
LETTER Communicated by Geoffrey Hinton

Equivalence of Backpropagation and Contrastive Hebbian
Learning in a Layered Network

Xiaohui Xie
xhx@ai.mit.edu
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology,
Cambridge, MA 02139, U.S.A.

H. Sebastian Seung
seung@mit.edu
Howard Hughes Medical Institute and Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

Backpropagation and contrastive Hebbian learning are two methods of
training networks with hidden neurons. Backpropagation computes an
error signal for the output neurons and spreads it over the hidden neurons.
Contrastive Hebbian learning involves clamping the output neurons at
desired values and letting the effect spread through feedback connections
over the entire network. To investigate the relationship between these two
forms of learning, we consider a special case in which they are identical:
a multilayer perceptron with linear output units, to which weak feed-
back connections have been added. In this case, the change in network
state caused by clamping the output neurons turns out to be the same as
the error signal spread by backpropagation, except for a scalar prefactor.
This suggests that the functionality of backpropagation can be realized
alternatively by a Hebbian-type learning algorithm, which is suitable for
implementation in biological networks.

1 Introduction

Backpropagation and contrastive Hebbian learning (CHL) are two super-
vised learning algorithms for training networks with hidden neurons. They
are of interest, because they are generally applicable to wide classes of net-
work architectures. In backpropagation (Rumelhart, Hinton, & Williams,
1986b, 1986a), an error signal for the output neurons is computed and prop-
agated back into the hidden neurons through a separate teacher network.
Synaptic weights are updated based on the product between the error sig-
nal and network activities. CHL updates the synaptic weights based on the
steady states of neurons in two different phases: one with the output neu-
rons clamped to the desired values and the other with the output neurons
free (Movellan, 1990; Baldi & Pineda, 1991). Clamping the output neurons

Neural Computation 15, 441–454 (2003) c© 2002 Massachusetts Institute of Technology

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/15/2/441/815498/089976603762552988.pdf by Princeton U
niversity Library user on 10 February 2025

442 X. Xie and H. Seung

causes the hidden neurons to change their activities, and this change con-
stitutes the basis for the CHL update rule.

CHL was originally formulated for the Boltzmann machine (Ackley,
Hinton, & Sejnowski, 1985) and was extended later to deterministic net-
works (Peterson & Anderson, 1987; Hinton, 1989), in which case it can be
interpreted as a mean-field approximation of the Boltzmann machine learn-
ing algorithm. However, this interpretation is not necessary, and CHL can
be formulated purely for deterministic networks (Movellan, 1990; Baldi &
Pineda, 1991). Compared to backpropagation, CHL appears to be quite dif-
ferent. Backpropagation is typically implemented in feedforward networks,
whereas CHL is implemented in networks with feedback. Backpropagation
is an algorithm driven by error, whereas CHL is a Hebbian-type algorithm,
with update rules based on the correlation of pre- and postsynaptic activi-
ties. CHL has been shown to be equivalent to backpropagation for networks
with only a single layer (Movellan, 1990), and there has been some other
work to relate CHL to the general framework of backpropagation (Hop-
field, 1987; O’Reilly, 1996; Hinton & McClelland, 1988). However, a direct
link between them for networks with hidden neurons has been lacking.

To investigate the relationship between these two algorithms, we con-
sider a special network for which CHL and backpropagation are equivalent.
This is a multilayer perceptron to which weak feedback connections have
been added and with output neurons that are linear. The equivalence holds
because in CHL, clamping the output neurons at their desired values causes
the hidden neurons to change their activities, and this change turns out to
be equal to the error signal spread by backpropagation, except for a scalar
factor.

2 The Learning Algorithms

In this section, we describe the backpropagation and CHL algorithms. Back-
propagation is in the standard form, implemented in a multilayer percep-
tron (Rumelhart et al., 1986b). CHL is formulated in a layered network with
feedback connections between neighboring layers of neurons. It is an ex-
tension of the typical CHL algorithm formulated for recurrent symmetric
networks (Movellan, 1990).

