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Goals of this tutorial

• Give an overview of the debugging process
• Learn tips and tricks from the trenches
• Gain practical knowledge of
– the debugging process
– Simple debuggers for C/C++, Fortran, and Python
– Advanced graphical debuggers



Debugging is not easy…
• When a code crashes it usually writes out a cryptic error 

message
– The cpu processes machine instructions, not the C or Fortran source 

code that you wrote…
– Instructions in the final executable program have probably been 

rearranged for optimization purposes
• You are in luck if the error happens at the beginning of the 

execution… usually it does not!
• In a large parallel code, how many processes triggered the 

problem? 1, 2, all of them? Was it related to inter-process 
communication?



Typical error messages

• SIGFPE: floating point exception
– Often controlled be compiler options
– division by zero
– square root of a negative number
– log of a number less or equal to zero
– Does not always crash your code! (unless compiled to do so…)

• The code can keep going for a long time with “NaN” values
• SIGSEGV: segmentation violation or fault (see “man 7 signal”)

– invalid memory reference à e.g. trying to access an array element 
outside the dimensions of an array

– double x[100];    x[345] = SIGSEGV!



Typical error messages

• SIGSEGV can also mean that you ran out of memory
– Allocated memory using “malloc()” goes on the heap memory
– “Local” arrays to a function are put on the “stack”  
– Make sure your shell “stack size limit” is set to “unlimited”

• BASH:  ulimit -s unlimited    (put in .bashrc)
• CSH:     limit stacksize unlimited  (put in .cshrc)

• I/O errors
• NO ERROR MESSAGE AT ALL!

– The code just hangs
– Usually points to a communication deadlock in a parallel code
– The results are just plain wrong…



Take advantage of the compiler options

• Take the time to go through all the options of the compiler that you 
use

• Pay particular attention to the diagnostics options under sections 
with names such as “debugging”, “optimization”, “target-specific”, 
“warnings”

• Using “man compiler_name” is a good start although most 
compilers now have detailed online documentation à Just check 
the company’s web site under “support” or “documentation” 

• (e.g. https://software.intel.com/en-us/intel-software-technical-
documentation)



The -g compiler option
• All compilers accept the -g option
• It links the source code to the executed machine language code.
• The -g option is necessary when using a debugger unless you are 

REALLY good at deciphering machine language.
• However, using -g slows down the code significantly

– Removes optimizations (unless one uses –gopt or –g –O3)
– Start with “-g –O0” (no optimization) for most accurate correspondence 

between executable instructions and source code line
– Inserts a lot of extra information in the executable to help the debugging 

process
• Running with “-g” is sometimes sufficient to find a bug. The code 

crashes and indicates where the error occurred 



“-g” makes the bug go away!

• Sometimes, the fact of using the -g option makes the bug go 
away

• This does not necessarily mean that the optimized code 
generated by the compiler is wrong, although it could be…

• Can point to a memory issue, such as a pointer accessing a 
bad memory address when the optimized code is executed

• Look at your compiler’s documentation for how you can use 
the -g option while keeping most of the optimizations intact, 
such as -gopt for the PGI compiler (Portland Group), or simply 
“-g –O2” for Intel
– caveat: it can point you to the wrong location in the source code



Examples of useful compiler options

• All compilers have options that try to detect potential bugs in 
the code
– Array bounds check (Fortran: –C, -Mbounds, -check bounds) 

• Check for array subscripts and substrings out of bounds
• Should be done on unoptimized code (-O0)

– Easier for Fortran than C/C++ due to the way pointers are treated
• In C it is the responsibility of the programmer to make sure that a pointer 

always points to a valid address and number



Examples of useful compiler options

• Enable runtime error traceback capability
– --trace, -trace, -traceback

• Make sure that Floating Point Exceptions (FPE) are turned on 
(e.g.  -fpe0 for Intel and -Ktrap=fp for PGI compiler)



