origins of hierarchical differentiation in a deep network. We
present the derivation below, but for now, we note that the
resemblance in Fig. 2 suggests that deep linear networks can
form an excellent, analytically tractable model for shedding con-
ceptual insight into the learning dynamics, if not the expressive
power, of their nonlinear counterparts.

Acquiring Knowledge
We now outline the derivation that leads to Fig. 2B. The incre-
mental error-corrective process described above can be formal-
ized as online stochastic gradient descent; each time an example
i is presented, the weights W2 and W1 receive a small adjustment
in the direction that most rapidly decreases the squared error∥∥yi − ŷi

∥∥2, yielding the standard back propagation learning rule

∆W1 =λW2T
(

yi − ŷi
)

xiT , ∆W2 =λ
(

yi − ŷi
)

hiT , [1]

where λ is the learning rate. This incremental update depends
only on experience with a single item, leaving open the fun-
damental question of how and when the accumulation of
such incremental updates can extract over developmental time
abstract structures, like hierarchical taxonomies, that are emer-
gent properties of the entire domain of items and their features.

11538 | www.pnas.org/cgi/doi/10.1073/pnas.1820226116 Saxe et al.
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A B

Fig. 2. (A) A two-dimensional multidimensional scaling (MDS) visualization
of the temporal evolution of internal representations, across developmental
time, of a deep nonlinear neural network studied in ref. 4. Reprinted with
permission from ref. 4. (B) An MDS visualization of analytically derived learn-
ing trajectories of the internal representations of a deep linear network
exposed to a hierarchically structured domain.

We show that the extraction of such abstract domain structure
is possible, provided learning is gradual, with a small learn-
ing rate λ. In this regime, many examples are seen before the
weights appreciably change, so learning is driven by the statistical
structure of the domain. We imagine training is divided into a
sequence of learning epochs. In each epoch, the above rule is
followed for all P examples in random order. Then, averaging
[1] over all P examples and taking a continuous time limit gives
the mean change in weights per learning epoch,

τ
d

dt
W1 = W2T (Σyx −W2W1Σx), [2]

τ
d

dt
W2 =

(
Σyx −W2W1Σx)W1T , [3]

where Σx ≡E [xxT ] is an N1×N1 input correlation matrix, Σyx ≡
E [yxT ] is an N3×N1 input–output correlation matrix, and τ ≡
1

Pλ
(see SI Appendix). Here, t measures time in units of learning

epochs. These equations reveal that learning dynamics, even in
our simple linear network, can be highly complex: The second-
order statistics of inputs and outputs drives synaptic weight
changes through coupled nonlinear differential equations with
up to cubic interactions in the weights.

Explicit Solutions from Tabula Rasa. These nonlinear dynamics are
difficult to solve for arbitrary initial conditions. However, we are
interested in a particular limit: learning from a state of essentially
no knowledge, which we model as small random synaptic weights.
To further ease the analysis, we shall assume that the influence of
perceptual correlations is minimal (Σx ≈ I). Our goal, then, is to
understand the dynamics of learning in [2] and [3] as a function of
the input–output correlation matrix Σyx . The learning dynamics
is tied to terms in the singular value decomposition (SVD) of Σyx

(Fig. 3A),

Σyx = USVT =
∑min(N1,N3)

α=1
sαuαvαT , [4]

which decomposes any matrix into the product of three matrices.
Each of these matrices has a distinct semantic interpretation.

For example, the α’th column vα of the N1×N1 orthogo-
nal matrix V can be thought of as an object-analyzer vector; it
determines the position of item i along an important seman-
tic dimension α in the training set through the component vαi .
To illustrate this interpretation concretely, we consider a sim-
ple example dataset with four items (canary, salmon, oak, and
rose) and five properties (Fig. 3). The two animals share the prop-
erty can move, while the two plants do not. Also, each item has
a unique property: can fly, can swim, has bark, and has petals.
For this dataset, while the first row of VT is a uniform mode,
the second row, or the second object-analyzer vector v2, deter-
mines where items sit on an animal–plant dimension and hence

has positive values for the canary and salmon and negative values
for the plants. The other dimensions identified by the SVD are a
bird–fish dimension and a flower–tree dimension.

The corresponding α’th column uα of the N3×N3 orthogo-
nal matrix U can be thought of as a feature-synthesizer vector for
semantic distinction α. Its components uαm indicate the extent to
which feature m is present or absent in distinction α. Hence, the
feature synthesizer u2 associated with the animal–plant seman-
tic dimension has positive values for move and negative values
for roots, as animals typically can move and do not have roots,
while plants behave oppositely. Finally, the N3×N1 singular
value matrix S has nonzero elements sα,α= 1, . . . ,N1 only on
the diagonal, ordered so that s1≥ s2≥ · · ·≥ sN1 . sα captures the
overall strength of the α’th dimension. The large singular value
for the animal–plant dimension reflects the fact that this one
dimension explains more of the training set than the finer-scale
dimensions bird–fish and flower–tree.