2.1 Backpropagation. Consider a multilayer perceptron with L + 1 lay-
ers of neurons and L layers of synaptic weights (see Figure 1A). The activities
of the kth layer of neurons are denoted by the vector xk, their biases by the
vector bk, and the synaptic connections from layer k − 1 to layer k by the
matrix Wk. All neurons in the kth layer are assumed to have the same trans-
fer function fk, but this transfer function may vary from layer to layer. In
particular, we will be interested in the case where fL is linear, though the
other transfer functions may be nonlinear. In the basic definition, fk acts on
a scalar and returns a scalar. However, we will generally use fk to act on a

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/15/2/441/815498/089976603762552988.pdf by Princeton U
niversity Library user on 10 February 2025

Backpropagation and Contrastive Hebbian Learning 443

Figure 1: Diagram on the network structures of the (A) multilayer perceptron
and the (B) layered network with feedback connections. Layer 0 is the input,
layer L is the output, and the others are hidden layers. The forward connections
are the same for both networks. In B, there exist feedback connections between
neighboring layers of neurons.

vector, in which case it returns a vector, operating component by component
by fk. f ′

k is the derivative of fk with respect to its argument. Similar to fk,
when f ′

k acts on a vector, it returns a vector as well, operated by f ′
k in each

component. We assume that fk is monotonically increasing.
Backpropagation learning is implemented by repeating the following

steps for each example in a training set of input-output pairs:

1. In the forward pass,

xk = fk(Wkxk−1 + bk) (2.1)

is evaluated for k = 1 to L, thereby mapping the input x0 to the out-
put xL.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/15/2/441/815498/089976603762552988.pdf by Princeton U
niversity Library user on 10 February 2025

444 X. Xie and H. Seung

2. The desired output d of the network, provided by some teacher, is
compared with the actual output xL to compute an error signal,

yL = DL(d − xL). (2.2)

The matrix Dk ≡ diag{f ′
k(Wkxk−1 + bk)} is defined by placing the com-

ponents of the vector f ′
k(Wkxk−1+bk) in the diagonal entries of a matrix.

3. The error signal is propagated backward from the output layer by
evaluating

yk−1 = Dk−1WT
k yk (2.3)

for k = L to 2.

4. The weight update

�Wk = ηykxT
k−1 (2.4)

is made for k = 1 to L, where η > 0 is a parameter controlling the
learning rate.

2.2 Contrastive Hebbian Learning. To formulate CHL, we consider a
modified network in which, in addition to the feedforward connections
from layer k − 1 to layer k, there are also feedback connections between
neighboring layers (see Figure 1B). The feedback connections are assumed
to be symmetric with the feedforward connections, except that they are
multiplied by a positive factor γ . In other words, the matrix γ WT

k contains
the feedback connections from layer k back to layer k − 1.

CHL is implemented by repeating the following steps for each example
of the training set:

1. The input layer x0 is held fixed, and the dynamical equations

dxk

dt
+ xk = fk(Wkxk−1 + γ WT

k+1xk+1 + bk) (2.5)

for k = 1 to L are run until convergence to a fixed point. The case k = L
is defined by setting xL+1 = 0 and WL+1 = 0. Convergence to a fixed
point is guaranteed under rather general conditions, to be shown later.
This is called the free state of the network and is denoted by x̌k for the
kth layer neurons.

2. The anti-Hebbian update,

�Wk = −ηγ k−Lx̌kx̌T
k−1, (2.6)

is made for k = 1, . . . , L.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/15/2/441/815498/089976603762552988.pdf by Princeton U
niversity Library user on 10 February 2025

Backpropagation and Contrastive Hebbian Learning 445

3. The output layer xL is clamped at the desired value d, and the dynam-
ical equation 2.5 for k = 1 to L − 1 is run until convergence to a fixed
point. This is called the clamped state and is denoted by x̂k for the kth
layer neurons.

4. The Hebbian update,

�Wk = ηγ k−Lx̂kx̂T
k−1, (2.7)

is made for k = 1, . . . , L.

Alternatively, the weight updates could be combined and made after
both clamped and free states are computed,

�Wk = ηγ k−L(x̂kx̂T
k−1 − x̌kx̌T

k−1). (2.8)

This form is the one used in our analysis.
This version of CHL should look familiar to anyone who knows the con-

ventional version, implemented in symmetric networks. It will be derived
in section 4, but first we prove its equivalence to the backpropagation algo-
rithm.

3 Equivalence in the Limit of Weak Feedback

Next, we prove that CHL in equation 2.8 is equivalent to the backpropa-
gation algorithm in equation 2.4, provided that the feedback is sufficiently
weak and the output neurons are linear.