Warning options in gcc

• The gcc compiler has a large number of options that will 
produce a warning at compile time
– The all start with  -W…
– Example:  -Wuninitialized warns if an automatic variable is used 

before being initialized
– -Wall turns on most of the gcc warning options
– -Werror makes all warnings into errors
– Different levels of debugging information with –g1, –g2, and –g3
– See “man gcc” or “info gcc”



Try different compilers if you can

• Whenever you can, it is always a good idea to try different 
compilers if you have access to different platforms or different 
compilers on the same platform

• Some compilers are a lot stricter than others and can catch 
potential problems at compile time

• See, for example, the following page for comparison between 
Fortran compilers in terms of available diagnostics: 
http://www.fortran.uk/fortran-compiler-comparisons-2015/intellinux-fortran-compiler-diagnostic-capabilities/

http://www.fortran.uk/fortran-compiler-comparisons-2015/intellinux-fortran-compiler-diagnostic-capabilities/


The code crashes… now what?!

• The first thing that you need to know is where the code 
stopped and how it got there

• Each time a program performs a function call, information 
about the call is generated. That information includes the 
location of the call in the program, the arguments of the call, 
and the local variables of the function being called

• This information is saved in a block of data called stack frame
• The stack frames are stored in a region of memory called the 

“call stack”



Saving the stack in “core” files

• How can one view the stack if the code crashed??
• When a code crashes, the system (normally) saves the last call stack 

of the code in files named “core” (or “core.#”, where # is the rank 
number of an MPI task in a parallel code)

• No core file?
– Check your shell limits:  “ulimit –a” (bash) or “limit” (csh)
– Look for “core file size” (bash) or “coredumpsize” (csh) > 0

• On most systems, these files are binary files meant to be read by 
debuggers
– Exception: IBM Blue Gene saves the information in text form

• Of limited use if the code was not compiled with –g option that 
links machine language code to high-level source code



Examining the call stack

• All debuggers should allow you to view the call stack, or 
simply stack

• Commands to look for in the debuggers
– backtrace (gdb)
– where
– info stack

• Use the “apropos debug” command on your UNIX-based 
platform to find out which debugger is available

• If working on Linux (most cases), “gdb” should be available



The gdb debugger

• Official GNU debugger available under Linux

• Widely used for C and C++ code debugging

• Can also be used with Fortran codes

• Online manual for gdb at “info gdb”

• Can be used within the emacs editor
– Can run gdb commands within the emacs source code window (e.g. C-x

SPC to set a breakpoint)

• Online manual at http://www.gnu.org/software/gdb/current

• Search for “gdb tutorial”

• On MacOSX, the C compiler is LLVM (Clang) and the associated 
debugger is “lldb”, which is similar to “gdb” but better used via the 
Xcode GUI

http://www.gnu.org/software/gdb/current


Reading core files with gdb

• If code was compiled with –g and “dumped” core files when it 
crashed, the first thing to try is the following:
gdb executable core.#
(gdb) where  (or backtrace, or bt)

• The “where” command prints out the call stack
• You can also use the DDT advanced debugger to open the 

core file and view the call stack…



Using “gdb”
• Compile with “-g -O0” to get accurate binary-to-source correspondence
• Start gdb:  “gdb executable”
• You get the (gdb) prompt, where you can type the commands:

Command Abbrev. Description

help List gdb command topics

run r Start program execution
break Suspend execution at specified location (line number, function, 

instruction address, etc.)
step s Step to next line of code. Will step “into” a function.
next n Execute next line of code. Will NOT enter functions
until Continue processing until it reaches a specified line
list l List source code with current position of execution
print p Print value stored in a variable



I know where the code crashes… what’s next?
• Detective work starts
• Try reducing the problem size and see if the error is still there

– The smaller the better
– Running with only 2 processes is ideal if your code is parallel

• Start your code in a debugger (gdb or other) and set a breakpoint on a line 
executed before the crash

• Examine the values of variables and arrays by printing them out or 
visualizing them (advanced debuggers)

• Step through your code line by line until you find the problem
• Set other breakpoints to jump over long sections of code, such as loops
• If you know which variable goes bad, use a conditional breakpoint to run 

“until” (gdb) the variable changes to a given value
• Visualizing the results coming out of the code may help detect problems

