
Software Engineering Techniques
for

Collaborative Software Development
Princeton University Bootcamp 2018

David Luet

PICSciE, Research Computing/OIT, Department of Geosciences

October 30, 2018

Outline

Git and GitHub for Collaborative Developments

Testing

Automatic Testing

Other Useful Tools For Collaborative Software Development

References and Getting Help

Conclusion

Outline

Git and GitHub for Collaborative Developments

Testing

Automatic Testing

Other Useful Tools For Collaborative Software Development

References and Getting Help

Conclusion

A Simple Collaborative Workflow

master

GitHub

C3

devel

C0

master

C1 C2

Teammate’s Computer

C3

C0 C1 C2

C3

C0 C1 C2

devel

devel

master

My Computer

Remote Repository Permissions

I Problem with that simple workflow:
I It’s easy to push broken code to the shared repository.
I when others pull the changes and start adding their development, it

can create problem.
I this does not work well with more than two developers.

I To solve this issue, we introduce two roles with different
permissions on the shared repository:

I code maintainers: push and pull permissions.
I developers: only pull permission.

Forking a Repository on GitHub

Forks are basically a copy of a repo on GitHub.

C0

mastermaster

C1 C2

develdevel

GitHub

Developer

C3

C0 C1 C2

C3

Fork
Shared

Forking a Repository on GitHub

As the GitHub user buildbot-princeton I want to fork:
https://github.com/luet/factorial

https://github.com/luet/factorial

Forking a Repository on GitHub

Forking a Repository on GitHub

Pull-Request: the Different Repositories

C0 C1

master

C3

C0 C1 C2 C2

devel

master

PUSH

C3

C0 C1 C2

devel

master

PULL

GitHub

devel

Developer

Developer’s Computer

C3

Shared

Pull-Request Steps

C4

devel

C0

master

develdevel

master

C3

GitHub

C3

Developer

Developer’s Computer

C0 C1

C3

C0 C1 C2

C2

master

C2C1

Shared

Pull-Request Steps

C4

PUSH

devel

C4

devel

C1

C3

C3

master

C2C1C0

C3

C0

master

C1 C2

devel

master

GitHub

C2

Developer

Developer’s Computer

C0

Shared

Pull-Request Steps

C4

Open Pull-Request

devel

C4

devel

C2

C3

C0

master

C2C1C0 C1

master

C2

devel

C3

master

GitHub

C3

Developer

Developer’s Computer

C0 C1

Shared

Pull-Request Steps

C4

devel

MERGE

devel

C4

devel

C4

C3

C0 C1 C2

C3

C0 C1 C2

master

master

GitHub

master

Developer

Developer’s Computer

C0 C1 C2

C3

Shared

Pull-Request Steps on GitHub

Pull-Request Steps on GitHub

Pull-Request Steps on GitHub

Pull-Request Steps on GitHub

Pull-Request Steps on GitHub

Pull-Request Steps on GitHub

Pull-Request Steps on GitHub

Pull-Request Steps on GitHub

Pull-Request Steps on GitHub

Pull-Request Steps on GitHub

hands-on #1

http://luet.princeton.edu/cicd/

http://luet.princeton.edu/cicd/

Advantages of Doing a Pull-Request?

I Gives us time to review and test the changes before committing
them.

I So that no broken code gets committed to the shared repository.
I The problem with this simple workflow is that it can be hard for

the code maintainers to know whether or not changes break the
code.

I That’s why we need to build some tests.

Outline

Git and GitHub for Collaborative Developments

Testing

Automatic Testing

Other Useful Tools For Collaborative Software Development

References and Getting Help

Conclusion

Definition and Motivation

I Debugging is what you do when you know that a program is
broken.

I Testing is a determined, systematic attempt to break a program
that you think is working.

I Testing for Quality Assurance: make sure some changes didn’t
change the results compared to the last version.

I When you write code with testing in mind, you write better code
because you write better interfaces.

When to Write the Tests

I Test while you are writing the code.
I Test incrementally:

I write part of a program,
I test it,
I add some more code,
I test that,
I and so on.

I Some programming techniques (e.g. Extreme Programming)
even instruct you to write the tests first.

Testing for Functionality

I Unit testing: test one function.
I Test a set of functions or the entire code:

I It can be hard to design a test that will exercise a certain portion of
your code by running the entire code.

I Use libraries and drivers to isolate functions or a group of functions.

Regression Testing: An Example

I SPECFEM3D_GLOBE (Tromp et. al): simulates global and
regional seismic wave propagation.

I This code produces seismograms, which are records of the
ground motion in one direction at a measuring station as a
function of time.

Regression Testing: Comparing Seismograms

err = ‖ref−syn‖√
‖ref‖‖syn‖

< TOLreference
latest

t

d

An Actual Seismograms

-0.00015

-0.0001

-5e-05

 0

 5e-05

 0.0001

 0.00015

-20 0 20 40 60 80 100 120 140 160 180

GE.ZKR.MXE.sem.ascii

reference
latest

Other Tests

I Use different compilers to:
I check that it will compile.
I find programming mistakes.
I compare the results.

I Use different versions of scripting languages e.g. Python, Matlab.
I Run on different OS, hardware to make sure:

I the code runs.
I the code gives the same results.

