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A Simple Collaborative Workflow
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Remote Repository Permissions

I Problem with that simple workflow:
I It’s easy to push broken code to the shared repository.
I when others pull the changes and start adding their development, it

can create problem.
I this does not work well with more than two developers.

I To solve this issue, we introduce two roles with different
permissions on the shared repository:

I code maintainers: push and pull permissions.
I developers: only pull permission.



Forking a Repository on GitHub

Forks are basically a copy of a repo on GitHub.
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Forking a Repository on GitHub

As the GitHub user buildbot-princeton I want to fork:
https://github.com/luet/factorial

https://github.com/luet/factorial


Forking a Repository on GitHub
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Pull-Request: the Different Repositories
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Pull-Request Steps
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Pull-Request Steps
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Pull-Request Steps
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Pull-Request Steps
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Pull-Request Steps on GitHub



hands-on #1

http://luet.princeton.edu/cicd/

http://luet.princeton.edu/cicd/


Advantages of Doing a Pull-Request?

I Gives us time to review and test the changes before committing
them.

I So that no broken code gets committed to the shared repository.
I The problem with this simple workflow is that it can be hard for

the code maintainers to know whether or not changes break the
code.

I That’s why we need to build some tests.
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Definition and Motivation

I Debugging is what you do when you know that a program is
broken.

I Testing is a determined, systematic attempt to break a program
that you think is working.

I Testing for Quality Assurance: make sure some changes didn’t
change the results compared to the last version.

I When you write code with testing in mind, you write better code
because you write better interfaces.



When to Write the Tests

I Test while you are writing the code.
I Test incrementally:

I write part of a program,
I test it,
I add some more code,
I test that,
I and so on.

I Some programming techniques (e.g. Extreme Programming)
even instruct you to write the tests first.



Testing for Functionality

I Unit testing: test one function.
I Test a set of functions or the entire code:

I It can be hard to design a test that will exercise a certain portion of
your code by running the entire code.

I Use libraries and drivers to isolate functions or a group of functions.



Regression Testing: An Example

I SPECFEM3D_GLOBE (Tromp et. al): simulates global and
regional seismic wave propagation.

I This code produces seismograms, which are records of the
ground motion in one direction at a measuring station as a
function of time.



Regression Testing: Comparing Seismograms
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An Actual Seismograms
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Other Tests

I Use different compilers to:
I check that it will compile.
I find programming mistakes.
I compare the results.

I Use different versions of scripting languages e.g. Python, Matlab.
I Run on different OS, hardware to make sure:

I the code runs.
I the code gives the same results.



Testing frameworks

I Google framework for C++: Google Test.
I Python: unittest
I Matlab

https://github.com/google/googletest
https://docs.python.org/3.7/library/unittest.html
https://www.mathworks.com/help/matlab/matlab-unit-test-framework.html


Testing Frameworks Example

I Look at my factorial calculation repository:
https://github.com/luet/factorial/

https://github.com/luet/factorial/
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Why Run Test Automatically?

I The temptation when you develop code is to test only that part
that you just wrote.

I But there might be side effects to your changes.
I So you want to run a your entire suite of tests every time you make

a change.
I you are less likely to do that if the tests have to be run manually.

I Not all the developers have access to all tools.
I Once it’s set up you don’t have to spend any time running your

tests.



Test Automation with Travis

I An example:
https://github.com/uvaaland/travis_tutorial

I You can get a free account at https://travis-ci.com/.
I When you can login with your GitHub credential.
I It’s only really free for open source (public repositories).

https://github.com/uvaaland/travis_tutorial
https://travis-ci.com/


Test Automation with Jenkins

I Service offered by Research Computing.
I Jenkins is a web-based application for automatic testing.
I Simple user interface: easy to configure.
I The advantage other Travis is that with Jenkins you have access

to the Research Computing resources:
I Large number of cores.
I Compilers.
I Licensed software e.g. Matlab.

I Email cses@princeton.edu to request an account.
I There is a tutorial at:
http://jenkins-doc.princeton.edu/tutorial.html

http://jenkins-doc.princeton.edu/tutorial.html


A Workflow with Jenkins and GitHub

Typical workflow:

1. A Pull-Request is open on GitHub.

2. GitHub sends a signal to our Jenkins server (webhook).

3. Jenkins runs the tests suite.
4. Jenkins reports the results of the tests on the GitHub web site.

I If the changes passed the test, the code maintainer can merge the
changes.

I If the changes failed the test, the developer needs to solve the
problem and push the changes to Github.



Scheduled Tests

I A Pull-Request only triggers short (< 15 min) tests.
I We use Jenkins to schedule longer tests:

I daily (< 1 hour).
I weekly (> 1 hour).



Jenkins vs. Travis

I With Jenkins you can run on:
I the Research Computing clusters.
I any machine that you have ssh access to.

I Travis is good for small scripts, not parallel code.
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Code Documentation

I It’s important to document your code when someone else will
have to read it.

I especially when this someone else can be you in a couple years.
I Doxygen:

I Documentation is in the code.
I Supports adding Latex to the documentation.
I Build calling graph.
I show example

I You can use Sphinx with Python.

https://www.stack.nl/~dimitri/doxygen/


Documenting outside the code: GitHub Wiki

I GitHub Wiki
I It’s easy to write in Markdown.
I https:
//help.github.com/articles/about-github-wikis/

I show examples
I Issues:

I https://guides.github.com/features/issues/
I Like a shared TODO list.

I Gists:
I https://gist.github.com/
I For sharing small codes.

https://guides.github.com/features/mastering-markdown/
https://help.github.com/articles/about-github-wikis/
https://help.github.com/articles/about-github-wikis/
https://guides.github.com/features/issues/
https://gist.github.com/
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References

I The Practice of Programming, by Brian W. Kernighan and Rob
Pike.

I Testing with Python:
I The Hitchhiker’s Guide to Python!:
http://docs.python-guide.org/en/latest/

I Testing your code: http://docs.python-guide.org/en/
latest/writing/tests/#testing-your-code

I Agile development: Manifesto for Agile Software Development

http://docs.python-guide.org/en/latest/
http://docs.python-guide.org/en/latest/writing/tests/#testing-your-code
http://docs.python-guide.org/en/latest/writing/tests/#testing-your-code
http://www.agilemanifesto.org/
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Conclusion

I I encourage you to, in order of urgency:
I use a Version Control System.
I design some tests.
I run those tests automatically.

I In the long run, it will:
I save you some time in debugging and troubleshooting.
I let you modify your code with confidence that you are not breaking

it.
I generate a better organized and better written code.

I We are here to help.
I You can e-mail us at: cses@princeton.edu.
I Come to the help sessions Tuesdays (10-11 am) and Thursdays

(2-3 pm), room 347 Lewis Library.

I Job opportunity for Graduate students.
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