– Grid problems are often detected by visual inspection



Python debugger
• The “pdb” debugger is part of Python
• Just insert the following at any point in your Python code:

import pdb
pdb.set_trace()

• The execution will stop after these lines and will put you under pdb (you will 
have the (Pdb) prompt)

• Use “help” to see the commands
(Pdb) help

Documented commands (type help <topic>):
========================================
EOF    bt         cont      enable  jump  pp       run      unt   
a      c          continue  exit    l     q        s        until 
alias  cl         d         h       list  quit     step     up    
args   clear      debug     help    n     r        tbreak   w     
b      commands   disable   ignore  next  restart  u        whatis
break  condition  down      j       p     return   unalias  where 



Please use checkpoint-restart

• Checkpoint = write out to files all the information that you need to 
restart a simulation from that point

• Extremely important for codes that have long runtimes (> 1 hour)

– Allows you to restart your simulation at the point of the latest checkpoint

– Avoid losing hours of precious computer time

– Especially important for parallel codes ($$$)

• Extremely important when you need to debug a code that crashes 
after a few hours!!

– You can recompile the code with –g and start from the last checkpoint

– Remember… “-g” slows down the code dramatically so you want to be as 
close to the crash as possible



Using restart files
• When restarting a simulation from a checkpointed state, 

reproducibility is very important
– Test by running the code to a certain point and saving its state at that 

point
– Rerun the same case but split in 2 steps where the 2nd step uses 

restart files generated by the first step
– Compare the end results of the 2 simulations à they should be 

identical
• The restart files need to be BINARY files
• When dealing with random numbers, use a reproducible 

random number generator for which you can save the state 
for restart purposes (e.g. SPRNG  http://sprng.cs.fsu.edu/)

http://sprng.cs.fsu.edu/


“printf” for monitoring and debugging

• Many developers still use “printf” statements to monitor and debug 
their codes

• May be the only recourse when running a code at very large 
concurrencies (100,000+ processors)

• The idea is simple:
– Insert printf statements at strategic locations in the code to gather 

information and try to pinpoint the faulty code line
• Advantages over other forms of debugging

– Easy to use and always works
– Low overhead
– Works on OPTIMIZED code! (CAVEAT: may change or prevent the 

optimization of a section of code. DON’T put in loops!)



printf debugging tips: write to stderr

• For optimization purposes, all code output is buffered before being 

written to disk unless directed otherwise

• If the code crashes before the memory buffers get written to disk, 

the information is lost

• It makes it difficult to pinpoint the exact location of the failing 

statement

• This is the case when using “printf” or “write(6,*)”

• Write to standard error as much as possible since it is not buffered
– fprintf(stderr,…) in C/C++

– “cerr <<“ in C++

– write(0,*) in Fortran

– redirect output: mpirun –np 1024 ./a.out >& output.out

• Explicit flushing of I/O buffers with “fflush()” (C) or “call flush(unit)” 

(Fortran)



A better printf:  ASSERT!
• “assert(condition)” is a way to replace “if(condition)abort();”
• If “condition” is false, the code aborts and outputs the location (line number) of the failed test
• Good way to run “sanity checks” every time the code is executed à Helps catch bugs in the 

code
• Is part of C/C++ and Python
• Check for successful allocation:  assert(pointer != NULL)
• Use functions “isnan()”, “isinf()”, “isnormal()” to catch NaN or Inf numbers (in math.h)

– In FORTRAN, “if (x /= x)” is TRUE if x = NaN
• “assert” is equivalent to an “if” statement so it probably kills optimization in certain cases (may 

prevent vectorization on modern processors). Better to avoid inserting in important loops
• Watch out for truncation error. Do not use assert(x==y) if both “x” and “y” are floating point 

numbers



Extremely useful tool: VALGRIND (a bit slow though…)

• Valgrind (http://valgrind.org/)
– Includes tools that can automatically detect many memory management and 

threading bugs
– Profiles your programs in detail

• Currently includes six production-quality tools:
– memory error detector
– two thread error detectors
– cache and branch-prediction profiler
– call-graph generating cache and branch-prediction profilers
– heap profiler