Given the SVD of the training set’s input–output correlation
matrix in [4], we can now explicitly describe the network’s learn-
ing dynamics. The network’s overall input–output map at time t
is a time-dependent version of this SVD (Fig. 3B); it shares the
object-analyzer and feature-synthesizer matrices of the SVD of
Σyx , but replaces the singular value matrix S with an effective
singular value matrix A(t),

W2(t)W1(t) = UA(t)VT =

N2∑
α=1

aα(t) uαvαT , [5]

where the trajectory of each effective singular value aα(t) obeys

aα(t) =
sαe

2sαt/τ

e2sαt/τ − 1 + sα/a0
α

. [6]

Eq. 6 describes a sigmoidal trajectory that begins at some ini-
tial value a0

α at time t = 0 and rises to sα as t→∞, as plotted

A

B

C D

Fig. 3. (A) SVD of input–output correlations. Associations between items
and their properties are decomposed into modes. Each mode links a set of
properties (a column of U) with a set of items (a row of VT ). The strength of
the mode is encoded by the singular value (diagonal element of S). (B) Net-
work input–output map, analyzed via the SVD. The effective singular values
(diagonal elements of A(t)) evolve over time during learning. (C) Trajecto-
ries of the deep network’s effective singular values ai(t). The black dashed
line marks the point in time depicted in B. (D) Time-varying trajectories of a
shallow network’s effective singular values bi(t).
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in Fig. 3C. This solution is applicable when the network begins
from an undifferentiated state with little initial knowledge corre-
sponding to small random initial weights (see SI Appendix), and it
provides an accurate description of the learning dynamics in this
regime, as confirmed by simulation in Fig. 3C. The dynamics in
Eq. 6 for one hidden layer can be generalized to multiple hidden
layers (SI Appendix). Moreover, while we have focused on the
case of no perceptual correlations, in SI Appendix, we examine
a special case of how perceptual correlations and semantic task
structure interact to determine learning speed. We find that per-
ceptual correlations can either speed up or slow down learning,
depending on whether they are aligned or misaligned with the
input dimensions governing task-relevant semantic distinctions.

This solution also gives insight into how the internal represen-
tations in the hidden layer of the deep network evolve. An exact
solution for W2 and W1 is given by

W1(t) = Q
√

A(t)VT , W2(t) = U
√

A(t)Q−1, [7]

where Q is an arbitrary N2×N2 invertible matrix (SI Appendix).
If initial weights are small, then the matrix Q will be close to
orthogonal, i.e., Q≈R, where RTR = I. Thus, the internal repre-
sentations are specified up to an arbitrary rotation R. Factoring
out the rotation, the hidden representation of item i is

hαi (t) =
√

aα(t)vαi . [8]

Thus, internal representations develop by projecting inputs onto
more and more input–output modes as they are learned.

The shallow network has an analogous solution, Ws(t) =∑min(N1,N3)
α=1 bα(t) uαvαT , but each singular value obeys

bα(t) = sα
(

1− e−t/τ
)

+ b0αe
−t/τ . [9]

In contrast to the deep network’s sigmoidal trajectory, Eq.
9 describes a simple exponential approach to sα, as plotted
in Fig. 3D. Hence, depth fundamentally changes the learning
dynamics, yielding several important consequences below.

Rapid Stage-Like Transitions Due to Depth. We first compare the
time course of learning in deep vs. shallow networks as revealed
in Eqs. 6 and 9. For the deep network, beginning from a small ini-
tial condition a0

α = ε, each mode’s effective singular value aα(t)
rises to within ε of its final value sα in time

t(sα, ε) =
τ

sα
ln

sα
ε

, [10]

in the limit ε→ 0 (SI Appendix). This is O(1/sα) up to a loga-
rithmic factor. Hence, modes with stronger explanatory power,
as quantified by the singular value, are learned more quickly.
Moreover, when starting from small initial weights, the sigmoidal
transition from no knowledge of the mode to perfect knowl-
edge can be arbitrarily sharp. Indeed, the ratio of time spent
in the sigmoidal transition regime to time spent before making
the transition can go to zero as the initial weights go to zero (SI
Appendix). Thus, rapid stage-like transitions in learning can be
prevalent, even in deep linear networks.

By contrast, the shallow-network learning timescale is

t(sα, ε) = τ ln
sα
ε

, [11]

which is O(1) up to a logarithmic factor. Here, the timescale of
learning a mode depends only weakly on its associated singular
value. Essentially all modes are learned simultaneously, with an
exponential rather than sigmoidal learning curve.

Progressive Differentiation of Hierarchical Structure. We are now
almost ready to explain how we analytically derive the result in

Fig. 2B. The only remaining ingredient is a mathematical descrip-
tion of the training data. Indeed, the numerical results in Fig. 2A
arise from a toy training set, making it difficult to understand how
structure in data drives learning. Here, we introduce a probabilis-
tic generative model to reveal general principles of how statistical
structure impacts learning. We begin with hierarchical structure,
but subsequently show how diverse structures come to be learned
by the network (compare Fig. 9).

We use a generative model corresponding to a branching dif-
fusion process that mimics evolutionary dynamics to create an
explicitly hierarchical dataset (SI Appendix). In the model, each
feature diffuses down an evolutionary tree (Fig. 4A), with a small
probability of mutating along each branch. The items lie at the
leaves of the tree, and the generative process creates a hierarchi-
cal similarity matrix between items such that items with a more
recent common ancestor on the tree are more similar to each
other (Fig. 4B). We analytically compute the SVD of this dataset,
and find that the object-analyzer vectors, which can be viewed
as functions on the leaves of the tree in Fig. 4C, respect the
hierarchical branches of the tree, with the larger singular values
corresponding to broader distinctions. In Fig. 4A, we artificially
label the leaves and branches of the evolutionary tree with organ-
isms and categories that might reflect a natural realization of this
evolutionary process.