In notation, xk, x̂k, and x̌k represent the kth layer activities of the feed-
forward network, the clamped state, and the free state, respectively. We
consider the case of weak feedback connections, γ � 1, and use ≈ to mean
that terms of higher order in γ have been neglected and ∼ to denote the
order.

The proof consists of the following four steps:

1. Show that the difference between the feedforward and free states is
of order γ in each component,

δx̌k ≡ x̌k − xk ∼ γ, (3.1)

for all k = 1, . . . , L.

2. Show that in the limit of weak feedback, the difference between the
clamped and free states satisfies the following iterative relationship,

δxk ≡ x̂k − x̌k = γ DkWT
k+1δxk+1 + O(γ L−k+1), (3.2)

for k = 1, . . . , L − 1, and δxL = d − x̌L.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/15/2/441/815498/089976603762552988.pdf by Princeton U
niversity Library user on 10 February 2025

446 X. Xie and H. Seung

3. Show that if the output neurons are linear, δxk is related to the error
signal in backpropagation through

δxk = γ L−kyk + O(γ L−k+1). (3.3)

4. Show that the CHL update can be approximated by

�Wk = ηykxT
k−1 + O(γ). (3.4)

In the CHL algorithm, clamping the output layer causes changes in the
output neurons to spread backward to the hidden layers because of the
feedback connections. Hence, the new clamped state differs from the free
state over the entire network, including the hidden neurons. Equation 3.2
states that δxk decays exponentially with distance from the output layer of
the network. This is because the feedback is weak, so that δxk is reduced
from δxk+1 by a factor of γ .

Remarkably, as indicated in equation 3.3, the difference between the
clamped and free states is equivalent to the error signal yk computed in
the backward pass of backpropagation, except for a factor of γ L−k, when the
output neurons are linear. Moreover, this factor annihilates the factor of γ k−L

in the CHL rule of equation 2.8, resulting in the update rule equation 3.4.

3.1 Proof. To prove the first step, we start from the steady-state equation
of the free phase,

x̌k = fk(Wkx̌k−1 + bk + γ WT
k+1x̌k+1), (3.5)

for k = 1, . . . , L − 1. Subtracting this equation from equation 2.1 and per-
forming Taylor expansion, we derive

δx̌k ≡ x̌k − xk (3.6)

= fk(Wkx̌k−1 + bk + γ WT
k+1x̌k+1) − fk(Wkxk−1 + bk) (3.7)

= DkWkδx̌k−1 + γ DkWT
k+1x̌k+1 + O(‖Wkδx̌k−1 + γ WT

k+1x̌k+1‖2) (3.8)

for all hidden layers, and δx̌L = DLWLδx̌L−1 +O(‖WLδx̌L−1‖2) for the output
layer. In equation 3.7, the expansion is done around Wkxk−1 + bk. Since the
zeroth layer is fixed with the input, δx̌0 = 0, under the above iterative
relationships, we must have δx̌k ∼ γ in each component, that is, δx̌k is in the
order of γ , for all k = 1, . . . , L.

To prove equation 3.2, we compare the fixed-point equations of the
clamped and free states,

f−1(x̌k) = Wkx̌k−1 + bk + γ WT
k+1x̌k+1 (3.9)

f−1(x̂k) = Wkx̂k−1 + bk + γ WT
k+1x̂k+1, (3.10)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/15/2/441/815498/089976603762552988.pdf by Princeton U
niversity Library user on 10 February 2025

Backpropagation and Contrastive Hebbian Learning 447

for k = 1, . . . , L − 1, where f−1 is the inverse function of f in each compo-
nent. Subtract them, and perform Taylor expansion around x̌k. Recall the
definition of δxk ≡ x̌k − x̂k. We have

Wkδxk−1 + γ WT
k+1δxk+1 = f−1(x̂k) − f−1(x̌k) (3.11)

= Jkδxk + O(‖δxk‖2), (3.12)

where the matrix Jk ≡ diag{∂f−1(x̌k)/∂ x̌k}. Since x̌k − xk ∼ γ , to the leading
order in γ , matrix Jk can be approximated by Jk ≈ diag{∂f−1(xk)/∂xk} = D−1

k ,
and Jkδxk = D−1

k δxk + O(γ ‖δxk‖). Substituting this back to equation 3.12,
we get

δxk = Dk(Wkδxk−1 + γ WT
k+1δxk+1) + O(γ ‖δxk‖) + O(‖δxk‖2). (3.13)

Let us start from k = 1. Since the input is fixed (δx0 = 0), we have δx1 =
γ D1WT

2 δx2 + O(γ ‖δx1‖), and therefore, δx1 = γ D1WT
2 δx2 + O(γ 2‖δx2‖).