• Compile your program with -g to include debugging info
– Using -O0 is also a good idea, if you can tolerate the slowdown
– With -O1 line numbers in error messages can be inaccurate
– Use of -O2 and above is not recommended as “Memcheck” occasionally reports 

uninitialised-value errors which don't really exist.

http://valgrind.org/


Valgrind example
1  #include <stdlib.h>
2 
3 void f(void)
4 {
5 int* x = malloc(10 * sizeof(int));
6 x[10] = 0;        // problem 1: heap block overrun
7 }                    // problem 2: memory leak -- x not freed
8 
9 int main(void)
10 {
11 f();
12 return 0;
13 }

$ cc –g –O0 –o test1 test1.c
$ valgrind --leak-check=full ./test1



Valgrind example: results
==1519== Memcheck, a memory error detector
==1519== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==1519== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==1519== Command: ./test1
==1519== 
==1519== Invalid write of size 4
==1519==    at 0x4005B6: f (test1.c:6)
==1519==    by 0x4005C6: main (test1.c:11)
==1519==  Address 0x5183068 is 0 bytes after a block of size 40 alloc'd
==1519==    at 0x4C23938: malloc (vg_replace_malloc.c:270)
==1519==    by 0x4005A9: f (test1.c:5)
==1519==    by 0x4005C6: main (test1.c:11)
==1519== 
==1519== 
==1519== HEAP SUMMARY:
==1519==     in use at exit: 40 bytes in 1 blocks
==1519==   total heap usage: 1 allocs, 0 frees, 40 bytes allocated
==1519== 
==1519== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==1519==    at 0x4C23938: malloc (vg_replace_malloc.c:270)
==1519==    by 0x4005A9: f (test1.c:5)
==1519==    by 0x4005C6: main (test1.c:11)
==1519== 
==1519== LEAK SUMMARY:
==1519==    definitely lost: 40 bytes in 1 blocks
==1519==    indirectly lost: 0 bytes in 0 blocks
==1519==      possibly lost: 0 bytes in 0 blocks
==1519==    still reachable: 0 bytes in 0 blocks
==1519==         suppressed: 0 bytes in 0 blocks
==1519== 
==1519== For counts of detected and suppressed errors, rerun with: -v
==1519== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 7 from 7)



Advanced Graphical Debuggers

• For Python, the Eclipse developer environment with PyDev gives a 

nice GUI for debugging

– See http://www.pydev.org/manual_adv_debugger.html

• The 2 most advanced debuggers for C/C++ and Fortran are:

– Totalview

– ARM DDT (ARM Forge = DDT + MAP)

• Both of them are designed to debug large-scale parallel codes

• All the HPC systems on campus have DDT 

– Type “/usr/licensed/bin/ddt &”    (“&” is to run in background)

– Or “/usr/licensed/bin/ddt –start executable”

– Same idea as gdb: step through your code and examine variables

– See https://developer.arm.com/docs/101136/latest/ddt/getting-started

http://www.pydev.org/manual_adv_debugger.html
https://developer.arm.com/docs/101136/latest/ddt/getting-started


ARM DDT window



Important links

• https://developer.arm.com/docs/101136/latest/ddt
• https://www.princeton.edu/researchcomputing/
• https://www.princeton.edu/researchcomputing/faq/debugging-with-ddt-on-the/

• https://w3.pppl.gov/~ethier/PICSCIE/DEBUGGING/training_ddt.tar.gz
– Can use “wget” on Linux or “curl –O” on MacOS
– tar –zxvf training_ddt.tar.gz to unpack the files. Will creat a directory “training_ddt”

https://developer.arm.com/docs/101136/latest/ddt
https://www.princeton.edu/researchcomputing/
https://www.princeton.edu/researchcomputing/faq/debugging-with-ddt-on-the/
https://w3.pppl.gov/~ethier/PICSCIE/DEBUGGING/training_ddt.tar.gz


Final remark

Don’t waste your time… use a debugger!