Now, inserting the singular values in Fig. 4D (and SI Appendix)
into the deep-learning dynamics in Eq. 6 to obtain the time-
dependent singular values aα(t), and then inserting these along
with the object analyzers vectors vα in Fig. 4C into Eq. 8, we
obtain a complete analytic derivation of the development of inter-
nal representations in the deep network. An MDS visualization of
these evolving hidden representations then yields Fig. 2B, which
qualitatively recapitulates the much more complex network and
dataset that leads to Fig. 2A. In essence, this analysis completes
a mathematical proof that the striking progressive differentiation
of hierarchical structure observed in Fig. 2 is an inevitable conse-
quence of deep-learning dynamics, even in linear networks, when
exposed to hierarchically structured data. The essential intuition
is that dimensions of feature variation across items correspond-
ing to broader hierarchical distinctions have stronger statistical
structure, as quantified by the singular values of the training data,
and hence are learned faster, leading to waves of differentiation
in a deep but not shallow network. This pattern of hierarchical
differentiation has long been argued to apply to the conceptual
development of infants and children (1, 5–7).

Illusory Correlations. Another intriguing aspect of semantic devel-
opment is that children sometimes attest to false beliefs [e.g.,
worms have bones (2)] they could not have learned through expe-
rience. These errors challenge simple associationist accounts of
semantic development that predict a steady, monotonic accumu-
lation of information about individual properties (2, 16, 17, 34).
Yet, the network’s knowledge of individual properties exhibits

A B C D

Fig. 4. Hierarchy and the SVD. (A) A domain of eight items with an under-
lying hierarchical structure. (B) The correlation matrix of the features of the
items. (C) SVD of the correlations reveals semantic distinctions that mirror
the hierarchical taxonomy. This is a general property of the SVD of hierar-
chical data. (D) The singular values of each semantic distinction reveal its
strength in the dataset and control when it is learned.
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complex, nonmonotonic trajectories over time (Fig. 5). The over-
all prediction for a property is a sum of contributions from each
mode, where the contribution of mode α to an individual feature
m for item i is aα(t)uαmvαi . In the example of Fig. 5A, the first
two modes make a positive contribution, while the third makes a
negative one, yielding the inverted U-shaped trajectory.

Indeed, any property–item combination for which uαmvαi takes
different signs across different α will exhibit a nonmonotonic
learning curve, making such curves a frequent occurrence, even
in a fixed, unchanging environment. In a deep network, two
modes with singular values that differ by ∆ will have an inter-
val in which the first is learned, but the second is not. The length
of this developmental interval is roughly O(∆) (SI Appendix).
Moreover, the rapidity of the deep network’s stage-like transi-
tions further accentuates the nonmonotonic learning of individ-
ual properties. This behavior, which may seem hard to reconcile
with an incremental, error-corrective learning process, is a natu-
ral consequence of minimizing global rather than local prediction
error: The fastest possible improvement in predicting all proper-
ties across all items sometimes results in a transient increase in
the size of errors on specific items and properties. Every prop-
erty in a shallow network, by contrast, monotonically approaches
its correct value (Fig. 5B), and, therefore, shallow networks
provably never exhibit illusory correlations (SI Appendix).

Organizing and Encoding Knowledge
We now turn from the dynamics of learning to its final outcome.
When exposed to a variety of items and features interlinked by
an underlying hierarchy, for instance, what categories naturally
emerge? Which items are particularly representative of a cat-
egorical distinction? And how is the structure of the domain
internally represented?

Category Membership, Typicality, and Prototypes. A long-observed
empirical finding is that category membership is not simply a
binary variable, but rather a graded quantity, with some objects
being more or less typical members of a category (e.g., a sparrow
is a more typical bird than a penguin) (8, 9). Indeed, graded judg-
ments of category membership correlate with performance on a
range of tasks: Subjects more quickly verify the category mem-
bership of more typical items (10, 11), more frequently recall
typical examples of a category (12), and more readily extend new
information about typical items to all members of a category (13,
14). Our theory begins to provide a natural mathematical defi-
nition of item typicality that explains how it emerges from the
statistical structure of the environment and improves task perfor-
mance. We note that all results in this section apply specifically
to data generated by binary trees as in Fig. 4A, which exhibit a
one-to-one correspondence between singular dimensions of the
SVD and individual categorical distinctions (Fig. 4C). The the-
ory characterizes the typicality of items with respect to individual
categorical distinctions.

A natural notion of the typicality of an item i for a categori-
cal distinction α is simply the quantity vαi in the corresponding

A B

Fig. 5. Illusory correlations during learning. (A) Predicted value (blue) of
feature “can fly” for item “salmon” during learning in a deep network
(dataset as in Fig. 3). The contributions from each mode are shown in red. (B)
The predicted value and modes for the same feature in a shallow network.

object-analyzer vector. To see why this is natural, note that, after
learning, the neural network’s internal representation space has
a semantic distinction axis α, and each object i is placed along
this axis at a coordinate proportional to vαi , as seen in Eq. 8.
For example, if α corresponds to the bird–fish axis, objects i with
large positive vαi are typical birds, while objects i with large neg-
ative vαi are typical fish. Also, the contribution of the network’s
output to feature neuron m in response to object i , from the
hidden representation axis α alone, is given by

ŷαm← uαmsαvαi . [12]

Hence, under our definition of typicality, an item i that is more
typical than another item j will have |vαi |> |vαj |, and thus will
necessarily have a larger response magnitude under Eq. 12. Any
performance measure which is monotonic in the response will
therefore increase for more typical items under this definition.
Thus, our definition of item typicality is both a mathematically
well-defined function of the statistical structure of experience,
through the SVD, and provably correlates with task performance
in our network.