Next, we check for k = 2, in which case δx2 = D2W2δx1 + γ D2WT
3 δx3 +

O(γ ‖δx2‖). Substituting δx1, we have δx2 = γ D2WT
3 δx3 + O(γ ‖δx2‖), and

therefore, δx2 = γ D2WT
3 δx3 + O(γ 2‖δx3‖). Following this iteratively, we

have

δxk = γ DkWT
k+1δxk+1 + O(γ 2‖δxk+1‖), (3.14)

for all k = 1, . . . , L − 1. Notice that δxL = d − x̌L = d − xL +O(γ) is of order
1. Hence, δxL−1 = γ DL−1WT

L δxL + O(γ 2), and iteratively, we have

δxk = γ DkWT
k+1δxk+1 + O(γ L−k+1), (3.15)

for k = 1, . . . , L−1. Therefore, equation 3.2 is proved. This equation indicates
that δxk ∼ γ δxk+1 and δxk ∼ γ L−k in each component.

If the output neurons are linear, then yL = δxL + O(γ). Consequently,
δxk = γ L−kyk + O(γ L−k+1) for all k = 1, . . . , L.

Finally, the weight update rule of CHL follows:

�Wk = ηγ k−L(x̂kx̂T
k−1 − x̌kx̌T

k−1) (3.16)

= ηγ k−Lδxkx̌T
k−1 + ηγ k−Lx̌kδxT

k−1 + ηγ k−LδxkδxT
k−1 (3.17)

= ηγ k−Lδxkx̌T
k−1 + O(γ) (3.18)

= ηykxT
k−1 + O(γ). (3.19)

The last approximation is made because x̌k−1 − xk−1 ∼ γ . This result shows
that the CHL algorithm in the layered network with linear output neurons
is identical to the backpropagation as γ → 0.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/15/2/441/815498/089976603762552988.pdf by Princeton U
niversity Library user on 10 February 2025

448 X. Xie and H. Seung

Remark. For nonlinear output neurons, δxL of CHL is different from yL
in equation 2.2 computed in backpropagation. However, they are within
90 degrees if viewed as vectors. Moreover, if the activation function for
the output neurons is taken to be the sigmoidal function, that is, fL(z) =
1/(1+exp(−z)), the CHL algorithm is equivalent to backpropagation based
on the cost function,

− dT log(xL) − (1 − d)T log(1 − xL), (3.20)

since in this case, yL = d−xL. In the above, function log acts on a vector and
returns a vector as well.

4 Contrastive Function

The CHL algorithm stated in section 2.2 can be shown to perform gradient
descent on a contrastive function that is defined as the difference of the
network’s Lyapunov functions between clamped and free states (Movellan,
1990; Baldi & Pineda, 1991).

Suppose E(x) is a Lyapunov function of the dynamics in equation 2.5.
Construct the contrastive function C(W) ≡ E(x̂) − E(x̌), where x̂ and x̌ are
steady states of the whole network in the clamped and free phase, respec-
tively, and W ≡ {W1, . . . , WL}. For simplicity, let us first assume that E(x)

has a unique global minimum in the range of x and no local minima. Ac-
cording to the definition of Lyapunov functions, x̌ is the global minimum
of E and so is x̂, but under the extra constraints that the output neurons are
clamped at d. Therefore, C(W) = E(x̂) − E(x̌) ≥ 0 and achieves zero if and
only if x̌ = x̂, that is, when the output neurons reach the desired values.
Performing gradient descent on C(W) leads to the CHL algorithm. On the
other hand, if E(x) does not have a unique minimum, x̌ and x̂ may be only
local minima. However, the above discussion still holds, provided that x̂ is
in the basin of attraction of x̌ under the free phase dynamics. This imposes
some constraints on how to reset the initial state of the network after each
phase. One strategy is to let the clamped phase settle to the steady state first
and then run the free phase without resetting hidden neurons. This will
guarantee that C(W) is always nonnegative and constitutes a proper cost
function.