Testing frameworks

I Google framework for C++: Google Test.
I Python: unittest
I Matlab

https://github.com/google/googletest
https://docs.python.org/3.7/library/unittest.html
https://www.mathworks.com/help/matlab/matlab-unit-test-framework.html

Testing Frameworks Example

I Look at my factorial calculation repository:
https://github.com/luet/factorial/

https://github.com/luet/factorial/

Outline

Git and GitHub for Collaborative Developments

Testing

Automatic Testing

Other Useful Tools For Collaborative Software Development

References and Getting Help

Conclusion

Why Run Test Automatically?

I The temptation when you develop code is to test only that part
that you just wrote.

I But there might be side effects to your changes.
I So you want to run a your entire suite of tests every time you make

a change.
I you are less likely to do that if the tests have to be run manually.

I Not all the developers have access to all tools.
I Once it’s set up you don’t have to spend any time running your

tests.

Test Automation with Travis

I An example:
https://github.com/uvaaland/travis_tutorial

I You can get a free account at https://travis-ci.com/.
I When you can login with your GitHub credential.
I It’s only really free for open source (public repositories).

https://github.com/uvaaland/travis_tutorial
https://travis-ci.com/

Test Automation with Jenkins

I Service offered by Research Computing.
I Jenkins is a web-based application for automatic testing.
I Simple user interface: easy to configure.
I The advantage other Travis is that with Jenkins you have access

to the Research Computing resources:
I Large number of cores.
I Compilers.
I Licensed software e.g. Matlab.

I Email cses@princeton.edu to request an account.
I There is a tutorial at:
http://jenkins-doc.princeton.edu/tutorial.html

http://jenkins-doc.princeton.edu/tutorial.html

A Workflow with Jenkins and GitHub

Typical workflow:

1. A Pull-Request is open on GitHub.

2. GitHub sends a signal to our Jenkins server (webhook).

3. Jenkins runs the tests suite.
4. Jenkins reports the results of the tests on the GitHub web site.

I If the changes passed the test, the code maintainer can merge the
changes.

I If the changes failed the test, the developer needs to solve the
problem and push the changes to Github.

Scheduled Tests

I A Pull-Request only triggers short (< 15 min) tests.
I We use Jenkins to schedule longer tests:

I daily (< 1 hour).
I weekly (> 1 hour).

Jenkins vs. Travis

I With Jenkins you can run on:
I the Research Computing clusters.
I any machine that you have ssh access to.

I Travis is good for small scripts, not parallel code.

Outline

Git and GitHub for Collaborative Developments

Testing

Automatic Testing

Other Useful Tools For Collaborative Software Development

References and Getting Help

Conclusion

Code Documentation

I It’s important to document your code when someone else will
have to read it.

I especially when this someone else can be you in a couple years.
I Doxygen:

I Documentation is in the code.
I Supports adding Latex to the documentation.
I Build calling graph.
I show example

I You can use Sphinx with Python.

https://www.stack.nl/~dimitri/doxygen/

Documenting outside the code: GitHub Wiki

I GitHub Wiki
I It’s easy to write in Markdown.
I https:
//help.github.com/articles/about-github-wikis/

I show examples
I Issues:

I https://guides.github.com/features/issues/
I Like a shared TODO list.

I Gists:
I https://gist.github.com/
I For sharing small codes.

https://guides.github.com/features/mastering-markdown/
https://help.github.com/articles/about-github-wikis/
https://help.github.com/articles/about-github-wikis/
https://guides.github.com/features/issues/
https://gist.github.com/

Outline

Git and GitHub for Collaborative Developments

Testing

Automatic Testing

Other Useful Tools For Collaborative Software Development

References and Getting Help

Conclusion

References

I The Practice of Programming, by Brian W. Kernighan and Rob
Pike.

I Testing with Python:
I The Hitchhiker’s Guide to Python!:
http://docs.python-guide.org/en/latest/

I Testing your code: http://docs.python-guide.org/en/
latest/writing/tests/#testing-your-code

I Agile development: Manifesto for Agile Software Development

http://docs.python-guide.org/en/latest/
http://docs.python-guide.org/en/latest/writing/tests/#testing-your-code
http://docs.python-guide.org/en/latest/writing/tests/#testing-your-code
http://www.agilemanifesto.org/

Outline

Git and GitHub for Collaborative Developments

Testing

Automatic Testing

Other Useful Tools For Collaborative Software Development

References and Getting Help

Conclusion

Conclusion

I I encourage you to, in order of urgency:
I use a Version Control System.
I design some tests.
I run those tests automatically.

I In the long run, it will:
I save you some time in debugging and troubleshooting.
I let you modify your code with confidence that you are not breaking

it.
I generate a better organized and better written code.

I We are here to help.
I You can e-mail us at: cses@princeton.edu.
I Come to the help sessions Tuesdays (10-11 am) and Thursdays

(2-3 pm), room 347 Lewis Library.

I Job opportunity for Graduate students.

	Git and GitHub for Collaborative Developments
	Testing
	Automatic Testing
	Other Useful Tools For Collaborative Software Development
	References and Getting Help
	Conclusion