Several previous attempts at defining the typicality of an item
involved computing a weighted sum of category-specific features
present or absent in the item (8, 15, 35–37). For instance, a spar-
row is a more typical bird than a penguin because it shares more
relevant features (can fly) with other birds. However, the spe-
cific choice of which features are relevant—the weights in the
weighted sum of features—has often been heuristically chosen
and relied on prior knowledge of which items belong to each cat-
egory (8, 36). Our definition of typicality can also be described in
terms of a weighted sum of an object’s features, but the weight-
ings are uniquely fixed by the statistics of the entire environment
through the SVD (SI Appendix):

vαi =
1

Psα

N3∑
m=1

uαmoi
m , [13]

which holds for all i and α. Here, item i is defined by its feature
vector oi ∈RN3 , where component oi

m encodes the value of its
mth feature. Thus, the typicality vαi of item i in distinction α can
be computed by taking a weighted sum of the components of its
feature vector oi , where the weightings are precisely the coeffi-
cients of the corresponding feature-synthesizer vector uα (scaled
by the reciprocal of the singular value). The neural geometry of
Eq. 13 is illustrated in Fig. 6 when α corresponds to the bird–fish
categorical distinction.

In many theories of typicality, the particular weighting of
object features corresponds to a prototypical object (3, 15), or
the best example of a particular category. Such object prototypes
are often obtained by a weighted average over the feature vec-
tors for the objects in a category (averaging together the features
of all birds, for instance, will give a set of features they share).
However, such an average relies on prior knowledge of the extent
to which an object belongs to a category. Our theory also yields
a natural notion of object prototypes as a weighted average of
object feature vectors, but, unlike many other frameworks, it
yields a unique prescription for the object weightings in terms
of environmental statistics through the SVD (SI Appendix):

uαm =
1

Psα

N1∑
i=1

vαi oi
m . [14]

Thus, the feature synthesizer uα can be thought of as a category
prototype for distinction α, as it is obtained from a weighted
average of all object feature vectors oi , where the weighting of
object i is simply the typicality vαi of object i in distinction α. In
essence, each element uαm of the prototype vector signifies how
important feature m is in distinction α (Fig. 6).

In summary, a beautifully simple duality between item typi-
cality and category prototypes arises as an emergent property of
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Fig. 6. The geometry of item typicality. For a semantic distinction α (in this
case, α is the bird–fish distinction) the object-analyzer vector vα

i arranges
objects i along an internal neural-representation space, where the most typ-
ical birds take the extremal positive coordinates and the most typical fish
take the extremal negative coordinates. Objects like a rose, that is neither
a bird nor a fish, are located near the origin on this axis. Positions along
the neural semantic axis can also be obtained by computing the inner prod-
uct between the feature vector oi for object i and the feature synthesizer
uα as in [13]. Moreover, uα can be thought of as a category prototype for
semantic distinction α through [14].

the learned internal representations of the neural network. The
typicality of an item with respect to dimension α is the projec-
tion of that item’s feature vector onto the category prototype in
[13]. And the category prototype is an average over all object
feature vectors, weighted by their typicality in [14]. Also, in any
categorical distinction α, the most typical items i and the most
important features m are determined by the extremal values of
vαi and uαm . These observations provide a foundation for a more
complete future theory of item typicality and category prototypes
that can combine information across distinctions at and above a
given level.

Category Coherence. The categories we naturally learn are not
arbitrary; they are coherent and efficiently represent the struc-
ture of the world (8, 15, 16). For example, the set of things that
are red and cannot swim is a well-defined category but, intuitively,
is not as coherent as the category of dogs; we naturally learn, and
even name, the latter category, but not the former. When is a
category learned at all, and what determines its coherence? An
influential proposal (8, 15) suggested that coherent categories
consist of tight clusters of items that share many features and
that moreover are highly distinct from other categories with dif-
ferent sets of shared features. Such a definition, as noted in refs.
3, 16, and 17, can be circular: To know which items are category
members, one must know which features are important for that
category, and, conversely, to know which features are important,
one must know which items are members. Thus, a mathemati-
cal definition of category coherence that is provably related to
the learnability of categories by neural networks has remained
elusive. Here, we provide such a definition for a simple model
of disjoint categories and demonstrate how neural networks can
cut through the Gordian knot of circularity. Our definition and
theory are motivated by, and consistent with, prior network sim-
ulations exploring notions of category coherence through the
coherent covariation of features (4).

Consider, for example, a dataset consisting of No objects and
Nf features. Now, consider a category consisting of a subset of
Kf features that tend to occur with high probability p in a sub-
set of Ko items, whereas a background feature occurs with a
lower probability q in a background item when either are not
part of the category. For what values of Kf , K0, p, q , Nf , and
N0 can such a category be learned, and how accurately? Fig. 7
A–D illustrates how a neural network can extract three such cat-
egories buried in noise. We see in Fig. 7E that the performance
of category extraction increases as the number of items K0 and
features Kf in the category increases and also as the signal-
to-noise ratio, or SNR≡ (p−q)2

q(1−q)
, increases. Through random

matrix theory (SI Appendix), we show that performance depends

on the various parameters only through a category coherence
variable

C= SNR
KoKf√
NoNf

. [15]

When the performance curves in Fig. 7E are replotted with cate-
gory coherence C on the horizontal axis, all of the curves collapse
onto a single universal performance curve shown in Fig. 7F. We
derive a mathematical expression for this curve in SI Appendix. It
displays an interesting threshold behavior: If the coherence C ≤
1, the category is not learned at all, and the higher the coherence
above this threshold, the better the category is learned.