Next, we introduce a Lyapunov function for the network dynamics in
equation 2.5,

E(x) =
L∑

k=1

γ k−L[1TF̄k(xk) − xT
k Wkxk−1 − bT

k xk], (4.1)

where function F̄k is defined so that F̄′
k(x) = f−1

k (x). x ≡ {x1, . . . , xL} repre-
sents the states of all layers of the network. Equation 4.1 is extended from

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/15/2/441/815498/089976603762552988.pdf by Princeton U
niversity Library user on 10 February 2025

Backpropagation and Contrastive Hebbian Learning 449

Lyapunov functions previously introduced for recurrent networks (Hop-
field, 1984; Cohen & Grossberg, 1983).

For E(x) to be a Lyapunov function, it must be nonincreasing under the
dynamics equation 2.5. This can be shown by

Ė =
L∑

k=1

(
∂E
xk

)T

ẋk (4.2)

=
L∑

k=1

γ k−L[f−1
k (xk) − Wkxk−1 − γ WT

k+1xk+1 − bk]Tẋk (4.3)

=
L∑

k=1

−γ k−L[f−1
k (xk) − f−1

k (ẋk + xk)]T[xk − (ẋk + xk)] (4.4)

≤ 0, (4.5)

where the last inequality holds because fk is monotonic as we have assumed.
Therefore, E(x) is nonincreasing following the dynamics and stationary if
and only if at the fixed points. Furthermore, with appropriately chosen fk,
such as sigmoid functions, E(x) is also bounded below, in which case E(x)

is a Lyapunov function.
Given the Lyapunov function, we can form the contrastive function C(W)

and derive the gradient-descent algorithm on C accordingly.
The derivative of E(x̂) with respect to Wk is

dE(x̂)

dWk
= ∂E

∂Wk
+

∑
k

∂E
∂ x̂k

∂ x̂k

∂Wk
(4.6)

= ∂E
∂Wk

(4.7)

= −γ k−Lx̂kx̂T
k−1, (4.8)

where the second equality holds because ∂E/∂ x̂k = 0 for all k at the steady
states. Similarly, we derive

dE(x̌)

dWk
= −γ k−Lx̌kx̌T

k−1. (4.9)

Combining equations 4.8 and 4.9, we find the derivative of C(W) with re-
spect to Wk shall read

dC
dWk

= dE(x̂)

dWk
− dE(x̌)

dWk
= −γ k−L(x̂kx̂T

k−1 − x̌kx̌T
k−1). (4.10)

With a suitable learning rate, gradient descent on C(W) leads to the CHL
algorithm in equation 2.8.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/15/2/441/815498/089976603762552988.pdf by Princeton U
niversity Library user on 10 February 2025

450 X. Xie and H. Seung

5 Equivalence of Cost Functions

In section 3, we proved that the CHL algorithm in the layered network
with linear output neurons is equivalent to backpropagation in the weak
feedback limit. Since both algorithms perform gradient descent on some cost
function, the equivalence in the update rule implies that their cost functions
should be equal, up to a multiplicative or an additive constant difference.
Next, we demonstrate this directly by comparing the cost functions of these
two algorithms.

The backpropagation learning algorithm is gradient descent on the
squared difference, ‖d − xL‖2/2, between the desired and actual outputs
of the network.

For the CHL algorithm, the cost function is the difference of Lyapunov
functions between the clamped and free states, as shown in the previous
section. After reordering, it can be written as

C =
L∑

k=1

γ k−L[1T(F̄k(x̂k) − F̄k(x̌k)) − δxT
k (Wkx̌k−1 + bk) − δxT

k−1WT
k x̂k]. (5.1)

Recall that δxk ∼ γ L−k. Therefore, the δxk term above multiplied by the
factor γ k−L is of order 1, whereas the δxk−1 multiplied by the same factor is
of order γ , and thus can be neglected in the leading-order approximation.
After this, we get

C =
L∑

k=1

γ k−L[1T(F̄k(x̂k) − F̄k(x̌k)) − δxT
k (Wkx̌k−1 + bk)] + O(γ). (5.2)

If the output neurons are linear (fL(x) = x), then F̄L(x) = xTx/2 and
WLx̌L−1 + bL = x̌L. Substituting them into C and separating terms of the
output and hidden layers, we derive

C = 1
2
(x̂T

L x̂L − x̌T
L x̌L − δxT

L x̌L)

+
L−1∑
k=1

γ k−LδxT
k [f−1

k (x̌k) − Wkx̌k−1 − bk] + O(γ)

= 1
2
‖d − xL‖2 + O(γ), (5.3)

where the second term with the sum vanishes because of the fixed-point
equations.