This threshold is strikingly permissive. For example, at SNR =

1, it occurs at K0Kf =
√

N0Nf . Thus, in a large environment
of No = 1,000 objects and Nf = 1,600 features, as in Fig. 7A,
a small category of 40 objects and 40 features can be easily
learned, even by a simple deep linear network. Moreover, this
analysis demonstrates how the deep network solves the problem
of circularity described above by simultaneously bootstrapping
the learning of object analyzers and feature synthesizers in its
synaptic weights. Finally, we note that the definition of cate-
gory coherence in Eq. 15 is qualitatively consistent with previous
notions; coherent categories consist of large subsets of items
possessing, with high probability, large subsets of features that
tend not to cooccur in other categories. However, our quan-
titative definition has the advantage that it provably governs
category-learning performance in a neural network.

E FD

B CA

Fig. 7. The discovery of disjoint categories in noise. (A) A dataset of N0 =
1,000 items and Nf = 1,600 features, with no discernible visible structure.
(B) Yet when a deep linear network learns to predict the features of items,
an MDS visualization of the evolution of its internal representations reveals
three clusters. (C) By computing the SVD of the product of synaptic weights
W2W1, we can extract the network’s object analyzers vα and feature syn-
thesizers uα, finding three with large singular values sα, for α= 1, . . . , 3.
Each of these three object analyzers vα and feature synthesizers uα takes
large values on a subset of items and features, respectively, and we can use
them to reorder the rows and columns of A to obtain C. This reordering
reveals underlying structure in the data corresponding to three disjoint cat-
egories, such that if a feature and item belong to a category, the feature
is present with a high probability p, whereas if it does not, it appears with
a low probability q. (D) Thus, intuitively, the dataset corresponds to three
clusters buried in a noise of irrelevant objects and features. (E) Performance
in recovering one such category can be measured by computing the cor-
relation coefficients between the object analyzer and feature synthesizer
returned by the network to the ideal object analyzer vIdeal and ideal fea-
ture synthesizer uIdeal that take nonzero values on the items and features,
respectively, that are part of the category and are zero on the rest of the
items and features. This learning performance, for the object analyzer, is
shown for various parameter values. Solid curves are analytically derived
from a random matrix analysis (SI Appendix), and data points are obtained
from simulations. (F) All performance curves in E collapse onto a single theo-
retically predicted, universal learning curve, when measured in terms of the
category coherence defined in Eq. 15. SNR, signal-to-noise ratio.
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Basic Categories. Closely related to category coherence, a vari-
ety of studies have revealed a privileged role for basic categories
at an intermediate level of specificity (e.g., bird), compared with
superordinate (e.g., animal) or subordinate (e.g., robin) levels.
At this basic level, people are quicker at learning names (38,
39), prefer to generate names (39), and are quicker to verify the
presence of named items in images (11, 39). We note that basic-
level advantages typically involve naming tasks done at an older
age, and so need not be inconsistent with progressive differentia-
tion of categorical structure from superordinate to subordinate
levels as revealed in preverbal cognition (1, 4–7, 40). More-
over, some items are named more frequently than others, and
these frequency effects could contribute to a basic-level advan-
tage (4). However, in artificial category-learning experiments
with tightly controlled frequencies, basic-level categories are still
often learned first (41). What environmental statistics could lead
to this effect? While several properties have been proposed (11,
35, 37, 41), a mathematical function of environmental structure
that provably confers a basic-level advantage to neural networks
has remained elusive.

Here, we provide such a function by generalizing the notion
of category coherence C in the previous section to hierarchi-
cally structured categories. Indeed, in any dataset containing
strong categorical structure, so that its singular vectors are
in one-to-one correspondence with categorical distinctions, we
simply propose to define the coherence of a category by the
associated singular value. This definition has the advantage of
obeying the theorem that more coherent categories are learned
faster, through Eq. 6. Moreover, we show in SI Appendix that
this definition is consistent with that of category coherence C
defined in Eq. 15 for the special case of disjoint categories. How-
ever, for hierarchically structured categories, as in Fig. 4, this
singular value definition always predicts an advantage for super-
ordinate categories, relative to basic or subordinate. Is there
an alternate statistical structure for hierarchical categories that
confers high category coherence at lower levels in the hierar-
chy? We exhibit two such structures in Fig. 8. More generally,
in SI Appendix, we analytically compute the singular values at
each level of the hierarchy in terms of the similarity structure
of items. We find that these singular values are a weighted
sum of within-cluster similarity minus between-cluster similar-
ity for all levels below, weighted by the fraction of items that
are descendants of that level. If at any level, between-cluster
similarity is negative, that detracts from the coherence of super-
ordinate categories, contributes strongly to the coherence of
categories at that level, and does not contribute to subordinate
categories.

Thus, the singular value-based definition of category coher-
ence is qualitatively consistent with prior intuitive notions. For
instance, paraphrasing Keil (17), coherent categories are clus-
ters of tight bundles of features separated by relatively empty
spaces. Also, consistent with refs. 3, 16, and 17, we note that
we cannot judge the coherence of a category without knowing
about its relations to all other categories, as singular values are a
complex emergent property of the entire environment. But going
beyond past intuitive notions, our quantitative definition of cate-
gory coherence based on singular values enables us to prove that
coherent categories are most easily and quickly learned and also
provably provide the most accurate and efficient linear represen-
tation of the environment, due to the global optimality properties
of the SVD (see SI Appendix for details).

Capturing Diverse Domain Structures. While we have focused thus
far on hierarchical structure, the world may contain many dif-
ferent structure types. Can a wide range of such structures be
learned and encoded by neural networks? To study this question,
we formalize structure through probabilistic graphical models
(PGMs), defined by a graph over items (Fig. 9, top) that can
express a variety of structural forms, including clusters, trees,
rings, grids, orderings, and hierarchies. Features are assigned to
items by independently sampling from the PGM (ref. 26 and SI
Appendix), such that nearby items in the graph are more likely

A B C D

Fig. 8. From similarity structure to category coherence. (A) A hierarchical
similarity structure over objects in which categories at the basic level are
very different from each other due to a negative similarity. (B) For this struc-
ture, basic-level categorical distinctions acquire larger singular values, or
category coherence, and therefore gain an advantage in both learning and
task performance. (C) Now, subordinate categories are very different from
each other through negative similarity. (D) Consequently, subordinate cat-
egories gain a coherence advantage. See SI Appendix for formulas relating
similarity structure to category coherence.

to share features. For each of these forms, in the limit of a large
number of features, we compute the item–item covariance matri-
ces (Fig. 9, second row), object-analyzer vectors (Fig. 9, third
row), and singular values of the input–output correlation matrix,
and we use them in Eq. 6 to compute the development of the net-
work’s internal representations through Eq. 8, as shown in Fig. 9,
bottom. Overall, this approach yields several insights into how
distinct structural forms, through their different statistics, drive
learning in a deep network, as summarized below.
Clusters. Graphs that break items into distinct clusters give rise
to block-diagonal constant matrices, yielding object-analyzer
vectors that pick out cluster membership.
Trees. Tree graphs give rise to ultrametric covariance matrices,
yielding object-analyzer vectors that are tree-structured wavelets
that mirror the underlying hierarchy (42, 43).
Rings and grids. Ring-structured graphs give rise to circulant
covariance matrices, yielding object-analyzer vectors that are
Fourier modes ordered from lowest to highest frequency (44).
Orderings. Graphs that transitively order items yield highly
structured, but nonstandard, covariance matrices whose object
analyzers encode the ordering.
Cross-cutting structure. Real-world domains need not have a sin-
gle underlying structural form. For instance, while some features
of animals and plants generally follow a hierarchical structure,
other features, like male and female, can link together hier-
archically disparate items. Such cross-cutting structure can be
orthogonal to the hierarchical structure, yielding object-analyzer
vectors that span hierarchical distinctions.

These results reflect an analytic link between two popular,
but different, methods of capturing structure: PGMs and deep
networks. This analysis transcends the particulars of any one
dataset and shows how different abstract structures can become
embedded in the internal representations of a deep neural net-
work. Strikingly, the same generic network can accommodate
all of these structure types, without requiring the set of possible
candidate structures a priori.

Deploying Knowledge: Inductive Projection
Over the course of development, the knowledge children acquire
powerfully reshapes their inductions upon encountering novel
items and properties (2, 3). For instance, upon learning a novel
fact (e.g., “a canary is warm-blooded”) children extend this new
knowledge to related items, as revealed by their answers to ques-
tions like “is a robin warm-blooded?” Studies have shown that
children’s answers to such questions change over the course of
development (2, 3, 17–19), generally becoming more specific. For
example, young children may project the novel property of warm-
blooded to distantly related items, while older children will only
project it to more closely related items. How could such changing
patterns arise in a neural network? Here, building upon previous
network simulations (4, 28), we show analytically that deep net-
works exposed to hierarchically structured data naturally yield
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Fig. 9. Representation of explicit structural forms in a neural network.
Each column shows a different structure. The first four columns correspond
to pure structural forms, while the final column has cross-cutting struc-
ture. First row: The structure of the data generating PGM. Second row:
The resulting item-covariance matrix arising from either data drawn from
the PGM (first four columns) or designed by hand (final column). Third
row: The input-analyzing singular vectors that will be learned by the lin-
ear neural network. Each vector is scaled by its singular value, showing its
importance to representing the covariance matrix. Fourth row: MDS view of
the development of internal representations.

progressively narrowing patterns of inductive projection across
development.

Consider the act of learning that a familiar item has a novel
feature (e.g., “a pine has property x”). To accommodate this
knowledge, new synaptic weights must be chosen between the
familiar item pine and the novel property x (Fig. 10A), without
disrupting prior knowledge of items and their properties already
stored in the network. This may be accomplished by adjusting
only the weights from the hidden layer to the novel feature so as
to activate it appropriately. With these new weights established,
inductive projections of the novel feature to other familiar items
(e.g., “does a rose have property x?”) naturally arise by querying
the network with other inputs. If a novel property m is ascribed
to a familiar item i , the inductive projection of this property to
any other item j is given by (SI Appendix)

ŷm = hT
j hi/‖hi‖2. [16]

This equation implements a similarity-based inductive projec-
tion to other items, where the similarity metric is precisely the
Euclidean similarity of hidden representations of pairs of items
(Fig. 10B). In essence, being told “a pine has property x,” the
network will more readily project the novel property x to those
familiar items whose hidden representations are close to that of
the pine.

A parallel situation arises upon learning that a novel item pos-
sesses a familiar feature (e.g., “a blick can move”; Fig. 10C).
Encoding this knowledge requires new synaptic weights between
the item and the hidden layer. Appropriate weights may be
found through standard gradient descent learning of the item-to-
hidden weights for this novel item, while holding the hidden-to-
output weights fixed to preserve prior knowledge about features.
The network can then project other familiar properties to the
novel item (e.g., “Does a blick have legs?”) by simply generating
a feature output vector given the novel item as input. A novel
item i with a familiar feature m will be assigned another familiar
feature n through (SI Appendix)

ŷn = hT
n hm/‖hm‖2, [17]

where the αth component of hn is hαn = uαn
√

aα(t). hn ∈RN2

can be thought of as the hidden representation of feature n

at developmental time t . In parallel to [16], this equation now
implements similarity-based inductive projection of familiar fea-
tures to a novel item. In essence, by being told “a blick can
move,” the network will more readily project other familiar
features to a blick, if those features have a similar internal
representation as that of the feature move.