In conclusion, to the leading order in γ , the contrastive function in CHL
is equal to the squared error cost function of backpropagation. The demon-
stration on the equality of the cost functions provides another perspective
on the equivalence between these two forms of learning algorithms.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/15/2/441/815498/089976603762552988.pdf by Princeton U
niversity Library user on 10 February 2025

Backpropagation and Contrastive Hebbian Learning 451

So far, we have always assumed that the output neurons are linear. If this
is not true, how different is the cost function of CHL from that of backprop-
agation? Repeating the above derivation, we get the cost function of CHL
for nonlinear output neurons,

C = 1TF̄L(x̂L) − 1TF̄L(x̌L) − δxT
L f−1

L (x̌L) + O(γ) (5.4)

= −1TF̄L(xL) − δxT
L f−1

L (xL) + 1TF̄L(d) + O(γ). (5.5)

With sigmoidal-type activation function for output neurons, F̄L(z) = x log(z)
+ (1 − z) log(1 − z). Substituting this into equation 5.5, we find

C = −dT log(xL) − (1 − d)T log(1 − xL) + 1TF̄L(d) + O(γ), (5.6)

which is the same as the cost function in equation 3.20 in the small γ limit,
except a constant difference.

6 Simulation

In this section, we use the backpropagation and the CHL algorithm to train
a 784-10-10 three-layer network to perform handwritten digit recognition.
The data we use are abridged from the MNIST database containing 5000
training examples and 1000 testing examples.

We use the sigmoidal function fk(x) = 1/(1+exp(−x)) for the hidden and
output layers. The backpropagation algorithm is based on the cost function
in equation 3.20. We simulate the CHL algorithm in the layered network
with three different feedback strengths: γ = 0.05, 0.1, and 0.5.

The label of an input example is determined by the index of the largest
output. After each epoch of on-line training, the classification and squared
error for both training and testing examples are computed and plotted in
Figure 2. The classification error is defined as the percentage of examples
classified incorrectly. The squared error is defined as the mean squared
difference between the actual and desired output for all training or testing
examples. The desired output is 1 on the output neuron whose index is the
same as the label and zero on the output neurons otherwise.

The learning curve of CHL algorithm is very similar to those of back-
propagation for γ = 0.05 and 0.1, and it deviates from the learning curve
of backpropagation for γ = 0.5 (see Figure 2). In the simulation, we find
the overall simulation time of the CHL algorithm is not significantly longer
than that of the backpropagation. This is because the layered network tends
to converge to a steady state fast in the case of weak feedback.

7 Discussion

We have shown that backpropagation in multilayer perceptrons can be
equivalently implemented by the CHL algorithm if weak feedback is added.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/15/2/441/815498/089976603762552988.pdf by Princeton U
niversity Library user on 10 February 2025

452 X. Xie and H. Seung

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4
Training Classification Error

BP
CHL γ=0.05
CHL γ=0.1
CHL γ=0.5

0 10 20 30 40 50
0

0.2

0.4

0.6
Training Squared Error

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4
Test Classification Error

Training epochs
0 10 20 30 40 50

0

0.2

0.4

0.6
Test Squared Error

Training epochs

A

D

B

C

Figure 2: Comparison of performance between the backpropagation and the
CHL algorithm. The two algorithms are used to train a 784-10-10 three-layer
network to perform handwritten digit recognition. The CHL algorithm is used
to train the three-layer network with feedback γ = 0.05, 0.1, and 0.5 added. (A,
B) Classification and squared errors for training examples. (C, D) Test examples.

This is demonstrated from two perspectives: evaluating the two algorithms
directly and comparing their cost functions. The essence behind this equiv-
alence is that CHL effectively extracts the error signal of backpropagation
from the difference between the clamped and free steady states.