Thus, the hidden layer of the deep network furnishes a com-
mon, semantic representational space into which both features
and items can be placed. When a novel feature m is assigned to
a familiar item i , that novel feature is placed close to the famil-
iar item in the hidden layer, and so the network will inductively
project this novel feature to other items close to i in neural space.
In parallel, when a novel item i is assigned a familiar feature
m , that novel item is placed close to the familiar feature, and so
the network will inductively project other features close to m in
neural space onto the novel item.

This principle of similarity-based generalization encapsulated
in Eqs. 16 and 17, when combined with the progressive dif-
ferentiation of internal representations as the network learns
from hierarchically structured data, as illustrated in Fig. 2B, then
naturally explains the developmental shift in patterns of induc-
tive projection from broad to specific, as shown in Fig. 10E.
For example, consider specifically the inductive projection of a
novel feature to familiar items (Fig. 10 A and B). Earlier (later)
in developmental time, neural representations of all items are
more similar to (different from) each other, and so the net-
work’s similarity-based inductive projection will extend the novel
feature to many (fewer) items, thereby exhibiting progressively
narrower patterns of projection that respect the hierarchical
structure of the environment (Fig. 10E). Thus, remarkably, even
a deep linear network can provably exhibit the same broad to
specific changes in patterns of inductive projection, empirically
observed in many works (2, 3, 17, 18).

Linking Behavior and Neural Representations
Compared with previous models which have primarily
made behavioral predictions, our theory has a clear neural

A B E

C D

Fig. 10. The neural geometry of inductive generalization. (A) A novel fea-
ture (property x) is observed for a familiar item (e.g., “a pine has property
x”). (B) Learning assigns the novel feature a neural representation in the
hidden layer of the network that places it in semantic similarity space near
the object which possesses the novel feature. The network then inductively
projects that novel feature to other familiar items (e.g., “Does a rose have
property x?”) only if their hidden representation is close in neural space. (C)
A novel item (a blick) possesses a familiar feature (e.g., “a blick can move”).
(D) Learning assigns the novel item a neural representation in the hidden
layer that places it in semantic similarity space near the feature possessed by
the novel item. Other features are inductively projected to that item (e.g.,
“Does a blick have wings?”) only if their hidden representation is close in
neural space. (E) Inductive projection of a novel property (“a pine has prop-
erty x”) over learning. As learning progresses, the neural representations of
items become progressively differentiated, yielding progressively restricted
projection of the novel feature to other items. Here, the pine can be thought
of as the left-most item node in the tree.
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interpretation. Here, we discuss implications for the neural basis
of semantic cognition.

Similarity Structure Is an Invariant of Optimal Learning. An influ-
ential method for probing neural codes for semantic knowl-
edge in empirical measurements of neural activity is the
representational similarity approach (20, 21, 25, 45), which exam-
ines the similarity structure of neural population vectors in
response to different stimuli. This technique has identified rich
structure in high-level visual cortices, where, for instance, inan-
imate objects are differentiated from animate objects (22, 23).
Strikingly, studies have found remarkable constancy between
neural similarity structures across human subjects and even
between humans and monkeys (24, 25). This highly conserved
similarity structure emerges, despite considerable variability in
neural activity patterns across subjects (46, 47). Indeed, exploit-
ing similarity structure enables more effective across-subject
decoding of fMRI data relative to transferring a decoder based
on careful anatomical alignment (48). Why is representational
similarity conserved, both across individuals and species, despite
highly variable tuning of individual neurons and anatomical
differences?

Remarkably, we show that two networks trained in the same
environment must have identical representational similarity
matrices, despite having detailed differences in neural tuning
patterns, provided that the learning process is optimal, in the
sense that it yields the smallest norm weights that solve the task
(see SI Appendix). One way to get close to the optimal mani-
fold of smallest norm synaptic weights after learning is to start
learning from small random initial weights. We show in Fig. 11
A and B that two networks, each starting from different sets
of small random initial weights, will learn very different inter-
nal representations (Fig. 11 A and B, Top), but will have nearly
identical representational similarity matrices (Fig. 11 A and B,
Middle). Such a result is, however, not obligatory. Two net-
works starting from large random initial weights not only learn
different internal representations, but also learn different repre-
sentational similarity matrices (Fig. 11 C and D, Top and Middle).
This pair of networks both learns the same composite input–
output map, but with suboptimal large-norm weights. Hence,
our theory, combined with the empirical finding that similarity
structure is preserved across humans and species, suggests these
disparate neural circuits may be implementing approximately
optimal learning in a common environment.

When the Brain Mirrors Behavior. In addition to matching neu-
ral similarity patterns across subjects, experiments using fMRI
and single-unit responses have also documented a correspon-
dence between neural similarity patterns and behavioral similar-
ity patterns (21). When does neural similarity mirror behavioral
similarity? We show this correspondence again emerges only
in optimal networks. In particular, denote by ŷi the behav-
ioral output of the network in response to item i . These out-
put patterns yield the behavioral similarity matrix Σŷ

ij = ŷTi ŷj .
In contrast, the neural similarity matrix is Σh

ij = hT
i hj , where

hi is the hidden representation of stimulus i . We show in
SI Appendix that if the network learns optimal smallest norm
weights, then these two similarity matrices obey the relation
Σŷ =

(
Σh
)
2, and therefore share the same singular vectors.

Hence, behavioral-similarity patterns share the same structure
as neural-similarity patterns, but with each semantic distinction
expressed more strongly (according to the square of its singular
value) in behavior relative to the neural representation. While
this precise mathematical relation is yet to be tested in detail,
some evidence points to this greater category separation in
behavior (24).

Given that optimal learning is a prerequisite for neural simi-
larity mirroring behavioral similarity, as in the previous section,
there is a match between the two for pairs of networks trained
from small random initial weights (Fig. 11 A and B, Middle and
Bottom), but not for pairs of networks trained from large random

A B C D

Fig. 11. Neural representations and invariants of learning. A and B depict
two networks trained from small norm random weights. C and D depict
two networks trained from large norm random weights. (Top) Neural tun-
ing curves hi at the end of learning. Neurons show mixed selectivity tuning,
and individual tuning curves are different for different trained networks.
(Middle) Representational similarity matrix Σh. (Bottom) Behavioral similar-
ity matrix Σŷ . For small-norm, but not large-norm, weight initializations,
representational similarity is conserved, and behavioral similarity mirrors
neural similarity.

initial weights (Fig. 11 C and D, Middle and Bottom). Thus, again,
speculatively, our theory suggests that the experimental observa-
tion of a link between behavioral and neural similarity may in
fact indicate that learning in the brain is finding optimal network
solutions that efficiently implement the requisite transformations
with minimal synaptic strengths.

Discussion
In summary, the main contribution of our work is the analysis
of a simple model—namely, a deep linear neural network—that
can, surprisingly, qualitatively capture a diverse array of phenom-
ena in semantic development and cognition. Our exact analytical
solutions of nonlinear learning phenomena in this model yield
conceptual insights into why such phenomena also occur in more
complex nonlinear networks (4, 28–32) trained to solve semantic
tasks. In particular, we find that the hierarchical differentiation
of internal representations in a deep, but not a shallow, network
(Fig. 2) is an inevitable consequence of the fact that singular val-
ues of the input–output correlation matrix drive the timing of
rapid developmental transitions (Fig. 3 and Eqs. 6 and 10), and
hierarchically structured data contain a hierarchy of singular val-
ues (Fig. 4). In turn, semantic illusions can be highly prevalent
between these rapid transitions simply because global optimality
in predicting all features of all items necessitates sacrificing cor-
rectness in predicting some features of some items (Fig. 5). And,
finally, this hierarchical differentiation of concepts is intimately
tied to the progressive sharpening of inductive generalizations
made by the network (Fig. 10).

The encoding of knowledge in the neural network after learn-
ing also reveals precise mathematical definitions of several
aspects of semantic cognition. Basically, the synaptic weights
of the neural network extract from the statistical structure of
the environment a set of paired object analyzers and feature
synthesizers associated with every categorical distinction. The
bootstrapped, simultaneous learning of each pair solves the
apparent Gordian knot of knowing both which items belong to
a category and which features are important for that category:
The object analyzers determine category membership, while the
feature synthesizers determine feature importance, and the set
of extracted categories are uniquely determined by the statis-
tics of the environment. Moreover, by defining the typicality
of an item for a category as the strength of that item in the
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category’s object analyzer, we can prove that typical items must
enjoy enhanced performance in semantic tasks relative to atyp-
ical items (Eq. 12). Also, by defining the category prototype to
be the associated feature synthesizer, we can prove that the most
typical items for a category are those that have the most extremal
projections onto the category prototype (Fig. 6 and Eq. 13).
Finally, by defining the coherence of a category to be the associ-
ated singular value, we can prove that more coherent categories
can be learned more easily and rapidly (Fig. 7) and explain how
changes in the statistical structure of the environment determine
what level of a category hierarchy is the most basic or impor-
tant (Fig. 8). All our definitions of typicality, prototypes, and
category coherence are broadly consistent with intuitions artic-
ulated in a wealth of psychology literature, but our definitions
imbue these intuitions with enough mathematical precision to
prove theorems connecting them to aspects of category learnabil-
ity, learning speed, and semantic task performance in a neural
network model.

More generally, beyond categorical structure, our analysis pro-
vides a principled framework for explaining how the statistical
structure of diverse structural forms associated with different
PGMs gradually becomes encoded in the weights of a neural
network (Fig. 9). Remarkably, the network learns these struc-
tures without knowledge of the set of candidate structural forms,
demonstrating that such forms need not be built in. Regarding
neural representation, our theory reveals that, across different
networks trained to solve a task, while there may be no corre-
spondence at the level of single neurons, the similarity structure

of internal representations of any two networks will both be
identical to each other and closely related to the similarity struc-
ture of behavior, provided that both networks solve the task
optimally, with the smallest possible synaptic weights (Fig. 11).

While our simple neural network captures this diversity of
semantic phenomena in a mathematically tractable manner,
because of its linearity, the phenomena it can capture still
barely scratch the surface of semantic cognition. Some funda-
mental semantic phenomena that require complex nonlinear
processing include context-dependent computations, dementia
in damaged networks, theory of mind, the deduction of causal
structure, and the binding of items to roles in events and sit-
uations. While it is inevitably the case that biological neural
circuits exhibit all of these phenomena, it is not clear how our
current generation of artificial nonlinear neural networks can
recapitulate all of them. However, we hope that a deeper math-
ematical understanding of even the simple network presented
here can serve as a springboard for the theoretical analysis
of more complex neural circuits, which, in turn, may eventu-
ally shed much-needed light on how the higher-level computa-
tions of the mind can emerge from the biological wetware of
the brain.
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