The equivalence between CHL and backpropagation in layered networks
holds in the limit of weak feedback, which is true mathematically. This, how-
ever, does not imply that in engineering problem solving, we should sub-
stitute CHL for backpropagation to train neural networks. This is because
in networks with many hidden layers, the difference between the clamped
and free states in the first few layers would become very small in the limit of
weak feedback, and therefore CHL will not be robust against noise during
training. In practice, when CHL is used for training the layered networks
with many hidden layers, the feedback strength should not be chosen to
be too small, in which case the approximation of CHL to backpropagation
algorithm will be inaccurate.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/15/2/441/815498/089976603762552988.pdf by Princeton U
niversity Library user on 10 February 2025

Backpropagation and Contrastive Hebbian Learning 453

The investigation on the relationship between backpropagation and CHL
is motivated by research looking for biologically plausible learning algo-
rithms. It is believed by many that backpropagation is not biologically real-
istic. However, in an interesting study on coordinate transform in posterior
parietal cortex of monkeys, Zipser and Anderson (1988) show that hidden
neurons in a network model trained by backpropagation share very similar
properties to real neurons recorded from that area. This work prompted
the search for a learning algorithm, which has similar functionality as back-
propagation (Crick, 1989; Mazzoni, Andersen, & Jordan, 1991) and at the
same time is biologically plausible. CHL is a Hebbian-type learning algo-
rithm, relying on only pre- and postsynaptic activities. The implementation
of backpropagation equivalently by CHL suggests that CHL could be a
possible solution to this problem.

Mazzoni et al. (1991) also proposed a biologically plausible learning rule
as an alternative to backpropagation. Their algorithm is a reinforcement-
type learning algorithm, which is usually slow, has large variance, and de-
pends on global signals. In contrast, the CHL algorithm is a deterministic
algorithm, which could be much faster than reinforcement learning algo-
rithms. However, a disadvantage of CHL is its dependence on special net-
work structures, such as the layered network in our case. Whether either
algorithm is used by biological systems is an important question that needs
further investigation in experiments and theory.

Acknowledgments

We acknowledge helpful discussions with J. J. Hopfield and S. Roweis. We
thank J. Movellan for suggesting the error function for nonlinear output
neurons.

References

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for
Boltzmann Machines. Cognitive Science, 9, 147–169.

Baldi, P., & Pineda, F. (1991). Contrastive learning and neural oscillator. Neural
Computation, 3, 526–545.

Cohen, M. A., & Grossberg, S. (1983). Absolute stability of global pattern for-
mation and parallel memory storage by competitive neural networks. IEEE
Trans. on Systems, Man, and Cybernetics, 13, 815–826.

Crick, F. (1989). The recent excitement about neural networks. Nature, 337,
129–132.

Hinton, G. E. (1989). Deterministic Boltzmann learning performs steepest de-
scent in weight-space. Neural Computation, 1, 143–150.

Hinton, G. E., & McClelland, J. (1988). Learning representations by recirculation.
In D. Z. Anderson (Ed.), Neural Information Processing Systems. New York:
American Institute of Physics.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/15/2/441/815498/089976603762552988.pdf by Princeton U
niversity Library user on 10 February 2025

454 X. Xie and H. Seung

Hopfield, J. J. (1984). Neurons with graded response have collective computa-
tional properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA,
81, 3088–3092.

Hopfield, J. J. (1987). Learning algorithms and probability distributions in feed-
forward and feed-back networks. Proc. Natl. Acad. Sci. USA, 84, 8429–8433.

Mazzoni, P., Andersen, R. A., & Jordan, M. I. (1991). A more biologically plausi-
ble learning rule for neural networks. Proc. Natl. Acad. Sci. USA, 88, 4433–4437.

Movellan, J. (1990). Contrastive Hebbian learning in the continuous Hopfield
model. In D. Touretzky, J. Elman, T. Sejnowski, & G. Hinton (Eds.), Proceedings
of the 1990 Connectionist Models Summer School (pp. 10–17). San Mateo, CA:
Morgan Kaufmann.

O’Reilly, R. (1996). Biologically plausible error-driven learning using local ac-
tivation differences: The generalized recirculation algorithm. Neural Compu-
tation, 8, 895–938.

Peterson, C., & Anderson, J. (1987). A mean field theory learning algorithm for
neural networks. Complex Systems, 1, 995–1019.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986a). Learning internal
representations by error propagation. In D. E. Rumelhart, & J. L. McClel-
land (Eds.), Parallel distributed processing: Explorations in the microstructure of
cognition. Vol. 1: Foundations (pp. 318–362). Cambridge, MA: MIT Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986b). Learning representa-
tions by back–propagating errors. Nature, 323, 533–536.

Zipser, D., & Andersen, R. A. (1988). A back-propagation programmed network
that simulates response properties of a subset of posterior parietal neurons.
Nature (London), 331, 679–684.

Received January 25, 2002; accepted August 1, 2002.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/15/2/441/815498/089976603762552988.pdf by Princeton U
niversity Library user on 10 February 2025

